Merge branch 'master' into msp430
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob0b27ccf549aa194ed29881e23ab4639781570143
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/GlobalAlias.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include <algorithm>
42 #include <cmath>
43 using namespace llvm;
45 /// makeVTList - Return an instance of the SDVTList struct initialized with the
46 /// specified members.
47 static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48 SDVTList Res = {VTs, NumVTs};
49 return Res;
52 static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53 switch (VT.getSimpleVT()) {
54 default: assert(0 && "Unknown FP format");
55 case MVT::f32: return &APFloat::IEEEsingle;
56 case MVT::f64: return &APFloat::IEEEdouble;
57 case MVT::f80: return &APFloat::x87DoubleExtended;
58 case MVT::f128: return &APFloat::IEEEquad;
59 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
63 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
65 //===----------------------------------------------------------------------===//
66 // ConstantFPSDNode Class
67 //===----------------------------------------------------------------------===//
69 /// isExactlyValue - We don't rely on operator== working on double values, as
70 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71 /// As such, this method can be used to do an exact bit-for-bit comparison of
72 /// two floating point values.
73 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74 return getValueAPF().bitwiseIsEqual(V);
77 bool ConstantFPSDNode::isValueValidForType(MVT VT,
78 const APFloat& Val) {
79 assert(VT.isFloatingPoint() && "Can only convert between FP types");
81 // PPC long double cannot be converted to any other type.
82 if (VT == MVT::ppcf128 ||
83 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84 return false;
86 // convert modifies in place, so make a copy.
87 APFloat Val2 = APFloat(Val);
88 bool losesInfo;
89 (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90 &losesInfo);
91 return !losesInfo;
94 //===----------------------------------------------------------------------===//
95 // ISD Namespace
96 //===----------------------------------------------------------------------===//
98 /// isBuildVectorAllOnes - Return true if the specified node is a
99 /// BUILD_VECTOR where all of the elements are ~0 or undef.
100 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101 // Look through a bit convert.
102 if (N->getOpcode() == ISD::BIT_CONVERT)
103 N = N->getOperand(0).getNode();
105 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
107 unsigned i = 0, e = N->getNumOperands();
109 // Skip over all of the undef values.
110 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111 ++i;
113 // Do not accept an all-undef vector.
114 if (i == e) return false;
116 // Do not accept build_vectors that aren't all constants or which have non-~0
117 // elements.
118 SDValue NotZero = N->getOperand(i);
119 if (isa<ConstantSDNode>(NotZero)) {
120 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121 return false;
122 } else if (isa<ConstantFPSDNode>(NotZero)) {
123 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124 bitcastToAPInt().isAllOnesValue())
125 return false;
126 } else
127 return false;
129 // Okay, we have at least one ~0 value, check to see if the rest match or are
130 // undefs.
131 for (++i; i != e; ++i)
132 if (N->getOperand(i) != NotZero &&
133 N->getOperand(i).getOpcode() != ISD::UNDEF)
134 return false;
135 return true;
139 /// isBuildVectorAllZeros - Return true if the specified node is a
140 /// BUILD_VECTOR where all of the elements are 0 or undef.
141 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142 // Look through a bit convert.
143 if (N->getOpcode() == ISD::BIT_CONVERT)
144 N = N->getOperand(0).getNode();
146 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148 unsigned i = 0, e = N->getNumOperands();
150 // Skip over all of the undef values.
151 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152 ++i;
154 // Do not accept an all-undef vector.
155 if (i == e) return false;
157 // Do not accept build_vectors that aren't all constants or which have non-~0
158 // elements.
159 SDValue Zero = N->getOperand(i);
160 if (isa<ConstantSDNode>(Zero)) {
161 if (!cast<ConstantSDNode>(Zero)->isNullValue())
162 return false;
163 } else if (isa<ConstantFPSDNode>(Zero)) {
164 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165 return false;
166 } else
167 return false;
169 // Okay, we have at least one ~0 value, check to see if the rest match or are
170 // undefs.
171 for (++i; i != e; ++i)
172 if (N->getOperand(i) != Zero &&
173 N->getOperand(i).getOpcode() != ISD::UNDEF)
174 return false;
175 return true;
178 /// isScalarToVector - Return true if the specified node is a
179 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180 /// element is not an undef.
181 bool ISD::isScalarToVector(const SDNode *N) {
182 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183 return true;
185 if (N->getOpcode() != ISD::BUILD_VECTOR)
186 return false;
187 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188 return false;
189 unsigned NumElems = N->getNumOperands();
190 for (unsigned i = 1; i < NumElems; ++i) {
191 SDValue V = N->getOperand(i);
192 if (V.getOpcode() != ISD::UNDEF)
193 return false;
195 return true;
199 /// isDebugLabel - Return true if the specified node represents a debug
200 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201 bool ISD::isDebugLabel(const SDNode *N) {
202 SDValue Zero;
203 if (N->getOpcode() == ISD::DBG_LABEL)
204 return true;
205 if (N->isMachineOpcode() &&
206 N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207 return true;
208 return false;
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214 // To perform this operation, we just need to swap the L and G bits of the
215 // operation.
216 unsigned OldL = (Operation >> 2) & 1;
217 unsigned OldG = (Operation >> 1) & 1;
218 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
219 (OldL << 1) | // New G bit
220 (OldG << 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226 unsigned Operation = Op;
227 if (isInteger)
228 Operation ^= 7; // Flip L, G, E bits, but not U.
229 else
230 Operation ^= 15; // Flip all of the condition bits.
232 if (Operation > ISD::SETTRUE2)
233 Operation &= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode) {
243 switch (Opcode) {
244 default: assert(0 && "Illegal integer setcc operation!");
245 case ISD::SETEQ:
246 case ISD::SETNE: return 0;
247 case ISD::SETLT:
248 case ISD::SETLE:
249 case ISD::SETGT:
250 case ISD::SETGE: return 1;
251 case ISD::SETULT:
252 case ISD::SETULE:
253 case ISD::SETUGT:
254 case ISD::SETUGE: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
261 /// comparison.
262 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263 bool isInteger) {
264 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID;
268 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op > ISD::SETTRUE2)
273 Op &= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
277 Op = ISD::SETNE;
279 return ISD::CondCode(Op);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
285 /// comparison.
286 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287 bool isInteger) {
288 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID;
292 // Combine all of the condition bits.
293 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295 // Canonicalize illegal integer setcc's.
296 if (isInteger) {
297 switch (Result) {
298 default: break;
299 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
300 case ISD::SETOEQ: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
302 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
303 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
307 return Result;
310 const TargetMachine &SelectionDAG::getTarget() const {
311 return MF->getTarget();
314 //===----------------------------------------------------------------------===//
315 // SDNode Profile Support
316 //===----------------------------------------------------------------------===//
318 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
320 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
321 ID.AddInteger(OpC);
324 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325 /// solely with their pointer.
326 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327 ID.AddPointer(VTList.VTs);
330 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
332 static void AddNodeIDOperands(FoldingSetNodeID &ID,
333 const SDValue *Ops, unsigned NumOps) {
334 for (; NumOps; --NumOps, ++Ops) {
335 ID.AddPointer(Ops->getNode());
336 ID.AddInteger(Ops->getResNo());
340 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
342 static void AddNodeIDOperands(FoldingSetNodeID &ID,
343 const SDUse *Ops, unsigned NumOps) {
344 for (; NumOps; --NumOps, ++Ops) {
345 ID.AddPointer(Ops->getNode());
346 ID.AddInteger(Ops->getResNo());
350 static void AddNodeIDNode(FoldingSetNodeID &ID,
351 unsigned short OpC, SDVTList VTList,
352 const SDValue *OpList, unsigned N) {
353 AddNodeIDOpcode(ID, OpC);
354 AddNodeIDValueTypes(ID, VTList);
355 AddNodeIDOperands(ID, OpList, N);
358 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359 /// the NodeID data.
360 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361 switch (N->getOpcode()) {
362 default: break; // Normal nodes don't need extra info.
363 case ISD::ARG_FLAGS:
364 ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365 break;
366 case ISD::TargetConstant:
367 case ISD::Constant:
368 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369 break;
370 case ISD::TargetConstantFP:
371 case ISD::ConstantFP: {
372 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373 break;
375 case ISD::TargetGlobalAddress:
376 case ISD::GlobalAddress:
377 case ISD::TargetGlobalTLSAddress:
378 case ISD::GlobalTLSAddress: {
379 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380 ID.AddPointer(GA->getGlobal());
381 ID.AddInteger(GA->getOffset());
382 break;
384 case ISD::BasicBlock:
385 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386 break;
387 case ISD::Register:
388 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389 break;
390 case ISD::DBG_STOPPOINT: {
391 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392 ID.AddInteger(DSP->getLine());
393 ID.AddInteger(DSP->getColumn());
394 ID.AddPointer(DSP->getCompileUnit());
395 break;
397 case ISD::SRCVALUE:
398 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399 break;
400 case ISD::MEMOPERAND: {
401 const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402 MO.Profile(ID);
403 break;
405 case ISD::FrameIndex:
406 case ISD::TargetFrameIndex:
407 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408 break;
409 case ISD::JumpTable:
410 case ISD::TargetJumpTable:
411 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412 break;
413 case ISD::ConstantPool:
414 case ISD::TargetConstantPool: {
415 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416 ID.AddInteger(CP->getAlignment());
417 ID.AddInteger(CP->getOffset());
418 if (CP->isMachineConstantPoolEntry())
419 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420 else
421 ID.AddPointer(CP->getConstVal());
422 break;
424 case ISD::CALL: {
425 const CallSDNode *Call = cast<CallSDNode>(N);
426 ID.AddInteger(Call->getCallingConv());
427 ID.AddInteger(Call->isVarArg());
428 break;
430 case ISD::LOAD: {
431 const LoadSDNode *LD = cast<LoadSDNode>(N);
432 ID.AddInteger(LD->getMemoryVT().getRawBits());
433 ID.AddInteger(LD->getRawSubclassData());
434 break;
436 case ISD::STORE: {
437 const StoreSDNode *ST = cast<StoreSDNode>(N);
438 ID.AddInteger(ST->getMemoryVT().getRawBits());
439 ID.AddInteger(ST->getRawSubclassData());
440 break;
442 case ISD::ATOMIC_CMP_SWAP:
443 case ISD::ATOMIC_SWAP:
444 case ISD::ATOMIC_LOAD_ADD:
445 case ISD::ATOMIC_LOAD_SUB:
446 case ISD::ATOMIC_LOAD_AND:
447 case ISD::ATOMIC_LOAD_OR:
448 case ISD::ATOMIC_LOAD_XOR:
449 case ISD::ATOMIC_LOAD_NAND:
450 case ISD::ATOMIC_LOAD_MIN:
451 case ISD::ATOMIC_LOAD_MAX:
452 case ISD::ATOMIC_LOAD_UMIN:
453 case ISD::ATOMIC_LOAD_UMAX: {
454 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455 ID.AddInteger(AT->getMemoryVT().getRawBits());
456 ID.AddInteger(AT->getRawSubclassData());
457 break;
459 case ISD::VECTOR_SHUFFLE: {
460 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
461 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
462 i != e; ++i)
463 ID.AddInteger(SVN->getMaskElt(i));
464 break;
466 } // end switch (N->getOpcode())
469 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
470 /// data.
471 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
472 AddNodeIDOpcode(ID, N->getOpcode());
473 // Add the return value info.
474 AddNodeIDValueTypes(ID, N->getVTList());
475 // Add the operand info.
476 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
478 // Handle SDNode leafs with special info.
479 AddNodeIDCustom(ID, N);
482 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
483 /// the CSE map that carries alignment, volatility, indexing mode, and
484 /// extension/truncation information.
486 static inline unsigned
487 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
488 bool isVolatile, unsigned Alignment) {
489 assert((ConvType & 3) == ConvType &&
490 "ConvType may not require more than 2 bits!");
491 assert((AM & 7) == AM &&
492 "AM may not require more than 3 bits!");
493 return ConvType |
494 (AM << 2) |
495 (isVolatile << 5) |
496 ((Log2_32(Alignment) + 1) << 6);
499 //===----------------------------------------------------------------------===//
500 // SelectionDAG Class
501 //===----------------------------------------------------------------------===//
503 /// doNotCSE - Return true if CSE should not be performed for this node.
504 static bool doNotCSE(SDNode *N) {
505 if (N->getValueType(0) == MVT::Flag)
506 return true; // Never CSE anything that produces a flag.
508 switch (N->getOpcode()) {
509 default: break;
510 case ISD::HANDLENODE:
511 case ISD::DBG_LABEL:
512 case ISD::DBG_STOPPOINT:
513 case ISD::EH_LABEL:
514 case ISD::DECLARE:
515 return true; // Never CSE these nodes.
518 // Check that remaining values produced are not flags.
519 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
520 if (N->getValueType(i) == MVT::Flag)
521 return true; // Never CSE anything that produces a flag.
523 return false;
526 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
527 /// SelectionDAG.
528 void SelectionDAG::RemoveDeadNodes() {
529 // Create a dummy node (which is not added to allnodes), that adds a reference
530 // to the root node, preventing it from being deleted.
531 HandleSDNode Dummy(getRoot());
533 SmallVector<SDNode*, 128> DeadNodes;
535 // Add all obviously-dead nodes to the DeadNodes worklist.
536 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
537 if (I->use_empty())
538 DeadNodes.push_back(I);
540 RemoveDeadNodes(DeadNodes);
542 // If the root changed (e.g. it was a dead load, update the root).
543 setRoot(Dummy.getValue());
546 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
547 /// given list, and any nodes that become unreachable as a result.
548 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
549 DAGUpdateListener *UpdateListener) {
551 // Process the worklist, deleting the nodes and adding their uses to the
552 // worklist.
553 while (!DeadNodes.empty()) {
554 SDNode *N = DeadNodes.pop_back_val();
556 if (UpdateListener)
557 UpdateListener->NodeDeleted(N, 0);
559 // Take the node out of the appropriate CSE map.
560 RemoveNodeFromCSEMaps(N);
562 // Next, brutally remove the operand list. This is safe to do, as there are
563 // no cycles in the graph.
564 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
565 SDUse &Use = *I++;
566 SDNode *Operand = Use.getNode();
567 Use.set(SDValue());
569 // Now that we removed this operand, see if there are no uses of it left.
570 if (Operand->use_empty())
571 DeadNodes.push_back(Operand);
574 DeallocateNode(N);
578 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579 SmallVector<SDNode*, 16> DeadNodes(1, N);
580 RemoveDeadNodes(DeadNodes, UpdateListener);
583 void SelectionDAG::DeleteNode(SDNode *N) {
584 // First take this out of the appropriate CSE map.
585 RemoveNodeFromCSEMaps(N);
587 // Finally, remove uses due to operands of this node, remove from the
588 // AllNodes list, and delete the node.
589 DeleteNodeNotInCSEMaps(N);
592 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
593 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
594 assert(N->use_empty() && "Cannot delete a node that is not dead!");
596 // Drop all of the operands and decrement used node's use counts.
597 N->DropOperands();
599 DeallocateNode(N);
602 void SelectionDAG::DeallocateNode(SDNode *N) {
603 if (N->OperandsNeedDelete)
604 delete[] N->OperandList;
606 // Set the opcode to DELETED_NODE to help catch bugs when node
607 // memory is reallocated.
608 N->NodeType = ISD::DELETED_NODE;
610 NodeAllocator.Deallocate(AllNodes.remove(N));
613 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614 /// correspond to it. This is useful when we're about to delete or repurpose
615 /// the node. We don't want future request for structurally identical nodes
616 /// to return N anymore.
617 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
618 bool Erased = false;
619 switch (N->getOpcode()) {
620 case ISD::EntryToken:
621 assert(0 && "EntryToken should not be in CSEMaps!");
622 return false;
623 case ISD::HANDLENODE: return false; // noop.
