1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/GlobalAlias.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringExtras.h"
45 /// makeVTList - Return an instance of the SDVTList struct initialized with the
46 /// specified members.
47 static SDVTList
makeVTList(const MVT
*VTs
, unsigned NumVTs
) {
48 SDVTList Res
= {VTs
, NumVTs
};
52 static const fltSemantics
*MVTToAPFloatSemantics(MVT VT
) {
53 switch (VT
.getSimpleVT()) {
54 default: assert(0 && "Unknown FP format");
55 case MVT::f32
: return &APFloat::IEEEsingle
;
56 case MVT::f64
: return &APFloat::IEEEdouble
;
57 case MVT::f80
: return &APFloat::x87DoubleExtended
;
58 case MVT::f128
: return &APFloat::IEEEquad
;
59 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
63 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
65 //===----------------------------------------------------------------------===//
66 // ConstantFPSDNode Class
67 //===----------------------------------------------------------------------===//
69 /// isExactlyValue - We don't rely on operator== working on double values, as
70 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71 /// As such, this method can be used to do an exact bit-for-bit comparison of
72 /// two floating point values.
73 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
74 return getValueAPF().bitwiseIsEqual(V
);
77 bool ConstantFPSDNode::isValueValidForType(MVT VT
,
79 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
81 // PPC long double cannot be converted to any other type.
82 if (VT
== MVT::ppcf128
||
83 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
86 // convert modifies in place, so make a copy.
87 APFloat Val2
= APFloat(Val
);
89 (void) Val2
.convert(*MVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
94 //===----------------------------------------------------------------------===//
96 //===----------------------------------------------------------------------===//
98 /// isBuildVectorAllOnes - Return true if the specified node is a
99 /// BUILD_VECTOR where all of the elements are ~0 or undef.
100 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
101 // Look through a bit convert.
102 if (N
->getOpcode() == ISD::BIT_CONVERT
)
103 N
= N
->getOperand(0).getNode();
105 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
107 unsigned i
= 0, e
= N
->getNumOperands();
109 // Skip over all of the undef values.
110 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
113 // Do not accept an all-undef vector.
114 if (i
== e
) return false;
116 // Do not accept build_vectors that aren't all constants or which have non-~0
118 SDValue NotZero
= N
->getOperand(i
);
119 if (isa
<ConstantSDNode
>(NotZero
)) {
120 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
122 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
123 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
124 bitcastToAPInt().isAllOnesValue())
129 // Okay, we have at least one ~0 value, check to see if the rest match or are
131 for (++i
; i
!= e
; ++i
)
132 if (N
->getOperand(i
) != NotZero
&&
133 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
139 /// isBuildVectorAllZeros - Return true if the specified node is a
140 /// BUILD_VECTOR where all of the elements are 0 or undef.
141 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
142 // Look through a bit convert.
143 if (N
->getOpcode() == ISD::BIT_CONVERT
)
144 N
= N
->getOperand(0).getNode();
146 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
148 unsigned i
= 0, e
= N
->getNumOperands();
150 // Skip over all of the undef values.
151 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
154 // Do not accept an all-undef vector.
155 if (i
== e
) return false;
157 // Do not accept build_vectors that aren't all constants or which have non-~0
159 SDValue Zero
= N
->getOperand(i
);
160 if (isa
<ConstantSDNode
>(Zero
)) {
161 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
163 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
164 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
169 // Okay, we have at least one ~0 value, check to see if the rest match or are
171 for (++i
; i
!= e
; ++i
)
172 if (N
->getOperand(i
) != Zero
&&
173 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
178 /// isScalarToVector - Return true if the specified node is a
179 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180 /// element is not an undef.
181 bool ISD::isScalarToVector(const SDNode
*N
) {
182 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
185 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
187 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
189 unsigned NumElems
= N
->getNumOperands();
190 for (unsigned i
= 1; i
< NumElems
; ++i
) {
191 SDValue V
= N
->getOperand(i
);
192 if (V
.getOpcode() != ISD::UNDEF
)
199 /// isDebugLabel - Return true if the specified node represents a debug
200 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201 bool ISD::isDebugLabel(const SDNode
*N
) {
203 if (N
->getOpcode() == ISD::DBG_LABEL
)
205 if (N
->isMachineOpcode() &&
206 N
->getMachineOpcode() == TargetInstrInfo::DBG_LABEL
)
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
214 // To perform this operation, we just need to swap the L and G bits of the
216 unsigned OldL
= (Operation
>> 2) & 1;
217 unsigned OldG
= (Operation
>> 1) & 1;
218 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
219 (OldL
<< 1) | // New G bit
220 (OldG
<< 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
226 unsigned Operation
= Op
;
228 Operation
^= 7; // Flip L, G, E bits, but not U.
230 Operation
^= 15; // Flip all of the condition bits.
232 if (Operation
> ISD::SETTRUE2
)
233 Operation
&= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation
);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode
) {
244 default: assert(0 && "Illegal integer setcc operation!");
246 case ISD::SETNE
: return 0;
250 case ISD::SETGE
: return 1;
254 case ISD::SETUGE
: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
262 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
264 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID
;
268 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op
> ISD::SETTRUE2
)
273 Op
&= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
279 return ISD::CondCode(Op
);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
286 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
288 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID
;
292 // Combine all of the condition bits.
293 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
295 // Canonicalize illegal integer setcc's.
299 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
300 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
302 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
303 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
310 const TargetMachine
&SelectionDAG::getTarget() const {
311 return MF
->getTarget();
314 //===----------------------------------------------------------------------===//
315 // SDNode Profile Support
316 //===----------------------------------------------------------------------===//
318 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
320 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
324 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325 /// solely with their pointer.
326 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
327 ID
.AddPointer(VTList
.VTs
);
330 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
332 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
333 const SDValue
*Ops
, unsigned NumOps
) {
334 for (; NumOps
; --NumOps
, ++Ops
) {
335 ID
.AddPointer(Ops
->getNode());
336 ID
.AddInteger(Ops
->getResNo());
340 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
342 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
343 const SDUse
*Ops
, unsigned NumOps
) {
344 for (; NumOps
; --NumOps
, ++Ops
) {
345 ID
.AddPointer(Ops
->getNode());
346 ID
.AddInteger(Ops
->getResNo());
350 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
351 unsigned short OpC
, SDVTList VTList
,
352 const SDValue
*OpList
, unsigned N
) {
353 AddNodeIDOpcode(ID
, OpC
);
354 AddNodeIDValueTypes(ID
, VTList
);
355 AddNodeIDOperands(ID
, OpList
, N
);
358 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
360 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
361 switch (N
->getOpcode()) {
362 default: break; // Normal nodes don't need extra info.
364 ID
.AddInteger(cast
<ARG_FLAGSSDNode
>(N
)->getArgFlags().getRawBits());
366 case ISD::TargetConstant
:
368 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
370 case ISD::TargetConstantFP
:
371 case ISD::ConstantFP
: {
372 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
375 case ISD::TargetGlobalAddress
:
376 case ISD::GlobalAddress
:
377 case ISD::TargetGlobalTLSAddress
:
378 case ISD::GlobalTLSAddress
: {
379 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
380 ID
.AddPointer(GA
->getGlobal());
381 ID
.AddInteger(GA
->getOffset());
384 case ISD::BasicBlock
:
385 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
388 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
390 case ISD::DBG_STOPPOINT
: {
391 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(N
);
392 ID
.AddInteger(DSP
->getLine());
393 ID
.AddInteger(DSP
->getColumn());
394 ID
.AddPointer(DSP
->getCompileUnit());
398 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
400 case ISD::MEMOPERAND
: {
401 const MachineMemOperand
&MO
= cast
<MemOperandSDNode
>(N
)->MO
;
405 case ISD::FrameIndex
:
406 case ISD::TargetFrameIndex
:
407 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
410 case ISD::TargetJumpTable
:
411 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
413 case ISD::ConstantPool
:
414 case ISD::TargetConstantPool
: {
415 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
416 ID
.AddInteger(CP
->getAlignment());
417 ID
.AddInteger(CP
->getOffset());
418 if (CP
->isMachineConstantPoolEntry())
419 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
421 ID
.AddPointer(CP
->getConstVal());
425 const CallSDNode
*Call
= cast
<CallSDNode
>(N
);
426 ID
.AddInteger(Call
->getCallingConv());
427 ID
.AddInteger(Call
->isVarArg());
431 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
432 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
433 ID
.AddInteger(LD
->getRawSubclassData());
437 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
438 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
439 ID
.AddInteger(ST
->getRawSubclassData());
442 case ISD::ATOMIC_CMP_SWAP
:
443 case ISD::ATOMIC_SWAP
:
444 case ISD::ATOMIC_LOAD_ADD
:
445 case ISD::ATOMIC_LOAD_SUB
:
446 case ISD::ATOMIC_LOAD_AND
:
447 case ISD::ATOMIC_LOAD_OR
:
448 case ISD::ATOMIC_LOAD_XOR
:
449 case ISD::ATOMIC_LOAD_NAND
:
450 case ISD::ATOMIC_LOAD_MIN
:
451 case ISD::ATOMIC_LOAD_MAX
:
452 case ISD::ATOMIC_LOAD_UMIN
:
453 case ISD::ATOMIC_LOAD_UMAX
: {
454 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
455 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
456 ID
.AddInteger(AT
->getRawSubclassData());
459 case ISD::VECTOR_SHUFFLE
: {
460 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
461 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
463 ID
.AddInteger(SVN
->getMaskElt(i
));
466 } // end switch (N->getOpcode())
469 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
471 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
472 AddNodeIDOpcode(ID
, N
->getOpcode());
473 // Add the return value info.
474 AddNodeIDValueTypes(ID
, N
->getVTList());
475 // Add the operand info.
476 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
478 // Handle SDNode leafs with special info.
479 AddNodeIDCustom(ID
, N
);
482 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
483 /// the CSE map that carries alignment, volatility, indexing mode, and
484 /// extension/truncation information.
486 static inline unsigned
487 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
,
488 bool isVolatile
, unsigned Alignment
) {
489 assert((ConvType
& 3) == ConvType
&&
490 "ConvType may not require more than 2 bits!");
491 assert((AM
& 7) == AM
&&
492 "AM may not require more than 3 bits!");
496 ((Log2_32(Alignment
) + 1) << 6);
499 //===----------------------------------------------------------------------===//
500 // SelectionDAG Class
501 //===----------------------------------------------------------------------===//
503 /// doNotCSE - Return true if CSE should not be performed for this node.
504 static bool doNotCSE(SDNode
*N
) {
505 if (N
->getValueType(0) == MVT::Flag
)
506 return true; // Never CSE anything that produces a flag.
508 switch (N
->getOpcode()) {
510 case ISD::HANDLENODE
:
512 case ISD::DBG_STOPPOINT
:
515 return true; // Never CSE these nodes.
518 // Check that remaining values produced are not flags.
519 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
520 if (N
->getValueType(i
) == MVT::Flag
)
521 return true; // Never CSE anything that produces a flag.
526 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
528 void SelectionDAG::RemoveDeadNodes() {
529 // Create a dummy node (which is not added to allnodes), that adds a reference
530 // to the root node, preventing it from being deleted.
531 HandleSDNode
Dummy(getRoot());
533 SmallVector
<SDNode
*, 128> DeadNodes
;
535 // Add all obviously-dead nodes to the DeadNodes worklist.
536 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
538 DeadNodes
.push_back(I
);
540 RemoveDeadNodes(DeadNodes
);
542 // If the root changed (e.g. it was a dead load, update the root).
543 setRoot(Dummy
.getValue());
546 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
547 /// given list, and any nodes that become unreachable as a result.
548 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
549 DAGUpdateListener
*UpdateListener
) {
551 // Process the worklist, deleting the nodes and adding their uses to the
553 while (!DeadNodes
.empty()) {
554 SDNode
*N
= DeadNodes
.pop_back_val();
557 UpdateListener
->NodeDeleted(N
, 0);
559 // Take the node out of the appropriate CSE map.
560 RemoveNodeFromCSEMaps(N
);
562 // Next, brutally remove the operand list. This is safe to do, as there are
563 // no cycles in the graph.
564 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
566 SDNode
*Operand
= Use
.getNode();
569 // Now that we removed this operand, see if there are no uses of it left.
570 if (Operand
->use_empty())
571 DeadNodes
.push_back(Operand
);
578 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
579 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
580 RemoveDeadNodes(DeadNodes
, UpdateListener
);
583 void SelectionDAG::DeleteNode(SDNode
*N
) {
584 // First take this out of the appropriate CSE map.
585 RemoveNodeFromCSEMaps(N
);
587 // Finally, remove uses due to operands of this node, remove from the
588 // AllNodes list, and delete the node.
589 DeleteNodeNotInCSEMaps(N
);
592 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
593 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
594 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
596 // Drop all of the operands and decrement used node's use counts.
602 void SelectionDAG::DeallocateNode(SDNode
*N
) {
603 if (N
->OperandsNeedDelete
)
604 delete[] N
->OperandList
;
606 // Set the opcode to DELETED_NODE to help catch bugs when node
607 // memory is reallocated.
608 N
->NodeType
= ISD::DELETED_NODE
;
610 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
613 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614 /// correspond to it. This is useful when we're about to delete or repurpose
615 /// the node. We don't want future request for structurally identical nodes
616 /// to return N anymore.
617 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
619 switch (N
->getOpcode()) {
620 case ISD::EntryToken
:
621 assert(0 && "EntryToken should not be in CSEMaps!");
623 case ISD::HANDLENODE
: return false; // noop.
625 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
626 "Cond code doesn't exist!");
627 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
628 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
630 case ISD::ExternalSymbol
:
631 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
633 case ISD::TargetExternalSymbol
:
635 TargetExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
637 case ISD::VALUETYPE
: {
638 MVT VT
= cast
<VTSDNode
>(N
)->getVT();
639 if (VT
.isExtended()) {
640 Erased
= ExtendedValueTypeNodes
.erase(VT
);
642 Erased
= ValueTypeNodes
[VT
.getSimpleVT()] != 0;
643 ValueTypeNodes
[VT
.getSimpleVT()] = 0;
648 // Remove it from the CSE Map.
649 Erased
= CSEMap
.RemoveNode(N
);
653 // Verify that the node was actually in one of the CSE maps, unless it has a
654 // flag result (which cannot be CSE'd) or is one of the special cases that are
655 // not subject to CSE.
656 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Flag
&&
657 !N
->isMachineOpcode() && !doNotCSE(N
)) {
660 assert(0 && "Node is not in map!");
666 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
667 /// maps and modified in place. Add it back to the CSE maps, unless an identical
668 /// node already exists, in which case transfer all its users to the existing
669 /// node. This transfer can potentially trigger recursive merging.
672 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
673 DAGUpdateListener
*UpdateListener
) {
674 // For node types that aren't CSE'd, just act as if no identical node
677 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
679 // If there was already an existing matching node, use ReplaceAllUsesWith
680 // to replace the dead one with the existing one. This can cause
681 // recursive merging of other unrelated nodes down the line.
682 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
684 // N is now dead. Inform the listener if it exists and delete it.
686 UpdateListener
->NodeDeleted(N
, Existing
);
687 DeleteNodeNotInCSEMaps(N
);
692 // If the node doesn't already exist, we updated it. Inform a listener if
695 UpdateListener
->NodeUpdated(N
);
698 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
699 /// were replaced with those specified. If this node is never memoized,
700 /// return null, otherwise return a pointer to the slot it would take. If a
701 /// node already exists with these operands, the slot will be non-null.
702 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
707 SDValue Ops
[] = { Op
};
709 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
710 AddNodeIDCustom(ID
, N
);
711 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
714 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
715 /// were replaced with those specified. If this node is never memoized,
716 /// return null, otherwise return a pointer to the slot it would take. If a
717 /// node already exists with these operands, the slot will be non-null.
718 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
719 SDValue Op1
, SDValue Op2
,
724 SDValue Ops
[] = { Op1
, Op2
};
726 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
727 AddNodeIDCustom(ID
, N
);
728 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
732 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
733 /// were replaced with those specified. If this node is never memoized,
734 /// return null, otherwise return a pointer to the slot it would take. If a
735 /// node already exists with these operands, the slot will be non-null.
736 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
737 const SDValue
*Ops
,unsigned NumOps
,
743 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
744 AddNodeIDCustom(ID
, N
);
745 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
748 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
749 void SelectionDAG::VerifyNode(SDNode
*N
) {
750 switch (N
->getOpcode()) {
753 case ISD::BUILD_PAIR
: {
754 MVT VT
= N
->getValueType(0);
755 assert(N
->getNumValues() == 1 && "Too many results!");
756 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
757 "Wrong return type!");
758 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
759 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
760 "Mismatched operand types!");
761 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
762 "Wrong operand type!");
763 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
764 "Wrong return type size");
767 case ISD::BUILD_VECTOR
: {
768 assert(N
->getNumValues() == 1 && "Too many results!");
769 assert(N
->getValueType(0).isVector() && "Wrong return type!");
770 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
771 "Wrong number of operands!");
772 MVT EltVT
= N
->getValueType(0).getVectorElementType();
773 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
)
774 assert((I
->getValueType() == EltVT
||
775 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
776 EltVT
.bitsLE(I
->getValueType()))) &&
777 "Wrong operand type!");
783 /// getMVTAlignment - Compute the default alignment value for the
786 unsigned SelectionDAG::getMVTAlignment(MVT VT
) const {
787 const Type
*Ty
= VT
== MVT::iPTR
?
788 PointerType::get(Type::Int8Ty
, 0) :
791 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
794 // EntryNode could meaningfully have debug info if we can find it...
795 SelectionDAG::SelectionDAG(TargetLowering
&tli
, FunctionLoweringInfo
&fli
)
796 : TLI(tli
), FLI(fli
), DW(0),
797 EntryNode(ISD::EntryToken
, DebugLoc::getUnknownLoc(),
798 getVTList(MVT::Other
)), Root(getEntryNode()) {
799 AllNodes
.push_back(&EntryNode
);
802 void SelectionDAG::init(MachineFunction
&mf
, MachineModuleInfo
*mmi
,
809 SelectionDAG::~SelectionDAG() {
813 void SelectionDAG::allnodes_clear() {
814 assert(&*AllNodes
.begin() == &EntryNode
);
815 AllNodes
.remove(AllNodes
.begin());
816 while (!AllNodes
.empty())
817 DeallocateNode(AllNodes
.begin());
820 void SelectionDAG::clear() {
822 OperandAllocator
.Reset();
825 ExtendedValueTypeNodes
.clear();
826 ExternalSymbols
.clear();
827 TargetExternalSymbols
.clear();
828 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
829 static_cast<CondCodeSDNode
*>(0));
830 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
831 static_cast<SDNode
*>(0));
833 EntryNode
.UseList
= 0;
834 AllNodes
.push_back(&EntryNode
);
835 Root
= getEntryNode();
838 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, MVT VT
) {
839 if (Op
.getValueType() == VT
) return Op
;
840 APInt Imm
= APInt::getLowBitsSet(Op
.getValueSizeInBits(),
842 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
843 getConstant(Imm
, Op
.getValueType()));
846 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
848 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, MVT VT
) {
849 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
851 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
852 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
855 SDValue
SelectionDAG::getConstant(uint64_t Val
, MVT VT
, bool isT
) {
856 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
857 assert((EltVT
.getSizeInBits() >= 64 ||
858 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
859 "getConstant with a uint64_t value that doesn't fit in the type!");
860 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
863 SDValue
SelectionDAG::getConstant(const APInt
&Val
, MVT VT
, bool isT
) {
864 return getConstant(*ConstantInt::get(Val
), VT
, isT
);
867 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, MVT VT
, bool isT
) {
868 assert(VT
.isInteger() && "Cannot create FP integer constant!");
870 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
871 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
872 "APInt size does not match type size!");
874 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
876 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
880 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
882 return SDValue(N
, 0);
884 N
= NodeAllocator
.Allocate
<ConstantSDNode
>();
885 new (N
) ConstantSDNode(isT
, &Val
, EltVT
);
886 CSEMap
.InsertNode(N
, IP
);
887 AllNodes
.push_back(N
);
890 SDValue
Result(N
, 0);
892 SmallVector
<SDValue
, 8> Ops
;
893 Ops
.assign(VT
.getVectorNumElements(), Result
);
894 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
895 VT
, &Ops
[0], Ops
.size());
900 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
901 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
905 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, MVT VT
, bool isTarget
) {
906 return getConstantFP(*ConstantFP::get(V
), VT
, isTarget
);
909 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, MVT VT
, bool isTarget
){
910 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
913 VT
.isVector() ? VT
.getVectorElementType() : VT
;
915 // Do the map lookup using the actual bit pattern for the floating point
916 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917 // we don't have issues with SNANs.
