Split out the DwarfException class into its own file. No functionality change,
[llvm/msp430.git] / lib / VMCore / BasicBlock.cpp
blob3065766362e4a1394091ee919ccbd6f32b0041c6
1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/Type.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Support/CFG.h"
20 #include "llvm/Support/LeakDetector.h"
21 #include "llvm/Support/Compiler.h"
22 #include "SymbolTableListTraitsImpl.h"
23 #include <algorithm>
24 using namespace llvm;
26 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
27 if (Function *F = getParent())
28 return &F->getValueSymbolTable();
29 return 0;
32 // Explicit instantiation of SymbolTableListTraits since some of the methods
33 // are not in the public header file...
34 template class SymbolTableListTraits<Instruction, BasicBlock>;
37 BasicBlock::BasicBlock(const std::string &Name, Function *NewParent,
38 BasicBlock *InsertBefore)
39 : Value(Type::LabelTy, Value::BasicBlockVal), Parent(0) {
41 // Make sure that we get added to a function
42 LeakDetector::addGarbageObject(this);
44 if (InsertBefore) {
45 assert(NewParent &&
46 "Cannot insert block before another block with no function!");
47 NewParent->getBasicBlockList().insert(InsertBefore, this);
48 } else if (NewParent) {
49 NewParent->getBasicBlockList().push_back(this);
52 setName(Name);
56 BasicBlock::~BasicBlock() {
57 assert(getParent() == 0 && "BasicBlock still linked into the program!");
58 dropAllReferences();
59 InstList.clear();
62 void BasicBlock::setParent(Function *parent) {
63 if (getParent())
64 LeakDetector::addGarbageObject(this);
66 // Set Parent=parent, updating instruction symtab entries as appropriate.
67 InstList.setSymTabObject(&Parent, parent);
69 if (getParent())
70 LeakDetector::removeGarbageObject(this);
73 void BasicBlock::removeFromParent() {
74 getParent()->getBasicBlockList().remove(this);
77 void BasicBlock::eraseFromParent() {
78 getParent()->getBasicBlockList().erase(this);
81 /// moveBefore - Unlink this basic block from its current function and
82 /// insert it into the function that MovePos lives in, right before MovePos.
83 void BasicBlock::moveBefore(BasicBlock *MovePos) {
84 MovePos->getParent()->getBasicBlockList().splice(MovePos,
85 getParent()->getBasicBlockList(), this);
88 /// moveAfter - Unlink this basic block from its current function and
89 /// insert it into the function that MovePos lives in, right after MovePos.
90 void BasicBlock::moveAfter(BasicBlock *MovePos) {
91 Function::iterator I = MovePos;
92 MovePos->getParent()->getBasicBlockList().splice(++I,
93 getParent()->getBasicBlockList(), this);
97 TerminatorInst *BasicBlock::getTerminator() {
98 if (InstList.empty()) return 0;
99 return dyn_cast<TerminatorInst>(&InstList.back());
102 const TerminatorInst *BasicBlock::getTerminator() const {
103 if (InstList.empty()) return 0;
104 return dyn_cast<TerminatorInst>(&InstList.back());
107 Instruction* BasicBlock::getFirstNonPHI() {
108 BasicBlock::iterator i = begin();
109 // All valid basic blocks should have a terminator,
110 // which is not a PHINode. If we have an invalid basic
111 // block we'll get an assertion failure when dereferencing
112 // a past-the-end iterator.
113 while (isa<PHINode>(i)) ++i;
114 return &*i;
117 void BasicBlock::dropAllReferences() {
118 for(iterator I = begin(), E = end(); I != E; ++I)
119 I->dropAllReferences();
122 /// getSinglePredecessor - If this basic block has a single predecessor block,
123 /// return the block, otherwise return a null pointer.
124 BasicBlock *BasicBlock::getSinglePredecessor() {
125 pred_iterator PI = pred_begin(this), E = pred_end(this);
126 if (PI == E) return 0; // No preds.
127 BasicBlock *ThePred = *PI;
128 ++PI;
129 return (PI == E) ? ThePred : 0 /*multiple preds*/;
132 /// getUniquePredecessor - If this basic block has a unique predecessor block,
133 /// return the block, otherwise return a null pointer.
134 /// Note that unique predecessor doesn't mean single edge, there can be
135 /// multiple edges from the unique predecessor to this block (for example
136 /// a switch statement with multiple cases having the same destination).
137 BasicBlock *BasicBlock::getUniquePredecessor() {
138 pred_iterator PI = pred_begin(this), E = pred_end(this);
139 if (PI == E) return 0; // No preds.