624 case ISD::CONDCODE:
625 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
626 "Cond code doesn't exist!");
627 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
628 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
629 break;
630 case ISD::ExternalSymbol:
631 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632 break;
633 case ISD::TargetExternalSymbol:
634 Erased =
635 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
636 break;
637 case ISD::VALUETYPE: {
638 MVT VT = cast<VTSDNode>(N)->getVT();
639 if (VT.isExtended()) {
640 Erased = ExtendedValueTypeNodes.erase(VT);
641 } else {
642 Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
643 ValueTypeNodes[VT.getSimpleVT()] = 0;
645 break;
647 default:
648 // Remove it from the CSE Map.
649 Erased = CSEMap.RemoveNode(N);
650 break;
652 #ifndef NDEBUG
653 // Verify that the node was actually in one of the CSE maps, unless it has a
654 // flag result (which cannot be CSE'd) or is one of the special cases that are
655 // not subject to CSE.
656 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
657 !N->isMachineOpcode() && !doNotCSE(N)) {
658 N->dump(this);
659 cerr << "\n";
660 assert(0 && "Node is not in map!");
662 #endif
663 return Erased;
666 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
667 /// maps and modified in place. Add it back to the CSE maps, unless an identical
668 /// node already exists, in which case transfer all its users to the existing
669 /// node. This transfer can potentially trigger recursive merging.
671 void
672 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
673 DAGUpdateListener *UpdateListener) {
674 // For node types that aren't CSE'd, just act as if no identical node
675 // already exists.
676 if (!doNotCSE(N)) {
677 SDNode *Existing = CSEMap.GetOrInsertNode(N);
678 if (Existing != N) {
679 // If there was already an existing matching node, use ReplaceAllUsesWith
680 // to replace the dead one with the existing one. This can cause
681 // recursive merging of other unrelated nodes down the line.
682 ReplaceAllUsesWith(N, Existing, UpdateListener);
684 // N is now dead. Inform the listener if it exists and delete it.
685 if (UpdateListener)
686 UpdateListener->NodeDeleted(N, Existing);
687 DeleteNodeNotInCSEMaps(N);
688 return;
692 // If the node doesn't already exist, we updated it. Inform a listener if
693 // it exists.
694 if (UpdateListener)
695 UpdateListener->NodeUpdated(N);
698 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
699 /// were replaced with those specified. If this node is never memoized,
700 /// return null, otherwise return a pointer to the slot it would take. If a
701 /// node already exists with these operands, the slot will be non-null.
702 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
703 void *&InsertPos) {
704 if (doNotCSE(N))
705 return 0;
707 SDValue Ops[] = { Op };
708 FoldingSetNodeID ID;
709 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
710 AddNodeIDCustom(ID, N);
711 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
714 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
715 /// were replaced with those specified. If this node is never memoized,
716 /// return null, otherwise return a pointer to the slot it would take. If a
717 /// node already exists with these operands, the slot will be non-null.
718 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
719 SDValue Op1, SDValue Op2,
720 void *&InsertPos) {
721 if (doNotCSE(N))
722 return 0;
724 SDValue Ops[] = { Op1, Op2 };
725 FoldingSetNodeID ID;
726 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
727 AddNodeIDCustom(ID, N);
728 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
732 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
733 /// were replaced with those specified. If this node is never memoized,
734 /// return null, otherwise return a pointer to the slot it would take. If a
735 /// node already exists with these operands, the slot will be non-null.
736 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
737 const SDValue *Ops,unsigned NumOps,
738 void *&InsertPos) {
739 if (doNotCSE(N))
740 return 0;
742 FoldingSetNodeID ID;
743 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
744 AddNodeIDCustom(ID, N);
745 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
748 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
749 void SelectionDAG::VerifyNode(SDNode *N) {
750 switch (N->getOpcode()) {
751 default:
752 break;
753 case ISD::BUILD_PAIR: {
754 MVT VT = N->getValueType(0);
755 assert(N->getNumValues() == 1 && "Too many results!");
756 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757 "Wrong return type!");
758 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760 "Mismatched operand types!");
761 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762 "Wrong operand type!");
763 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764 "Wrong return type size");
765 break;
767 case ISD::BUILD_VECTOR: {
768 assert(N->getNumValues() == 1 && "Too many results!");
769 assert(N->getValueType(0).isVector() && "Wrong return type!");
770 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771 "Wrong number of operands!");
772 MVT EltVT = N->getValueType(0).getVectorElementType();
773 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774 assert((I->getValueType() == EltVT ||
775 (EltVT.isInteger() && I->getValueType().isInteger() &&
776 EltVT.bitsLE(I->getValueType()))) &&
777 "Wrong operand type!");
778 break;
783 /// getMVTAlignment - Compute the default alignment value for the
784 /// given type.
786 unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
787 const Type *Ty = VT == MVT::iPTR ?
788 PointerType::get(Type::Int8Ty, 0) :
789 VT.getTypeForMVT();
791 return TLI.getTargetData()->getABITypeAlignment(Ty);
794 // EntryNode could meaningfully have debug info if we can find it...
795 SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796 : TLI(tli), FLI(fli), DW(0),
797 EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
798 getVTList(MVT::Other)), Root(getEntryNode()) {
799 AllNodes.push_back(&EntryNode);
802 void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
803 DwarfWriter *dw) {
804 MF = &mf;
805 MMI = mmi;
806 DW = dw;
809 SelectionDAG::~SelectionDAG() {
810 allnodes_clear();
813 void SelectionDAG::allnodes_clear() {
814 assert(&*AllNodes.begin() == &EntryNode);
815 AllNodes.remove(AllNodes.begin());
816 while (!AllNodes.empty())
817 DeallocateNode(AllNodes.begin());
820 void SelectionDAG::clear() {
821 allnodes_clear();
822 OperandAllocator.Reset();
823 CSEMap.clear();
825 ExtendedValueTypeNodes.clear();
826 ExternalSymbols.clear();
827 TargetExternalSymbols.clear();
828 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829 static_cast<CondCodeSDNode*>(0));
830 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831 static_cast<SDNode*>(0));
833 EntryNode.UseList = 0;
834 AllNodes.push_back(&EntryNode);
835 Root = getEntryNode();
838 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
839 if (Op.getValueType() == VT) return Op;
840 APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
841 VT.getSizeInBits());
842 return getNode(ISD::AND, DL, Op.getValueType(), Op,
843 getConstant(Imm, Op.getValueType()));
846 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
848 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
849 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850 SDValue NegOne =
851 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
852 return getNode(ISD::XOR, DL, VT, Val, NegOne);
855 SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
856 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
857 assert((EltVT.getSizeInBits() >= 64 ||
858 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
859 "getConstant with a uint64_t value that doesn't fit in the type!");
860 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
863 SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
864 return getConstant(*ConstantInt::get(Val), VT, isT);
867 SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
868 assert(VT.isInteger() && "Cannot create FP integer constant!");
870 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
871 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
872 "APInt size does not match type size!");
874 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
875 FoldingSetNodeID ID;
876 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
877 ID.AddPointer(&Val);
878 void *IP = 0;
879 SDNode *N = NULL;
880 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
881 if (!VT.isVector())
882 return SDValue(N, 0);
883 if (!N) {
884 N = NodeAllocator.Allocate<ConstantSDNode>();
885 new (N) ConstantSDNode(isT, &Val, EltVT);
886 CSEMap.InsertNode(N, IP);
887 AllNodes.push_back(N);
890 SDValue Result(N, 0);
891 if (VT.isVector()) {
892 SmallVector<SDValue, 8> Ops;
893 Ops.assign(VT.getVectorNumElements(), Result);
894 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
895 VT, &Ops[0], Ops.size());
897 return Result;
900 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
901 return getConstant(Val, TLI.getPointerTy(), isTarget);
905 SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
906 return getConstantFP(*ConstantFP::get(V), VT, isTarget);
909 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
910 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
912 MVT EltVT =
913 VT.isVector() ? VT.getVectorElementType() : VT;
915 // Do the map lookup using the actual bit pattern for the floating point
916 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917 // we don't have issues with SNANs.
918 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
919 FoldingSetNodeID ID;
920 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
921 ID.AddPointer(&V);
922 void *IP = 0;
923 SDNode *N = NULL;
924 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
925 if (!VT.isVector())
926 return SDValue(N, 0);
927 if (!N) {
928 N = NodeAllocator.Allocate<ConstantFPSDNode>();
929 new (N) ConstantFPSDNode(isTarget, &V, EltVT);
930 CSEMap.InsertNode(N, IP);
931 AllNodes.push_back(N);
934 SDValue Result(N, 0);
935 if (VT.isVector()) {
936 SmallVector<SDValue, 8> Ops;
937 Ops.assign(VT.getVectorNumElements(), Result);
938 // FIXME DebugLoc info might be appropriate here
939 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
940 VT, &Ops[0], Ops.size());
942 return Result;
945 SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
946 MVT EltVT =
947 VT.isVector() ? VT.getVectorElementType() : VT;
948 if (EltVT==MVT::f32)
949 return getConstantFP(APFloat((float)Val), VT, isTarget);
950 else
951 return getConstantFP(APFloat(Val), VT, isTarget);
954 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
955 MVT VT, int64_t Offset,
956 bool isTargetGA) {
957 unsigned Opc;
959 // Truncate (with sign-extension) the offset value to the pointer size.
960 unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
961 if (BitWidth < 64)
962 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
965 if (!GVar) {
966 // If GV is an alias then use the aliasee for determining thread-localness.
967 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
968 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
971 if (GVar && GVar->isThreadLocal())
972 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
973 else
974 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976 FoldingSetNodeID ID;
977 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
978 ID.AddPointer(GV);
979 ID.AddInteger(Offset);
980 void *IP = 0;
981 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
982 return SDValue(E, 0);
983 SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
984 new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
985 CSEMap.InsertNode(N, IP);
986 AllNodes.push_back(N);
987 return SDValue(N, 0);
990 SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
991 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
992 FoldingSetNodeID ID;
993 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994 ID.AddInteger(FI);
995 void *IP = 0;
996 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997 return SDValue(E, 0);
998 SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
999 new (N) FrameIndexSDNode(FI, VT, isTarget);
1000 CSEMap.InsertNode(N, IP);
1001 AllNodes.push_back(N);
1002 return SDValue(N, 0);
1005 SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1006 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1007 FoldingSetNodeID ID;
1008 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009 ID.AddInteger(JTI);
1010 void *IP = 0;
1011 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012 return SDValue(E, 0);
1013 SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1014 new (N) JumpTableSDNode(JTI, VT, isTarget);
1015 CSEMap.InsertNode(N, IP);
1016 AllNodes.push_back(N);
1017 return SDValue(N, 0);
1020 SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1021 unsigned Alignment, int Offset,
1022 bool isTarget) {
1023 if (Alignment == 0)
1024 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1025 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1026 FoldingSetNodeID ID;
1027 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028 ID.AddInteger(Alignment);
1029 ID.AddInteger(Offset);
1030 ID.AddPointer(C);
1031 void *IP = 0;
1032 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033 return SDValue(E, 0);
1034 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1035 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1036 CSEMap.InsertNode(N, IP);
1037 AllNodes.push_back(N);
1038 return SDValue(N, 0);
1042 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1043 unsigned Alignment, int Offset,
1044 bool isTarget) {
1045 if (Alignment == 0)
1046 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1047 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048 FoldingSetNodeID ID;
1049 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050 ID.AddInteger(Alignment);
1051 ID.AddInteger(Offset);
1052 C->AddSelectionDAGCSEId(ID);
1053 void *IP = 0;
1054 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1055 return SDValue(E, 0);
1056 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1057 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1058 CSEMap.InsertNode(N, IP);
1059 AllNodes.push_back(N);
1060 return SDValue(N, 0);
1063 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1064 FoldingSetNodeID ID;
1065 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1066 ID.AddPointer(MBB);
1067 void *IP = 0;
1068 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069 return SDValue(E, 0);
1070 SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1071 new (N) BasicBlockSDNode(MBB);
1072 CSEMap.InsertNode(N, IP);
1073 AllNodes.push_back(N);
1074 return SDValue(N, 0);
1077 SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1078 FoldingSetNodeID ID;
1079 AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1080 ID.AddInteger(Flags.getRawBits());
1081 void *IP = 0;
1082 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083 return SDValue(E, 0);
1084 SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1085 new (N) ARG_FLAGSSDNode(Flags);
1086 CSEMap.InsertNode(N, IP);
1087 AllNodes.push_back(N);
1088 return SDValue(N, 0);
1091 SDValue SelectionDAG::getValueType(MVT VT) {
1092 if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1093 ValueTypeNodes.resize(VT.getSimpleVT()+1);
1095 SDNode *&N = VT.isExtended() ?
1096 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1098 if (N) return SDValue(N, 0);
1099 N = NodeAllocator.Allocate<VTSDNode>();
1100 new (N) VTSDNode(VT);
1101 AllNodes.push_back(N);
1102 return SDValue(N, 0);
1105 SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1106 SDNode *&N = ExternalSymbols[Sym];
1107 if (N) return SDValue(N, 0);
1108 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1109 new (N) ExternalSymbolSDNode(false, Sym, VT);
1110 AllNodes.push_back(N);
1111 return SDValue(N, 0);
1114 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1115 SDNode *&N = TargetExternalSymbols[Sym];
1116 if (N) return SDValue(N, 0);
1117 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1118 new (N) ExternalSymbolSDNode(true, Sym, VT);
1119 AllNodes.push_back(N);
1120 return SDValue(N, 0);
1123 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1124 if ((unsigned)Cond >= CondCodeNodes.size())
1125 CondCodeNodes.resize(Cond+1);
1127 if (CondCodeNodes[Cond] == 0) {
1128 CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1129 new (N) CondCodeSDNode(Cond);
1130 CondCodeNodes[Cond] = N;
1131 AllNodes.push_back(N);
1133 return SDValue(CondCodeNodes[Cond], 0);
1136 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1137 // the shuffle mask M that point at N1 to point at N2, and indices that point
1138 // N2 to point at N1.
1139 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1140 std::swap(N1, N2);
1141 int NElts = M.size();
1142 for (int i = 0; i != NElts; ++i) {
1143 if (M[i] >= NElts)
1144 M[i] -= NElts;
1145 else if (M[i] >= 0)
1146 M[i] += NElts;
1150 SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1151 SDValue N2, const int *Mask) {
1152 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1153 assert(VT.isVector() && N1.getValueType().isVector() &&
1154 "Vector Shuffle VTs must be a vectors");
1155 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1156 && "Vector Shuffle VTs must have same element type");
1158 // Canonicalize shuffle undef, undef -> undef
1159 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1160 return N1;
1162 // Validate that all indices in Mask are within the range of the elements
1163 // input to the shuffle.
1164 unsigned NElts = VT.getVectorNumElements();
1165 SmallVector<int, 8> MaskVec;
1166 for (unsigned i = 0; i != NElts; ++i) {
1167 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1168 MaskVec.push_back(Mask[i]);
1171 // Canonicalize shuffle v, v -> v, undef
1172 if (N1 == N2) {
1173 N2 = getUNDEF(VT);
1174 for (unsigned i = 0; i != NElts; ++i)
1175 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1178 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1179 if (N1.getOpcode() == ISD::UNDEF)
1180 commuteShuffle(N1, N2, MaskVec);
1182 // Canonicalize all index into lhs, -> shuffle lhs, undef
1183 // Canonicalize all index into rhs, -> shuffle rhs, undef
1184 bool AllLHS = true, AllRHS = true;
1185 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1186 for (unsigned i = 0; i != NElts; ++i) {
1187 if (MaskVec[i] >= (int)NElts) {
1188 if (N2Undef)
1189 MaskVec[i] = -1;
1190 else
1191 AllLHS = false;
1192 } else if (MaskVec[i] >= 0) {
1193 AllRHS = false;
1196 if (AllLHS && AllRHS)
1197 return getUNDEF(VT);
1198 if (AllLHS && !N2Undef)
1199 N2 = getUNDEF(VT);
1200 if (AllRHS) {
1201 N1 = getUNDEF(VT);
1202 commuteShuffle(N1, N2, MaskVec);
1205 // If Identity shuffle, or all shuffle in to undef, return that node.