918 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
920 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
924 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
926 return SDValue(N
, 0);
928 N
= NodeAllocator
.Allocate
<ConstantFPSDNode
>();
929 new (N
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
930 CSEMap
.InsertNode(N
, IP
);
931 AllNodes
.push_back(N
);
934 SDValue
Result(N
, 0);
936 SmallVector
<SDValue
, 8> Ops
;
937 Ops
.assign(VT
.getVectorNumElements(), Result
);
938 // FIXME DebugLoc info might be appropriate here
939 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
940 VT
, &Ops
[0], Ops
.size());
945 SDValue
SelectionDAG::getConstantFP(double Val
, MVT VT
, bool isTarget
) {
947 VT
.isVector() ? VT
.getVectorElementType() : VT
;
949 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
951 return getConstantFP(APFloat(Val
), VT
, isTarget
);
954 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
,
955 MVT VT
, int64_t Offset
,
959 // Truncate (with sign-extension) the offset value to the pointer size.
960 unsigned BitWidth
= TLI
.getPointerTy().getSizeInBits();
962 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
964 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
966 // If GV is an alias then use the aliasee for determining thread-localness.
967 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
968 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
971 if (GVar
&& GVar
->isThreadLocal())
972 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
974 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
977 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
979 ID
.AddInteger(Offset
);
981 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
982 return SDValue(E
, 0);
983 SDNode
*N
= NodeAllocator
.Allocate
<GlobalAddressSDNode
>();
984 new (N
) GlobalAddressSDNode(isTargetGA
, GV
, VT
, Offset
);
985 CSEMap
.InsertNode(N
, IP
);
986 AllNodes
.push_back(N
);
987 return SDValue(N
, 0);
990 SDValue
SelectionDAG::getFrameIndex(int FI
, MVT VT
, bool isTarget
) {
991 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
993 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
996 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
997 return SDValue(E
, 0);
998 SDNode
*N
= NodeAllocator
.Allocate
<FrameIndexSDNode
>();
999 new (N
) FrameIndexSDNode(FI
, VT
, isTarget
);
1000 CSEMap
.InsertNode(N
, IP
);
1001 AllNodes
.push_back(N
);
1002 return SDValue(N
, 0);
1005 SDValue
SelectionDAG::getJumpTable(int JTI
, MVT VT
, bool isTarget
){
1006 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1007 FoldingSetNodeID ID
;
1008 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1011 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1012 return SDValue(E
, 0);
1013 SDNode
*N
= NodeAllocator
.Allocate
<JumpTableSDNode
>();
1014 new (N
) JumpTableSDNode(JTI
, VT
, isTarget
);
1015 CSEMap
.InsertNode(N
, IP
);
1016 AllNodes
.push_back(N
);
1017 return SDValue(N
, 0);
1020 SDValue
SelectionDAG::getConstantPool(Constant
*C
, MVT VT
,
1021 unsigned Alignment
, int Offset
,
1024 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1025 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1026 FoldingSetNodeID ID
;
1027 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1028 ID
.AddInteger(Alignment
);
1029 ID
.AddInteger(Offset
);
1032 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1033 return SDValue(E
, 0);
1034 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1035 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
);
1036 CSEMap
.InsertNode(N
, IP
);
1037 AllNodes
.push_back(N
);
1038 return SDValue(N
, 0);
1042 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, MVT VT
,
1043 unsigned Alignment
, int Offset
,
1046 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1047 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1048 FoldingSetNodeID ID
;
1049 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1050 ID
.AddInteger(Alignment
);
1051 ID
.AddInteger(Offset
);
1052 C
->AddSelectionDAGCSEId(ID
);
1054 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1055 return SDValue(E
, 0);
1056 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1057 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
);
1058 CSEMap
.InsertNode(N
, IP
);
1059 AllNodes
.push_back(N
);
1060 return SDValue(N
, 0);
1063 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1064 FoldingSetNodeID ID
;
1065 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1068 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1069 return SDValue(E
, 0);
1070 SDNode
*N
= NodeAllocator
.Allocate
<BasicBlockSDNode
>();
1071 new (N
) BasicBlockSDNode(MBB
);
1072 CSEMap
.InsertNode(N
, IP
);
1073 AllNodes
.push_back(N
);
1074 return SDValue(N
, 0);
1077 SDValue
SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags
) {
1078 FoldingSetNodeID ID
;
1079 AddNodeIDNode(ID
, ISD::ARG_FLAGS
, getVTList(MVT::Other
), 0, 0);
1080 ID
.AddInteger(Flags
.getRawBits());
1082 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1083 return SDValue(E
, 0);
1084 SDNode
*N
= NodeAllocator
.Allocate
<ARG_FLAGSSDNode
>();
1085 new (N
) ARG_FLAGSSDNode(Flags
);
1086 CSEMap
.InsertNode(N
, IP
);
1087 AllNodes
.push_back(N
);
1088 return SDValue(N
, 0);
1091 SDValue
SelectionDAG::getValueType(MVT VT
) {
1092 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT() >= ValueTypeNodes
.size())
1093 ValueTypeNodes
.resize(VT
.getSimpleVT()+1);
1095 SDNode
*&N
= VT
.isExtended() ?
1096 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT()];
1098 if (N
) return SDValue(N
, 0);
1099 N
= NodeAllocator
.Allocate
<VTSDNode
>();
1100 new (N
) VTSDNode(VT
);
1101 AllNodes
.push_back(N
);
1102 return SDValue(N
, 0);
1105 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, MVT VT
) {
1106 SDNode
*&N
= ExternalSymbols
[Sym
];
1107 if (N
) return SDValue(N
, 0);
1108 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1109 new (N
) ExternalSymbolSDNode(false, Sym
, VT
);
1110 AllNodes
.push_back(N
);
1111 return SDValue(N
, 0);
1114 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, MVT VT
) {
1115 SDNode
*&N
= TargetExternalSymbols
[Sym
];
1116 if (N
) return SDValue(N
, 0);
1117 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1118 new (N
) ExternalSymbolSDNode(true, Sym
, VT
);
1119 AllNodes
.push_back(N
);
1120 return SDValue(N
, 0);
1123 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1124 if ((unsigned)Cond
>= CondCodeNodes
.size())
1125 CondCodeNodes
.resize(Cond
+1);
1127 if (CondCodeNodes
[Cond
] == 0) {
1128 CondCodeSDNode
*N
= NodeAllocator
.Allocate
<CondCodeSDNode
>();
1129 new (N
) CondCodeSDNode(Cond
);
1130 CondCodeNodes
[Cond
] = N
;
1131 AllNodes
.push_back(N
);
1133 return SDValue(CondCodeNodes
[Cond
], 0);
1136 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1137 // the shuffle mask M that point at N1 to point at N2, and indices that point
1138 // N2 to point at N1.
1139 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, SmallVectorImpl
<int> &M
) {
1141 int NElts
= M
.size();
1142 for (int i
= 0; i
!= NElts
; ++i
) {
1150 SDValue
SelectionDAG::getVectorShuffle(MVT VT
, DebugLoc dl
, SDValue N1
,
1151 SDValue N2
, const int *Mask
) {
1152 assert(N1
.getValueType() == N2
.getValueType() && "Invalid VECTOR_SHUFFLE");
1153 assert(VT
.isVector() && N1
.getValueType().isVector() &&
1154 "Vector Shuffle VTs must be a vectors");
1155 assert(VT
.getVectorElementType() == N1
.getValueType().getVectorElementType()
1156 && "Vector Shuffle VTs must have same element type");
1158 // Canonicalize shuffle undef, undef -> undef
1159 if (N1
.getOpcode() == ISD::UNDEF
&& N2
.getOpcode() == ISD::UNDEF
)
1162 // Validate that all indices in Mask are within the range of the elements
1163 // input to the shuffle.
1164 unsigned NElts
= VT
.getVectorNumElements();
1165 SmallVector
<int, 8> MaskVec
;
1166 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1167 assert(Mask
[i
] < (int)(NElts
* 2) && "Index out of range");
1168 MaskVec
.push_back(Mask
[i
]);
1171 // Canonicalize shuffle v, v -> v, undef
1174 for (unsigned i
= 0; i
!= NElts
; ++i
)
1175 if (MaskVec
[i
] >= (int)NElts
) MaskVec
[i
] -= NElts
;
1178 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1179 if (N1
.getOpcode() == ISD::UNDEF
)
1180 commuteShuffle(N1
, N2
, MaskVec
);
1182 // Canonicalize all index into lhs, -> shuffle lhs, undef
1183 // Canonicalize all index into rhs, -> shuffle rhs, undef
1184 bool AllLHS
= true, AllRHS
= true;
1185 bool N2Undef
= N2
.getOpcode() == ISD::UNDEF
;
1186 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1187 if (MaskVec
[i
] >= (int)NElts
) {
1192 } else if (MaskVec
[i
] >= 0) {
1196 if (AllLHS
&& AllRHS
)
1197 return getUNDEF(VT
);
1198 if (AllLHS
&& !N2Undef
)
1202 commuteShuffle(N1
, N2
, MaskVec
);
1205 // If Identity shuffle, or all shuffle in to undef, return that node.
1206 bool AllUndef
= true;
1207 bool Identity
= true;
1208 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1209 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != (int)i
) Identity
= false;
1210 if (MaskVec
[i
] >= 0) AllUndef
= false;
1215 return getUNDEF(VT
);
1217 FoldingSetNodeID ID
;
1218 SDValue Ops
[2] = { N1
, N2
};
1219 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
, 2);
1220 for (unsigned i
= 0; i
!= NElts
; ++i
)
1221 ID
.AddInteger(MaskVec
[i
]);
1224 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1225 return SDValue(E
, 0);
1227 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1228 // SDNode doesn't have access to it. This memory will be "leaked" when
1229 // the node is deallocated, but recovered when the NodeAllocator is released.
1230 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1231 memcpy(MaskAlloc
, &MaskVec
[0], NElts
* sizeof(int));
1233 ShuffleVectorSDNode
*N
= NodeAllocator
.Allocate
<ShuffleVectorSDNode
>();
1234 new (N
) ShuffleVectorSDNode(VT
, dl
, N1
, N2
, MaskAlloc
);
1235 CSEMap
.InsertNode(N
, IP
);
1236 AllNodes
.push_back(N
);
1237 return SDValue(N
, 0);
1240 SDValue
SelectionDAG::getConvertRndSat(MVT VT
, DebugLoc dl
,
1241 SDValue Val
, SDValue DTy
,
1242 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1243 ISD::CvtCode Code
) {
1244 // If the src and dest types are the same and the conversion is between
1245 // integer types of the same sign or two floats, no conversion is necessary.
1247 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1250 FoldingSetNodeID ID
;
1252 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1253 return SDValue(E
, 0);
1254 CvtRndSatSDNode
*N
= NodeAllocator
.Allocate
<CvtRndSatSDNode
>();
1255 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1256 new (N
) CvtRndSatSDNode(VT
, dl
, Ops
, 5, Code
);
1257 CSEMap
.InsertNode(N
, IP
);
1258 AllNodes
.push_back(N
);
1259 return SDValue(N
, 0);
1262 SDValue
SelectionDAG::getRegister(unsigned RegNo
, MVT VT
) {
1263 FoldingSetNodeID ID
;
1264 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1265 ID
.AddInteger(RegNo
);
1267 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1268 return SDValue(E
, 0);
1269 SDNode
*N
= NodeAllocator
.Allocate
<RegisterSDNode
>();
1270 new (N
) RegisterSDNode(RegNo
, VT
);
1271 CSEMap
.InsertNode(N
, IP
);
1272 AllNodes
.push_back(N
);
1273 return SDValue(N
, 0);
1276 SDValue
SelectionDAG::getDbgStopPoint(DebugLoc DL
, SDValue Root
,
1277 unsigned Line
, unsigned Col
,
1279 SDNode
*N
= NodeAllocator
.Allocate
<DbgStopPointSDNode
>();
1280 new (N
) DbgStopPointSDNode(Root
, Line
, Col
, CU
);
1282 AllNodes
.push_back(N
);
1283 return SDValue(N
, 0);
1286 SDValue
SelectionDAG::getLabel(unsigned Opcode
, DebugLoc dl
,
1289 FoldingSetNodeID ID
;
1290 SDValue Ops
[] = { Root
};
1291 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), &Ops
[0], 1);
1292 ID
.AddInteger(LabelID
);
1294 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1295 return SDValue(E
, 0);
1296 SDNode
*N
= NodeAllocator
.Allocate
<LabelSDNode
>();
1297 new (N
) LabelSDNode(Opcode
, dl
, Root
, LabelID
);
1298 CSEMap
.InsertNode(N
, IP
);
1299 AllNodes
.push_back(N
);
1300 return SDValue(N
, 0);
1303 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1304 assert((!V
|| isa
<PointerType
>(V
->getType())) &&
1305 "SrcValue is not a pointer?");
1307 FoldingSetNodeID ID
;
1308 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1312 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1313 return SDValue(E
, 0);
1315 SDNode
*N
= NodeAllocator
.Allocate
<SrcValueSDNode
>();
1316 new (N
) SrcValueSDNode(V
);
1317 CSEMap
.InsertNode(N
, IP
);
1318 AllNodes
.push_back(N
);
1319 return SDValue(N
, 0);
1322 SDValue
SelectionDAG::getMemOperand(const MachineMemOperand
&MO
) {
1324 const Value
*v
= MO
.getValue();
1325 assert((!v
|| isa
<PointerType
>(v
->getType())) &&
1326 "SrcValue is not a pointer?");
1329 FoldingSetNodeID ID
;
1330 AddNodeIDNode(ID
, ISD::MEMOPERAND
, getVTList(MVT::Other
), 0, 0);
1334 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1335 return SDValue(E
, 0);
1337 SDNode
*N
= NodeAllocator
.Allocate
<MemOperandSDNode
>();
1338 new (N
) MemOperandSDNode(MO
);
1339 CSEMap
.InsertNode(N
, IP
);
1340 AllNodes
.push_back(N
);
1341 return SDValue(N
, 0);
1344 /// getShiftAmountOperand - Return the specified value casted to
1345 /// the target's desired shift amount type.
1346 SDValue
SelectionDAG::getShiftAmountOperand(SDValue Op
) {
1347 MVT OpTy
= Op
.getValueType();
1348 MVT ShTy
= TLI
.getShiftAmountTy();
1349 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1351 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1352 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1355 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1356 /// specified value type.
1357 SDValue
SelectionDAG::CreateStackTemporary(MVT VT
, unsigned minAlign
) {
1358 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1359 unsigned ByteSize
= VT
.getStoreSizeInBits()/8;
1360 const Type
*Ty
= VT
.getTypeForMVT();
1361 unsigned StackAlign
=
1362 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1364 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
);
1365 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1368 /// CreateStackTemporary - Create a stack temporary suitable for holding
1369 /// either of the specified value types.
1370 SDValue
SelectionDAG::CreateStackTemporary(MVT VT1
, MVT VT2
) {
1371 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1372 VT2
.getStoreSizeInBits())/8;
1373 const Type
*Ty1
= VT1
.getTypeForMVT();
1374 const Type
*Ty2
= VT2
.getTypeForMVT();
1375 const TargetData
*TD
= TLI
.getTargetData();
1376 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1377 TD
->getPrefTypeAlignment(Ty2
));
1379 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1380 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
);
1381 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1384 SDValue
SelectionDAG::FoldSetCC(MVT VT
, SDValue N1
,
1385 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1386 // These setcc operations always fold.
1390 case ISD::SETFALSE2
: return getConstant(0, VT
);
1392 case ISD::SETTRUE2
: return getConstant(1, VT
);
1404 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1408 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1409 const APInt
&C2
= N2C
->getAPIntValue();
1410 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1411 const APInt
&C1
= N1C
->getAPIntValue();
1414 default: assert(0 && "Unknown integer setcc!");
1415 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1416 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1417 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1418 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1419 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1420 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1421 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1422 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1423 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1424 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1428 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1429 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1430 // No compile time operations on this type yet.
1431 if (N1C
->getValueType(0) == MVT::ppcf128
)
1434 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1437 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1438 return getUNDEF(VT
);
1440 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1441 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1442 return getUNDEF(VT
);
1444 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1445 R
==APFloat::cmpLessThan
, VT
);
1446 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1447 return getUNDEF(VT
);
1449 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1450 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1451 return getUNDEF(VT
);
1453 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1454 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1455 return getUNDEF(VT
);
1457 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1458 R
==APFloat::cmpEqual
, VT
);
1459 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1460 return getUNDEF(VT
);
1462 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1463 R
==APFloat::cmpEqual
, VT
);
1464 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1465 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1466 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1467 R
==APFloat::cmpEqual
, VT
);
1468 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1469 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1470 R
==APFloat::cmpLessThan
, VT
);
1471 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1472 R
==APFloat::cmpUnordered
, VT
);
1473 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1474 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1477 // Ensure that the constant occurs on the RHS.
1478 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1482 // Could not fold it.
1486 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1487 /// use this predicate to simplify operations downstream.
1488 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1489 unsigned BitWidth
= Op
.getValueSizeInBits();
1490 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1493 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1494 /// this predicate to simplify operations downstream. Mask is known to be zero
1495 /// for bits that V cannot have.
1496 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1497 unsigned Depth
) const {
1498 APInt KnownZero
, KnownOne
;
1499 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1500 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1501 return (KnownZero
& Mask
) == Mask
;
1504 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1505 /// known to be either zero or one and return them in the KnownZero/KnownOne
1506 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1508 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1509 APInt
&KnownZero
, APInt
&KnownOne
,
1510 unsigned Depth
) const {
1511 unsigned BitWidth
= Mask
.getBitWidth();
1512 assert(BitWidth
== Op
.getValueType().getSizeInBits() &&
1513 "Mask size mismatches value type size!");
1515 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1516 if (Depth
== 6 || Mask
== 0)
1517 return; // Limit search depth.