140 BasicBlock *PredBB = *PI;
141 ++PI;
142 for (;PI != E; ++PI) {
143 if (*PI != PredBB)
144 return 0;
145 // The same predecessor appears multiple times in the predecessor list.
146 // This is OK.
148 return PredBB;
151 /// removePredecessor - This method is used to notify a BasicBlock that the
152 /// specified Predecessor of the block is no longer able to reach it. This is
153 /// actually not used to update the Predecessor list, but is actually used to
154 /// update the PHI nodes that reside in the block. Note that this should be
155 /// called while the predecessor still refers to this block.
157 void BasicBlock::removePredecessor(BasicBlock *Pred,
158 bool DontDeleteUselessPHIs) {
159 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
160 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
161 "removePredecessor: BB is not a predecessor!");
163 if (InstList.empty()) return;
164 PHINode *APN = dyn_cast<PHINode>(&front());
165 if (!APN) return; // Quick exit.
167 // If there are exactly two predecessors, then we want to nuke the PHI nodes
168 // altogether. However, we cannot do this, if this in this case:
170 // Loop:
171 // %x = phi [X, Loop]
172 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
173 // br Loop ;; %x2 does not dominate all uses
175 // This is because the PHI node input is actually taken from the predecessor
176 // basic block. The only case this can happen is with a self loop, so we
177 // check for this case explicitly now.
179 unsigned max_idx = APN->getNumIncomingValues();
180 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
181 if (max_idx == 2) {
182 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
184 // Disable PHI elimination!
185 if (this == Other) max_idx = 3;
188 // <= Two predecessors BEFORE I remove one?
189 if (max_idx <= 2 && !DontDeleteUselessPHIs) {
190 // Yup, loop through and nuke the PHI nodes
191 while (PHINode *PN = dyn_cast<PHINode>(&front())) {
192 // Remove the predecessor first.
193 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
195 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
196 if (max_idx == 2) {
197 if (PN->getOperand(0) != PN)
198 PN->replaceAllUsesWith(PN->getOperand(0));
199 else
200 // We are left with an infinite loop with no entries: kill the PHI.
201 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
202 getInstList().pop_front(); // Remove the PHI node
205 // If the PHI node already only had one entry, it got deleted by
206 // removeIncomingValue.
208 } else {
209 // Okay, now we know that we need to remove predecessor #pred_idx from all
210 // PHI nodes. Iterate over each PHI node fixing them up
211 PHINode *PN;
212 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
213 ++II;
214 PN->removeIncomingValue(Pred, false);
215 // If all incoming values to the Phi are the same, we can replace the Phi
216 // with that value.
217 Value* PNV = 0;
218 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) {
219 PN->replaceAllUsesWith(PNV);
220 PN->eraseFromParent();
227 /// splitBasicBlock - This splits a basic block into two at the specified
228 /// instruction. Note that all instructions BEFORE the specified iterator stay
229 /// as part of the original basic block, an unconditional branch is added to
230 /// the new BB, and the rest of the instructions in the BB are moved to the new
231 /// BB, including the old terminator. This invalidates the iterator.
233 /// Note that this only works on well formed basic blocks (must have a
234 /// terminator), and 'I' must not be the end of instruction list (which would
235 /// cause a degenerate basic block to be formed, having a terminator inside of
236 /// the basic block).
238 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
239 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
240 assert(I != InstList.end() &&
241 "Trying to get me to create degenerate basic block!");
243 BasicBlock *InsertBefore = next(Function::iterator(this))
244 .getNodePtrUnchecked();
245 BasicBlock *New = BasicBlock::Create(BBName, getParent(), InsertBefore);
247 // Move all of the specified instructions from the original basic block into
248 // the new basic block.
249 New->getInstList().splice(New->end(), this->getInstList(), I, end());
251 // Add a branch instruction to the newly formed basic block.
252 BranchInst::Create(New, this);
254 // Now we must loop through all of the successors of the New block (which
255 // _were_ the successors of the 'this' block), and update any PHI nodes in
256 // successors. If there were PHI nodes in the successors, then they need to
257 // know that incoming branches will be from New, not from Old.
259 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
260 // Loop over any phi nodes in the basic block, updating the BB field of
261 // incoming values...
262 BasicBlock *Successor = *I;
263 PHINode *PN;
264 for (BasicBlock::iterator II = Successor->begin();
265 (PN = dyn_cast<PHINode>(II)); ++II) {
266 int IDX = PN->getBasicBlockIndex(this);
267 while (IDX != -1) {
268 PN->setIncomingBlock((unsigned)IDX, New);
269 IDX = PN->getBasicBlockIndex(this);
273 return New;