1206 bool AllUndef = true;
1207 bool Identity = true;
1208 for (unsigned i = 0; i != NElts; ++i) {
1209 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1210 if (MaskVec[i] >= 0) AllUndef = false;
1212 if (Identity)
1213 return N1;
1214 if (AllUndef)
1215 return getUNDEF(VT);
1217 FoldingSetNodeID ID;
1218 SDValue Ops[2] = { N1, N2 };
1219 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1220 for (unsigned i = 0; i != NElts; ++i)
1221 ID.AddInteger(MaskVec[i]);
1223 void* IP = 0;
1224 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1225 return SDValue(E, 0);
1227 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1228 // SDNode doesn't have access to it. This memory will be "leaked" when
1229 // the node is deallocated, but recovered when the NodeAllocator is released.
1230 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1231 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1233 ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1234 new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1235 CSEMap.InsertNode(N, IP);
1236 AllNodes.push_back(N);
1237 return SDValue(N, 0);
1240 SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1241 SDValue Val, SDValue DTy,
1242 SDValue STy, SDValue Rnd, SDValue Sat,
1243 ISD::CvtCode Code) {
1244 // If the src and dest types are the same and the conversion is between
1245 // integer types of the same sign or two floats, no conversion is necessary.
1246 if (DTy == STy &&
1247 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1248 return Val;
1250 FoldingSetNodeID ID;
1251 void* IP = 0;
1252 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253 return SDValue(E, 0);
1254 CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1255 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1256 new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1257 CSEMap.InsertNode(N, IP);
1258 AllNodes.push_back(N);
1259 return SDValue(N, 0);
1262 SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1263 FoldingSetNodeID ID;
1264 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1265 ID.AddInteger(RegNo);
1266 void *IP = 0;
1267 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1268 return SDValue(E, 0);
1269 SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1270 new (N) RegisterSDNode(RegNo, VT);
1271 CSEMap.InsertNode(N, IP);
1272 AllNodes.push_back(N);
1273 return SDValue(N, 0);
1276 SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1277 unsigned Line, unsigned Col,
1278 Value *CU) {
1279 SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1280 new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1281 N->setDebugLoc(DL);
1282 AllNodes.push_back(N);
1283 return SDValue(N, 0);
1286 SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1287 SDValue Root,
1288 unsigned LabelID) {
1289 FoldingSetNodeID ID;
1290 SDValue Ops[] = { Root };
1291 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1292 ID.AddInteger(LabelID);
1293 void *IP = 0;
1294 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1295 return SDValue(E, 0);
1296 SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1297 new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1298 CSEMap.InsertNode(N, IP);
1299 AllNodes.push_back(N);
1300 return SDValue(N, 0);
1303 SDValue SelectionDAG::getSrcValue(const Value *V) {
1304 assert((!V || isa<PointerType>(V->getType())) &&
1305 "SrcValue is not a pointer?");
1307 FoldingSetNodeID ID;
1308 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1309 ID.AddPointer(V);
1311 void *IP = 0;
1312 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1313 return SDValue(E, 0);
1315 SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1316 new (N) SrcValueSDNode(V);
1317 CSEMap.InsertNode(N, IP);
1318 AllNodes.push_back(N);
1319 return SDValue(N, 0);
1322 SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1323 #ifndef NDEBUG
1324 const Value *v = MO.getValue();
1325 assert((!v || isa<PointerType>(v->getType())) &&
1326 "SrcValue is not a pointer?");
1327 #endif
1329 FoldingSetNodeID ID;
1330 AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1331 MO.Profile(ID);
1333 void *IP = 0;
1334 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1335 return SDValue(E, 0);
1337 SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1338 new (N) MemOperandSDNode(MO);
1339 CSEMap.InsertNode(N, IP);
1340 AllNodes.push_back(N);
1341 return SDValue(N, 0);
1344 /// getShiftAmountOperand - Return the specified value casted to
1345 /// the target's desired shift amount type.
1346 SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1347 MVT OpTy = Op.getValueType();
1348 MVT ShTy = TLI.getShiftAmountTy();
1349 if (OpTy == ShTy || OpTy.isVector()) return Op;
1351 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1352 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1355 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1356 /// specified value type.
1357 SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1358 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1359 unsigned ByteSize = VT.getStoreSizeInBits()/8;
1360 const Type *Ty = VT.getTypeForMVT();
1361 unsigned StackAlign =
1362 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1364 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1365 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1368 /// CreateStackTemporary - Create a stack temporary suitable for holding
1369 /// either of the specified value types.
1370 SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1371 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1372 VT2.getStoreSizeInBits())/8;
1373 const Type *Ty1 = VT1.getTypeForMVT();
1374 const Type *Ty2 = VT2.getTypeForMVT();
1375 const TargetData *TD = TLI.getTargetData();
1376 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1377 TD->getPrefTypeAlignment(Ty2));
1379 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1380 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1381 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1384 SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1385 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1386 // These setcc operations always fold.
1387 switch (Cond) {
1388 default: break;
1389 case ISD::SETFALSE:
1390 case ISD::SETFALSE2: return getConstant(0, VT);
1391 case ISD::SETTRUE:
1392 case ISD::SETTRUE2: return getConstant(1, VT);
1394 case ISD::SETOEQ:
1395 case ISD::SETOGT:
1396 case ISD::SETOGE:
1397 case ISD::SETOLT:
1398 case ISD::SETOLE:
1399 case ISD::SETONE:
1400 case ISD::SETO:
1401 case ISD::SETUO:
1402 case ISD::SETUEQ:
1403 case ISD::SETUNE:
1404 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1405 break;
1408 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1409 const APInt &C2 = N2C->getAPIntValue();
1410 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1411 const APInt &C1 = N1C->getAPIntValue();
1413 switch (Cond) {
1414 default: assert(0 && "Unknown integer setcc!");
1415 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1416 case ISD::SETNE: return getConstant(C1 != C2, VT);
1417 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1418 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1419 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1420 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1421 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1422 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1423 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1424 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1428 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1429 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1430 // No compile time operations on this type yet.
1431 if (N1C->getValueType(0) == MVT::ppcf128)
1432 return SDValue();
1434 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1435 switch (Cond) {
1436 default: break;
1437 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1438 return getUNDEF(VT);
1439 // fall through
1440 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1441 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1442 return getUNDEF(VT);
1443 // fall through
1444 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1445 R==APFloat::cmpLessThan, VT);
1446 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1447 return getUNDEF(VT);
1448 // fall through
1449 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1450 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1451 return getUNDEF(VT);
1452 // fall through
1453 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1454 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1455 return getUNDEF(VT);
1456 // fall through
1457 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1458 R==APFloat::cmpEqual, VT);
1459 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1460 return getUNDEF(VT);
1461 // fall through
1462 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1463 R==APFloat::cmpEqual, VT);
1464 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1465 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1466 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1467 R==APFloat::cmpEqual, VT);
1468 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1469 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1470 R==APFloat::cmpLessThan, VT);
1471 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1472 R==APFloat::cmpUnordered, VT);
1473 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1474 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1476 } else {
1477 // Ensure that the constant occurs on the RHS.
1478 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1482 // Could not fold it.
1483 return SDValue();
1486 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1487 /// use this predicate to simplify operations downstream.
1488 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1489 unsigned BitWidth = Op.getValueSizeInBits();
1490 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1493 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1494 /// this predicate to simplify operations downstream. Mask is known to be zero
1495 /// for bits that V cannot have.
1496 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1497 unsigned Depth) const {
1498 APInt KnownZero, KnownOne;
1499 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1500 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1501 return (KnownZero & Mask) == Mask;
1504 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1505 /// known to be either zero or one and return them in the KnownZero/KnownOne
1506 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1507 /// processing.
1508 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1509 APInt &KnownZero, APInt &KnownOne,
1510 unsigned Depth) const {
1511 unsigned BitWidth = Mask.getBitWidth();
1512 assert(BitWidth == Op.getValueType().getSizeInBits() &&
1513 "Mask size mismatches value type size!");
1515 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1516 if (Depth == 6 || Mask == 0)
1517 return; // Limit search depth.
1519 APInt KnownZero2, KnownOne2;
1521 switch (Op.getOpcode()) {
1522 case ISD::Constant:
1523 // We know all of the bits for a constant!
1524 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1525 KnownZero = ~KnownOne & Mask;
1526 return;
1527 case ISD::AND:
1528 // If either the LHS or the RHS are Zero, the result is zero.
1529 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1530 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1531 KnownZero2, KnownOne2, Depth+1);
1532 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1535 // Output known-1 bits are only known if set in both the LHS & RHS.
1536 KnownOne &= KnownOne2;
1537 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1538 KnownZero |= KnownZero2;
1539 return;
1540 case ISD::OR:
1541 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1542 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1543 KnownZero2, KnownOne2, Depth+1);
1544 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1545 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1547 // Output known-0 bits are only known if clear in both the LHS & RHS.
1548 KnownZero &= KnownZero2;
1549 // Output known-1 are known to be set if set in either the LHS | RHS.
1550 KnownOne |= KnownOne2;
1551 return;
1552 case ISD::XOR: {
1553 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1554 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1556 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1558 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1559 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1560 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1561 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1562 KnownZero = KnownZeroOut;
1563 return;
1565 case ISD::MUL: {
1566 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1567 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1568 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1569 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1572 // If low bits are zero in either operand, output low known-0 bits.
1573 // Also compute a conserative estimate for high known-0 bits.
1574 // More trickiness is possible, but this is sufficient for the
1575 // interesting case of alignment computation.
1576 KnownOne.clear();
1577 unsigned TrailZ = KnownZero.countTrailingOnes() +
1578 KnownZero2.countTrailingOnes();
1579 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1580 KnownZero2.countLeadingOnes(),
1581 BitWidth) - BitWidth;
1583 TrailZ = std::min(TrailZ, BitWidth);
1584 LeadZ = std::min(LeadZ, BitWidth);
1585 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1586 APInt::getHighBitsSet(BitWidth, LeadZ);
1587 KnownZero &= Mask;
1588 return;
1590 case ISD::UDIV: {
1591 // For the purposes of computing leading zeros we can conservatively
1592 // treat a udiv as a logical right shift by the power of 2 known to
1593 // be less than the denominator.
1594 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1595 ComputeMaskedBits(Op.getOperand(0),
1596 AllOnes, KnownZero2, KnownOne2, Depth+1);
1597 unsigned LeadZ = KnownZero2.countLeadingOnes();
1599 KnownOne2.clear();
1600 KnownZero2.clear();
1601 ComputeMaskedBits(Op.getOperand(1),
1602 AllOnes, KnownZero2, KnownOne2, Depth+1);
1603 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1604 if (RHSUnknownLeadingOnes != BitWidth)
1605 LeadZ = std::min(BitWidth,
1606 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1608 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1609 return;
1611 case ISD::SELECT:
1612 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1613 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1614 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1615 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1617 // Only known if known in both the LHS and RHS.
1618 KnownOne &= KnownOne2;
1619 KnownZero &= KnownZero2;
1620 return;
1621 case ISD::SELECT_CC:
1622 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1623 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1624 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1625 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1627 // Only known if known in both the LHS and RHS.
1628 KnownOne &= KnownOne2;
1629 KnownZero &= KnownZero2;
1630 return;
1631 case ISD::SADDO:
1632 case ISD::UADDO:
1633 case ISD::SSUBO:
1634 case ISD::USUBO:
1635 case ISD::SMULO:
1636 case ISD::UMULO:
1637 if (Op.getResNo() != 1)
1638 return;
1639 // The boolean result conforms to getBooleanContents. Fall through.
1640 case ISD::SETCC:
1641 // If we know the result of a setcc has the top bits zero, use this info.
1642 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1643 BitWidth > 1)
1644 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1645 return;
1646 case ISD::SHL:
1647 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1648 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1649 unsigned ShAmt = SA->getZExtValue();
1651 // If the shift count is an invalid immediate, don't do anything.
1652 if (ShAmt >= BitWidth)
1653 return;
1655 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1656 KnownZero, KnownOne, Depth+1);
1657 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1658 KnownZero <<= ShAmt;
1659 KnownOne <<= ShAmt;
1660 // low bits known zero.
1661 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1663 return;
1664 case ISD::SRL:
1665 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1666 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1667 unsigned ShAmt = SA->getZExtValue();
1669 // If the shift count is an invalid immediate, don't do anything.
1670 if (ShAmt >= BitWidth)
1671 return;
1673 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1674 KnownZero, KnownOne, Depth+1);
1675 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1676 KnownZero = KnownZero.lshr(ShAmt);
1677 KnownOne = KnownOne.lshr(ShAmt);
1679 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1680 KnownZero |= HighBits; // High bits known zero.
1682 return;
1683 case ISD::SRA:
1684 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1685 unsigned ShAmt = SA->getZExtValue();
1687 // If the shift count is an invalid immediate, don't do anything.
1688 if (ShAmt >= BitWidth)
1689 return;
1691 APInt InDemandedMask = (Mask << ShAmt);
1692 // If any of the demanded bits are produced by the sign extension, we also
1693 // demand the input sign bit.
1694 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1695 if (HighBits.getBoolValue())
1696 InDemandedMask |= APInt::getSignBit(BitWidth);
1698 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1699 Depth+1);
1700 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701 KnownZero = KnownZero.lshr(ShAmt);
1702 KnownOne = KnownOne.lshr(ShAmt);
1704 // Handle the sign bits.
1705 APInt SignBit = APInt::getSignBit(BitWidth);
1706 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1708 if (KnownZero.intersects(SignBit)) {
1709 KnownZero |= HighBits; // New bits are known zero.
1710 } else if (KnownOne.intersects(SignBit)) {
1711 KnownOne |= HighBits; // New bits are known one.
1714 return;
1715 case ISD::SIGN_EXTEND_INREG: {
1716 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1717 unsigned EBits = EVT.getSizeInBits();
1719 // Sign extension. Compute the demanded bits in the result that are not
1720 // present in the input.
1721 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1723 APInt InSignBit = APInt::getSignBit(EBits);
1724 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1726 // If the sign extended bits are demanded, we know that the sign
1727 // bit is demanded.
1728 InSignBit.zext(BitWidth);
1729 if (NewBits.getBoolValue())
1730 InputDemandedBits |= InSignBit;
1732 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1733 KnownZero, KnownOne, Depth+1);
1734 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1736 // If the sign bit of the input is known set or clear, then we know the
1737 // top bits of the result.
1738 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1739 KnownZero |= NewBits;
1740 KnownOne &= ~NewBits;
1741 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1742 KnownOne |= NewBits;
1743 KnownZero &= ~NewBits;
1744 } else { // Input sign bit unknown
1745 KnownZero &= ~NewBits;
1746 KnownOne &= ~NewBits;
1748 return;
1750 case ISD::CTTZ:
1751 case ISD::CTLZ:
1752 case ISD::CTPOP: {
1753 unsigned LowBits = Log2_32(BitWidth)+1;
1754 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1755 KnownOne.clear();
1756 return;
1758 case ISD::LOAD: {
1759 if (ISD::isZEXTLoad(Op.getNode())) {
1760 LoadSDNode *LD = cast<LoadSDNode>(Op);
1761 MVT VT = LD->getMemoryVT();
1762 unsigned MemBits = VT.getSizeInBits();
1763 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1765 return;
1767 case ISD::ZERO_EXTEND: {
1768 MVT InVT = Op.getOperand(0).getValueType();
1769 unsigned InBits = InVT.getSizeInBits();
1770 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1771 APInt InMask = Mask;
1772 InMask.trunc(InBits);
1773 KnownZero.trunc(InBits);
1774 KnownOne.trunc(InBits);
1775 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1776 KnownZero.zext(BitWidth);
1777 KnownOne.zext(BitWidth);
1778 KnownZero |= NewBits;
1779 return;
1781 case ISD::SIGN_EXTEND: {
1782 MVT InVT = Op.getOperand(0).getValueType();
1783 unsigned InBits = InVT.getSizeInBits();
1784 APInt InSignBit = APInt::getSignBit(InBits);
1785 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1786 APInt InMask = Mask;
1787 InMask.trunc(InBits);
1789 // If any of the sign extended bits are demanded, we know that the sign
1790 // bit is demanded. Temporarily set this bit in the mask for our callee.