1519 APInt KnownZero2
, KnownOne2
;
1521 switch (Op
.getOpcode()) {
1523 // We know all of the bits for a constant!
1524 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1525 KnownZero
= ~KnownOne
& Mask
;
1528 // If either the LHS or the RHS are Zero, the result is zero.
1529 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1530 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1531 KnownZero2
, KnownOne2
, Depth
+1);
1532 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1533 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1535 // Output known-1 bits are only known if set in both the LHS & RHS.
1536 KnownOne
&= KnownOne2
;
1537 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1538 KnownZero
|= KnownZero2
;
1541 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1542 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1543 KnownZero2
, KnownOne2
, Depth
+1);
1544 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1545 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1547 // Output known-0 bits are only known if clear in both the LHS & RHS.
1548 KnownZero
&= KnownZero2
;
1549 // Output known-1 are known to be set if set in either the LHS | RHS.
1550 KnownOne
|= KnownOne2
;
1553 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1554 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1555 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1556 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1558 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1559 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1560 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1561 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1562 KnownZero
= KnownZeroOut
;
1566 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1567 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1568 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1569 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1570 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1572 // If low bits are zero in either operand, output low known-0 bits.
1573 // Also compute a conserative estimate for high known-0 bits.
1574 // More trickiness is possible, but this is sufficient for the
1575 // interesting case of alignment computation.
1577 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1578 KnownZero2
.countTrailingOnes();
1579 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1580 KnownZero2
.countLeadingOnes(),
1581 BitWidth
) - BitWidth
;
1583 TrailZ
= std::min(TrailZ
, BitWidth
);
1584 LeadZ
= std::min(LeadZ
, BitWidth
);
1585 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1586 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1591 // For the purposes of computing leading zeros we can conservatively
1592 // treat a udiv as a logical right shift by the power of 2 known to
1593 // be less than the denominator.
1594 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1595 ComputeMaskedBits(Op
.getOperand(0),
1596 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1597 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1601 ComputeMaskedBits(Op
.getOperand(1),
1602 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1603 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1604 if (RHSUnknownLeadingOnes
!= BitWidth
)
1605 LeadZ
= std::min(BitWidth
,
1606 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1608 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1612 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1613 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1614 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1615 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1617 // Only known if known in both the LHS and RHS.
1618 KnownOne
&= KnownOne2
;
1619 KnownZero
&= KnownZero2
;
1621 case ISD::SELECT_CC
:
1622 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1623 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1624 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1625 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1627 // Only known if known in both the LHS and RHS.
1628 KnownOne
&= KnownOne2
;
1629 KnownZero
&= KnownZero2
;
1637 if (Op
.getResNo() != 1)
1639 // The boolean result conforms to getBooleanContents. Fall through.
1641 // If we know the result of a setcc has the top bits zero, use this info.
1642 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1644 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1647 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1648 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1649 unsigned ShAmt
= SA
->getZExtValue();
1651 // If the shift count is an invalid immediate, don't do anything.
1652 if (ShAmt
>= BitWidth
)
1655 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1656 KnownZero
, KnownOne
, Depth
+1);
1657 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1658 KnownZero
<<= ShAmt
;
1660 // low bits known zero.
1661 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1665 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1666 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1667 unsigned ShAmt
= SA
->getZExtValue();
1669 // If the shift count is an invalid immediate, don't do anything.
1670 if (ShAmt
>= BitWidth
)
1673 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1674 KnownZero
, KnownOne
, Depth
+1);
1675 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1676 KnownZero
= KnownZero
.lshr(ShAmt
);
1677 KnownOne
= KnownOne
.lshr(ShAmt
);
1679 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1680 KnownZero
|= HighBits
; // High bits known zero.
1684 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1685 unsigned ShAmt
= SA
->getZExtValue();
1687 // If the shift count is an invalid immediate, don't do anything.
1688 if (ShAmt
>= BitWidth
)
1691 APInt InDemandedMask
= (Mask
<< ShAmt
);
1692 // If any of the demanded bits are produced by the sign extension, we also
1693 // demand the input sign bit.
1694 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1695 if (HighBits
.getBoolValue())
1696 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1698 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1700 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1701 KnownZero
= KnownZero
.lshr(ShAmt
);
1702 KnownOne
= KnownOne
.lshr(ShAmt
);
1704 // Handle the sign bits.
1705 APInt SignBit
= APInt::getSignBit(BitWidth
);
1706 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1708 if (KnownZero
.intersects(SignBit
)) {
1709 KnownZero
|= HighBits
; // New bits are known zero.
1710 } else if (KnownOne
.intersects(SignBit
)) {
1711 KnownOne
|= HighBits
; // New bits are known one.
1715 case ISD::SIGN_EXTEND_INREG
: {
1716 MVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1717 unsigned EBits
= EVT
.getSizeInBits();
1719 // Sign extension. Compute the demanded bits in the result that are not
1720 // present in the input.
1721 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1723 APInt InSignBit
= APInt::getSignBit(EBits
);
1724 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1726 // If the sign extended bits are demanded, we know that the sign
1728 InSignBit
.zext(BitWidth
);
1729 if (NewBits
.getBoolValue())
1730 InputDemandedBits
|= InSignBit
;
1732 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1733 KnownZero
, KnownOne
, Depth
+1);
1734 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1736 // If the sign bit of the input is known set or clear, then we know the
1737 // top bits of the result.
1738 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1739 KnownZero
|= NewBits
;
1740 KnownOne
&= ~NewBits
;
1741 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1742 KnownOne
|= NewBits
;
1743 KnownZero
&= ~NewBits
;
1744 } else { // Input sign bit unknown
1745 KnownZero
&= ~NewBits
;
1746 KnownOne
&= ~NewBits
;
1753 unsigned LowBits
= Log2_32(BitWidth
)+1;
1754 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1759 if (ISD::isZEXTLoad(Op
.getNode())) {
1760 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1761 MVT VT
= LD
->getMemoryVT();
1762 unsigned MemBits
= VT
.getSizeInBits();
1763 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1767 case ISD::ZERO_EXTEND
: {
1768 MVT InVT
= Op
.getOperand(0).getValueType();
1769 unsigned InBits
= InVT
.getSizeInBits();
1770 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1771 APInt InMask
= Mask
;
1772 InMask
.trunc(InBits
);
1773 KnownZero
.trunc(InBits
);
1774 KnownOne
.trunc(InBits
);
1775 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1776 KnownZero
.zext(BitWidth
);
1777 KnownOne
.zext(BitWidth
);
1778 KnownZero
|= NewBits
;
1781 case ISD::SIGN_EXTEND
: {
1782 MVT InVT
= Op
.getOperand(0).getValueType();
1783 unsigned InBits
= InVT
.getSizeInBits();
1784 APInt InSignBit
= APInt::getSignBit(InBits
);
1785 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1786 APInt InMask
= Mask
;
1787 InMask
.trunc(InBits
);
1789 // If any of the sign extended bits are demanded, we know that the sign
1790 // bit is demanded. Temporarily set this bit in the mask for our callee.
1791 if (NewBits
.getBoolValue())
1792 InMask
|= InSignBit
;
1794 KnownZero
.trunc(InBits
);
1795 KnownOne
.trunc(InBits
);
1796 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1798 // Note if the sign bit is known to be zero or one.
1799 bool SignBitKnownZero
= KnownZero
.isNegative();
1800 bool SignBitKnownOne
= KnownOne
.isNegative();
1801 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1802 "Sign bit can't be known to be both zero and one!");
1804 // If the sign bit wasn't actually demanded by our caller, we don't
1805 // want it set in the KnownZero and KnownOne result values. Reset the
1806 // mask and reapply it to the result values.
1808 InMask
.trunc(InBits
);
1809 KnownZero
&= InMask
;
1812 KnownZero
.zext(BitWidth
);
1813 KnownOne
.zext(BitWidth
);
1815 // If the sign bit is known zero or one, the top bits match.
1816 if (SignBitKnownZero
)
1817 KnownZero
|= NewBits
;
1818 else if (SignBitKnownOne
)
1819 KnownOne
|= NewBits
;
1822 case ISD::ANY_EXTEND
: {
1823 MVT InVT
= Op
.getOperand(0).getValueType();
1824 unsigned InBits
= InVT
.getSizeInBits();
1825 APInt InMask
= Mask
;
1826 InMask
.trunc(InBits
);
1827 KnownZero
.trunc(InBits
);
1828 KnownOne
.trunc(InBits
);
1829 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1830 KnownZero
.zext(BitWidth
);
1831 KnownOne
.zext(BitWidth
);
1834 case ISD::TRUNCATE
: {
1835 MVT InVT
= Op
.getOperand(0).getValueType();
1836 unsigned InBits
= InVT
.getSizeInBits();
1837 APInt InMask
= Mask
;
1838 InMask
.zext(InBits
);
1839 KnownZero
.zext(InBits
);
1840 KnownOne
.zext(InBits
);
1841 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1842 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1843 KnownZero
.trunc(BitWidth
);
1844 KnownOne
.trunc(BitWidth
);
1847 case ISD::AssertZext
: {
1848 MVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1849 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1850 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1852 KnownZero
|= (~InMask
) & Mask
;
1856 // All bits are zero except the low bit.
1857 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1861 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1862 // We know that the top bits of C-X are clear if X contains less bits
1863 // than C (i.e. no wrap-around can happen). For example, 20-X is
1864 // positive if we can prove that X is >= 0 and < 16.
1865 if (CLHS
->getAPIntValue().isNonNegative()) {
1866 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1867 // NLZ can't be BitWidth with no sign bit
1868 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1869 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1872 // If all of the MaskV bits are known to be zero, then we know the
1873 // output top bits are zero, because we now know that the output is
1875 if ((KnownZero2
& MaskV
) == MaskV
) {
1876 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1877 // Top bits known zero.
1878 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1885 // Output known-0 bits are known if clear or set in both the low clear bits
1886 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1887 // low 3 bits clear.
1888 APInt Mask2
= APInt::getLowBitsSet(BitWidth
, Mask
.countTrailingOnes());
1889 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1890 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1891 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1893 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1894 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1895 KnownZeroOut
= std::min(KnownZeroOut
,
1896 KnownZero2
.countTrailingOnes());
1898 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1902 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1903 const APInt
&RA
= Rem
->getAPIntValue();
1904 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
1905 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
1906 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1907 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1909 // If the sign bit of the first operand is zero, the sign bit of
1910 // the result is zero. If the first operand has no one bits below
1911 // the second operand's single 1 bit, its sign will be zero.
1912 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
1913 KnownZero2
|= ~LowBits
;
1915 KnownZero
|= KnownZero2
& Mask
;
1917 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1922 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1923 const APInt
&RA
= Rem
->getAPIntValue();
1924 if (RA
.isPowerOf2()) {
1925 APInt LowBits
= (RA
- 1);
1926 APInt Mask2
= LowBits
& Mask
;
1927 KnownZero
|= ~LowBits
& Mask
;
1928 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
1929 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1934 // Since the result is less than or equal to either operand, any leading
1935 // zero bits in either operand must also exist in the result.
1936 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1937 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
1939 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
1942 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
1943 KnownZero2
.countLeadingOnes());
1945 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
1949 // Allow the target to implement this method for its nodes.
1950 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1951 case ISD::INTRINSIC_WO_CHAIN
:
1952 case ISD::INTRINSIC_W_CHAIN
:
1953 case ISD::INTRINSIC_VOID
:
1954 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this);
1960 /// ComputeNumSignBits - Return the number of times the sign bit of the
1961 /// register is replicated into the other bits. We know that at least 1 bit
1962 /// is always equal to the sign bit (itself), but other cases can give us
1963 /// information. For example, immediately after an "SRA X, 2", we know that
1964 /// the top 3 bits are all equal to each other, so we return 3.
1965 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
1966 MVT VT
= Op
.getValueType();
1967 assert(VT
.isInteger() && "Invalid VT!");
1968 unsigned VTBits
= VT
.getSizeInBits();
1970 unsigned FirstAnswer
= 1;
1973 return 1; // Limit search depth.
1975 switch (Op
.getOpcode()) {
1977 case ISD::AssertSext
:
1978 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1979 return VTBits
-Tmp
+1;
1980 case ISD::AssertZext
:
1981 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1984 case ISD::Constant
: {
1985 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
1986 // If negative, return # leading ones.
1987 if (Val
.isNegative())
1988 return Val
.countLeadingOnes();
1990 // Return # leading zeros.
1991 return Val
.countLeadingZeros();
1994 case ISD::SIGN_EXTEND
:
1995 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getSizeInBits();
1996 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
1998 case ISD::SIGN_EXTEND_INREG
:
1999 // Max of the input and what this extends.
2000 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2003 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2004 return std::max(Tmp
, Tmp2
);
2007 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2008 // SRA X, C -> adds C sign bits.
2009 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2010 Tmp
+= C
->getZExtValue();
2011 if (Tmp
> VTBits
) Tmp
= VTBits
;
2015 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2016 // shl destroys sign bits.
2017 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2018 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
2019 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
2020 return Tmp
- C
->getZExtValue();
2025 case ISD::XOR
: // NOT is handled here.
2026 // Logical binary ops preserve the number of sign bits at the worst.
2027 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2029 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2030 FirstAnswer
= std::min(Tmp
, Tmp2
);
2031 // We computed what we know about the sign bits as our first
2032 // answer. Now proceed to the generic code that uses
2033 // ComputeMaskedBits, and pick whichever answer is better.
2038 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2039 if (Tmp
== 1) return 1; // Early out.
2040 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
2041 return std::min(Tmp
, Tmp2
);
2049 if (Op
.getResNo() != 1)
2051 // The boolean result conforms to getBooleanContents. Fall through.
2053 // If setcc returns 0/-1, all bits are sign bits.
2054 if (TLI
.getBooleanContents() ==
2055 TargetLowering::ZeroOrNegativeOneBooleanContent
)
2060 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2061 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
2063 // Handle rotate right by N like a rotate left by 32-N.
2064 if (Op
.getOpcode() == ISD::ROTR
)
2065 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
2067 // If we aren't rotating out all of the known-in sign bits, return the
2068 // number that are left. This handles rotl(sext(x), 1) for example.
2069 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2070 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
2074 // Add can have at most one carry bit. Thus we know that the output
2075 // is, at worst, one more bit than the inputs.
2076 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2077 if (Tmp
== 1) return 1; // Early out.
2079 // Special case decrementing a value (ADD X, -1):
2080 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2081 if (CRHS
->isAllOnesValue()) {
2082 APInt KnownZero
, KnownOne
;
2083 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2084 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
2086 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2088 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2091 // If we are subtracting one from a positive number, there is no carry
2092 // out of the result.
2093 if (KnownZero
.isNegative())
2097 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2098 if (Tmp2
== 1) return 1;
2099 return std::min(Tmp
, Tmp2
)-1;
2103 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2104 if (Tmp2
== 1) return 1;
2107 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
2108 if (CLHS
->isNullValue()) {
2109 APInt KnownZero
, KnownOne
;
2110 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2111 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2112 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2114 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2117 // If the input is known to be positive (the sign bit is known clear),
2118 // the output of the NEG has the same number of sign bits as the input.
2119 if (KnownZero
.isNegative())
2122 // Otherwise, we treat this like a SUB.
2125 // Sub can have at most one carry bit. Thus we know that the output
2126 // is, at worst, one more bit than the inputs.
2127 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2128 if (Tmp
== 1) return 1; // Early out.
2129 return std::min(Tmp
, Tmp2
)-1;
2132 // FIXME: it's tricky to do anything useful for this, but it is an important
2133 // case for targets like X86.
2137 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2138 if (Op
.getOpcode() == ISD::LOAD
) {
2139 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2140 unsigned ExtType
= LD
->getExtensionType();
2143 case ISD::SEXTLOAD
: // '17' bits known
2144 Tmp
= LD
->getMemoryVT().getSizeInBits();
2145 return VTBits
-Tmp
+1;
2146 case ISD::ZEXTLOAD
: // '16' bits known
2147 Tmp
= LD
->getMemoryVT().getSizeInBits();
2152 // Allow the target to implement this method for its nodes.
2153 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2154 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2155 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2156 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2157 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2158 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2161 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2162 // use this information.
2163 APInt KnownZero
, KnownOne
;
2164 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2165 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2167 if (KnownZero
.isNegative()) { // sign bit is 0
2169 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2176 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2177 // the number of identical bits in the top of the input value.
2179 Mask
<<= Mask
.getBitWidth()-VTBits
;
2180 // Return # leading zeros. We use 'min' here in case Val was zero before
2181 // shifting. We don't want to return '64' as for an i32 "0".
2182 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2186 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op
) const {
2187 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2188 if (!GA
) return false;
2189 if (GA
->getOffset() != 0) return false;
2190 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GA
->getGlobal());
2191 if (!GV
) return false;
2192 MachineModuleInfo
*MMI
= getMachineModuleInfo();
2193 return MMI
&& MMI
->hasDebugInfo();
2197 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2198 /// element of the result of the vector shuffle.
2199 SDValue
SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode
*N
,
2201 MVT VT
= N
->getValueType(0);
2202 DebugLoc dl
= N
->getDebugLoc();
2203 if (N
->getMaskElt(i
) < 0)
2204 return getUNDEF(VT
.getVectorElementType());
2205 unsigned Index
= N
->getMaskElt(i
);
2206 unsigned NumElems
= VT
.getVectorNumElements();
2207 SDValue V
= (Index
< NumElems
) ? N
->getOperand(0) : N
->getOperand(1);
2210 if (V
.getOpcode() == ISD::BIT_CONVERT
) {
2211 V
= V
.getOperand(0);
2212 MVT VVT
= V
.getValueType();
2213 if (!VVT
.isVector() || VVT
.getVectorNumElements() != (unsigned)NumElems
)
2216 if (V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
2217 return (Index
== 0) ? V
.getOperand(0)
2218 : getUNDEF(VT
.getVectorElementType());
2219 if (V
.getOpcode() == ISD::BUILD_VECTOR
)
2220 return V
.getOperand(Index
);
2221 if (const ShuffleVectorSDNode
*SVN
= dyn_cast
<ShuffleVectorSDNode
>(V
))
2222 return getShuffleScalarElt(SVN
, Index
);
2227 /// getNode - Gets or creates the specified node.
2229 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
) {
2230 FoldingSetNodeID ID
;
2231 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2233 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2234 return SDValue(E
, 0);
2235 SDNode
*N
= NodeAllocator
.Allocate
<SDNode
>();
2236 new (N
) SDNode(Opcode
, DL
, getVTList(VT
));
2237 CSEMap
.InsertNode(N
, IP
);
2239 AllNodes
.push_back(N
);
2243 return SDValue(N
, 0);
2246 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2247 MVT VT
, SDValue Operand
) {
2248 // Constant fold unary operations with an integer constant operand.
2249 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2250 const APInt
&Val
= C
->getAPIntValue();
2251 unsigned BitWidth
= VT
.getSizeInBits();
2254 case ISD::SIGN_EXTEND
:
2255 return getConstant(APInt(Val
).sextOrTrunc(BitWidth
), VT
);
2256 case ISD::ANY_EXTEND
:
2257 case ISD::ZERO_EXTEND
:
2259 return getConstant(APInt(Val
).zextOrTrunc(BitWidth
), VT
);
2260 case ISD::UINT_TO_FP
:
2261 case ISD::SINT_TO_FP
: {
2262 const uint64_t zero
[] = {0, 0};
2263 // No compile time operations on this type.
2264 if (VT
==MVT::ppcf128
)
2266 APFloat apf
= APFloat(APInt(BitWidth
, 2, zero
));
2267 (void)apf
.convertFromAPInt(Val
,
2268 Opcode
==ISD::SINT_TO_FP
,
2269 APFloat::rmNearestTiesToEven
);
2270 return getConstantFP(apf
, VT
);
2272 case ISD::BIT_CONVERT
:
2273 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2274 return getConstantFP(Val
.bitsToFloat(), VT
);
2275 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2276 return getConstantFP(Val
.bitsToDouble(), VT
);
2279 return getConstant(Val
.byteSwap(), VT
);
2281 return getConstant(Val
.countPopulation(), VT
);
2283 return getConstant(Val
.countLeadingZeros(), VT
);
2285 return getConstant(Val
.countTrailingZeros(), VT
);
2289 // Constant fold unary operations with a floating point constant operand.
2290 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2291 APFloat V
= C
->getValueAPF(); // make copy
2292 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2296 return getConstantFP(V
, VT
);
2299 return getConstantFP(V
, VT
);
2301 case ISD::FP_EXTEND
: {
2303 // This can return overflow, underflow, or inexact; we don't care.
2304 // FIXME need to be more flexible about rounding mode.
2305 (void)V
.convert(*MVTToAPFloatSemantics(VT
),
2306 APFloat::rmNearestTiesToEven
, &ignored
);
2307 return getConstantFP(V
, VT
);
2309 case ISD::FP_TO_SINT
:
2310 case ISD::FP_TO_UINT
: {
2313 assert(integerPartWidth
>= 64);
2314 // FIXME need to be more flexible about rounding mode.
2315 APFloat::opStatus s
= V
.convertToInteger(x
, VT
.getSizeInBits(),
2316 Opcode
==ISD::FP_TO_SINT
,
2317 APFloat::rmTowardZero
, &ignored
);
2318 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2320 APInt
api(VT
.getSizeInBits(), 2, x
);
2321 return getConstant(api
, VT
);
2323 case ISD::BIT_CONVERT
:
2324 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2325 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2326 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2327 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2333 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2335 case ISD::TokenFactor
:
2336 case ISD::MERGE_VALUES
:
2337 case ISD::CONCAT_VECTORS
:
2338 return Operand
; // Factor, merge or concat of one node? No need.
2339 case ISD::FP_ROUND
: assert(0 && "Invalid method to make FP_ROUND node");
2340 case ISD::FP_EXTEND
:
2341 assert(VT
.isFloatingPoint() &&
2342 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2343 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2344 if (Operand
.getOpcode() == ISD::UNDEF
)
2345 return getUNDEF(VT
);
2347 case ISD::SIGN_EXTEND
:
2348 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2349 "Invalid SIGN_EXTEND!");
2350 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2351 assert(Operand
.getValueType().bitsLT(VT
)
2352 && "Invalid sext node, dst < src!");
2353 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2354 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2356 case ISD::ZERO_EXTEND
:
2357 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2358 "Invalid ZERO_EXTEND!");
2359 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2360 assert(Operand
.getValueType().bitsLT(VT
)
2361 && "Invalid zext node, dst < src!");
2362 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2363 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2364 Operand
.getNode()->getOperand(0));
2366 case ISD::ANY_EXTEND
:
2367 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2368 "Invalid ANY_EXTEND!");
2369 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2370 assert(Operand
.getValueType().bitsLT(VT
)
2371 && "Invalid anyext node, dst < src!");
2372 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
)
2373 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2374 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2377 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2378 "Invalid TRUNCATE!");
2379 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2380 assert(Operand
.getValueType().bitsGT(VT
)
2381 && "Invalid truncate node, src < dst!");
2382 if (OpOpcode
== ISD::TRUNCATE
)
2383 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2384 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2385 OpOpcode
== ISD::ANY_EXTEND
) {
2386 // If the source is smaller than the dest, we still need an extend.
2387 if (Operand
.getNode()->getOperand(0).getValueType().bitsLT(VT
))
2388 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2389 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2390 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2392 return Operand
.getNode()->getOperand(0);
2395 case ISD::BIT_CONVERT
:
2396 // Basic sanity checking.
2397 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2398 && "Cannot BIT_CONVERT between types of different sizes!");
2399 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2400 if (OpOpcode
== ISD::BIT_CONVERT
) // bitconv(bitconv(x)) -> bitconv(x)
2401 return getNode(ISD::BIT_CONVERT
, DL
, VT
, Operand
.getOperand(0));
2402 if (OpOpcode
== ISD::UNDEF
)
2403 return getUNDEF(VT
);
2405 case ISD::SCALAR_TO_VECTOR
:
2406 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2407 (VT
.getVectorElementType() == Operand
.getValueType() ||
2408 (VT
.getVectorElementType().isInteger() &&
2409 Operand
.getValueType().isInteger() &&
2410 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
2411 "Illegal SCALAR_TO_VECTOR node!");
2412 if (OpOpcode
== ISD::UNDEF
)
2413 return getUNDEF(VT
);
2414 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2415 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2416 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2417 Operand
.getConstantOperandVal(1) == 0 &&
2418 Operand
.getOperand(0).getValueType() == VT
)
2419 return Operand
.getOperand(0);
2422 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2423 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2424 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2425 Operand
.getNode()->getOperand(0));
2426 if (OpOpcode
== ISD::FNEG
) // --X -> X
2427 return Operand
.getNode()->getOperand(0);
2430 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2431 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2436 SDVTList VTs
= getVTList(VT
);
2437 if (VT
!= MVT::Flag
) { // Don't CSE flag producing nodes
2438 FoldingSetNodeID ID
;
2439 SDValue Ops
[1] = { Operand
};
2440 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2442 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2443 return SDValue(E
, 0);
2444 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2445 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2446 CSEMap
.InsertNode(N
, IP
);
2448 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2449 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2452 AllNodes
.push_back(N
);
2456 return SDValue(N
, 0);
2459 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2461 ConstantSDNode
*Cst1
,
2462 ConstantSDNode
*Cst2
) {
2463 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2466 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2467 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2468 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2470 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2473 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2476 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2479 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2481 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2482 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2483 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2484 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2485 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2486 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2487 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2488 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2495 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2496 SDValue N1
, SDValue N2
) {
2497 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2498 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2501 case ISD::TokenFactor
:
2502 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2503 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2504 // Fold trivial token factors.
2505 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2506 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2507 if (N1
== N2
) return N1
;
2509 case ISD::CONCAT_VECTORS
:
2510 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2511 // one big BUILD_VECTOR.
2512 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2513 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2514 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2515 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2516 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2520 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2521 N1
.getValueType() == VT
&& "Binary operator types must match!");
2522 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2523 // worth handling here.
2524 if (N2C
&& N2C
->isNullValue())
2526 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2533 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2534 N1
.getValueType() == VT
&& "Binary operator types must match!");
2535 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2536 // it's worth handling here.
2537 if (N2C
&& N2C
->isNullValue())
2547 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2555 if (Opcode
== ISD::FADD
) {
2557 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2558 if (CFP
->getValueAPF().isZero())
2561 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2562 if (CFP
->getValueAPF().isZero())
2564 } else if (Opcode
== ISD::FSUB
) {
2566 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2567 if (CFP
->getValueAPF().isZero())
2571 assert(N1
.getValueType() == N2
.getValueType() &&
2572 N1
.getValueType() == VT
&& "Binary operator types must match!");
2574 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2575 assert(N1
.getValueType() == VT
&&
2576 N1
.getValueType().isFloatingPoint() &&
2577 N2
.getValueType().isFloatingPoint() &&
2578 "Invalid FCOPYSIGN!");
2585 assert(VT
== N1
.getValueType() &&
2586 "Shift operators return type must be the same as their first arg");
2587 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2588 "Shifts only work on integers");
2590 // Always fold shifts of i1 values so the code generator doesn't need to
2591 // handle them. Since we know the size of the shift has to be less than the
2592 // size of the value, the shift/rotate count is guaranteed to be zero.
2596 case ISD::FP_ROUND_INREG
: {
2597 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2598 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2599 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2600 "Cannot FP_ROUND_INREG integer types");
2601 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2602 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2606 assert(VT
.isFloatingPoint() &&
2607 N1
.getValueType().isFloatingPoint() &&
2608 VT
.bitsLE(N1
.getValueType()) &&
2609 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2610 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2612 case ISD::AssertSext
:
2613 case ISD::AssertZext
: {
2614 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2615 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2616 assert(VT
.isInteger() && EVT
.isInteger() &&
2617 "Cannot *_EXTEND_INREG FP types");
2618 assert(EVT
.bitsLE(VT
) && "Not extending!");
2619 if (VT
== EVT
) return N1
; // noop assertion.
2622 case ISD::SIGN_EXTEND_INREG
: {
2623 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2624 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2625 assert(VT
.isInteger() && EVT
.isInteger() &&
2626 "Cannot *_EXTEND_INREG FP types");
2627 assert(EVT
.bitsLE(VT
) && "Not extending!");
2628 if (EVT
== VT
) return N1
; // Not actually extending
2631 APInt Val
= N1C
->getAPIntValue();
2632 unsigned FromBits
= cast
<VTSDNode
>(N2
)->getVT().getSizeInBits();
2633 Val
<<= Val
.getBitWidth()-FromBits
;
2634 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2635 return getConstant(Val
, VT
);
2639 case ISD::EXTRACT_VECTOR_ELT
:
2640 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2641 if (N1
.getOpcode() == ISD::UNDEF
)
2642 return getUNDEF(VT
);
2644 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2645 // expanding copies of large vectors from registers.
2647 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2648 N1
.getNumOperands() > 0) {
2650 N1
.getOperand(0).getValueType().getVectorNumElements();
2651 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2652 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2653 getConstant(N2C
->getZExtValue() % Factor
,
2654 N2
.getValueType()));
2657 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2658 // expanding large vector constants.
2659 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
2660 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
2661 if (Elt
.getValueType() != VT
) {
2662 // If the vector element type is not legal, the BUILD_VECTOR operands
2663 // are promoted and implicitly truncated. Make that explicit here.
2664 assert(VT
.isInteger() && Elt
.getValueType().isInteger() &&
2665 VT
.bitsLE(Elt
.getValueType()) &&
2666 "Bad type for BUILD_VECTOR operand");
2667 Elt
= getNode(ISD::TRUNCATE
, DL
, VT
, Elt
);
2672 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2673 // operations are lowered to scalars.
2674 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2675 // If the indices are the same, return the inserted element.
2676 if (N1
.getOperand(2) == N2
)
2677 return N1
.getOperand(1);
2678 // If the indices are known different, extract the element from
2679 // the original vector.
2680 else if (isa
<ConstantSDNode
>(N1
.getOperand(2)) &&
2681 isa
<ConstantSDNode
>(N2
))
2682 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2685 case ISD::EXTRACT_ELEMENT
:
2686 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2687 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2688 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2689 "Wrong types for EXTRACT_ELEMENT!");
2691 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2692 // 64-bit integers into 32-bit parts. Instead of building the extract of
2693 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2694 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2695 return N1
.getOperand(N2C
->getZExtValue());
2697 // EXTRACT_ELEMENT of a constant int is also very common.
2698 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2699 unsigned ElementSize
= VT
.getSizeInBits();
2700 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2701 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2702 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2705 case ISD::EXTRACT_SUBVECTOR
:
2706 if (N1
.getValueType() == VT
) // Trivial extraction.
2713 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2714 if (SV
.getNode()) return SV
;
2715 } else { // Cannonicalize constant to RHS if commutative
2716 if (isCommutativeBinOp(Opcode
)) {
2717 std::swap(N1C
, N2C
);
2723 // Constant fold FP operations.
2724 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2725 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2727 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2728 // Cannonicalize constant to RHS if commutative
2729 std::swap(N1CFP
, N2CFP
);
2731 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2732 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2733 APFloat::opStatus s
;
2736 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2737 if (s
!= APFloat::opInvalidOp
)
2738 return getConstantFP(V1
, VT
);
2741 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2742 if (s
!=APFloat::opInvalidOp
)
2743 return getConstantFP(V1
, VT
);
2746 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2747 if (s
!=APFloat::opInvalidOp
)
2748 return getConstantFP(V1
, VT
);
2751 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2752 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2753 return getConstantFP(V1
, VT
);
2756 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2757 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2758 return getConstantFP(V1
, VT
);
2760 case ISD::FCOPYSIGN
:
2762 return getConstantFP(V1
, VT
);
2768 // Canonicalize an UNDEF to the RHS, even over a constant.
2769 if (N1
.getOpcode() == ISD::UNDEF
) {
2770 if (isCommutativeBinOp(Opcode
)) {
2774 case ISD::FP_ROUND_INREG
:
2775 case ISD::SIGN_EXTEND_INREG
:
2781 return N1
; // fold op(undef, arg2) -> undef
2789 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
2790 // For vectors, we can't easily build an all zero vector, just return
2797 // Fold a bunch of operators when the RHS is undef.
2798 if (N2
.getOpcode() == ISD::UNDEF
) {
2801 if (N1
.getOpcode() == ISD::UNDEF
)
2802 // Handle undef ^ undef -> 0 special case. This is a common
2804 return getConstant(0, VT
);
2819 return N2
; // fold op(arg1, undef) -> undef
2825 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
2826 // For vectors, we can't easily build an all zero vector, just return
2831 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
2832 // For vectors, we can't easily build an all one vector, just return
2840 // Memoize this node if possible.
2842 SDVTList VTs
= getVTList(VT
);
2843 if (VT
!= MVT::Flag
) {
2844 SDValue Ops
[] = { N1
, N2
};
2845 FoldingSetNodeID ID
;
2846 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
2848 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2849 return SDValue(E
, 0);
2850 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2851 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2852 CSEMap
.InsertNode(N
, IP
);
2854 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2855 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2858 AllNodes
.push_back(N
);
2862 return SDValue(N
, 0);
2865 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2866 SDValue N1
, SDValue N2
, SDValue N3
) {
2867 // Perform various simplifications.
2868 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2869 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2871 case ISD::CONCAT_VECTORS
:
2872 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2873 // one big BUILD_VECTOR.
2874 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2875 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
2876 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
2877 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2878 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2879 Elts
.insert(Elts
.end(), N3
.getNode()->op_begin(), N3
.getNode()->op_end());
2880 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2884 // Use FoldSetCC to simplify SETCC's.
2885 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
2886 if (Simp
.getNode()) return Simp
;
2891 if (N1C
->getZExtValue())
2892 return N2
; // select true, X, Y -> X
2894 return N3
; // select false, X, Y -> Y
2897 if (N2
== N3
) return N2
; // select C, X, X -> X
2901 if (N2C
->getZExtValue()) // Unconditional branch
2902 return getNode(ISD::BR
, DL
, MVT::Other
, N1
, N3
);
2904 return N1
; // Never-taken branch
2907 case ISD::VECTOR_SHUFFLE
:
2908 assert(0 && "should use getVectorShuffle constructor!");
2910 case ISD::BIT_CONVERT
:
2911 // Fold bit_convert nodes from a type to themselves.
2912 if (N1
.getValueType() == VT
)
2917 // Memoize node if it doesn't produce a flag.
2919 SDVTList VTs
= getVTList(VT
);
2920 if (VT
!= MVT::Flag
) {
2921 SDValue Ops
[] = { N1
, N2
, N3
};
2922 FoldingSetNodeID ID
;
2923 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
2925 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2926 return SDValue(E
, 0);
2927 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2928 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2929 CSEMap
.InsertNode(N
, IP
);
2931 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2932 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2934 AllNodes
.push_back(N
);
2938 return SDValue(N
, 0);
2941 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2942 SDValue N1
, SDValue N2
, SDValue N3
,
2944 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
2945 return getNode(Opcode
, DL
, VT
, Ops
, 4);
2948 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2949 SDValue N1
, SDValue N2
, SDValue N3
,
2950 SDValue N4
, SDValue N5
) {
2951 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
2952 return getNode(Opcode
, DL
, VT
, Ops
, 5);
2955 /// getMemsetValue - Vectorized representation of the memset value
2957 static SDValue
getMemsetValue(SDValue Value
, MVT VT
, SelectionDAG
&DAG
,
2959 unsigned NumBits
= VT
.isVector() ?
2960 VT
.getVectorElementType().getSizeInBits() : VT
.getSizeInBits();
2961 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
2962 APInt Val
= APInt(NumBits
, C
->getZExtValue() & 255);
2964 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
2965 Val
= (Val
<< Shift
) | Val
;
2969 return DAG
.getConstant(Val
, VT
);
2970 return DAG
.getConstantFP(APFloat(Val
), VT
);
2973 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2974 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
2976 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
2977 Value
= DAG
.getNode(ISD::OR
, dl
, VT
,
2978 DAG
.getNode(ISD::SHL
, dl
, VT
, Value
,
2979 DAG
.getConstant(Shift
,
2980 TLI
.getShiftAmountTy())),
2988 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2989 /// used when a memcpy is turned into a memset when the source is a constant
2991 static SDValue
getMemsetStringVal(MVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
2992 const TargetLowering
&TLI
,
2993 std::string
&Str
, unsigned Offset
) {
2994 // Handle vector with all elements zero.
2997 return DAG
.getConstant(0, VT
);
2998 unsigned NumElts
= VT
.getVectorNumElements();
2999 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
3000 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3001 DAG
.getConstant(0, MVT::getVectorVT(EltVT
, NumElts
)));
3004 assert(!VT
.isVector() && "Can't handle vector type here!");
3005 unsigned NumBits
= VT
.getSizeInBits();
3006 unsigned MSB
= NumBits
/ 8;
3008 if (TLI
.isLittleEndian())
3009 Offset
= Offset
+ MSB
- 1;
3010 for (unsigned i
= 0; i
!= MSB
; ++i
) {
3011 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
3012 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
3014 return DAG
.getConstant(Val
, VT
);
3017 /// getMemBasePlusOffset - Returns base and offset node for the
3019 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
3020 SelectionDAG
&DAG
) {
3021 MVT VT
= Base
.getValueType();
3022 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
3023 VT
, Base
, DAG
.getConstant(Offset
, VT
));
3026 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3028 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
3029 unsigned SrcDelta
= 0;
3030 GlobalAddressSDNode
*G
= NULL
;
3031 if (Src
.getOpcode() == ISD::GlobalAddress
)
3032 G
= cast
<GlobalAddressSDNode
>(Src
);
3033 else if (Src
.getOpcode() == ISD::ADD
&&
3034 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
3035 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
3036 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
3037 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
3042 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
3043 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
3049 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3050 /// to replace the memset / memcpy is below the threshold. It also returns the
3051 /// types of the sequence of memory ops to perform memset / memcpy.