1791 if (NewBits.getBoolValue())
1792 InMask |= InSignBit;
1794 KnownZero.trunc(InBits);
1795 KnownOne.trunc(InBits);
1796 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1798 // Note if the sign bit is known to be zero or one.
1799 bool SignBitKnownZero = KnownZero.isNegative();
1800 bool SignBitKnownOne = KnownOne.isNegative();
1801 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1802 "Sign bit can't be known to be both zero and one!");
1804 // If the sign bit wasn't actually demanded by our caller, we don't
1805 // want it set in the KnownZero and KnownOne result values. Reset the
1806 // mask and reapply it to the result values.
1807 InMask = Mask;
1808 InMask.trunc(InBits);
1809 KnownZero &= InMask;
1810 KnownOne &= InMask;
1812 KnownZero.zext(BitWidth);
1813 KnownOne.zext(BitWidth);
1815 // If the sign bit is known zero or one, the top bits match.
1816 if (SignBitKnownZero)
1817 KnownZero |= NewBits;
1818 else if (SignBitKnownOne)
1819 KnownOne |= NewBits;
1820 return;
1822 case ISD::ANY_EXTEND: {
1823 MVT InVT = Op.getOperand(0).getValueType();
1824 unsigned InBits = InVT.getSizeInBits();
1825 APInt InMask = Mask;
1826 InMask.trunc(InBits);
1827 KnownZero.trunc(InBits);
1828 KnownOne.trunc(InBits);
1829 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1830 KnownZero.zext(BitWidth);
1831 KnownOne.zext(BitWidth);
1832 return;
1834 case ISD::TRUNCATE: {
1835 MVT InVT = Op.getOperand(0).getValueType();
1836 unsigned InBits = InVT.getSizeInBits();
1837 APInt InMask = Mask;
1838 InMask.zext(InBits);
1839 KnownZero.zext(InBits);
1840 KnownOne.zext(InBits);
1841 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1842 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1843 KnownZero.trunc(BitWidth);
1844 KnownOne.trunc(BitWidth);
1845 break;
1847 case ISD::AssertZext: {
1848 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1849 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1850 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1851 KnownOne, Depth+1);
1852 KnownZero |= (~InMask) & Mask;
1853 return;
1855 case ISD::FGETSIGN:
1856 // All bits are zero except the low bit.
1857 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1858 return;
1860 case ISD::SUB: {
1861 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1862 // We know that the top bits of C-X are clear if X contains less bits
1863 // than C (i.e. no wrap-around can happen). For example, 20-X is
1864 // positive if we can prove that X is >= 0 and < 16.
1865 if (CLHS->getAPIntValue().isNonNegative()) {
1866 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1867 // NLZ can't be BitWidth with no sign bit
1868 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1869 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1870 Depth+1);
1872 // If all of the MaskV bits are known to be zero, then we know the
1873 // output top bits are zero, because we now know that the output is
1874 // from [0-C].
1875 if ((KnownZero2 & MaskV) == MaskV) {
1876 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1877 // Top bits known zero.
1878 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1883 // fall through
1884 case ISD::ADD: {
1885 // Output known-0 bits are known if clear or set in both the low clear bits
1886 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1887 // low 3 bits clear.
1888 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1889 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1890 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1891 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1893 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1894 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1895 KnownZeroOut = std::min(KnownZeroOut,
1896 KnownZero2.countTrailingOnes());
1898 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1899 return;
1901 case ISD::SREM:
1902 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1903 const APInt &RA = Rem->getAPIntValue();
1904 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1905 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1906 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1907 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1909 // If the sign bit of the first operand is zero, the sign bit of
1910 // the result is zero. If the first operand has no one bits below
1911 // the second operand's single 1 bit, its sign will be zero.
1912 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1913 KnownZero2 |= ~LowBits;
1915 KnownZero |= KnownZero2 & Mask;
1917 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1920 return;
1921 case ISD::UREM: {
1922 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1923 const APInt &RA = Rem->getAPIntValue();
1924 if (RA.isPowerOf2()) {
1925 APInt LowBits = (RA - 1);
1926 APInt Mask2 = LowBits & Mask;
1927 KnownZero |= ~LowBits & Mask;
1928 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1929 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1930 break;
1934 // Since the result is less than or equal to either operand, any leading
1935 // zero bits in either operand must also exist in the result.
1936 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1937 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1938 Depth+1);
1939 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1940 Depth+1);
1942 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1943 KnownZero2.countLeadingOnes());
1944 KnownOne.clear();
1945 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1946 return;
1948 default:
1949 // Allow the target to implement this method for its nodes.
1950 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1951 case ISD::INTRINSIC_WO_CHAIN:
1952 case ISD::INTRINSIC_W_CHAIN:
1953 case ISD::INTRINSIC_VOID:
1954 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1956 return;
1960 /// ComputeNumSignBits - Return the number of times the sign bit of the
1961 /// register is replicated into the other bits. We know that at least 1 bit
1962 /// is always equal to the sign bit (itself), but other cases can give us
1963 /// information. For example, immediately after an "SRA X, 2", we know that
1964 /// the top 3 bits are all equal to each other, so we return 3.
1965 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1966 MVT VT = Op.getValueType();
1967 assert(VT.isInteger() && "Invalid VT!");
1968 unsigned VTBits = VT.getSizeInBits();
1969 unsigned Tmp, Tmp2;
1970 unsigned FirstAnswer = 1;
1972 if (Depth == 6)
1973 return 1; // Limit search depth.
1975 switch (Op.getOpcode()) {
1976 default: break;
1977 case ISD::AssertSext:
1978 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1979 return VTBits-Tmp+1;
1980 case ISD::AssertZext:
1981 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1982 return VTBits-Tmp;
1984 case ISD::Constant: {
1985 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1986 // If negative, return # leading ones.
1987 if (Val.isNegative())
1988 return Val.countLeadingOnes();
1990 // Return # leading zeros.
1991 return Val.countLeadingZeros();
1994 case ISD::SIGN_EXTEND:
1995 Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1996 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1998 case ISD::SIGN_EXTEND_INREG:
1999 // Max of the input and what this extends.
2000 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2001 Tmp = VTBits-Tmp+1;
2003 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2004 return std::max(Tmp, Tmp2);
2006 case ISD::SRA:
2007 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2008 // SRA X, C -> adds C sign bits.
2009 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2010 Tmp += C->getZExtValue();
2011 if (Tmp > VTBits) Tmp = VTBits;
2013 return Tmp;
2014 case ISD::SHL:
2015 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2016 // shl destroys sign bits.
2017 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2018 if (C->getZExtValue() >= VTBits || // Bad shift.
2019 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2020 return Tmp - C->getZExtValue();
2022 break;
2023 case ISD::AND:
2024 case ISD::OR:
2025 case ISD::XOR: // NOT is handled here.
2026 // Logical binary ops preserve the number of sign bits at the worst.
2027 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2028 if (Tmp != 1) {
2029 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2030 FirstAnswer = std::min(Tmp, Tmp2);
2031 // We computed what we know about the sign bits as our first
2032 // answer. Now proceed to the generic code that uses
2033 // ComputeMaskedBits, and pick whichever answer is better.
2035 break;
2037 case ISD::SELECT:
2038 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2039 if (Tmp == 1) return 1; // Early out.
2040 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2041 return std::min(Tmp, Tmp2);
2043 case ISD::SADDO:
2044 case ISD::UADDO:
2045 case ISD::SSUBO:
2046 case ISD::USUBO:
2047 case ISD::SMULO:
2048 case ISD::UMULO:
2049 if (Op.getResNo() != 1)
2050 break;
2051 // The boolean result conforms to getBooleanContents. Fall through.
2052 case ISD::SETCC:
2053 // If setcc returns 0/-1, all bits are sign bits.
2054 if (TLI.getBooleanContents() ==
2055 TargetLowering::ZeroOrNegativeOneBooleanContent)
2056 return VTBits;
2057 break;
2058 case ISD::ROTL:
2059 case ISD::ROTR:
2060 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2061 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2063 // Handle rotate right by N like a rotate left by 32-N.
2064 if (Op.getOpcode() == ISD::ROTR)
2065 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2067 // If we aren't rotating out all of the known-in sign bits, return the
2068 // number that are left. This handles rotl(sext(x), 1) for example.
2069 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2072 break;
2073 case ISD::ADD:
2074 // Add can have at most one carry bit. Thus we know that the output
2075 // is, at worst, one more bit than the inputs.
2076 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2077 if (Tmp == 1) return 1; // Early out.
2079 // Special case decrementing a value (ADD X, -1):
2080 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2081 if (CRHS->isAllOnesValue()) {
2082 APInt KnownZero, KnownOne;
2083 APInt Mask = APInt::getAllOnesValue(VTBits);
2084 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2086 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2087 // sign bits set.
2088 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2089 return VTBits;
2091 // If we are subtracting one from a positive number, there is no carry
2092 // out of the result.
2093 if (KnownZero.isNegative())
2094 return Tmp;
2097 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2098 if (Tmp2 == 1) return 1;
2099 return std::min(Tmp, Tmp2)-1;
2100 break;
2102 case ISD::SUB:
2103 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2104 if (Tmp2 == 1) return 1;
2106 // Handle NEG.
2107 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2108 if (CLHS->isNullValue()) {
2109 APInt KnownZero, KnownOne;
2110 APInt Mask = APInt::getAllOnesValue(VTBits);
2111 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2112 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2113 // sign bits set.
2114 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2115 return VTBits;
2117 // If the input is known to be positive (the sign bit is known clear),
2118 // the output of the NEG has the same number of sign bits as the input.
2119 if (KnownZero.isNegative())
2120 return Tmp2;
2122 // Otherwise, we treat this like a SUB.
2125 // Sub can have at most one carry bit. Thus we know that the output
2126 // is, at worst, one more bit than the inputs.
2127 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2128 if (Tmp == 1) return 1; // Early out.
2129 return std::min(Tmp, Tmp2)-1;
2130 break;
2131 case ISD::TRUNCATE:
2132 // FIXME: it's tricky to do anything useful for this, but it is an important
2133 // case for targets like X86.
2134 break;
2137 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2138 if (Op.getOpcode() == ISD::LOAD) {
2139 LoadSDNode *LD = cast<LoadSDNode>(Op);
2140 unsigned ExtType = LD->getExtensionType();
2141 switch (ExtType) {
2142 default: break;
2143 case ISD::SEXTLOAD: // '17' bits known
2144 Tmp = LD->getMemoryVT().getSizeInBits();
2145 return VTBits-Tmp+1;
2146 case ISD::ZEXTLOAD: // '16' bits known
2147 Tmp = LD->getMemoryVT().getSizeInBits();
2148 return VTBits-Tmp;
2152 // Allow the target to implement this method for its nodes.
2153 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2154 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2155 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2156 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2157 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2158 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2161 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2162 // use this information.
2163 APInt KnownZero, KnownOne;
2164 APInt Mask = APInt::getAllOnesValue(VTBits);
2165 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2167 if (KnownZero.isNegative()) { // sign bit is 0
2168 Mask = KnownZero;
2169 } else if (KnownOne.isNegative()) { // sign bit is 1;
2170 Mask = KnownOne;
2171 } else {
2172 // Nothing known.
2173 return FirstAnswer;
2176 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2177 // the number of identical bits in the top of the input value.
2178 Mask = ~Mask;
2179 Mask <<= Mask.getBitWidth()-VTBits;
2180 // Return # leading zeros. We use 'min' here in case Val was zero before
2181 // shifting. We don't want to return '64' as for an i32 "0".
2182 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2186 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2187 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2188 if (!GA) return false;
2189 if (GA->getOffset() != 0) return false;
2190 GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2191 if (!GV) return false;
2192 MachineModuleInfo *MMI = getMachineModuleInfo();
2193 return MMI && MMI->hasDebugInfo();
2197 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2198 /// element of the result of the vector shuffle.
2199 SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2200 unsigned i) {
2201 MVT VT = N->getValueType(0);
2202 DebugLoc dl = N->getDebugLoc();
2203 if (N->getMaskElt(i) < 0)
2204 return getUNDEF(VT.getVectorElementType());
2205 unsigned Index = N->getMaskElt(i);
2206 unsigned NumElems = VT.getVectorNumElements();
2207 SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2208 Index %= NumElems;
2210 if (V.getOpcode() == ISD::BIT_CONVERT) {
2211 V = V.getOperand(0);
2212 MVT VVT = V.getValueType();
2213 if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2214 return SDValue();
2216 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2217 return (Index == 0) ? V.getOperand(0)
2218 : getUNDEF(VT.getVectorElementType());
2219 if (V.getOpcode() == ISD::BUILD_VECTOR)
2220 return V.getOperand(Index);
2221 if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2222 return getShuffleScalarElt(SVN, Index);
2223 return SDValue();
2227 /// getNode - Gets or creates the specified node.
2229 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2230 FoldingSetNodeID ID;
2231 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2232 void *IP = 0;
2233 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2234 return SDValue(E, 0);
2235 SDNode *N = NodeAllocator.Allocate<SDNode>();
2236 new (N) SDNode(Opcode, DL, getVTList(VT));
2237 CSEMap.InsertNode(N, IP);
2239 AllNodes.push_back(N);
2240 #ifndef NDEBUG
2241 VerifyNode(N);
2242 #endif
2243 return SDValue(N, 0);
2246 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2247 MVT VT, SDValue Operand) {
2248 // Constant fold unary operations with an integer constant operand.
2249 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2250 const APInt &Val = C->getAPIntValue();
2251 unsigned BitWidth = VT.getSizeInBits();
2252 switch (Opcode) {
2253 default: break;
2254 case ISD::SIGN_EXTEND:
2255 return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2256 case ISD::ANY_EXTEND:
2257 case ISD::ZERO_EXTEND:
2258 case ISD::TRUNCATE:
2259 return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2260 case ISD::UINT_TO_FP:
2261 case ISD::SINT_TO_FP: {
2262 const uint64_t zero[] = {0, 0};
2263 // No compile time operations on this type.
2264 if (VT==MVT::ppcf128)
2265 break;
2266 APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2267 (void)apf.convertFromAPInt(Val,
2268 Opcode==ISD::SINT_TO_FP,
2269 APFloat::rmNearestTiesToEven);
2270 return getConstantFP(apf, VT);
2272 case ISD::BIT_CONVERT:
2273 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2274 return getConstantFP(Val.bitsToFloat(), VT);
2275 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2276 return getConstantFP(Val.bitsToDouble(), VT);
2277 break;
2278 case ISD::BSWAP:
2279 return getConstant(Val.byteSwap(), VT);
2280 case ISD::CTPOP:
2281 return getConstant(Val.countPopulation(), VT);
2282 case ISD::CTLZ:
2283 return getConstant(Val.countLeadingZeros(), VT);
2284 case ISD::CTTZ:
2285 return getConstant(Val.countTrailingZeros(), VT);
2289 // Constant fold unary operations with a floating point constant operand.
2290 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2291 APFloat V = C->getValueAPF(); // make copy
2292 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2293 switch (Opcode) {
2294 case ISD::FNEG:
2295 V.changeSign();
2296 return getConstantFP(V, VT);
2297 case ISD::FABS:
2298 V.clearSign();
2299 return getConstantFP(V, VT);
2300 case ISD::FP_ROUND:
2301 case ISD::FP_EXTEND: {
2302 bool ignored;
2303 // This can return overflow, underflow, or inexact; we don't care.