3053 bool MeetsMaxMemopRequirement(std::vector
<MVT
> &MemOps
,
3054 SDValue Dst
, SDValue Src
,
3055 unsigned Limit
, uint64_t Size
, unsigned &Align
,
3056 std::string
&Str
, bool &isSrcStr
,
3058 const TargetLowering
&TLI
) {
3059 isSrcStr
= isMemSrcFromString(Src
, Str
);
3060 bool isSrcConst
= isa
<ConstantSDNode
>(Src
);
3061 bool AllowUnalign
= TLI
.allowsUnalignedMemoryAccesses();
3062 MVT VT
= TLI
.getOptimalMemOpType(Size
, Align
, isSrcConst
, isSrcStr
);
3063 if (VT
!= MVT::iAny
) {
3064 unsigned NewAlign
= (unsigned)
3065 TLI
.getTargetData()->getABITypeAlignment(VT
.getTypeForMVT());
3066 // If source is a string constant, this will require an unaligned load.
3067 if (NewAlign
> Align
&& (isSrcConst
|| AllowUnalign
)) {
3068 if (Dst
.getOpcode() != ISD::FrameIndex
) {
3069 // Can't change destination alignment. It requires a unaligned store.
3073 int FI
= cast
<FrameIndexSDNode
>(Dst
)->getIndex();
3074 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3075 if (MFI
->isFixedObjectIndex(FI
)) {
3076 // Can't change destination alignment. It requires a unaligned store.
3080 // Give the stack frame object a larger alignment if needed.
3081 if (MFI
->getObjectAlignment(FI
) < NewAlign
)
3082 MFI
->setObjectAlignment(FI
, NewAlign
);
3089 if (VT
== MVT::iAny
) {
3093 switch (Align
& 7) {
3094 case 0: VT
= MVT::i64
; break;
3095 case 4: VT
= MVT::i32
; break;
3096 case 2: VT
= MVT::i16
; break;
3097 default: VT
= MVT::i8
; break;
3102 while (!TLI
.isTypeLegal(LVT
))
3103 LVT
= (MVT::SimpleValueType
)(LVT
.getSimpleVT() - 1);
3104 assert(LVT
.isInteger());
3110 unsigned NumMemOps
= 0;
3112 unsigned VTSize
= VT
.getSizeInBits() / 8;
3113 while (VTSize
> Size
) {
3114 // For now, only use non-vector load / store's for the left-over pieces.
3115 if (VT
.isVector()) {
3117 while (!TLI
.isTypeLegal(VT
))
3118 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT() - 1);
3119 VTSize
= VT
.getSizeInBits() / 8;
3121 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT() - 1);
3126 if (++NumMemOps
> Limit
)
3128 MemOps
.push_back(VT
);
3135 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3136 SDValue Chain
, SDValue Dst
,
3137 SDValue Src
, uint64_t Size
,
3138 unsigned Align
, bool AlwaysInline
,
3139 const Value
*DstSV
, uint64_t DstSVOff
,
3140 const Value
*SrcSV
, uint64_t SrcSVOff
){
3141 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3143 // Expand memcpy to a series of load and store ops if the size operand falls
3144 // below a certain threshold.
3145 std::vector
<MVT
> MemOps
;
3146 uint64_t Limit
= -1ULL;
3148 Limit
= TLI
.getMaxStoresPerMemcpy();
3149 unsigned DstAlign
= Align
; // Destination alignment can change.
3152 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3153 Str
, CopyFromStr
, DAG
, TLI
))
3157 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3158 SmallVector
<SDValue
, 8> OutChains
;
3159 unsigned NumMemOps
= MemOps
.size();
3160 uint64_t SrcOff
= 0, DstOff
= 0;
3161 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3163 unsigned VTSize
= VT
.getSizeInBits() / 8;
3164 SDValue Value
, Store
;
3166 if (CopyFromStr
&& (isZeroStr
|| !VT
.isVector())) {
3167 // It's unlikely a store of a vector immediate can be done in a single
3168 // instruction. It would require a load from a constantpool first.
3169 // We also handle store a vector with all zero's.
3170 // FIXME: Handle other cases where store of vector immediate is done in
3171 // a single instruction.
3172 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3173 Store
= DAG
.getStore(Chain
, dl
, Value
,
3174 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3175 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3177 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3178 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3179 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3180 Store
= DAG
.getStore(Chain
, dl
, Value
,
3181 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3182 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3184 OutChains
.push_back(Store
);
3189 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3190 &OutChains
[0], OutChains
.size());
3193 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3194 SDValue Chain
, SDValue Dst
,
3195 SDValue Src
, uint64_t Size
,
3196 unsigned Align
, bool AlwaysInline
,
3197 const Value
*DstSV
, uint64_t DstSVOff
,
3198 const Value
*SrcSV
, uint64_t SrcSVOff
){
3199 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3201 // Expand memmove to a series of load and store ops if the size operand falls
3202 // below a certain threshold.
3203 std::vector
<MVT
> MemOps
;
3204 uint64_t Limit
= -1ULL;
3206 Limit
= TLI
.getMaxStoresPerMemmove();
3207 unsigned DstAlign
= Align
; // Destination alignment can change.
3210 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3211 Str
, CopyFromStr
, DAG
, TLI
))
3214 uint64_t SrcOff
= 0, DstOff
= 0;
3216 SmallVector
<SDValue
, 8> LoadValues
;
3217 SmallVector
<SDValue
, 8> LoadChains
;
3218 SmallVector
<SDValue
, 8> OutChains
;
3219 unsigned NumMemOps
= MemOps
.size();
3220 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3222 unsigned VTSize
= VT
.getSizeInBits() / 8;
3223 SDValue Value
, Store
;
3225 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3226 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3227 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3228 LoadValues
.push_back(Value
);
3229 LoadChains
.push_back(Value
.getValue(1));
3232 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3233 &LoadChains
[0], LoadChains
.size());
3235 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3237 unsigned VTSize
= VT
.getSizeInBits() / 8;
3238 SDValue Value
, Store
;
3240 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3241 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3242 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3243 OutChains
.push_back(Store
);
3247 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3248 &OutChains
[0], OutChains
.size());
3251 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3252 SDValue Chain
, SDValue Dst
,
3253 SDValue Src
, uint64_t Size
,
3255 const Value
*DstSV
, uint64_t DstSVOff
) {
3256 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3258 // Expand memset to a series of load/store ops if the size operand
3259 // falls below a certain threshold.
3260 std::vector
<MVT
> MemOps
;
3263 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, TLI
.getMaxStoresPerMemset(),
3264 Size
, Align
, Str
, CopyFromStr
, DAG
, TLI
))
3267 SmallVector
<SDValue
, 8> OutChains
;
3268 uint64_t DstOff
= 0;
3270 unsigned NumMemOps
= MemOps
.size();
3271 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3273 unsigned VTSize
= VT
.getSizeInBits() / 8;
3274 SDValue Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3275 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3276 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3277 DstSV
, DstSVOff
+ DstOff
);
3278 OutChains
.push_back(Store
);
3282 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3283 &OutChains
[0], OutChains
.size());
3286 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3287 SDValue Src
, SDValue Size
,
3288 unsigned Align
, bool AlwaysInline
,
3289 const Value
*DstSV
, uint64_t DstSVOff
,
3290 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3292 // Check to see if we should lower the memcpy to loads and stores first.
3293 // For cases within the target-specified limits, this is the best choice.
3294 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3296 // Memcpy with size zero? Just return the original chain.
3297 if (ConstantSize
->isNullValue())
3301 getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3302 ConstantSize
->getZExtValue(),
3303 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3304 if (Result
.getNode())
3308 // Then check to see if we should lower the memcpy with target-specific
3309 // code. If the target chooses to do this, this is the next best.
3311 TLI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3313 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3314 if (Result
.getNode())
3317 // If we really need inline code and the target declined to provide it,
3318 // use a (potentially long) sequence of loads and stores.
3320 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3321 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3322 ConstantSize
->getZExtValue(), Align
, true,
3323 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3326 // Emit a library call.
3327 TargetLowering::ArgListTy Args
;
3328 TargetLowering::ArgListEntry Entry
;
3329 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
3330 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3331 Entry
.Node
= Src
; Args
.push_back(Entry
);
3332 Entry
.Node
= Size
; Args
.push_back(Entry
);
3333 // FIXME: pass in DebugLoc
3334 std::pair
<SDValue
,SDValue
> CallResult
=
3335 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3336 false, false, false, false, CallingConv::C
, false,
3337 getExternalSymbol("memcpy", TLI
.getPointerTy()),
3339 return CallResult
.second
;
3342 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3343 SDValue Src
, SDValue Size
,
3345 const Value
*DstSV
, uint64_t DstSVOff
,
3346 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3348 // Check to see if we should lower the memmove to loads and stores first.
3349 // For cases within the target-specified limits, this is the best choice.
3350 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3352 // Memmove with size zero? Just return the original chain.
3353 if (ConstantSize
->isNullValue())
3357 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3358 ConstantSize
->getZExtValue(),
3359 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3360 if (Result
.getNode())
3364 // Then check to see if we should lower the memmove with target-specific
3365 // code. If the target chooses to do this, this is the next best.
3367 TLI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3368 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3369 if (Result
.getNode())
3372 // Emit a library call.
3373 TargetLowering::ArgListTy Args
;
3374 TargetLowering::ArgListEntry Entry
;
3375 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
3376 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3377 Entry
.Node
= Src
; Args
.push_back(Entry
);
3378 Entry
.Node
= Size
; Args
.push_back(Entry
);
3379 // FIXME: pass in DebugLoc
3380 std::pair
<SDValue
,SDValue
> CallResult
=
3381 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3382 false, false, false, false, CallingConv::C
, false,
3383 getExternalSymbol("memmove", TLI
.getPointerTy()),
3385 return CallResult
.second
;
3388 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3389 SDValue Src
, SDValue Size
,
3391 const Value
*DstSV
, uint64_t DstSVOff
) {
3393 // Check to see if we should lower the memset to stores first.
3394 // For cases within the target-specified limits, this is the best choice.
3395 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3397 // Memset with size zero? Just return the original chain.
3398 if (ConstantSize
->isNullValue())
3402 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3403 Align
, DstSV
, DstSVOff
);
3404 if (Result
.getNode())
3408 // Then check to see if we should lower the memset with target-specific
3409 // code. If the target chooses to do this, this is the next best.
3411 TLI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3413 if (Result
.getNode())
3416 // Emit a library call.
3417 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType();
3418 TargetLowering::ArgListTy Args
;
3419 TargetLowering::ArgListEntry Entry
;
3420 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3421 Args
.push_back(Entry
);
3422 // Extend or truncate the argument to be an i32 value for the call.
3423 if (Src
.getValueType().bitsGT(MVT::i32
))
3424 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3426 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3427 Entry
.Node
= Src
; Entry
.Ty
= Type::Int32Ty
; Entry
.isSExt
= true;
3428 Args
.push_back(Entry
);
3429 Entry
.Node
= Size
; Entry
.Ty
= IntPtrTy
; Entry
.isSExt
= false;
3430 Args
.push_back(Entry
);
3431 // FIXME: pass in DebugLoc
3432 std::pair
<SDValue
,SDValue
> CallResult
=
3433 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3434 false, false, false, false, CallingConv::C
, false,
3435 getExternalSymbol("memset", TLI
.getPointerTy()),
3437 return CallResult
.second
;
3440 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, MVT MemVT
,
3442 SDValue Ptr
, SDValue Cmp
,
3443 SDValue Swp
, const Value
* PtrVal
,
3444 unsigned Alignment
) {
3445 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3446 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3448 MVT VT
= Cmp
.getValueType();
3450 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3451 Alignment
= getMVTAlignment(MemVT
);
3453 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3454 FoldingSetNodeID ID
;
3455 ID
.AddInteger(MemVT
.getRawBits());
3456 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3457 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3459 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3460 return SDValue(E
, 0);
3461 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3462 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3463 Chain
, Ptr
, Cmp
, Swp
, PtrVal
, Alignment
);
3464 CSEMap
.InsertNode(N
, IP
);
3465 AllNodes
.push_back(N
);
3466 return SDValue(N
, 0);
3469 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, MVT MemVT
,
3471 SDValue Ptr
, SDValue Val
,
3472 const Value
* PtrVal
,
3473 unsigned Alignment
) {
3474 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3475 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3476 Opcode
== ISD::ATOMIC_LOAD_AND
||
3477 Opcode
== ISD::ATOMIC_LOAD_OR
||
3478 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3479 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3480 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3481 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3482 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3483 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3484 Opcode
== ISD::ATOMIC_SWAP
) &&
3485 "Invalid Atomic Op");
3487 MVT VT
= Val
.getValueType();
3489 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3490 Alignment
= getMVTAlignment(MemVT
);
3492 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3493 FoldingSetNodeID ID
;
3494 ID
.AddInteger(MemVT
.getRawBits());
3495 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3496 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3498 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3499 return SDValue(E
, 0);
3500 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3501 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3502 Chain
, Ptr
, Val
, PtrVal
, Alignment
);
3503 CSEMap
.InsertNode(N
, IP
);
3504 AllNodes
.push_back(N
);
3505 return SDValue(N
, 0);
3508 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3509 /// Allowed to return something different (and simpler) if Simplify is true.
3510 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3515 SmallVector
<MVT
, 4> VTs
;
3516 VTs
.reserve(NumOps
);
3517 for (unsigned i
= 0; i
< NumOps
; ++i
)
3518 VTs
.push_back(Ops
[i
].getValueType());
3519 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3524 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3525 const MVT
*VTs
, unsigned NumVTs
,
3526 const SDValue
*Ops
, unsigned NumOps
,
3527 MVT MemVT
, const Value
*srcValue
, int SVOff
,
3528 unsigned Align
, bool Vol
,
3529 bool ReadMem
, bool WriteMem
) {
3530 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3531 MemVT
, srcValue
, SVOff
, Align
, Vol
,
3536 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3537 const SDValue
*Ops
, unsigned NumOps
,
3538 MVT MemVT
, const Value
*srcValue
, int SVOff
,
3539 unsigned Align
, bool Vol
,
3540 bool ReadMem
, bool WriteMem
) {
3541 // Memoize the node unless it returns a flag.
3542 MemIntrinsicSDNode
*N
;
3543 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3544 FoldingSetNodeID ID
;
3545 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3547 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3548 return SDValue(E
, 0);
3550 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3551 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3552 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3553 CSEMap
.InsertNode(N
, IP
);
3555 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3556 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3557 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3559 AllNodes
.push_back(N
);
3560 return SDValue(N
, 0);
3564 SelectionDAG::getCall(unsigned CallingConv
, DebugLoc dl
, bool IsVarArgs
,
3565 bool IsTailCall
, bool IsInreg
, SDVTList VTs
,
3566 const SDValue
*Operands
, unsigned NumOperands
) {
3567 // Do not include isTailCall in the folding set profile.
3568 FoldingSetNodeID ID
;
3569 AddNodeIDNode(ID
, ISD::CALL
, VTs
, Operands
, NumOperands
);
3570 ID
.AddInteger(CallingConv
);
3571 ID
.AddInteger(IsVarArgs
);
3573 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3574 // Instead of including isTailCall in the folding set, we just
3575 // set the flag of the existing node.
3577 cast
<CallSDNode
>(E
)->setNotTailCall();
3578 return SDValue(E
, 0);
3580 SDNode
*N
= NodeAllocator
.Allocate
<CallSDNode
>();
3581 new (N
) CallSDNode(CallingConv
, dl
, IsVarArgs
, IsTailCall
, IsInreg
,
3582 VTs
, Operands
, NumOperands
);
3583 CSEMap
.InsertNode(N
, IP
);
3584 AllNodes
.push_back(N
);
3585 return SDValue(N
, 0);
3589 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, DebugLoc dl
,
3590 ISD::LoadExtType ExtType
, MVT VT
, SDValue Chain
,
3591 SDValue Ptr
, SDValue Offset
,
3592 const Value
*SV
, int SVOffset
, MVT EVT
,
3593 bool isVolatile
, unsigned Alignment
) {
3594 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3595 Alignment
= getMVTAlignment(VT
);
3598 ExtType
= ISD::NON_EXTLOAD
;
3599 } else if (ExtType
== ISD::NON_EXTLOAD
) {
3600 assert(VT
== EVT
&& "Non-extending load from different memory type!");
3604 assert(EVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
3605 "Invalid vector extload!");
3607 assert(EVT
.bitsLT(VT
) &&
3608 "Should only be an extending load, not truncating!");
3609 assert((ExtType
== ISD::EXTLOAD
|| VT
.isInteger()) &&
3610 "Cannot sign/zero extend a FP/Vector load!");
3611 assert(VT
.isInteger() == EVT
.isInteger() &&
3612 "Cannot convert from FP to Int or Int -> FP!");
3615 bool Indexed
= AM
!= ISD::UNINDEXED
;
3616 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
3617 "Unindexed load with an offset!");
3619 SDVTList VTs
= Indexed
?
3620 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
3621 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
3622 FoldingSetNodeID ID
;
3623 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
3624 ID
.AddInteger(EVT
.getRawBits());
3625 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, isVolatile
, Alignment
));
3627 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3628 return SDValue(E
, 0);
3629 SDNode
*N
= NodeAllocator
.Allocate
<LoadSDNode
>();
3630 new (N
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
, EVT
, SV
, SVOffset
,
3631 Alignment
, isVolatile
);
3632 CSEMap
.InsertNode(N
, IP
);
3633 AllNodes
.push_back(N
);
3634 return SDValue(N
, 0);
3637 SDValue
SelectionDAG::getLoad(MVT VT
, DebugLoc dl
,
3638 SDValue Chain
, SDValue Ptr
,
3639 const Value
*SV
, int SVOffset
,
3640 bool isVolatile
, unsigned Alignment
) {
3641 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3642 return getLoad(ISD::UNINDEXED
, dl
, ISD::NON_EXTLOAD
, VT
, Chain
, Ptr
, Undef
,
3643 SV
, SVOffset
, VT
, isVolatile
, Alignment
);
3646 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, DebugLoc dl
, MVT VT
,
3647 SDValue Chain
, SDValue Ptr
,
3649 int SVOffset
, MVT EVT
,
3650 bool isVolatile
, unsigned Alignment
) {
3651 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3652 return getLoad(ISD::UNINDEXED
, dl
, ExtType
, VT
, Chain
, Ptr
, Undef
,
3653 SV
, SVOffset
, EVT
, isVolatile
, Alignment
);
3657 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
3658 SDValue Offset
, ISD::MemIndexedMode AM
) {
3659 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
3660 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
3661 "Load is already a indexed load!");
3662 return getLoad(AM
, dl
, LD
->getExtensionType(), OrigLoad
.getValueType(),
3663 LD
->getChain(), Base
, Offset
, LD
->getSrcValue(),
3664 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
3665 LD
->isVolatile(), LD
->getAlignment());
3668 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3669 SDValue Ptr
, const Value
*SV
, int SVOffset
,
3670 bool isVolatile
, unsigned Alignment
) {
3671 MVT VT
= Val
.getValueType();
3673 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3674 Alignment
= getMVTAlignment(VT
);
3676 SDVTList VTs
= getVTList(MVT::Other
);
3677 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3678 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3679 FoldingSetNodeID ID
;
3680 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3681 ID
.AddInteger(VT
.getRawBits());
3682 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
,
3683 isVolatile
, Alignment
));
3685 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3686 return SDValue(E
, 0);
3687 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3688 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, false,
3689 VT
, SV
, SVOffset
, Alignment
, isVolatile
);
3690 CSEMap
.InsertNode(N
, IP
);
3691 AllNodes
.push_back(N
);
3692 return SDValue(N
, 0);
3695 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3696 SDValue Ptr
, const Value
*SV
,
3697 int SVOffset
, MVT SVT
,
3698 bool isVolatile
, unsigned Alignment
) {
3699 MVT VT
= Val
.getValueType();
3702 return getStore(Chain
, dl
, Val
, Ptr
, SV
, SVOffset
, isVolatile
, Alignment
);
3704 assert(VT
.bitsGT(SVT
) && "Not a truncation?");
3705 assert(VT
.isInteger() == SVT
.isInteger() &&
3706 "Can't do FP-INT conversion!");
3708 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3709 Alignment
= getMVTAlignment(VT
);
3711 SDVTList VTs
= getVTList(MVT::Other
);
3712 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3713 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3714 FoldingSetNodeID ID
;
3715 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3716 ID
.AddInteger(SVT
.getRawBits());
3717 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
,
3718 isVolatile
, Alignment
));
3720 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3721 return SDValue(E
, 0);
3722 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3723 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, true,
3724 SVT
, SV
, SVOffset
, Alignment
, isVolatile
);
3725 CSEMap
.InsertNode(N
, IP
);
3726 AllNodes
.push_back(N
);
3727 return SDValue(N
, 0);
3731 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
3732 SDValue Offset
, ISD::MemIndexedMode AM
) {
3733 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
3734 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
3735 "Store is already a indexed store!");
3736 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
3737 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
3738 FoldingSetNodeID ID
;
3739 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3740 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
3741 ID
.AddInteger(ST
->getRawSubclassData());
3743 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3744 return SDValue(E
, 0);
3745 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3746 new (N
) StoreSDNode(Ops
, dl
, VTs
, AM
,
3747 ST
->isTruncatingStore(), ST
->getMemoryVT(),
3748 ST
->getSrcValue(), ST
->getSrcValueOffset(),
3749 ST
->getAlignment(), ST
->isVolatile());
3750 CSEMap
.InsertNode(N
, IP
);
3751 AllNodes
.push_back(N
);
3752 return SDValue(N
, 0);
3755 SDValue
SelectionDAG::getVAArg(MVT VT
, DebugLoc dl
,
3756 SDValue Chain
, SDValue Ptr
,
3758 SDValue Ops
[] = { Chain
, Ptr
, SV
};
3759 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 3);
3762 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
3763 const SDUse
*Ops
, unsigned NumOps
) {
3765 case 0: return getNode(Opcode
, DL
, VT
);
3766 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3767 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3768 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3772 // Copy from an SDUse array into an SDValue array for use with
3773 // the regular getNode logic.
3774 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
3775 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
3778 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
3779 const SDValue
*Ops
, unsigned NumOps
) {
3781 case 0: return getNode(Opcode
, DL
, VT
);
3782 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3783 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3784 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3790 case ISD::SELECT_CC
: {
3791 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
3792 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
3793 "LHS and RHS of condition must have same type!");
3794 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3795 "True and False arms of SelectCC must have same type!");
3796 assert(Ops
[2].getValueType() == VT
&&
3797 "select_cc node must be of same type as true and false value!");
3801 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
3802 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3803 "LHS/RHS of comparison should match types!");
3810 SDVTList VTs
= getVTList(VT
);
3812 if (VT
!= MVT::Flag
) {
3813 FoldingSetNodeID ID
;
3814 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
3817 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3818 return SDValue(E
, 0);
3820 N
= NodeAllocator
.Allocate
<SDNode
>();
3821 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3822 CSEMap
.InsertNode(N
, IP
);
3824 N
= NodeAllocator
.Allocate
<SDNode
>();
3825 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3828 AllNodes
.push_back(N
);
3832 return SDValue(N
, 0);
3835 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3836 const std::vector
<MVT
> &ResultTys
,
3837 const SDValue
*Ops
, unsigned NumOps
) {
3838 return getNode(Opcode
, DL
, getVTList(&ResultTys
[0], ResultTys
.size()),
3842 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3843 const MVT
*VTs
, unsigned NumVTs
,
3844 const SDValue
*Ops
, unsigned NumOps
) {
3846 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
3847 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
3850 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3851 const SDValue
*Ops
, unsigned NumOps
) {
3852 if (VTList
.NumVTs
== 1)
3853 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
3856 // FIXME: figure out how to safely handle things like
3857 // int foo(int x) { return 1 << (x & 255); }
3858 // int bar() { return foo(256); }
3860 case ISD::SRA_PARTS
:
3861 case ISD::SRL_PARTS
:
3862 case ISD::SHL_PARTS
:
3863 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3864 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
3865 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3866 else if (N3
.getOpcode() == ISD::AND
)
3867 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
3868 // If the and is only masking out bits that cannot effect the shift,
3869 // eliminate the and.
3870 unsigned NumBits
= VT
.getSizeInBits()*2;
3871 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
3872 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3878 // Memoize the node unless it returns a flag.
3880 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3881 FoldingSetNodeID ID
;
3882 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3884 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3885 return SDValue(E
, 0);
3887 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3888 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3889 } else if (NumOps
== 2) {
3890 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3891 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3892 } else if (NumOps
== 3) {
3893 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3894 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3896 N
= NodeAllocator
.Allocate
<SDNode
>();
3897 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3899 CSEMap
.InsertNode(N
, IP
);
3902 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3903 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3904 } else if (NumOps
== 2) {
3905 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3906 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3907 } else if (NumOps
== 3) {
3908 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3909 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3911 N
= NodeAllocator
.Allocate
<SDNode
>();
3912 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3915 AllNodes
.push_back(N
);
3919 return SDValue(N
, 0);
3922 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
3923 return getNode(Opcode
, DL
, VTList
, 0, 0);
3926 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3928 SDValue Ops
[] = { N1
};
3929 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
3932 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3933 SDValue N1
, SDValue N2
) {
3934 SDValue Ops
[] = { N1
, N2
};
3935 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
3938 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3939 SDValue N1
, SDValue N2
, SDValue N3
) {
3940 SDValue Ops
[] = { N1
, N2
, N3
};
3941 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
3944 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3945 SDValue N1
, SDValue N2
, SDValue N3
,
3947 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
3948 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
3951 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3952 SDValue N1
, SDValue N2
, SDValue N3
,
3953 SDValue N4
, SDValue N5
) {
3954 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
3955 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
3958 SDVTList
SelectionDAG::getVTList(MVT VT
) {
3959 return makeVTList(SDNode::getValueTypeList(VT
), 1);
3962 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
) {
3963 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3964 E
= VTList
.rend(); I
!= E
; ++I
)
3965 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
3968 MVT
*Array
= Allocator
.Allocate
<MVT
>(2);
3971 SDVTList Result
= makeVTList(Array
, 2);
3972 VTList
.push_back(Result
);
3976 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
, MVT VT3
) {
3977 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3978 E
= VTList
.rend(); I
!= E
; ++I
)
3979 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
3983 MVT
*Array
= Allocator
.Allocate
<MVT
>(3);
3987 SDVTList Result
= makeVTList(Array
, 3);
3988 VTList
.push_back(Result
);
3992 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
, MVT VT3
, MVT VT4
) {
3993 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3994 E
= VTList
.rend(); I
!= E
; ++I
)
3995 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
3996 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
3999 MVT
*Array
= Allocator
.Allocate
<MVT
>(3);
4004 SDVTList Result
= makeVTList(Array
, 4);
4005 VTList
.push_back(Result
);
4009 SDVTList
SelectionDAG::getVTList(const MVT
*VTs
, unsigned NumVTs
) {
4011 case 0: assert(0 && "Cannot have nodes without results!");
4012 case 1: return getVTList(VTs
[0]);
4013 case 2: return getVTList(VTs
[0], VTs
[1]);
4014 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
4018 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4019 E
= VTList
.rend(); I
!= E
; ++I
) {
4020 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
4023 bool NoMatch
= false;
4024 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
4025 if (VTs
[i
] != I
->VTs
[i
]) {
4033 MVT
*Array
= Allocator
.Allocate
<MVT
>(NumVTs
);
4034 std::copy(VTs
, VTs
+NumVTs
, Array
);
4035 SDVTList Result
= makeVTList(Array
, NumVTs
);
4036 VTList
.push_back(Result
);
4041 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4042 /// specified operands. If the resultant node already exists in the DAG,
4043 /// this does not modify the specified node, instead it returns the node that
4044 /// already exists. If the resultant node does not exist in the DAG, the
4045 /// input node is returned. As a degenerate case, if you specify the same
4046 /// input operands as the node already has, the input node is returned.
4047 SDValue
SelectionDAG::UpdateNodeOperands(SDValue InN
, SDValue Op
) {
4048 SDNode
*N
= InN
.getNode();
4049 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
4051 // Check to see if there is no change.
4052 if (Op
== N
->getOperand(0)) return InN
;
4054 // See if the modified node already exists.
4055 void *InsertPos
= 0;
4056 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
4057 return SDValue(Existing
, InN
.getResNo());
4059 // Nope it doesn't. Remove the node from its current place in the maps.
4061 if (!RemoveNodeFromCSEMaps(N
))
4064 // Now we update the operands.
4065 N
->OperandList
[0].set(Op
);
4067 // If this gets put into a CSE map, add it.
4068 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4072 SDValue
SelectionDAG::
4073 UpdateNodeOperands(SDValue InN
, SDValue Op1
, SDValue Op2
) {
4074 SDNode
*N
= InN
.getNode();
4075 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
4077 // Check to see if there is no change.
4078 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
4079 return InN
; // No operands changed, just return the input node.
4081 // See if the modified node already exists.
4082 void *InsertPos
= 0;
4083 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
4084 return SDValue(Existing
, InN
.getResNo());
4086 // Nope it doesn't. Remove the node from its current place in the maps.
4088 if (!RemoveNodeFromCSEMaps(N
))
4091 // Now we update the operands.
4092 if (N
->OperandList
[0] != Op1
)
4093 N
->OperandList
[0].set(Op1
);
4094 if (N
->OperandList
[1] != Op2
)
4095 N
->OperandList
[1].set(Op2
);
4097 // If this gets put into a CSE map, add it.
4098 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4102 SDValue
SelectionDAG::
4103 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4104 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4105 return UpdateNodeOperands(N
, Ops
, 3);
4108 SDValue
SelectionDAG::
4109 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4110 SDValue Op3
, SDValue Op4
) {
4111 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4112 return UpdateNodeOperands(N
, Ops
, 4);
4115 SDValue
SelectionDAG::
4116 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4117 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4118 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4119 return UpdateNodeOperands(N
, Ops
, 5);
4122 SDValue
SelectionDAG::
4123 UpdateNodeOperands(SDValue InN
, const SDValue
*Ops
, unsigned NumOps
) {
4124 SDNode
*N
= InN
.getNode();
4125 assert(N
->getNumOperands() == NumOps
&&
4126 "Update with wrong number of operands");
4128 // Check to see if there is no change.
4129 bool AnyChange
= false;
4130 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4131 if (Ops
[i
] != N
->getOperand(i
)) {
4137 // No operands changed, just return the input node.
4138 if (!AnyChange
) return InN
;
4140 // See if the modified node already exists.
4141 void *InsertPos
= 0;
4142 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4143 return SDValue(Existing
, InN
.getResNo());
4145 // Nope it doesn't. Remove the node from its current place in the maps.
4147 if (!RemoveNodeFromCSEMaps(N
))
4150 // Now we update the operands.
4151 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4152 if (N
->OperandList
[i
] != Ops
[i
])
4153 N
->OperandList
[i
].set(Ops
[i
]);
4155 // If this gets put into a CSE map, add it.
4156 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4160 /// DropOperands - Release the operands and set this node to have
4162 void SDNode::DropOperands() {
4163 // Unlike the code in MorphNodeTo that does this, we don't need to
4164 // watch for dead nodes here.
4165 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4171 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4174 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4176 SDVTList VTs
= getVTList(VT
);
4177 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4180 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4181 MVT VT
, SDValue Op1
) {
4182 SDVTList VTs
= getVTList(VT
);
4183 SDValue Ops
[] = { Op1
};
4184 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4187 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4188 MVT VT
, SDValue Op1
,
4190 SDVTList VTs
= getVTList(VT
);
4191 SDValue Ops
[] = { Op1
, Op2
};
4192 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4195 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4196 MVT VT
, SDValue Op1
,
4197 SDValue Op2
, SDValue Op3
) {
4198 SDVTList VTs
= getVTList(VT
);
4199 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4200 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4203 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4204 MVT VT
, const SDValue
*Ops
,
4206 SDVTList VTs
= getVTList(VT
);
4207 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4210 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4211 MVT VT1
, MVT VT2
, const SDValue
*Ops
,
4213 SDVTList VTs
= getVTList(VT1
, VT2
);
4214 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4217 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4219 SDVTList VTs
= getVTList(VT1
, VT2
);
4220 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4223 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4224 MVT VT1
, MVT VT2
, MVT VT3
,
4225 const SDValue
*Ops
, unsigned NumOps
) {
4226 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4227 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4230 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4231 MVT VT1
, MVT VT2
, MVT VT3
, MVT VT4
,
4232 const SDValue
*Ops
, unsigned NumOps
) {
4233 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4234 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4237 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4240 SDVTList VTs
= getVTList(VT1
, VT2
);
4241 SDValue Ops
[] = { Op1
};
4242 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4245 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4247 SDValue Op1
, SDValue Op2
) {
4248 SDVTList VTs
= getVTList(VT1
, VT2
);
4249 SDValue Ops
[] = { Op1
, Op2
};
4250 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4253 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4255 SDValue Op1
, SDValue Op2
,
4257 SDVTList VTs
= getVTList(VT1
, VT2
);
4258 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4259 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4262 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4263 MVT VT1
, MVT VT2
, MVT VT3
,
4264 SDValue Op1
, SDValue Op2
,
4266 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4267 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4268 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4271 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4272 SDVTList VTs
, const SDValue
*Ops
,
4274 return MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4277 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4279 SDVTList VTs
= getVTList(VT
);
4280 return MorphNodeTo(N
, Opc
, VTs
, 0, 0);
4283 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4284 MVT VT
, SDValue Op1
) {
4285 SDVTList VTs
= getVTList(VT
);
4286 SDValue Ops
[] = { Op1
};
4287 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4290 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4291 MVT VT
, SDValue Op1
,
4293 SDVTList VTs
= getVTList(VT
);
4294 SDValue Ops
[] = { Op1
, Op2
};
4295 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4298 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4299 MVT VT
, SDValue Op1
,
4300 SDValue Op2
, SDValue Op3
) {
4301 SDVTList VTs
= getVTList(VT
);
4302 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4303 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4306 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4307 MVT VT
, const SDValue
*Ops
,
4309 SDVTList VTs
= getVTList(VT
);
4310 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4313 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4314 MVT VT1
, MVT VT2
, const SDValue
*Ops
,
4316 SDVTList VTs
= getVTList(VT1
, VT2
);
4317 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4320 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4322 SDVTList VTs
= getVTList(VT1
, VT2
);
4323 return MorphNodeTo(N
, Opc
, VTs
, (SDValue
*)0, 0);
4326 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4327 MVT VT1
, MVT VT2
, MVT VT3
,
4328 const SDValue
*Ops
, unsigned NumOps
) {
4329 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4330 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4333 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4336 SDVTList VTs
= getVTList(VT1
, VT2
);
4337 SDValue Ops
[] = { Op1
};
4338 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4341 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4343 SDValue Op1
, SDValue Op2
) {
4344 SDVTList VTs
= getVTList(VT1
, VT2
);
4345 SDValue Ops
[] = { Op1
, Op2
};
4346 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4349 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4351 SDValue Op1
, SDValue Op2
,
4353 SDVTList VTs
= getVTList(VT1
, VT2
);
4354 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4355 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4358 /// MorphNodeTo - These *mutate* the specified node to have the specified
4359 /// return type, opcode, and operands.
4361 /// Note that MorphNodeTo returns the resultant node. If there is already a
4362 /// node of the specified opcode and operands, it returns that node instead of
4363 /// the current one. Note that the DebugLoc need not be the same.
4365 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4366 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4367 /// node, and because it doesn't require CSE recalculation for any of
4368 /// the node's users.
4370 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4371 SDVTList VTs
, const SDValue
*Ops
,
4373 // If an identical node already exists, use it.
4375 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
) {
4376 FoldingSetNodeID ID
;
4377 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4378 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4382 if (!RemoveNodeFromCSEMaps(N
))
4385 // Start the morphing.
4387 N
->ValueList
= VTs
.VTs
;
4388 N
->NumValues
= VTs
.NumVTs
;
4390 // Clear the operands list, updating used nodes to remove this from their
4391 // use list. Keep track of any operands that become dead as a result.
4392 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4393 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4395 SDNode
*Used
= Use
.getNode();
4397 if (Used
->use_empty())
4398 DeadNodeSet
.insert(Used
);
4401 // If NumOps is larger than the # of operands we currently have, reallocate
4402 // the operand list.
4403 if (NumOps
> N
->NumOperands
) {
4404 if (N
->OperandsNeedDelete
)
4405 delete[] N
->OperandList
;
4407 if (N
->isMachineOpcode()) {
4408 // We're creating a final node that will live unmorphed for the
4409 // remainder of the current SelectionDAG iteration, so we can allocate
4410 // the operands directly out of a pool with no recycling metadata.
4411 N
->OperandList
= OperandAllocator
.Allocate
<SDUse
>(NumOps
);
4412 N
->OperandsNeedDelete
= false;
4414 N
->OperandList
= new SDUse
[NumOps
];
4415 N
->OperandsNeedDelete
= true;
4419 // Assign the new operands.
4420 N
->NumOperands
= NumOps
;
4421 for (unsigned i
= 0, e
= NumOps
; i
!= e
; ++i
) {
4422 N
->OperandList
[i
].setUser(N
);
4423 N
->OperandList
[i
].setInitial(Ops
[i
]);
4426 // Delete any nodes that are still dead after adding the uses for the
4428 SmallVector
<SDNode
*, 16> DeadNodes
;
4429 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4430 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4431 if ((*I
)->use_empty())
4432 DeadNodes
.push_back(*I
);
4433 RemoveDeadNodes(DeadNodes
);
4436 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4441 /// getTargetNode - These are used for target selectors to create a new node
4442 /// with specified return type(s), target opcode, and operands.
4444 /// Note that getTargetNode returns the resultant node. If there is already a
4445 /// node of the specified opcode and operands, it returns that node instead of
4446 /// the current one.