2304 // FIXME need to be more flexible about rounding mode.
2305 (void)V.convert(*MVTToAPFloatSemantics(VT),
2306 APFloat::rmNearestTiesToEven, &ignored);
2307 return getConstantFP(V, VT);
2309 case ISD::FP_TO_SINT:
2310 case ISD::FP_TO_UINT: {
2311 integerPart x[2];
2312 bool ignored;
2313 assert(integerPartWidth >= 64);
2314 // FIXME need to be more flexible about rounding mode.
2315 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2316 Opcode==ISD::FP_TO_SINT,
2317 APFloat::rmTowardZero, &ignored);
2318 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2319 break;
2320 APInt api(VT.getSizeInBits(), 2, x);
2321 return getConstant(api, VT);
2323 case ISD::BIT_CONVERT:
2324 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2325 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2326 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2327 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2328 break;
2333 unsigned OpOpcode = Operand.getNode()->getOpcode();
2334 switch (Opcode) {
2335 case ISD::TokenFactor:
2336 case ISD::MERGE_VALUES:
2337 case ISD::CONCAT_VECTORS:
2338 return Operand; // Factor, merge or concat of one node? No need.
2339 case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2340 case ISD::FP_EXTEND:
2341 assert(VT.isFloatingPoint() &&
2342 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2343 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2344 if (Operand.getOpcode() == ISD::UNDEF)
2345 return getUNDEF(VT);
2346 break;
2347 case ISD::SIGN_EXTEND:
2348 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2349 "Invalid SIGN_EXTEND!");
2350 if (Operand.getValueType() == VT) return Operand; // noop extension
2351 assert(Operand.getValueType().bitsLT(VT)
2352 && "Invalid sext node, dst < src!");
2353 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2354 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2355 break;
2356 case ISD::ZERO_EXTEND:
2357 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2358 "Invalid ZERO_EXTEND!");
2359 if (Operand.getValueType() == VT) return Operand; // noop extension
2360 assert(Operand.getValueType().bitsLT(VT)
2361 && "Invalid zext node, dst < src!");
2362 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2363 return getNode(ISD::ZERO_EXTEND, DL, VT,
2364 Operand.getNode()->getOperand(0));
2365 break;
2366 case ISD::ANY_EXTEND:
2367 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2368 "Invalid ANY_EXTEND!");
2369 if (Operand.getValueType() == VT) return Operand; // noop extension
2370 assert(Operand.getValueType().bitsLT(VT)
2371 && "Invalid anyext node, dst < src!");
2372 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2373 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2374 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2375 break;
2376 case ISD::TRUNCATE:
2377 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2378 "Invalid TRUNCATE!");
2379 if (Operand.getValueType() == VT) return Operand; // noop truncate
2380 assert(Operand.getValueType().bitsGT(VT)
2381 && "Invalid truncate node, src < dst!");
2382 if (OpOpcode == ISD::TRUNCATE)
2383 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2384 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2385 OpOpcode == ISD::ANY_EXTEND) {
2386 // If the source is smaller than the dest, we still need an extend.
2387 if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2388 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2389 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2390 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2391 else
2392 return Operand.getNode()->getOperand(0);
2394 break;
2395 case ISD::BIT_CONVERT:
2396 // Basic sanity checking.
2397 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2398 && "Cannot BIT_CONVERT between types of different sizes!");
2399 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2400 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2401 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2402 if (OpOpcode == ISD::UNDEF)
2403 return getUNDEF(VT);
2404 break;
2405 case ISD::SCALAR_TO_VECTOR:
2406 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2407 (VT.getVectorElementType() == Operand.getValueType() ||
2408 (VT.getVectorElementType().isInteger() &&
2409 Operand.getValueType().isInteger() &&
2410 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2411 "Illegal SCALAR_TO_VECTOR node!");
2412 if (OpOpcode == ISD::UNDEF)
2413 return getUNDEF(VT);
2414 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2415 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2416 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2417 Operand.getConstantOperandVal(1) == 0 &&
2418 Operand.getOperand(0).getValueType() == VT)
2419 return Operand.getOperand(0);
2420 break;
2421 case ISD::FNEG:
2422 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2423 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2424 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2425 Operand.getNode()->getOperand(0));
2426 if (OpOpcode == ISD::FNEG) // --X -> X
2427 return Operand.getNode()->getOperand(0);
2428 break;
2429 case ISD::FABS:
2430 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2431 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2432 break;
2435 SDNode *N;
2436 SDVTList VTs = getVTList(VT);
2437 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2438 FoldingSetNodeID ID;
2439 SDValue Ops[1] = { Operand };
2440 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2441 void *IP = 0;
2442 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2443 return SDValue(E, 0);
2444 N = NodeAllocator.Allocate<UnarySDNode>();
2445 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2446 CSEMap.InsertNode(N, IP);
2447 } else {
2448 N = NodeAllocator.Allocate<UnarySDNode>();
2449 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2452 AllNodes.push_back(N);
2453 #ifndef NDEBUG
2454 VerifyNode(N);
2455 #endif
2456 return SDValue(N, 0);
2459 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2460 MVT VT,
2461 ConstantSDNode *Cst1,
2462 ConstantSDNode *Cst2) {
2463 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2465 switch (Opcode) {
2466 case ISD::ADD: return getConstant(C1 + C2, VT);
2467 case ISD::SUB: return getConstant(C1 - C2, VT);
2468 case ISD::MUL: return getConstant(C1 * C2, VT);
2469 case ISD::UDIV:
2470 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2471 break;
2472 case ISD::UREM:
2473 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2474 break;
2475 case ISD::SDIV:
2476 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2477 break;
2478 case ISD::SREM:
2479 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2480 break;
2481 case ISD::AND: return getConstant(C1 & C2, VT);
2482 case ISD::OR: return getConstant(C1 | C2, VT);
2483 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2484 case ISD::SHL: return getConstant(C1 << C2, VT);
2485 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2486 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2487 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2488 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2489 default: break;
2492 return SDValue();
2495 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2496 SDValue N1, SDValue N2) {
2497 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2498 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2499 switch (Opcode) {
2500 default: break;
2501 case ISD::TokenFactor:
2502 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2503 N2.getValueType() == MVT::Other && "Invalid token factor!");
2504 // Fold trivial token factors.
2505 if (N1.getOpcode() == ISD::EntryToken) return N2;
2506 if (N2.getOpcode() == ISD::EntryToken) return N1;
2507 if (N1 == N2) return N1;
2508 break;
2509 case ISD::CONCAT_VECTORS:
2510 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2511 // one big BUILD_VECTOR.
2512 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2513 N2.getOpcode() == ISD::BUILD_VECTOR) {
2514 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2515 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2516 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2518 break;
2519 case ISD::AND:
2520 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2521 N1.getValueType() == VT && "Binary operator types must match!");
2522 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2523 // worth handling here.
2524 if (N2C && N2C->isNullValue())
2525 return N2;
2526 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2527 return N1;
2528 break;
2529 case ISD::OR:
2530 case ISD::XOR:
2531 case ISD::ADD:
2532 case ISD::SUB:
2533 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2534 N1.getValueType() == VT && "Binary operator types must match!");
2535 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2536 // it's worth handling here.
2537 if (N2C && N2C->isNullValue())
2538 return N1;
2539 break;
2540 case ISD::UDIV:
2541 case ISD::UREM:
2542 case ISD::MULHU:
2543 case ISD::MULHS:
2544 case ISD::MUL:
2545 case ISD::SDIV:
2546 case ISD::SREM:
2547 assert(VT.isInteger() && "This operator does not apply to FP types!");
2548 // fall through
2549 case ISD::FADD:
2550 case ISD::FSUB:
2551 case ISD::FMUL:
2552 case ISD::FDIV:
2553 case ISD::FREM:
2554 if (UnsafeFPMath) {
2555 if (Opcode == ISD::FADD) {
2556 // 0+x --> x
2557 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2558 if (CFP->getValueAPF().isZero())
2559 return N2;
2560 // x+0 --> x
2561 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2562 if (CFP->getValueAPF().isZero())
2563 return N1;
2564 } else if (Opcode == ISD::FSUB) {
2565 // x-0 --> x
2566 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2567 if (CFP->getValueAPF().isZero())
2568 return N1;
2571 assert(N1.getValueType() == N2.getValueType() &&
2572 N1.getValueType() == VT && "Binary operator types must match!");
2573 break;
2574 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2575 assert(N1.getValueType() == VT &&
2576 N1.getValueType().isFloatingPoint() &&
2577 N2.getValueType().isFloatingPoint() &&
2578 "Invalid FCOPYSIGN!");
2579 break;
2580 case ISD::SHL:
2581 case ISD::SRA:
2582 case ISD::SRL:
2583 case ISD::ROTL:
2584 case ISD::ROTR:
2585 assert(VT == N1.getValueType() &&
2586 "Shift operators return type must be the same as their first arg");
2587 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2588 "Shifts only work on integers");
2590 // Always fold shifts of i1 values so the code generator doesn't need to
2591 // handle them. Since we know the size of the shift has to be less than the
2592 // size of the value, the shift/rotate count is guaranteed to be zero.
2593 if (VT == MVT::i1)
2594 return N1;
2595 break;
2596 case ISD::FP_ROUND_INREG: {
2597 MVT EVT = cast<VTSDNode>(N2)->getVT();
2598 assert(VT == N1.getValueType() && "Not an inreg round!");
2599 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2600 "Cannot FP_ROUND_INREG integer types");
2601 assert(EVT.bitsLE(VT) && "Not rounding down!");
2602 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2603 break;
2605 case ISD::FP_ROUND:
2606 assert(VT.isFloatingPoint() &&
2607 N1.getValueType().isFloatingPoint() &&
2608 VT.bitsLE(N1.getValueType()) &&
2609 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2610 if (N1.getValueType() == VT) return N1; // noop conversion.
2611 break;
2612 case ISD::AssertSext:
2613 case ISD::AssertZext: {
2614 MVT EVT = cast<VTSDNode>(N2)->getVT();
2615 assert(VT == N1.getValueType() && "Not an inreg extend!");
2616 assert(VT.isInteger() && EVT.isInteger() &&
2617 "Cannot *_EXTEND_INREG FP types");
2618 assert(EVT.bitsLE(VT) && "Not extending!");
2619 if (VT == EVT) return N1; // noop assertion.
2620 break;
2622 case ISD::SIGN_EXTEND_INREG: {
2623 MVT EVT = cast<VTSDNode>(N2)->getVT();
2624 assert(VT == N1.getValueType() && "Not an inreg extend!");
2625 assert(VT.isInteger() && EVT.isInteger() &&
2626 "Cannot *_EXTEND_INREG FP types");
2627 assert(EVT.bitsLE(VT) && "Not extending!");
2628 if (EVT == VT) return N1; // Not actually extending
2630 if (N1C) {
2631 APInt Val = N1C->getAPIntValue();
2632 unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2633 Val <<= Val.getBitWidth()-FromBits;
2634 Val = Val.ashr(Val.getBitWidth()-FromBits);
2635 return getConstant(Val, VT);
2637 break;
2639 case ISD::EXTRACT_VECTOR_ELT:
2640 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2641 if (N1.getOpcode() == ISD::UNDEF)
2642 return getUNDEF(VT);
2644 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2645 // expanding copies of large vectors from registers.
2646 if (N2C &&
2647 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2648 N1.getNumOperands() > 0) {
2649 unsigned Factor =
2650 N1.getOperand(0).getValueType().getVectorNumElements();
2651 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2652 N1.getOperand(N2C->getZExtValue() / Factor),
2653 getConstant(N2C->getZExtValue() % Factor,
2654 N2.getValueType()));
2657 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2658 // expanding large vector constants.
2659 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2660 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2661 if (Elt.getValueType() != VT) {
2662 // If the vector element type is not legal, the BUILD_VECTOR operands
2663 // are promoted and implicitly truncated. Make that explicit here.
2664 assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2665 VT.bitsLE(Elt.getValueType()) &&
2666 "Bad type for BUILD_VECTOR operand");
2667 Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2669 return Elt;
2672 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2673 // operations are lowered to scalars.
2674 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2675 // If the indices are the same, return the inserted element.
2676 if (N1.getOperand(2) == N2)
2677 return N1.getOperand(1);
2678 // If the indices are known different, extract the element from
2679 // the original vector.
2680 else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2681 isa<ConstantSDNode>(N2))
2682 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2684 break;
2685 case ISD::EXTRACT_ELEMENT:
2686 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2687 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2688 (N1.getValueType().isInteger() == VT.isInteger()) &&
2689 "Wrong types for EXTRACT_ELEMENT!");
2691 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2692 // 64-bit integers into 32-bit parts. Instead of building the extract of
2693 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2694 if (N1.getOpcode() == ISD::BUILD_PAIR)
2695 return N1.getOperand(N2C->getZExtValue());
2697 // EXTRACT_ELEMENT of a constant int is also very common.
2698 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2699 unsigned ElementSize = VT.getSizeInBits();
2700 unsigned Shift = ElementSize * N2C->getZExtValue();
2701 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2702 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2704 break;
2705 case ISD::EXTRACT_SUBVECTOR:
2706 if (N1.getValueType() == VT) // Trivial extraction.
2707 return N1;
2708 break;
2711 if (N1C) {
2712 if (N2C) {
2713 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2714 if (SV.getNode()) return SV;
2715 } else { // Cannonicalize constant to RHS if commutative
2716 if (isCommutativeBinOp(Opcode)) {
2717 std::swap(N1C, N2C);
2718 std::swap(N1, N2);
2723 // Constant fold FP operations.
2724 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2725 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2726 if (N1CFP) {
2727 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2728 // Cannonicalize constant to RHS if commutative
2729 std::swap(N1CFP, N2CFP);
2730 std::swap(N1, N2);
2731 } else if (N2CFP && VT != MVT::ppcf128) {
2732 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2733 APFloat::opStatus s;
2734 switch (Opcode) {
2735 case ISD::FADD:
2736 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2737 if (s != APFloat::opInvalidOp)
2738 return getConstantFP(V1, VT);
2739 break;
2740 case ISD::FSUB:
2741 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2742 if (s!=APFloat::opInvalidOp)
2743 return getConstantFP(V1, VT);
2744 break;
2745 case ISD::FMUL:
2746 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2747 if (s!=APFloat::opInvalidOp)
2748 return getConstantFP(V1, VT);
2749 break;
2750 case ISD::FDIV:
2751 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2752 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2753 return getConstantFP(V1, VT);
2754 break;
2755 case ISD::FREM :
2756 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2757 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2758 return getConstantFP(V1, VT);
2759 break;
2760 case ISD::FCOPYSIGN:
2761 V1.copySign(V2);
2762 return getConstantFP(V1, VT);
2763 default: break;
2768 // Canonicalize an UNDEF to the RHS, even over a constant.
2769 if (N1.getOpcode() == ISD::UNDEF) {
2770 if (isCommutativeBinOp(Opcode)) {
2771 std::swap(N1, N2);
2772 } else {
2773 switch (Opcode) {
2774 case ISD::FP_ROUND_INREG:
2775 case ISD::SIGN_EXTEND_INREG:
2776 case ISD::SUB:
2777 case ISD::FSUB:
2778 case ISD::FDIV:
2779 case ISD::FREM:
2780 case ISD::SRA:
2781 return N1; // fold op(undef, arg2) -> undef
2782 case ISD::UDIV:
2783 case ISD::SDIV:
2784 case ISD::UREM:
2785 case ISD::SREM:
2786 case ISD::SRL:
2787 case ISD::SHL:
2788 if (!VT.isVector())
2789 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2790 // For vectors, we can't easily build an all zero vector, just return
2791 // the LHS.
2792 return N2;
2797 // Fold a bunch of operators when the RHS is undef.