4447 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
) {
4448 return getNode(~Opcode
, dl
, VT
).getNode();
4451 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4453 return getNode(~Opcode
, dl
, VT
, Op1
).getNode();
4456 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4457 SDValue Op1
, SDValue Op2
) {
4458 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
).getNode();
4461 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4462 SDValue Op1
, SDValue Op2
,
4464 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
, Op3
).getNode();
4467 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4468 const SDValue
*Ops
, unsigned NumOps
) {
4469 return getNode(~Opcode
, dl
, VT
, Ops
, NumOps
).getNode();
4472 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4474 SDVTList VTs
= getVTList(VT1
, VT2
);
4476 return getNode(~Opcode
, dl
, VTs
, &Op
, 0).getNode();
4479 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4480 MVT VT2
, SDValue Op1
) {
4481 SDVTList VTs
= getVTList(VT1
, VT2
);
4482 return getNode(~Opcode
, dl
, VTs
, &Op1
, 1).getNode();
4485 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4486 MVT VT2
, SDValue Op1
,
4488 SDVTList VTs
= getVTList(VT1
, VT2
);
4489 SDValue Ops
[] = { Op1
, Op2
};
4490 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4493 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4494 MVT VT2
, SDValue Op1
,
4495 SDValue Op2
, SDValue Op3
) {
4496 SDVTList VTs
= getVTList(VT1
, VT2
);
4497 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4498 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4501 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4503 const SDValue
*Ops
, unsigned NumOps
) {
4504 SDVTList VTs
= getVTList(VT1
, VT2
);
4505 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4508 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4509 MVT VT1
, MVT VT2
, MVT VT3
,
4510 SDValue Op1
, SDValue Op2
) {
4511 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4512 SDValue Ops
[] = { Op1
, Op2
};
4513 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4516 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4517 MVT VT1
, MVT VT2
, MVT VT3
,
4518 SDValue Op1
, SDValue Op2
,
4520 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4521 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4522 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4525 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4526 MVT VT1
, MVT VT2
, MVT VT3
,
4527 const SDValue
*Ops
, unsigned NumOps
) {
4528 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4529 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4532 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4533 MVT VT2
, MVT VT3
, MVT VT4
,
4534 const SDValue
*Ops
, unsigned NumOps
) {
4535 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4536 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4539 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4540 const std::vector
<MVT
> &ResultTys
,
4541 const SDValue
*Ops
, unsigned NumOps
) {
4542 return getNode(~Opcode
, dl
, ResultTys
, Ops
, NumOps
).getNode();
4545 /// getNodeIfExists - Get the specified node if it's already available, or
4546 /// else return NULL.
4547 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
4548 const SDValue
*Ops
, unsigned NumOps
) {
4549 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4550 FoldingSetNodeID ID
;
4551 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4553 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4559 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4560 /// This can cause recursive merging of nodes in the DAG.
4562 /// This version assumes From has a single result value.
4564 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
4565 DAGUpdateListener
*UpdateListener
) {
4566 SDNode
*From
= FromN
.getNode();
4567 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
4568 "Cannot replace with this method!");
4569 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
4571 // Iterate over all the existing uses of From. New uses will be added
4572 // to the beginning of the use list, which we avoid visiting.
4573 // This specifically avoids visiting uses of From that arise while the
4574 // replacement is happening, because any such uses would be the result
4575 // of CSE: If an existing node looks like From after one of its operands
4576 // is replaced by To, we don't want to replace of all its users with To
4577 // too. See PR3018 for more info.
4578 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4582 // This node is about to morph, remove its old self from the CSE maps.
4583 RemoveNodeFromCSEMaps(User
);
4585 // A user can appear in a use list multiple times, and when this
4586 // happens the uses are usually next to each other in the list.
4587 // To help reduce the number of CSE recomputations, process all
4588 // the uses of this user that we can find this way.
4590 SDUse
&Use
= UI
.getUse();
4593 } while (UI
!= UE
&& *UI
== User
);
4595 // Now that we have modified User, add it back to the CSE maps. If it
4596 // already exists there, recursively merge the results together.
4597 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4601 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4602 /// This can cause recursive merging of nodes in the DAG.
4604 /// This version assumes that for each value of From, there is a
4605 /// corresponding value in To in the same position with the same type.
4607 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
4608 DAGUpdateListener
*UpdateListener
) {
4610 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
4611 assert((!From
->hasAnyUseOfValue(i
) ||
4612 From
->getValueType(i
) == To
->getValueType(i
)) &&
4613 "Cannot use this version of ReplaceAllUsesWith!");
4616 // Handle the trivial case.
4620 // Iterate over just the existing users of From. See the comments in
4621 // the ReplaceAllUsesWith above.
4622 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4626 // This node is about to morph, remove its old self from the CSE maps.
4627 RemoveNodeFromCSEMaps(User
);
4629 // A user can appear in a use list multiple times, and when this
4630 // happens the uses are usually next to each other in the list.
4631 // To help reduce the number of CSE recomputations, process all
4632 // the uses of this user that we can find this way.
4634 SDUse
&Use
= UI
.getUse();
4637 } while (UI
!= UE
&& *UI
== User
);
4639 // Now that we have modified User, add it back to the CSE maps. If it
4640 // already exists there, recursively merge the results together.
4641 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4645 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4646 /// This can cause recursive merging of nodes in the DAG.
4648 /// This version can replace From with any result values. To must match the
4649 /// number and types of values returned by From.
4650 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
4652 DAGUpdateListener
*UpdateListener
) {
4653 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
4654 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
4656 // Iterate over just the existing users of From. See the comments in
4657 // the ReplaceAllUsesWith above.
4658 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4662 // This node is about to morph, remove its old self from the CSE maps.
4663 RemoveNodeFromCSEMaps(User
);
4665 // A user can appear in a use list multiple times, and when this
4666 // happens the uses are usually next to each other in the list.
4667 // To help reduce the number of CSE recomputations, process all
4668 // the uses of this user that we can find this way.
4670 SDUse
&Use
= UI
.getUse();
4671 const SDValue
&ToOp
= To
[Use
.getResNo()];
4674 } while (UI
!= UE
&& *UI
== User
);
4676 // Now that we have modified User, add it back to the CSE maps. If it
4677 // already exists there, recursively merge the results together.
4678 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4682 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4683 /// uses of other values produced by From.getNode() alone. The Deleted
4684 /// vector is handled the same way as for ReplaceAllUsesWith.
4685 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
4686 DAGUpdateListener
*UpdateListener
){
4687 // Handle the really simple, really trivial case efficiently.
4688 if (From
== To
) return;
4690 // Handle the simple, trivial, case efficiently.
4691 if (From
.getNode()->getNumValues() == 1) {
4692 ReplaceAllUsesWith(From
, To
, UpdateListener
);
4696 // Iterate over just the existing users of From. See the comments in
4697 // the ReplaceAllUsesWith above.
4698 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
4699 UE
= From
.getNode()->use_end();
4702 bool UserRemovedFromCSEMaps
= false;
4704 // A user can appear in a use list multiple times, and when this
4705 // happens the uses are usually next to each other in the list.
4706 // To help reduce the number of CSE recomputations, process all
4707 // the uses of this user that we can find this way.
4709 SDUse
&Use
= UI
.getUse();
4711 // Skip uses of different values from the same node.
4712 if (Use
.getResNo() != From
.getResNo()) {
4717 // If this node hasn't been modified yet, it's still in the CSE maps,
4718 // so remove its old self from the CSE maps.
4719 if (!UserRemovedFromCSEMaps
) {
4720 RemoveNodeFromCSEMaps(User
);
4721 UserRemovedFromCSEMaps
= true;
4726 } while (UI
!= UE
&& *UI
== User
);
4728 // We are iterating over all uses of the From node, so if a use
4729 // doesn't use the specific value, no changes are made.
4730 if (!UserRemovedFromCSEMaps
)
4733 // Now that we have modified User, add it back to the CSE maps. If it
4734 // already exists there, recursively merge the results together.
4735 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4740 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4741 /// to record information about a use.
4748 /// operator< - Sort Memos by User.
4749 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
4750 return (intptr_t)L
.User
< (intptr_t)R
.User
;
4754 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4755 /// uses of other values produced by From.getNode() alone. The same value
4756 /// may appear in both the From and To list. The Deleted vector is
4757 /// handled the same way as for ReplaceAllUsesWith.
4758 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
4761 DAGUpdateListener
*UpdateListener
){
4762 // Handle the simple, trivial case efficiently.
4764 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
4766 // Read up all the uses and make records of them. This helps
4767 // processing new uses that are introduced during the
4768 // replacement process.
4769 SmallVector
<UseMemo
, 4> Uses
;
4770 for (unsigned i
= 0; i
!= Num
; ++i
) {
4771 unsigned FromResNo
= From
[i
].getResNo();
4772 SDNode
*FromNode
= From
[i
].getNode();
4773 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
4774 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
4775 SDUse
&Use
= UI
.getUse();
4776 if (Use
.getResNo() == FromResNo
) {
4777 UseMemo Memo
= { *UI
, i
, &Use
};
4778 Uses
.push_back(Memo
);
4783 // Sort the uses, so that all the uses from a given User are together.
4784 std::sort(Uses
.begin(), Uses
.end());
4786 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
4787 UseIndex
!= UseIndexEnd
; ) {
4788 // We know that this user uses some value of From. If it is the right
4789 // value, update it.
4790 SDNode
*User
= Uses
[UseIndex
].User
;
4792 // This node is about to morph, remove its old self from the CSE maps.
4793 RemoveNodeFromCSEMaps(User
);
4795 // The Uses array is sorted, so all the uses for a given User
4796 // are next to each other in the list.
4797 // To help reduce the number of CSE recomputations, process all
4798 // the uses of this user that we can find this way.
4800 unsigned i
= Uses
[UseIndex
].Index
;
4801 SDUse
&Use
= *Uses
[UseIndex
].Use
;
4805 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
4807 // Now that we have modified User, add it back to the CSE maps. If it
4808 // already exists there, recursively merge the results together.
4809 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4813 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4814 /// based on their topological order. It returns the maximum id and a vector
4815 /// of the SDNodes* in assigned order by reference.
4816 unsigned SelectionDAG::AssignTopologicalOrder() {
4818 unsigned DAGSize
= 0;
4820 // SortedPos tracks the progress of the algorithm. Nodes before it are
4821 // sorted, nodes after it are unsorted. When the algorithm completes
4822 // it is at the end of the list.
4823 allnodes_iterator SortedPos
= allnodes_begin();
4825 // Visit all the nodes. Move nodes with no operands to the front of
4826 // the list immediately. Annotate nodes that do have operands with their
4827 // operand count. Before we do this, the Node Id fields of the nodes
4828 // may contain arbitrary values. After, the Node Id fields for nodes
4829 // before SortedPos will contain the topological sort index, and the
4830 // Node Id fields for nodes At SortedPos and after will contain the
4831 // count of outstanding operands.
4832 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
4834 unsigned Degree
= N
->getNumOperands();
4836 // A node with no uses, add it to the result array immediately.
4837 N
->setNodeId(DAGSize
++);
4838 allnodes_iterator Q
= N
;
4840 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
4843 // Temporarily use the Node Id as scratch space for the degree count.
4844 N
->setNodeId(Degree
);
4848 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4849 // such that by the time the end is reached all nodes will be sorted.
4850 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
4852 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
4855 unsigned Degree
= P
->getNodeId();
4858 // All of P's operands are sorted, so P may sorted now.
4859 P
->setNodeId(DAGSize
++);
4861 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
4864 // Update P's outstanding operand count.
4865 P
->setNodeId(Degree
);
4870 assert(SortedPos
== AllNodes
.end() &&
4871 "Topological sort incomplete!");
4872 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
4873 "First node in topological sort is not the entry token!");
4874 assert(AllNodes
.front().getNodeId() == 0 &&
4875 "First node in topological sort has non-zero id!");
4876 assert(AllNodes
.front().getNumOperands() == 0 &&
4877 "First node in topological sort has operands!");
4878 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
4879 "Last node in topologic sort has unexpected id!");
4880 assert(AllNodes
.back().use_empty() &&
4881 "Last node in topologic sort has users!");
4882 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
4888 //===----------------------------------------------------------------------===//
4890 //===----------------------------------------------------------------------===//
4892 HandleSDNode::~HandleSDNode() {
4896 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget
, const GlobalValue
*GA
,
4898 : SDNode(isa
<GlobalVariable
>(GA
) &&
4899 cast
<GlobalVariable
>(GA
)->isThreadLocal() ?
4901 (isTarget
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
) :
4903 (isTarget
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
),
4904 DebugLoc::getUnknownLoc(), getSDVTList(VT
)), Offset(o
) {
4905 TheGlobal
= const_cast<GlobalValue
*>(GA
);
4908 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, MVT memvt
,
4909 const Value
*srcValue
, int SVO
,
4910 unsigned alignment
, bool vol
)
4911 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4912 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4913 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4914 assert(getAlignment() == alignment
&& "Alignment representation error!");
4915 assert(isVolatile() == vol
&& "Volatile representation error!");
4918 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
4920 unsigned NumOps
, MVT memvt
, const Value
*srcValue
,
4921 int SVO
, unsigned alignment
, bool vol
)
4922 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
4923 MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4924 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4925 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4926 assert(getAlignment() == alignment
&& "Alignment representation error!");
4927 assert(isVolatile() == vol
&& "Volatile representation error!");
4930 /// getMemOperand - Return a MachineMemOperand object describing the memory
4931 /// reference performed by this memory reference.
4932 MachineMemOperand
MemSDNode::getMemOperand() const {
4934 if (isa
<LoadSDNode
>(this))
4935 Flags
= MachineMemOperand::MOLoad
;
4936 else if (isa
<StoreSDNode
>(this))
4937 Flags
= MachineMemOperand::MOStore
;
4938 else if (isa
<AtomicSDNode
>(this)) {
4939 Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4942 const MemIntrinsicSDNode
* MemIntrinNode
= dyn_cast
<MemIntrinsicSDNode
>(this);
4943 assert(MemIntrinNode
&& "Unknown MemSDNode opcode!");
4944 if (MemIntrinNode
->readMem()) Flags
|= MachineMemOperand::MOLoad
;
4945 if (MemIntrinNode
->writeMem()) Flags
|= MachineMemOperand::MOStore
;
4948 int Size
= (getMemoryVT().getSizeInBits() + 7) >> 3;
4949 if (isVolatile()) Flags
|= MachineMemOperand::MOVolatile
;
4951 // Check if the memory reference references a frame index
4952 const FrameIndexSDNode
*FI
=
4953 dyn_cast
<const FrameIndexSDNode
>(getBasePtr().getNode());
4954 if (!getSrcValue() && FI
)
4955 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI
->getIndex()),
4956 Flags
, 0, Size
, getAlignment());
4958 return MachineMemOperand(getSrcValue(), Flags
, getSrcValueOffset(),
4959 Size
, getAlignment());
4962 /// Profile - Gather unique data for the node.
4964 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
4965 AddNodeIDNode(ID
, this);
4968 /// getValueTypeList - Return a pointer to the specified value type.
4970 const MVT
*SDNode::getValueTypeList(MVT VT
) {
4971 if (VT
.isExtended()) {
4972 static std::set
<MVT
, MVT::compareRawBits
> EVTs
;
4973 return &(*EVTs
.insert(VT
).first
);
4975 static MVT VTs
[MVT::LAST_VALUETYPE
];
4976 VTs
[VT
.getSimpleVT()] = VT
;
4977 return &VTs
[VT
.getSimpleVT()];
4981 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4982 /// indicated value. This method ignores uses of other values defined by this
4984 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
4985 assert(Value
< getNumValues() && "Bad value!");
4987 // TODO: Only iterate over uses of a given value of the node
4988 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
4989 if (UI
.getUse().getResNo() == Value
) {
4996 // Found exactly the right number of uses?
5001 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5002 /// value. This method ignores uses of other values defined by this operation.
5003 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
5004 assert(Value
< getNumValues() && "Bad value!");
5006 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
5007 if (UI
.getUse().getResNo() == Value
)
5014 /// isOnlyUserOf - Return true if this node is the only use of N.
5016 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
5018 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
5029 /// isOperand - Return true if this node is an operand of N.
5031 bool SDValue::isOperandOf(SDNode
*N
) const {
5032 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5033 if (*this == N
->getOperand(i
))
5038 bool SDNode::isOperandOf(SDNode
*N
) const {
5039 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
5040 if (this == N
->OperandList
[i
].getNode())
5045 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5046 /// be a chain) reaches the specified operand without crossing any
5047 /// side-effecting instructions. In practice, this looks through token
5048 /// factors and non-volatile loads. In order to remain efficient, this only
5049 /// looks a couple of nodes in, it does not do an exhaustive search.
5050 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
5051 unsigned Depth
) const {
5052 if (*this == Dest
) return true;
5054 // Don't search too deeply, we just want to be able to see through
5055 // TokenFactor's etc.
5056 if (Depth
== 0) return false;
5058 // If this is a token factor, all inputs to the TF happen in parallel. If any
5059 // of the operands of the TF reach dest, then we can do the xform.
5060 if (getOpcode() == ISD::TokenFactor
) {
5061 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
5062 if (getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
5067 // Loads don't have side effects, look through them.
5068 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
5069 if (!Ld
->isVolatile())
5070 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
5076 static void findPredecessor(SDNode
*N
, const SDNode
*P
, bool &found
,
5077 SmallPtrSet
<SDNode
*, 32> &Visited
) {
5078 if (found
|| !Visited
.insert(N
))
5081 for (unsigned i
= 0, e
= N
->getNumOperands(); !found
&& i
!= e
; ++i
) {
5082 SDNode
*Op
= N
->getOperand(i
).getNode();
5087 findPredecessor(Op
, P
, found
, Visited
);
5091 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5092 /// is either an operand of N or it can be reached by recursively traversing
5093 /// up the operands.
5094 /// NOTE: this is an expensive method. Use it carefully.
5095 bool SDNode::isPredecessorOf(SDNode
*N
) const {
5096 SmallPtrSet
<SDNode
*, 32> Visited
;
5098 findPredecessor(N
, this, found
, Visited
);
5102 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
5103 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
5104 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5107 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5108 switch (getOpcode()) {
5110 if (getOpcode() < ISD::BUILTIN_OP_END
)
5111 return "<<Unknown DAG Node>>";
5112 if (isMachineOpcode()) {
5114 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5115 if (getMachineOpcode() < TII
->getNumOpcodes())
5116 return TII
->get(getMachineOpcode()).getName();
5117 return "<<Unknown Machine Node>>";
5120 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5121 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5122 if (Name
) return Name
;
5123 return "<<Unknown Target Node>>";
5125 return "<<Unknown Node>>";
5128 case ISD::DELETED_NODE
:
5129 return "<<Deleted Node!>>";
5131 case ISD::PREFETCH
: return "Prefetch";
5132 case ISD::MEMBARRIER
: return "MemBarrier";
5133 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5134 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5135 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5136 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5137 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5138 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5139 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5140 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5141 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5142 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5143 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5144 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5145 case ISD::PCMARKER
: return "PCMarker";
5146 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5147 case ISD::SRCVALUE
: return "SrcValue";
5148 case ISD::MEMOPERAND
: return "MemOperand";
5149 case ISD::EntryToken
: return "EntryToken";
5150 case ISD::TokenFactor
: return "TokenFactor";
5151 case ISD::AssertSext
: return "AssertSext";
5152 case ISD::AssertZext
: return "AssertZext";
5154 case ISD::BasicBlock
: return "BasicBlock";
5155 case ISD::ARG_FLAGS
: return "ArgFlags";
5156 case ISD::VALUETYPE
: return "ValueType";
5157 case ISD::Register
: return "Register";
5159 case ISD::Constant
: return "Constant";
5160 case ISD::ConstantFP
: return "ConstantFP";
5161 case ISD::GlobalAddress
: return "GlobalAddress";
5162 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5163 case ISD::FrameIndex
: return "FrameIndex";
5164 case ISD::JumpTable
: return "JumpTable";
5165 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5166 case ISD::RETURNADDR
: return "RETURNADDR";
5167 case ISD::FRAMEADDR
: return "FRAMEADDR";
5168 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5169 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5170 case ISD::EHSELECTION
: return "EHSELECTION";
5171 case ISD::EH_RETURN
: return "EH_RETURN";
5172 case ISD::ConstantPool
: return "ConstantPool";
5173 case ISD::ExternalSymbol
: return "ExternalSymbol";
5174 case ISD::INTRINSIC_WO_CHAIN
: {
5175 unsigned IID
= cast
<ConstantSDNode
>(getOperand(0))->getZExtValue();
5176 return Intrinsic::getName((Intrinsic::ID
)IID
);
5178 case ISD::INTRINSIC_VOID
:
5179 case ISD::INTRINSIC_W_CHAIN
: {
5180 unsigned IID
= cast
<ConstantSDNode
>(getOperand(1))->getZExtValue();
5181 return Intrinsic::getName((Intrinsic::ID
)IID
);
5184 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5185 case ISD::TargetConstant
: return "TargetConstant";
5186 case ISD::TargetConstantFP
:return "TargetConstantFP";
5187 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5188 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5189 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5190 case ISD::TargetJumpTable
: return "TargetJumpTable";
5191 case ISD::TargetConstantPool
: return "TargetConstantPool";
5192 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5194 case ISD::CopyToReg
: return "CopyToReg";
5195 case ISD::CopyFromReg
: return "CopyFromReg";
5196 case ISD::UNDEF
: return "undef";
5197 case ISD::MERGE_VALUES
: return "merge_values";
5198 case ISD::INLINEASM
: return "inlineasm";
5199 case ISD::DBG_LABEL
: return "dbg_label";
5200 case ISD::EH_LABEL
: return "eh_label";
5201 case ISD::DECLARE
: return "declare";
5202 case ISD::HANDLENODE
: return "handlenode";
5203 case ISD::FORMAL_ARGUMENTS
: return "formal_arguments";
5204 case ISD::CALL
: return "call";
5207 case ISD::FABS
: return "fabs";
5208 case ISD::FNEG
: return "fneg";
5209 case ISD::FSQRT
: return "fsqrt";
5210 case ISD::FSIN
: return "fsin";
5211 case ISD::FCOS
: return "fcos";
5212 case ISD::FPOWI
: return "fpowi";
5213 case ISD::FPOW
: return "fpow";
5214 case ISD::FTRUNC
: return "ftrunc";
5215 case ISD::FFLOOR
: return "ffloor";
5216 case ISD::FCEIL
: return "fceil";
5217 case ISD::FRINT
: return "frint";
5218 case ISD::FNEARBYINT
: return "fnearbyint";
5221 case ISD::ADD
: return "add";
5222 case ISD::SUB
: return "sub";
5223 case ISD::MUL
: return "mul";
5224 case ISD::MULHU
: return "mulhu";
5225 case ISD::MULHS
: return "mulhs";
5226 case ISD::SDIV
: return "sdiv";
5227 case ISD::UDIV
: return "udiv";
5228 case ISD::SREM
: return "srem";
5229 case ISD::UREM
: return "urem";
5230 case ISD::SMUL_LOHI
: return "smul_lohi";
5231 case ISD::UMUL_LOHI
: return "umul_lohi";
5232 case ISD::SDIVREM
: return "sdivrem";
5233 case ISD::UDIVREM
: return "udivrem";
5234 case ISD::AND
: return "and";
5235 case ISD::OR
: return "or";
5236 case ISD::XOR
: return "xor";
5237 case ISD::SHL
: return "shl";
5238 case ISD::SRA
: return "sra";
5239 case ISD::SRL
: return "srl";
5240 case ISD::ROTL
: return "rotl";
5241 case ISD::ROTR
: return "rotr";
5242 case ISD::FADD
: return "fadd";
5243 case ISD::FSUB
: return "fsub";
5244 case ISD::FMUL
: return "fmul";
5245 case ISD::FDIV
: return "fdiv";
5246 case ISD::FREM
: return "frem";
5247 case ISD::FCOPYSIGN
: return "fcopysign";
5248 case ISD::FGETSIGN
: return "fgetsign";
5250 case ISD::SETCC
: return "setcc";
5251 case ISD::VSETCC
: return "vsetcc";
5252 case ISD::SELECT
: return "select";
5253 case ISD::SELECT_CC
: return "select_cc";
5254 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5255 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5256 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5257 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5258 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5259 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5260 case ISD::CARRY_FALSE
: return "carry_false";
5261 case ISD::ADDC
: return "addc";
5262 case ISD::ADDE
: return "adde";
5263 case ISD::SADDO
: return "saddo";
5264 case ISD::UADDO
: return "uaddo";
5265 case ISD::SSUBO
: return "ssubo";
5266 case ISD::USUBO
: return "usubo";
5267 case ISD::SMULO
: return "smulo";
5268 case ISD::UMULO
: return "umulo";
5269 case ISD::SUBC
: return "subc";
5270 case ISD::SUBE
: return "sube";
5271 case ISD::SHL_PARTS
: return "shl_parts";
5272 case ISD::SRA_PARTS
: return "sra_parts";
5273 case ISD::SRL_PARTS
: return "srl_parts";
5275 // Conversion operators.
5276 case ISD::SIGN_EXTEND
: return "sign_extend";
5277 case ISD::ZERO_EXTEND
: return "zero_extend";
5278 case ISD::ANY_EXTEND
: return "any_extend";
5279 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5280 case ISD::TRUNCATE
: return "truncate";
5281 case ISD::FP_ROUND
: return "fp_round";
5282 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5283 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5284 case ISD::FP_EXTEND
: return "fp_extend";
5286 case ISD::SINT_TO_FP
: return "sint_to_fp";
5287 case ISD::UINT_TO_FP
: return "uint_to_fp";
5288 case ISD::FP_TO_SINT
: return "fp_to_sint";
5289 case ISD::FP_TO_UINT
: return "fp_to_uint";
5290 case ISD::BIT_CONVERT
: return "bit_convert";
5292 case ISD::CONVERT_RNDSAT
: {
5293 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5294 default: assert(0 && "Unknown cvt code!");
5295 case ISD::CVT_FF
: return "cvt_ff";
5296 case ISD::CVT_FS
: return "cvt_fs";
5297 case ISD::CVT_FU
: return "cvt_fu";
5298 case ISD::CVT_SF
: return "cvt_sf";
5299 case ISD::CVT_UF
: return "cvt_uf";
5300 case ISD::CVT_SS
: return "cvt_ss";
5301 case ISD::CVT_SU
: return "cvt_su";
5302 case ISD::CVT_US
: return "cvt_us";
5303 case ISD::CVT_UU
: return "cvt_uu";
5307 // Control flow instructions
5308 case ISD::BR
: return "br";
5309 case ISD::BRIND
: return "brind";
5310 case ISD::BR_JT
: return "br_jt";
5311 case ISD::BRCOND
: return "brcond";
5312 case ISD::BR_CC
: return "br_cc";
5313 case ISD::RET
: return "ret";
5314 case ISD::CALLSEQ_START
: return "callseq_start";
5315 case ISD::CALLSEQ_END
: return "callseq_end";
5318 case ISD::LOAD
: return "load";
5319 case ISD::STORE
: return "store";
5320 case ISD::VAARG
: return "vaarg";
5321 case ISD::VACOPY
: return "vacopy";
5322 case ISD::VAEND
: return "vaend";
5323 case ISD::VASTART
: return "vastart";
5324 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5325 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5326 case ISD::BUILD_PAIR
: return "build_pair";
5327 case ISD::STACKSAVE
: return "stacksave";
5328 case ISD::STACKRESTORE
: return "stackrestore";
5329 case ISD::TRAP
: return "trap";
5332 case ISD::BSWAP
: return "bswap";
5333 case ISD::CTPOP
: return "ctpop";
5334 case ISD::CTTZ
: return "cttz";
5335 case ISD::CTLZ
: return "ctlz";
5338 case ISD::DBG_STOPPOINT
: return "dbg_stoppoint";
5339 case ISD::DEBUG_LOC
: return "debug_loc";
5342 case ISD::TRAMPOLINE
: return "trampoline";
5345 switch (cast
<CondCodeSDNode
>(this)->get()) {
5346 default: assert(0 && "Unknown setcc condition!");
5347 case ISD::SETOEQ
: return "setoeq";
5348 case ISD::SETOGT
: return "setogt";
5349 case ISD::SETOGE
: return "setoge";
5350 case ISD::SETOLT
: return "setolt";
5351 case ISD::SETOLE
: return "setole";
5352 case ISD::SETONE
: return "setone";
5354 case ISD::SETO
: return "seto";
5355 case ISD::SETUO
: return "setuo";
5356 case ISD::SETUEQ
: return "setue";
5357 case ISD::SETUGT
: return "setugt";
5358 case ISD::SETUGE
: return "setuge";
5359 case ISD::SETULT
: return "setult";
5360 case ISD::SETULE
: return "setule";
5361 case ISD::SETUNE
: return "setune";
5363 case ISD::SETEQ
: return "seteq";
5364 case ISD::SETGT
: return "setgt";
5365 case ISD::SETGE
: return "setge";
5366 case ISD::SETLT
: return "setlt";
5367 case ISD::SETLE
: return "setle";
5368 case ISD::SETNE
: return "setne";
5373 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
5382 return "<post-inc>";
5384 return "<post-dec>";
5388 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
5389 std::string S
= "< ";
5403 if (getByValAlign())
5404 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
5406 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
5408 S
+= "byval-size:" + utostr(getByValSize()) + " ";
5412 void SDNode::dump() const { dump(0); }
5413 void SDNode::dump(const SelectionDAG
*G
) const {
5417 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5418 OS
<< (void*)this << ": ";
5420 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
5422 if (getValueType(i
) == MVT::Other
)
5425 OS
<< getValueType(i
).getMVTString();
5427 OS
<< " = " << getOperationName(G
);
5430 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5431 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE
) {
5432 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(this);
5434 for (unsigned i
= 0, e
= ValueList
[0].getVectorNumElements(); i
!= e
; ++i
) {
5435 int Idx
= SVN
->getMaskElt(i
);
5445 if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
5446 OS
<< '<' << CSDN
->getAPIntValue() << '>';
5447 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
5448 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
5449 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
5450 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
5451 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
5454 CSDN
->getValueAPF().bitcastToAPInt().dump();
5457 } else if (const GlobalAddressSDNode
*GADN
=
5458 dyn_cast
<GlobalAddressSDNode
>(this)) {
5459 int64_t offset
= GADN
->getOffset();
5461 WriteAsOperand(OS
, GADN
->getGlobal());
5464 OS
<< " + " << offset
;
5466 OS
<< " " << offset
;
5467 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
5468 OS
<< "<" << FIDN
->getIndex() << ">";
5469 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
5470 OS
<< "<" << JTDN
->getIndex() << ">";
5471 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
5472 int offset
= CP
->getOffset();
5473 if (CP
->isMachineConstantPoolEntry())
5474 OS
<< "<" << *CP
->getMachineCPVal() << ">";
5476 OS
<< "<" << *CP
->getConstVal() << ">";
5478 OS
<< " + " << offset
;
5480 OS
<< " " << offset
;
5481 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
5483 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
5485 OS
<< LBB
->getName() << " ";
5486 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
5487 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
5488 if (G
&& R
->getReg() &&
5489 TargetRegisterInfo::isPhysicalRegister(R
->getReg())) {
5490 OS
<< " " << G
->getTarget().getRegisterInfo()->getName(R
->getReg());
5492 OS
<< " #" << R
->getReg();
5494 } else if (const ExternalSymbolSDNode
*ES
=
5495 dyn_cast
<ExternalSymbolSDNode
>(this)) {
5496 OS
<< "'" << ES
->getSymbol() << "'";
5497 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
5499 OS
<< "<" << M
->getValue() << ">";
5502 } else if (const MemOperandSDNode
*M
= dyn_cast
<MemOperandSDNode
>(this)) {
5503 if (M
->MO
.getValue())
5504 OS
<< "<" << M
->MO
.getValue() << ":" << M
->MO
.getOffset() << ">";
5506 OS
<< "<null:" << M
->MO
.getOffset() << ">";
5507 } else if (const ARG_FLAGSSDNode
*N
= dyn_cast
<ARG_FLAGSSDNode
>(this)) {
5508 OS
<< N
->getArgFlags().getArgFlagsString();
5509 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
5510 OS
<< ":" << N
->getVT().getMVTString();
5512 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
5513 const Value
*SrcValue
= LD
->getSrcValue();
5514 int SrcOffset
= LD
->getSrcValueOffset();
5520 OS
<< ":" << SrcOffset
<< ">";
5523 switch (LD
->getExtensionType()) {
5524 default: doExt
= false; break;
5525 case ISD::EXTLOAD
: OS
<< " <anyext "; break;
5526 case ISD::SEXTLOAD
: OS
<< " <sext "; break;
5527 case ISD::ZEXTLOAD
: OS
<< " <zext "; break;
5530 OS
<< LD
->getMemoryVT().getMVTString() << ">";
5532 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
5535 if (LD
->isVolatile())
5536 OS
<< " <volatile>";
5537 OS
<< " alignment=" << LD
->getAlignment();
5538 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
5539 const Value
*SrcValue
= ST
->getSrcValue();
5540 int SrcOffset
= ST
->getSrcValueOffset();
5546 OS
<< ":" << SrcOffset
<< ">";
5548 if (ST
->isTruncatingStore())
5549 OS
<< " <trunc " << ST
->getMemoryVT().getMVTString() << ">";
5551 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
5554 if (ST
->isVolatile())
5555 OS
<< " <volatile>";
5556 OS
<< " alignment=" << ST
->getAlignment();
5557 } else if (const AtomicSDNode
* AT
= dyn_cast
<AtomicSDNode
>(this)) {
5558 const Value
*SrcValue
= AT
->getSrcValue();
5559 int SrcOffset
= AT
->getSrcValueOffset();
5565 OS
<< ":" << SrcOffset
<< ">";
5566 if (AT
->isVolatile())
5567 OS
<< " <volatile>";
5568 OS
<< " alignment=" << AT
->getAlignment();
5572 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5575 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
5577 OS
<< (void*)getOperand(i
).getNode();
5578 if (unsigned RN
= getOperand(i
).getResNo())
5581 print_details(OS
, G
);
5584 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
5585 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5586 if (N
->getOperand(i
).getNode()->hasOneUse())
5587 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
5589 cerr
<< "\n" << std::string(indent
+2, ' ')
5590 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
5593 cerr
<< "\n" << std::string(indent
, ' ');
5597 void SelectionDAG::dump() const {
5598 cerr
<< "SelectionDAG has " << AllNodes
.size() << " nodes:";
5600 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
5602 const SDNode
*N
= I
;
5603 if (!N
->hasOneUse() && N
!= getRoot().getNode())
5604 DumpNodes(N
, 2, this);
5607 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5612 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5614 print_details(OS
, G
);
5617 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
5618 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
5619 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
5620 if (!once
.insert(N
)) // If we've been here before, return now.
5622 // Dump the current SDNode, but don't end the line yet.
5623 OS
<< std::string(indent
, ' ');
5625 // Having printed this SDNode, walk the children:
5626 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5627 const SDNode
*child
= N
->getOperand(i
).getNode();
5630 if (child
->getNumOperands() == 0) {
5631 // This child has no grandchildren; print it inline right here.
5632 child
->printr(OS
, G
);
5634 } else { // Just the address. FIXME: also print the child's opcode
5636 if (unsigned RN
= N
->getOperand(i
).getResNo())
5641 // Dump children that have grandchildren on their own line(s).
5642 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5643 const SDNode
*child
= N
->getOperand(i
).getNode();
5644 DumpNodesr(OS
, child
, indent
+2, G
, once
);
5648 void SDNode::dumpr() const {
5649 VisitedSDNodeSet once
;
5650 DumpNodesr(errs(), this, 0, 0, once
);
5654 // getAddressSpace - Return the address space this GlobalAddress belongs to.
5655 unsigned GlobalAddressSDNode::getAddressSpace() const {
5656 return getGlobal()->getType()->getAddressSpace();
5660 const Type
*ConstantPoolSDNode::getType() const {
5661 if (isMachineConstantPoolEntry())
5662 return Val
.MachineCPVal
->getType();
5663 return Val
.ConstVal
->getType();
5666 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
5668 unsigned &SplatBitSize
,
5670 unsigned MinSplatBits
) {
5671 MVT VT
= getValueType(0);
5672 assert(VT
.isVector() && "Expected a vector type");
5673 unsigned sz
= VT
.getSizeInBits();
5674 if (MinSplatBits
> sz
)
5677 SplatValue
= APInt(sz
, 0);
5678 SplatUndef
= APInt(sz
, 0);
5680 // Get the bits. Bits with undefined values (when the corresponding element
5681 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5682 // in SplatValue. If any of the values are not constant, give up and return
5684 unsigned int nOps
= getNumOperands();
5685 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
5686 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
5687 for (unsigned i
= 0; i
< nOps
; ++i
) {
5688 SDValue OpVal
= getOperand(i
);
5689 unsigned BitPos
= i
* EltBitSize
;
5691 if (OpVal
.getOpcode() == ISD::UNDEF
)
5692 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+EltBitSize
);
5693 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
5694 SplatValue
|= (APInt(CN
->getAPIntValue()).zextOrTrunc(EltBitSize
).
5695 zextOrTrunc(sz
) << BitPos
);
5696 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
5697 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
5702 // The build_vector is all constants or undefs. Find the smallest element
5703 // size that splats the vector.
5705 HasAnyUndefs
= (SplatUndef
!= 0);
5708 unsigned HalfSize
= sz
/ 2;
5709 APInt HighValue
= APInt(SplatValue
).lshr(HalfSize
).trunc(HalfSize
);
5710 APInt LowValue
= APInt(SplatValue
).trunc(HalfSize
);
5711 APInt HighUndef
= APInt(SplatUndef
).lshr(HalfSize
).trunc(HalfSize
);
5712 APInt LowUndef
= APInt(SplatUndef
).trunc(HalfSize
);
5714 // If the two halves do not match (ignoring undef bits), stop here.
5715 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
5716 MinSplatBits
> HalfSize
)
5719 SplatValue
= HighValue
| LowValue
;
5720 SplatUndef
= HighUndef
& LowUndef
;
5729 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, MVT VT
) {
5730 // Find the first non-undef value in the shuffle mask.
5732 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
5735 assert(i
!= e
&& "VECTOR_SHUFFLE node with all undef indices!");
5737 // Make sure all remaining elements are either undef or the same as the first
5739 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
5740 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)