2798 if (N2.getOpcode() == ISD::UNDEF) {
2799 switch (Opcode) {
2800 case ISD::XOR:
2801 if (N1.getOpcode() == ISD::UNDEF)
2802 // Handle undef ^ undef -> 0 special case. This is a common
2803 // idiom (misuse).
2804 return getConstant(0, VT);
2805 // fallthrough
2806 case ISD::ADD:
2807 case ISD::ADDC:
2808 case ISD::ADDE:
2809 case ISD::SUB:
2810 case ISD::FADD:
2811 case ISD::FSUB:
2812 case ISD::FMUL:
2813 case ISD::FDIV:
2814 case ISD::FREM:
2815 case ISD::UDIV:
2816 case ISD::SDIV:
2817 case ISD::UREM:
2818 case ISD::SREM:
2819 return N2; // fold op(arg1, undef) -> undef
2820 case ISD::MUL:
2821 case ISD::AND:
2822 case ISD::SRL:
2823 case ISD::SHL:
2824 if (!VT.isVector())
2825 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2826 // For vectors, we can't easily build an all zero vector, just return
2827 // the LHS.
2828 return N1;
2829 case ISD::OR:
2830 if (!VT.isVector())
2831 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2832 // For vectors, we can't easily build an all one vector, just return
2833 // the LHS.
2834 return N1;
2835 case ISD::SRA:
2836 return N1;
2840 // Memoize this node if possible.
2841 SDNode *N;
2842 SDVTList VTs = getVTList(VT);
2843 if (VT != MVT::Flag) {
2844 SDValue Ops[] = { N1, N2 };
2845 FoldingSetNodeID ID;
2846 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2847 void *IP = 0;
2848 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2849 return SDValue(E, 0);
2850 N = NodeAllocator.Allocate<BinarySDNode>();
2851 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2852 CSEMap.InsertNode(N, IP);
2853 } else {
2854 N = NodeAllocator.Allocate<BinarySDNode>();
2855 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2858 AllNodes.push_back(N);
2859 #ifndef NDEBUG
2860 VerifyNode(N);
2861 #endif
2862 return SDValue(N, 0);
2865 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2866 SDValue N1, SDValue N2, SDValue N3) {
2867 // Perform various simplifications.
2868 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2869 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2870 switch (Opcode) {
2871 case ISD::CONCAT_VECTORS:
2872 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2873 // one big BUILD_VECTOR.
2874 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2875 N2.getOpcode() == ISD::BUILD_VECTOR &&
2876 N3.getOpcode() == ISD::BUILD_VECTOR) {
2877 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2878 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2879 Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2880 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2882 break;
2883 case ISD::SETCC: {
2884 // Use FoldSetCC to simplify SETCC's.
2885 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2886 if (Simp.getNode()) return Simp;
2887 break;
2889 case ISD::SELECT:
2890 if (N1C) {
2891 if (N1C->getZExtValue())
2892 return N2; // select true, X, Y -> X
2893 else
2894 return N3; // select false, X, Y -> Y
2897 if (N2 == N3) return N2; // select C, X, X -> X
2898 break;
2899 case ISD::BRCOND:
2900 if (N2C) {
2901 if (N2C->getZExtValue()) // Unconditional branch
2902 return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2903 else
2904 return N1; // Never-taken branch
2906 break;
2907 case ISD::VECTOR_SHUFFLE:
2908 assert(0 && "should use getVectorShuffle constructor!");
2909 break;
2910 case ISD::BIT_CONVERT:
2911 // Fold bit_convert nodes from a type to themselves.
2912 if (N1.getValueType() == VT)
2913 return N1;
2914 break;
2917 // Memoize node if it doesn't produce a flag.
2918 SDNode *N;
2919 SDVTList VTs = getVTList(VT);
2920 if (VT != MVT::Flag) {
2921 SDValue Ops[] = { N1, N2, N3 };
2922 FoldingSetNodeID ID;
2923 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2924 void *IP = 0;
2925 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2926 return SDValue(E, 0);
2927 N = NodeAllocator.Allocate<TernarySDNode>();
2928 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2929 CSEMap.InsertNode(N, IP);
2930 } else {
2931 N = NodeAllocator.Allocate<TernarySDNode>();
2932 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2934 AllNodes.push_back(N);
2935 #ifndef NDEBUG
2936 VerifyNode(N);
2937 #endif
2938 return SDValue(N, 0);
2941 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2942 SDValue N1, SDValue N2, SDValue N3,
2943 SDValue N4) {
2944 SDValue Ops[] = { N1, N2, N3, N4 };
2945 return getNode(Opcode, DL, VT, Ops, 4);
2948 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2949 SDValue N1, SDValue N2, SDValue N3,
2950 SDValue N4, SDValue N5) {
2951 SDValue Ops[] = { N1, N2, N3, N4, N5 };
2952 return getNode(Opcode, DL, VT, Ops, 5);
2955 /// getMemsetValue - Vectorized representation of the memset value
2956 /// operand.
2957 static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2958 DebugLoc dl) {
2959 unsigned NumBits = VT.isVector() ?
2960 VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2961 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2962 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2963 unsigned Shift = 8;
2964 for (unsigned i = NumBits; i > 8; i >>= 1) {
2965 Val = (Val << Shift) | Val;
2966 Shift <<= 1;
2968 if (VT.isInteger())
2969 return DAG.getConstant(Val, VT);
2970 return DAG.getConstantFP(APFloat(Val), VT);
2973 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2974 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2975 unsigned Shift = 8;
2976 for (unsigned i = NumBits; i > 8; i >>= 1) {
2977 Value = DAG.getNode(ISD::OR, dl, VT,
2978 DAG.getNode(ISD::SHL, dl, VT, Value,
2979 DAG.getConstant(Shift,
2980 TLI.getShiftAmountTy())),
2981 Value);
2982 Shift <<= 1;
2985 return Value;
2988 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2989 /// used when a memcpy is turned into a memset when the source is a constant
2990 /// string ptr.
2991 static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2992 const TargetLowering &TLI,
2993 std::string &Str, unsigned Offset) {
2994 // Handle vector with all elements zero.
2995 if (Str.empty()) {
2996 if (VT.isInteger())
2997 return DAG.getConstant(0, VT);
2998 unsigned NumElts = VT.getVectorNumElements();
2999 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3000 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3001 DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3004 assert(!VT.isVector() && "Can't handle vector type here!");
3005 unsigned NumBits = VT.getSizeInBits();
3006 unsigned MSB = NumBits / 8;
3007 uint64_t Val = 0;
3008 if (TLI.isLittleEndian())
3009 Offset = Offset + MSB - 1;
3010 for (unsigned i = 0; i != MSB; ++i) {
3011 Val = (Val << 8) | (unsigned char)Str[Offset];
3012 Offset += TLI.isLittleEndian() ? -1 : 1;
3014 return DAG.getConstant(Val, VT);
3017 /// getMemBasePlusOffset - Returns base and offset node for the
3019 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3020 SelectionDAG &DAG) {
3021 MVT VT = Base.getValueType();
3022 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3023 VT, Base, DAG.getConstant(Offset, VT));
3026 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3028 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3029 unsigned SrcDelta = 0;
3030 GlobalAddressSDNode *G = NULL;
3031 if (Src.getOpcode() == ISD::GlobalAddress)
3032 G = cast<GlobalAddressSDNode>(Src);
3033 else if (Src.getOpcode() == ISD::ADD &&
3034 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3035 Src.getOperand(1).getOpcode() == ISD::Constant) {
3036 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3037 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3039 if (!G)
3040 return false;
3042 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3043 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3044 return true;
3046 return false;
3049 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3050 /// to replace the memset / memcpy is below the threshold. It also returns the
3051 /// types of the sequence of memory ops to perform memset / memcpy.
3052 static
3053 bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3054 SDValue Dst, SDValue Src,
3055 unsigned Limit, uint64_t Size, unsigned &Align,
3056 std::string &Str, bool &isSrcStr,
3057 SelectionDAG &DAG,
3058 const TargetLowering &TLI) {
3059 isSrcStr = isMemSrcFromString(Src, Str);
3060 bool isSrcConst = isa<ConstantSDNode>(Src);
3061 bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3062 MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3063 if (VT != MVT::iAny) {
3064 unsigned NewAlign = (unsigned)
3065 TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3066 // If source is a string constant, this will require an unaligned load.
3067 if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3068 if (Dst.getOpcode() != ISD::FrameIndex) {
3069 // Can't change destination alignment. It requires a unaligned store.
3070 if (AllowUnalign)
3071 VT = MVT::iAny;
3072 } else {
3073 int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3074 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3075 if (MFI->isFixedObjectIndex(FI)) {
3076 // Can't change destination alignment. It requires a unaligned store.
3077 if (AllowUnalign)
3078 VT = MVT::iAny;
3079 } else {
3080 // Give the stack frame object a larger alignment if needed.
3081 if (MFI->getObjectAlignment(FI) < NewAlign)
3082 MFI->setObjectAlignment(FI, NewAlign);
3083 Align = NewAlign;
3089 if (VT == MVT::iAny) {
3090 if (AllowUnalign) {
3091 VT = MVT::i64;
3092 } else {
3093 switch (Align & 7) {
3094 case 0: VT = MVT::i64; break;
3095 case 4: VT = MVT::i32; break;
3096 case 2: VT = MVT::i16; break;
3097 default: VT = MVT::i8; break;
3101 MVT LVT = MVT::i64;
3102 while (!TLI.isTypeLegal(LVT))
3103 LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3104 assert(LVT.isInteger());
3106 if (VT.bitsGT(LVT))
3107 VT = LVT;
3110 unsigned NumMemOps = 0;
3111 while (Size != 0) {
3112 unsigned VTSize = VT.getSizeInBits() / 8;
3113 while (VTSize > Size) {
3114 // For now, only use non-vector load / store's for the left-over pieces.
3115 if (VT.isVector()) {
3116 VT = MVT::i64;
3117 while (!TLI.isTypeLegal(VT))
3118 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3119 VTSize = VT.getSizeInBits() / 8;
3120 } else {
3121 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3122 VTSize >>= 1;
3126 if (++NumMemOps > Limit)
3127 return false;
3128 MemOps.push_back(VT);
3129 Size -= VTSize;
3132 return true;
3135 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3136 SDValue Chain, SDValue Dst,
3137 SDValue Src, uint64_t Size,
3138 unsigned Align, bool AlwaysInline,
3139 const Value *DstSV, uint64_t DstSVOff,
3140 const Value *SrcSV, uint64_t SrcSVOff){
3141 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3143 // Expand memcpy to a series of load and store ops if the size operand falls
3144 // below a certain threshold.
3145 std::vector<MVT> MemOps;
3146 uint64_t Limit = -1ULL;
3147 if (!AlwaysInline)
3148 Limit = TLI.getMaxStoresPerMemcpy();
3149 unsigned DstAlign = Align; // Destination alignment can change.
3150 std::string Str;
3151 bool CopyFromStr;
3152 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3153 Str, CopyFromStr, DAG, TLI))
3154 return SDValue();
3157 bool isZeroStr = CopyFromStr && Str.empty();
3158 SmallVector<SDValue, 8> OutChains;
3159 unsigned NumMemOps = MemOps.size();
3160 uint64_t SrcOff = 0, DstOff = 0;
3161 for (unsigned i = 0; i < NumMemOps; i++) {
3162 MVT VT = MemOps[i];
3163 unsigned VTSize = VT.getSizeInBits() / 8;
3164 SDValue Value, Store;
3166 if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3167 // It's unlikely a store of a vector immediate can be done in a single
3168 // instruction. It would require a load from a constantpool first.
3169 // We also handle store a vector with all zero's.
3170 // FIXME: Handle other cases where store of vector immediate is done in
3171 // a single instruction.
3172 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3173 Store = DAG.getStore(Chain, dl, Value,
3174 getMemBasePlusOffset(Dst, DstOff, DAG),
3175 DstSV, DstSVOff + DstOff, false, DstAlign);
3176 } else {
3177 Value = DAG.getLoad(VT, dl, Chain,
3178 getMemBasePlusOffset(Src, SrcOff, DAG),
3179 SrcSV, SrcSVOff + SrcOff, false, Align);
3180 Store = DAG.getStore(Chain, dl, Value,
3181 getMemBasePlusOffset(Dst, DstOff, DAG),
3182 DstSV, DstSVOff + DstOff, false, DstAlign);
3184 OutChains.push_back(Store);
3185 SrcOff += VTSize;
3186 DstOff += VTSize;
3189 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3190 &OutChains[0], OutChains.size());
3193 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3194 SDValue Chain, SDValue Dst,
3195 SDValue Src, uint64_t Size,
3196 unsigned Align, bool AlwaysInline,
3197 const Value *DstSV, uint64_t DstSVOff,
3198 const Value *SrcSV, uint64_t SrcSVOff){
3199 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3201 // Expand memmove to a series of load and store ops if the size operand falls
3202 // below a certain threshold.
3203 std::vector<MVT> MemOps;
3204 uint64_t Limit = -1ULL;
3205 if (!AlwaysInline)
3206 Limit = TLI.getMaxStoresPerMemmove();
3207 unsigned DstAlign = Align; // Destination alignment can change.
3208 std::string Str;
3209 bool CopyFromStr;
3210 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3211 Str, CopyFromStr, DAG, TLI))
3212 return SDValue();
3214 uint64_t SrcOff = 0, DstOff = 0;
3216 SmallVector<SDValue, 8> LoadValues;
3217 SmallVector<SDValue, 8> LoadChains;
3218 SmallVector<SDValue, 8> OutChains;
3219 unsigned NumMemOps = MemOps.size();
3220 for (unsigned i = 0; i < NumMemOps; i++) {
3221 MVT VT = MemOps[i];
3222 unsigned VTSize = VT.getSizeInBits() / 8;
3223 SDValue Value, Store;
3225 Value = DAG.getLoad(VT, dl, Chain,
3226 getMemBasePlusOffset(Src, SrcOff, DAG),
3227 SrcSV, SrcSVOff + SrcOff, false, Align);
3228 LoadValues.push_back(Value);
3229 LoadChains.push_back(Value.getValue(1));
3230 SrcOff += VTSize;
3232 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3233 &LoadChains[0], LoadChains.size());
3234 OutChains.clear();
3235 for (unsigned i = 0; i < NumMemOps; i++) {
3236 MVT VT = MemOps[i];
3237 unsigned VTSize = VT.getSizeInBits() / 8;
3238 SDValue Value, Store;
3240 Store = DAG.getStore(Chain, dl, LoadValues[i],
3241 getMemBasePlusOffset(Dst, DstOff, DAG),
3242 DstSV, DstSVOff + DstOff, false, DstAlign);
3243 OutChains.push_back(Store);
3244 DstOff += VTSize;
3247 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3248 &OutChains[0], OutChains.size());
3251 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3252 SDValue Chain, SDValue Dst,
3253 SDValue Src, uint64_t Size,
3254 unsigned Align,
3255 const Value *DstSV, uint64_t DstSVOff) {
3256 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3258 // Expand memset to a series of load/store ops if the size operand
3259 // falls below a certain threshold.
3260 std::vector<MVT> MemOps;
3261 std::string Str;
3262 bool CopyFromStr;
3263 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3264 Size, Align, Str, CopyFromStr, DAG, TLI))
3265 return SDValue();
3267 SmallVector<SDValue, 8> OutChains;
3268 uint64_t DstOff = 0;
3270 unsigned NumMemOps = MemOps.size();
3271 for (unsigned i = 0; i < NumMemOps; i++) {
3272 MVT VT = MemOps[i];
3273 unsigned VTSize = VT.getSizeInBits() / 8;
3274 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3275 SDValue Store = DAG.getStore(Chain, dl, Value,
3276 getMemBasePlusOffset(Dst, DstOff, DAG),
3277 DstSV, DstSVOff + DstOff);
3278 OutChains.push_back(Store);
3279 DstOff += VTSize;
3282 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3283 &OutChains[0], OutChains.size());
3286 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3287 SDValue Src, SDValue Size,
3288 unsigned Align, bool AlwaysInline,
3289 const Value *DstSV, uint64_t DstSVOff,
3290 const Value *SrcSV, uint64_t SrcSVOff) {
3292 // Check to see if we should lower the memcpy to loads and stores first.
3293 // For cases within the target-specified limits, this is the best choice.
3294 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3295 if (ConstantSize) {
3296 // Memcpy with size zero? Just return the original chain.
3297 if (ConstantSize->isNullValue())
3298 return Chain;
3300 SDValue Result =
3301 getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3302 ConstantSize->getZExtValue(),
3303 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3304 if (Result.getNode())
3305 return Result;
3308 // Then check to see if we should lower the memcpy with target-specific
3309 // code. If the target chooses to do this, this is the next best.
3310 SDValue Result =
3311 TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3312 AlwaysInline,
3313 DstSV, DstSVOff, SrcSV, SrcSVOff);
3314 if (Result.getNode())
3315 return Result;
3317 // If we really need inline code and the target declined to provide it,
3318 // use a (potentially long) sequence of loads and stores.
3319 if (AlwaysInline) {
3320 assert(ConstantSize && "AlwaysInline requires a constant size!");
3321 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3322 ConstantSize->getZExtValue(), Align, true,
3323 DstSV, DstSVOff, SrcSV, SrcSVOff);
3326 // Emit a library call.
3327 TargetLowering::ArgListTy Args;
3328 TargetLowering::ArgListEntry Entry;
3329 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3330 Entry.Node = Dst; Args.push_back(Entry);
3331 Entry.Node = Src; Args.push_back(Entry);
3332 Entry.Node = Size; Args.push_back(Entry);
3333 // FIXME: pass in DebugLoc
3334 std::pair<SDValue,SDValue> CallResult =
3335 TLI.LowerCallTo(Chain, Type::VoidTy,
3336 false, false, false, false, CallingConv::C, false,
3337 getExternalSymbol("memcpy", TLI.getPointerTy()),
3338 Args, *this, dl);
3339 return CallResult.second;
3342 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3343 SDValue Src, SDValue Size,
3344 unsigned Align,
3345 const Value *DstSV, uint64_t DstSVOff,
3346 const Value *SrcSV, uint64_t SrcSVOff) {
3348 // Check to see if we should lower the memmove to loads and stores first.
3349 // For cases within the target-specified limits, this is the best choice.
3350 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3351 if (ConstantSize) {
3352 // Memmove with size zero? Just return the original chain.
3353 if (ConstantSize->isNullValue())
3354 return Chain;
3356 SDValue Result =
3357 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3358 ConstantSize->getZExtValue(),
3359 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3360 if (Result.getNode())
3361 return Result;
3364 // Then check to see if we should lower the memmove with target-specific
3365 // code. If the target chooses to do this, this is the next best.
3366 SDValue Result =
3367 TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3368 DstSV, DstSVOff, SrcSV, SrcSVOff);
3369 if (Result.getNode())
3370 return Result;
3372 // Emit a library call.
3373 TargetLowering::ArgListTy Args;
3374 TargetLowering::ArgListEntry Entry;
3375 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3376 Entry.Node = Dst; Args.push_back(Entry);
3377 Entry.Node = Src; Args.push_back(Entry);
3378 Entry.Node = Size; Args.push_back(Entry);
3379 // FIXME: pass in DebugLoc
3380 std::pair<SDValue,SDValue> CallResult =
3381 TLI.LowerCallTo(Chain, Type::VoidTy,
3382 false, false, false, false, CallingConv::C, false,
3383 getExternalSymbol("memmove", TLI.getPointerTy()),
3384 Args, *this, dl);
3385 return CallResult.second;
3388 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3389 SDValue Src, SDValue Size,
3390 unsigned Align,
3391 const Value *DstSV, uint64_t DstSVOff) {
3393 // Check to see if we should lower the memset to stores first.
3394 // For cases within the target-specified limits, this is the best choice.
3395 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3396 if (ConstantSize) {
3397 // Memset with size zero? Just return the original chain.
3398 if (ConstantSize->isNullValue())
3399 return Chain;
3401 SDValue Result =
3402 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3403 Align, DstSV, DstSVOff);
3404 if (Result.getNode())
3405 return Result;
3408 // Then check to see if we should lower the memset with target-specific
3409 // code. If the target chooses to do this, this is the next best.
3410 SDValue Result =
3411 TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3412 DstSV, DstSVOff);
3413 if (Result.getNode())
3414 return Result;
3416 // Emit a library call.
3417 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3418 TargetLowering::ArgListTy Args;
3419 TargetLowering::ArgListEntry Entry;
3420 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3421 Args.push_back(Entry);
3422 // Extend or truncate the argument to be an i32 value for the call.
3423 if (Src.getValueType().bitsGT(MVT::i32))
3424 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3425 else
3426 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3427 Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3428 Args.push_back(Entry);
3429 Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3430 Args.push_back(Entry);
3431 // FIXME: pass in DebugLoc
3432 std::pair<SDValue,SDValue> CallResult =
3433 TLI.LowerCallTo(Chain, Type::VoidTy,
3434 false, false, false, false, CallingConv::C, false,
3435 getExternalSymbol("memset", TLI.getPointerTy()),
3436 Args, *this, dl);
3437 return CallResult.second;
3440 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3441 SDValue Chain,
3442 SDValue Ptr, SDValue Cmp,
3443 SDValue Swp, const Value* PtrVal,
3444 unsigned Alignment) {
3445 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3446 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3448 MVT VT = Cmp.getValueType();
3450 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3451 Alignment = getMVTAlignment(MemVT);
3453 SDVTList VTs = getVTList(VT, MVT::Other);
3454 FoldingSetNodeID ID;
3455 ID.AddInteger(MemVT.getRawBits());
3456 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3457 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3458 void* IP = 0;
3459 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3460 return SDValue(E, 0);
3461 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3462 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3463 Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3464 CSEMap.InsertNode(N, IP);
3465 AllNodes.push_back(N);
3466 return SDValue(N, 0);
3469 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3470 SDValue Chain,
3471 SDValue Ptr, SDValue Val,
3472 const Value* PtrVal,
3473 unsigned Alignment) {
3474 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3475 Opcode == ISD::ATOMIC_LOAD_SUB ||
3476 Opcode == ISD::ATOMIC_LOAD_AND ||
3477 Opcode == ISD::ATOMIC_LOAD_OR ||
3478 Opcode == ISD::ATOMIC_LOAD_XOR ||
3479 Opcode == ISD::ATOMIC_LOAD_NAND ||
3480 Opcode == ISD::ATOMIC_LOAD_MIN ||
3481 Opcode == ISD::ATOMIC_LOAD_MAX ||
3482 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3483 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3484 Opcode == ISD::ATOMIC_SWAP) &&
3485 "Invalid Atomic Op");
3487 MVT VT = Val.getValueType();
3489 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3490 Alignment = getMVTAlignment(MemVT);
3492 SDVTList VTs = getVTList(VT, MVT::Other);
3493 FoldingSetNodeID ID;
3494 ID.AddInteger(MemVT.getRawBits());
3495 SDValue Ops[] = {Chain, Ptr, Val};
3496 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3497 void* IP = 0;
3498 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3499 return SDValue(E, 0);
3500 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3501 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3502 Chain, Ptr, Val, PtrVal, Alignment);
3503 CSEMap.InsertNode(N, IP);
3504 AllNodes.push_back(N);
3505 return SDValue(N, 0);
3508 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3509 /// Allowed to return something different (and simpler) if Simplify is true.
3510 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3511 DebugLoc dl) {
3512 if (NumOps == 1)
3513 return Ops[0];
3515 SmallVector<MVT, 4> VTs;
3516 VTs.reserve(NumOps);
3517 for (unsigned i = 0; i < NumOps; ++i)
3518 VTs.push_back(Ops[i].getValueType());
3519 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3520 Ops, NumOps);
3523 SDValue
3524 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3525 const MVT *VTs, unsigned NumVTs,
3526 const SDValue *Ops, unsigned NumOps,
3527 MVT MemVT, const Value *srcValue, int SVOff,
3528 unsigned Align, bool Vol,
3529 bool ReadMem, bool WriteMem) {
3530 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3531 MemVT, srcValue, SVOff, Align, Vol,
3532 ReadMem, WriteMem);
3535 SDValue
3536 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3537 const SDValue *Ops, unsigned NumOps,
3538 MVT MemVT, const Value *srcValue, int SVOff,
3539 unsigned Align, bool Vol,
3540 bool ReadMem, bool WriteMem) {
3541 // Memoize the node unless it returns a flag.
3542 MemIntrinsicSDNode *N;
3543 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3544 FoldingSetNodeID ID;
3545 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3546 void *IP = 0;
3547 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3548 return SDValue(E, 0);
3550 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3551 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3552 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3553 CSEMap.InsertNode(N, IP);
3554 } else {
3555 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3556 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3557 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3559 AllNodes.push_back(N);
3560 return SDValue(N, 0);
3563 SDValue
3564 SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3565 bool IsTailCall, bool IsInreg, SDVTList VTs,
3566 const SDValue *Operands, unsigned NumOperands) {
3567 // Do not include isTailCall in the folding set profile.
3568 FoldingSetNodeID ID;
3569 AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3570 ID.AddInteger(CallingConv);
3571 ID.AddInteger(IsVarArgs);
3572 void *IP = 0;
3573 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3574 // Instead of including isTailCall in the folding set, we just
3575 // set the flag of the existing node.
3576 if (!IsTailCall)
3577 cast<CallSDNode>(E)->setNotTailCall();
3578 return SDValue(E, 0);
3580 SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3581 new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3582 VTs, Operands, NumOperands);
3583 CSEMap.InsertNode(N, IP);
3584 AllNodes.push_back(N);
3585 return SDValue(N, 0);
3588 SDValue
3589 SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3590 ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3591 SDValue Ptr, SDValue Offset,
3592 const Value *SV, int SVOffset, MVT EVT,
3593 bool isVolatile, unsigned Alignment) {
3594 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3595 Alignment = getMVTAlignment(VT);
3597 if (VT == EVT) {
3598 ExtType = ISD::NON_EXTLOAD;
3599 } else if (ExtType == ISD::NON_EXTLOAD) {
3600 assert(VT == EVT && "Non-extending load from different memory type!");
3601 } else {
3602 // Extending load.
3603 if (VT.isVector())
3604 assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3605 "Invalid vector extload!");
3606 else
3607 assert(EVT.bitsLT(VT) &&
3608 "Should only be an extending load, not truncating!");
3609 assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3610 "Cannot sign/zero extend a FP/Vector load!");
3611 assert(VT.isInteger() == EVT.isInteger() &&
3612 "Cannot convert from FP to Int or Int -> FP!");
3615 bool Indexed = AM != ISD::UNINDEXED;
3616 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3617 "Unindexed load with an offset!");
3619 SDVTList VTs = Indexed ?
3620 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3621 SDValue Ops[] = { Chain, Ptr, Offset };
3622 FoldingSetNodeID ID;
3623 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3624 ID.AddInteger(EVT.getRawBits());
3625 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3626 void *IP = 0;
3627 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3628 return SDValue(E, 0);
3629 SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3630 new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3631 Alignment, isVolatile);
3632 CSEMap.InsertNode(N, IP);
3633 AllNodes.push_back(N);
3634 return SDValue(N, 0);
3637 SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3638 SDValue Chain, SDValue Ptr,
3639 const Value *SV, int SVOffset,
3640 bool isVolatile, unsigned Alignment) {
3641 SDValue Undef = getUNDEF(Ptr.getValueType());
3642 return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3643 SV, SVOffset, VT, isVolatile, Alignment);
3646 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3647 SDValue Chain, SDValue Ptr,
3648 const Value *SV,
3649 int SVOffset, MVT EVT,
3650 bool isVolatile, unsigned Alignment) {
3651 SDValue Undef = getUNDEF(Ptr.getValueType());
3652 return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3653 SV, SVOffset, EVT, isVolatile, Alignment);
3656 SDValue
3657 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3658 SDValue Offset, ISD::MemIndexedMode AM) {
3659 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3660 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3661 "Load is already a indexed load!");
3662 return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3663 LD->getChain(), Base, Offset, LD->getSrcValue(),
3664 LD->getSrcValueOffset(), LD->getMemoryVT(),
3665 LD->isVolatile(), LD->getAlignment());
3668 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3669 SDValue Ptr, const Value *SV, int SVOffset,
3670 bool isVolatile, unsigned Alignment) {
3671 MVT VT = Val.getValueType();
3673 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3674 Alignment = getMVTAlignment(VT);
3676 SDVTList VTs = getVTList(MVT::Other);
3677 SDValue Undef = getUNDEF(Ptr.getValueType());
3678 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3679 FoldingSetNodeID ID;
3680 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3681 ID.AddInteger(VT.getRawBits());
3682 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3683 isVolatile, Alignment));
3684 void *IP = 0;
3685 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3686 return SDValue(E, 0);
3687 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3688 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3689 VT, SV, SVOffset, Alignment, isVolatile);
3690 CSEMap.InsertNode(N, IP);
3691 AllNodes.push_back(N);
3692 return SDValue(N, 0);
3695 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3696 SDValue Ptr, const Value *SV,
3697 int SVOffset, MVT SVT,
3698 bool isVolatile, unsigned Alignment) {
3699 MVT VT = Val.getValueType();
3701 if (VT == SVT)
3702 return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3704 assert(VT.bitsGT(SVT) && "Not a truncation?");
3705 assert(VT.isInteger() == SVT.isInteger() &&
3706 "Can't do FP-INT conversion!");
3708 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3709 Alignment = getMVTAlignment(VT);
3711 SDVTList VTs = getVTList(MVT::Other);
3712 SDValue Undef = getUNDEF(Ptr.getValueType());
3713 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3714 FoldingSetNodeID ID;
3715 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3716 ID.AddInteger(SVT.getRawBits());
3717 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3718 isVolatile, Alignment));
3719 void *IP = 0;
3720 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3721 return SDValue(E, 0);
3722 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3723 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3724 SVT, SV, SVOffset, Alignment, isVolatile);
3725 CSEMap.InsertNode(N, IP);
3726 AllNodes.push_back(N);
3727 return SDValue(N, 0);
3730 SDValue
3731 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3732 SDValue Offset, ISD::MemIndexedMode AM) {
3733 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3734 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3735 "Store is already a indexed store!");
3736 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3737 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3738 FoldingSetNodeID ID;
3739 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3740 ID.AddInteger(ST->getMemoryVT().getRawBits());
3741 ID.AddInteger(ST->getRawSubclassData());
3742 void *IP = 0;
3743 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3744 return SDValue(E, 0);
3745 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3746 new (N) StoreSDNode(Ops, dl, VTs, AM,
3747 ST->isTruncatingStore(), ST->getMemoryVT(),
3748 ST->getSrcValue(), ST->getSrcValueOffset(),
3749 ST->getAlignment(), ST->isVolatile());
3750 CSEMap.InsertNode(N, IP);
3751 AllNodes.push_back(N);
3752 return SDValue(N, 0);
3755 SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3756 SDValue Chain, SDValue Ptr,
3757 SDValue SV) {
3758 SDValue Ops[] = { Chain, Ptr, SV };
3759 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3762 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3763 const SDUse *Ops, unsigned NumOps) {
3764 switch (NumOps) {
3765 case 0: return getNode(Opcode, DL, VT);
3766 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3767 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3768 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3769 default: break;
3772 // Copy from an SDUse array into an SDValue array for use with
3773 // the regular getNode logic.
3774 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3775 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3778 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3779 const SDValue *Ops, unsigned NumOps) {
3780 switch (NumOps) {
3781 case 0: return getNode(Opcode, DL, VT);
3782 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3783 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3784 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3785 default: break;
3788 switch (Opcode) {
3789 default: break;
3790 case ISD::SELECT_CC: {
3791 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3792 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3793 "LHS and RHS of condition must have same type!");
3794 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3795 "True and False arms of SelectCC must have same type!");
3796 assert(Ops[2].getValueType() == VT &&
3797 "select_cc node must be of same type as true and false value!");
3798 break;
3800 case ISD::BR_CC: {
3801 assert(NumOps == 5 && "BR_CC takes 5 operands!");
3802 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3803 "LHS/RHS of comparison should match types!");
3804 break;
3808 // Memoize nodes.
3809 SDNode *N;
3810 SDVTList VTs = getVTList(VT);
3812 if (VT != MVT::Flag) {
3813 FoldingSetNodeID ID;
3814 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3815 void *IP = 0;
3817 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3818 return SDValue(E, 0);
3820 N = NodeAllocator.Allocate<SDNode>();
3821 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3822 CSEMap.InsertNode(N, IP);
3823 } else {
3824 N = NodeAllocator.Allocate<SDNode>();
3825 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3828 AllNodes.push_back(N);
3829 #ifndef NDEBUG
3830 VerifyNode(N);
3831 #endif
3832 return SDValue(N, 0);
3835 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3836 const std::vector<MVT> &ResultTys,
3837 const SDValue *Ops, unsigned NumOps) {
3838 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3839 Ops, NumOps);
3842 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3843 const MVT *VTs, unsigned NumVTs,
3844 const SDValue *Ops, unsigned NumOps) {
3845 if (NumVTs == 1)
3846 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3847 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3850 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3851 const SDValue *Ops, unsigned NumOps) {
3852 if (VTList.NumVTs == 1)
3853 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3855 switch (Opcode) {
3856 // FIXME: figure out how to safely handle things like
3857 // int foo(int x) { return 1 << (x & 255); }
3858 // int bar() { return foo(256); }
3859 #if 0
3860 case ISD::SRA_PARTS:
3861 case ISD::SRL_PARTS:
3862 case ISD::SHL_PARTS:
3863 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3864 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3865 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3866 else if (N3.getOpcode() == ISD::AND)
3867 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3868 // If the and is only masking out bits that cannot effect the shift,
3869 // eliminate the and.
3870 unsigned NumBits = VT.getSizeInBits()*2;
3871 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3872 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3874 break;
3875 #endif
3878 // Memoize the node unless it returns a flag.
3879 SDNode *N;
3880 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3881 FoldingSetNodeID ID;
3882 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3883 void *IP = 0;
3884 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3885 return SDValue(E, 0);
3886 if (NumOps == 1) {
3887 N = NodeAllocator.Allocate<UnarySDNode>();
3888 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3889 } else if (NumOps == 2) {
3890 N = NodeAllocator.Allocate<BinarySDNode>();
3891 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3892 } else if (NumOps == 3) {
3893 N = NodeAllocator.Allocate<TernarySDNode>();
3894 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3895 } else {
3896 N = NodeAllocator.Allocate<SDNode>();
3897 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3899 CSEMap.InsertNode(N, IP);
3900 } else {
3901 if (NumOps == 1) {
3902 N = NodeAllocator.Allocate<UnarySDNode>();
3903 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3904 } else if (NumOps == 2) {
3905 N = NodeAllocator.Allocate<BinarySDNode>();
3906 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3907 } else if (NumOps == 3) {
3908 N = NodeAllocator.Allocate<TernarySDNode>();
3909 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3910 } else {
3911 N = NodeAllocator.Allocate<SDNode>();
3912 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3915 AllNodes.push_back(N);
3916 #ifndef NDEBUG
3917 VerifyNode(N);
3918 #endif
3919 return SDValue(N, 0);
3922 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3923 return getNode(Opcode, DL, VTList, 0, 0);
3926 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3927 SDValue N1) {
3928 SDValue Ops[] = { N1 };
3929 return getNode(Opcode, DL, VTList, Ops, 1);
3932 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3933 SDValue N1, SDValue N2) {
3934 SDValue Ops[] = { N1, N2 };
3935 return getNode(Opcode, DL, VTList, Ops, 2);
3938 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3939 SDValue N1, SDValue N2, SDValue N3) {
3940 SDValue Ops[] = { N1, N2, N3 };
3941 return getNode(Opcode, DL, VTList, Ops, 3);
3944 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3945 SDValue N1, SDValue N2, SDValue N3,
3946 SDValue N4) {
3947 SDValue Ops[] = { N1, N2, N3, N4 };
3948 return getNode(Opcode, DL, VTList, Ops, 4);
3951 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3952 SDValue N1, SDValue N2, SDValue N3,
3953 SDValue N4, SDValue N5) {
3954 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3955 return getNode(Opcode, DL, VTList, Ops, 5);
3958 SDVTList SelectionDAG::getVTList(MVT VT) {
3959 return makeVTList(SDNode::getValueTypeList(VT), 1);
3962 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3963 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3964 E = VTList.rend(); I != E; ++I)
3965 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3966 return *I;
3968 MVT *Array = Allocator.Allocate<MVT>(2);
3969 Array[0] = VT1;
3970 Array[1] = VT2;
3971 SDVTList Result = makeVTList(Array, 2);
3972 VTList.push_back(Result);
3973 return Result;
3976 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3977 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3978 E = VTList.rend(); I != E; ++I)
3979 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3980 I->VTs[2] == VT3)
3981 return *I;
3983 MVT *Array = Allocator.Allocate<MVT>(3);
3984 Array[0] = VT1;
3985 Array[1] = VT2;
3986 Array[2] = VT3;
3987 SDVTList Result = makeVTList(Array, 3);
3988 VTList.push_back(Result);
3989 return Result;
3992 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3993 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3994 E = VTList.rend(); I != E; ++I)
3995 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3996 I->VTs[2] == VT3 && I->VTs[3] == VT4)
3997 return *I;
3999 MVT *Array = Allocator.Allocate<MVT>(3);
4000 Array[0] = VT1;
4001 Array[1] = VT2;
4002 Array[2] = VT3;
4003 Array[3] = VT4;
4004 SDVTList Result = makeVTList(Array, 4);
4005 VTList.push_back(Result);
4006 return Result;
4009 SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4010 switch (NumVTs) {
4011 case 0: assert(0 && "Cannot have nodes without results!");
4012 case 1: return getVTList(VTs[0]);
4013 case 2: return getVTList(VTs[0], VTs[1]);
4014 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4015 default: break;
4018 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4019 E = VTList.rend(); I != E; ++I) {
4020 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4021 continue;
4023 bool NoMatch = false;
4024 for (unsigned i = 2; i != NumVTs; ++i)
4025 if (VTs[i] != I->VTs[i]) {
4026 NoMatch = true;
4027 break;
4029 if (!NoMatch)
4030 return *I;
4033 MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4034 std::copy(VTs, VTs+NumVTs, Array);
4035 SDVTList Result = makeVTList(Array, NumVTs);
4036 VTList.push_back(Result);
4037 return Result;
4041 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4042 /// specified operands. If the resultant node already exists in the DAG,
4043 /// this does not modify the specified node, instead it returns the node that
4044 /// already exists. If the resultant node does not exist in the DAG, the
4045 /// input node is returned. As a degenerate case, if you specify the same
4046 /// input operands as the node already has, the input node is returned.
4047 SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4048 SDNode *N = InN.getNode();
4049 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4051 // Check to see if there is no change.
4052 if (Op == N->getOperand(0)) return InN;
4054 // See if the modified node already exists.
4055 void *InsertPos = 0;
4056 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4057 return SDValue(Existing, InN.getResNo());
4059 // Nope it doesn't. Remove the node from its current place in the maps.
4060 if (InsertPos)
4061 if (!RemoveNodeFromCSEMaps(N))
4062 InsertPos = 0;
4064 // Now we update the operands.
4065 N->OperandList[0].set(Op);
4067 // If this gets put into a CSE map, add it.
4068 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4069 return InN;
4072 SDValue SelectionDAG::
4073 UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4074 SDNode *N = InN.getNode();
4075 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4077 // Check to see if there is no change.
4078 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4079 return InN; // No operands changed, just return the input node.
4081 // See if the modified node already exists.
4082 void *InsertPos = 0;
4083 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4084 return SDValue(Existing, InN.getResNo());
4086 // Nope it doesn't. Remove the node from its current place in the maps.
4087 if (InsertPos)
4088 if (!RemoveNodeFromCSEMaps(N))
4089 InsertPos = 0;
4091 // Now we update the operands.
4092 if (N->OperandList[0] != Op1)
4093 N->OperandList[0].set(Op1);
4094 if (N->OperandList[1] != Op2)
4095 N->OperandList[1].set(Op2);
4097 // If this gets put into a CSE map, add it.
4098 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4099 return InN;
4102 SDValue SelectionDAG::
4103 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4104 SDValue Ops[] = { Op1, Op2, Op3 };
4105 return UpdateNodeOperands(N, Ops, 3);
4108 SDValue SelectionDAG::
4109 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4110 SDValue Op3, SDValue Op4) {
4111 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4112 return UpdateNodeOperands(N, Ops, 4);
4115 SDValue SelectionDAG::
4116 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4117 SDValue Op3, SDValue Op4, SDValue Op5) {
4118 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4119 return UpdateNodeOperands(N, Ops, 5);
4122 SDValue SelectionDAG::
4123 UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4124 SDNode *N = InN.getNode();
4125 assert(N->getNumOperands() == NumOps &&
4126 "Update with wrong number of operands");
4128 // Check to see if there is no change.
4129 bool AnyChange = false;
4130 for (unsigned i = 0; i != NumOps; ++i) {
4131 if (Ops[i] != N->getOperand(i)) {
4132 AnyChange = true;
4133 break;
4137 // No operands changed, just return the input node.
4138 if (!AnyChange) return InN;
4140 // See if the modified node already exists.
4141 void *InsertPos = 0;
4142 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4143 return SDValue(Existing, InN.getResNo());
4145 // Nope it doesn't. Remove the node from its current place in the maps.
4146 if (InsertPos)
4147 if (!RemoveNodeFromCSEMaps(N))
4148 InsertPos = 0;
4150 // Now we update the operands.
4151 for (unsigned i = 0; i != NumOps; ++i)
4152 if (N->OperandList[i] != Ops[i])
4153 N->OperandList[i].set(Ops[i]);
4155 // If this gets put into a CSE map, add it.
4156 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4157 return InN;
4160 /// DropOperands - Release the operands and set this node to have
4161 /// zero operands.
4162 void SDNode::DropOperands() {
4163 // Unlike the code in MorphNodeTo that does this, we don't need to
4164 // watch for dead nodes here.
4165 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4166 SDUse &Use = *I++;
4167 Use.set(SDValue());
4171 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4172 /// machine opcode.
4174 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4175 MVT VT) {
4176 SDVTList VTs = getVTList(VT);
4177 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4180 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4181 MVT VT, SDValue Op1) {
4182 SDVTList VTs = getVTList(VT);
4183 SDValue Ops[] = { Op1 };
4184 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4187 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4188 MVT VT, SDValue Op1,
4189 SDValue Op2) {
4190 SDVTList VTs = getVTList(VT);
4191 SDValue Ops[] = { Op1, Op2 };
4192 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4195 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4196 MVT VT, SDValue Op1,
4197 SDValue Op2, SDValue Op3) {
4198 SDVTList VTs = getVTList(VT);
4199 SDValue Ops[] = { Op1, Op2, Op3 };
4200 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4203 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4204 MVT VT, const SDValue *Ops,
4205 unsigned NumOps) {
4206 SDVTList VTs = getVTList(VT);
4207 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4210 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4211 MVT VT1, MVT VT2, const SDValue *Ops,
4212 unsigned NumOps) {
4213 SDVTList VTs = getVTList(VT1, VT2);
4214 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4217 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4218 MVT VT1, MVT VT2) {
4219 SDVTList VTs = getVTList(VT1, VT2);
4220 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4223 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4224 MVT VT1, MVT VT2, MVT VT3,
4225 const SDValue *Ops, unsigned NumOps) {
4226 SDVTList VTs = getVTList(VT1, VT2, VT3);
4227 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4230 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4231 MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4232 const SDValue *Ops, unsigned NumOps) {
4233 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4234 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4237 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4238 MVT VT1, MVT VT2,
4239 SDValue Op1) {
4240 SDVTList VTs = getVTList(VT1, VT2);
4241 SDValue Ops[] = { Op1 };
4242 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4245 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4246 MVT VT1, MVT VT2,
4247 SDValue Op1, SDValue Op2) {
4248 SDVTList VTs = getVTList(VT1, VT2);
4249 SDValue Ops[] = { Op1, Op2 };
4250 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4253 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4254 MVT VT1, MVT VT2,
4255 SDValue Op1, SDValue Op2,
4256 SDValue Op3) {
4257 SDVTList VTs = getVTList(VT1, VT2);
4258 SDValue Ops[] = { Op1, Op2, Op3 };
4259 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4262 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4263 MVT VT1, MVT VT2, MVT VT3,
4264 SDValue Op1, SDValue Op2,
4265 SDValue Op3) {
4266 SDVTList VTs = getVTList(VT1, VT2, VT3);
4267 SDValue Ops[] = { Op1, Op2, Op3 };
4268 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4271 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4272 SDVTList VTs, const SDValue *Ops,
4273 unsigned NumOps) {
4274 return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4277 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4278 MVT VT) {
4279 SDVTList VTs = getVTList(VT);
4280 return MorphNodeTo(N, Opc, VTs, 0, 0);
4283 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4284 MVT VT, SDValue Op1) {
4285 SDVTList VTs = getVTList(VT);
4286 SDValue Ops[] = { Op1 };
4287 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4290 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4291 MVT VT, SDValue Op1,
4292 SDValue Op2) {
4293 SDVTList VTs = getVTList(VT);
4294 SDValue Ops[] = { Op1, Op2 };
4295 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4298 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4299 MVT VT, SDValue Op1,
4300 SDValue Op2, SDValue Op3) {
4301 SDVTList VTs = getVTList(VT);
4302 SDValue Ops[] = { Op1, Op2, Op3 };
4303 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4306 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4307 MVT VT, const SDValue *Ops,
4308 unsigned NumOps) {
4309 SDVTList VTs = getVTList(VT);
4310 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4313 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4314 MVT VT1, MVT VT2, const SDValue *Ops,
4315 unsigned NumOps) {
4316 SDVTList VTs = getVTList(VT1, VT2);
4317 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4320 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4321 MVT VT1, MVT VT2) {
4322 SDVTList VTs = getVTList(VT1, VT2);
4323 return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4326 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4327 MVT VT1, MVT VT2, MVT VT3,
4328 const SDValue *Ops, unsigned NumOps) {
4329 SDVTList VTs = getVTList(VT1, VT2, VT3);
4330 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4333 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4334 MVT VT1, MVT VT2,
4335 SDValue Op1) {
4336 SDVTList VTs = getVTList(VT1, VT2);
4337 SDValue Ops[] = { Op1 };
4338 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4341 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4342 MVT VT1, MVT VT2,
4343 SDValue Op1, SDValue Op2) {
4344 SDVTList VTs = getVTList(VT1, VT2);
4345 SDValue Ops[] = { Op1, Op2 };
4346 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4349 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4350 MVT VT1, MVT VT2,
4351 SDValue Op1, SDValue Op2,
4352 SDValue Op3) {
4353 SDVTList VTs = getVTList(VT1, VT2);
4354 SDValue Ops[] = { Op1, Op2, Op3 };
4355 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4358 /// MorphNodeTo - These *mutate* the specified node to have the specified
4359 /// return type, opcode, and operands.
4361 /// Note that MorphNodeTo returns the resultant node. If there is already a
4362 /// node of the specified opcode and operands, it returns that node instead of
4363 /// the current one. Note that the DebugLoc need not be the same.
4365 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4366 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4367 /// node, and because it doesn't require CSE recalculation for any of
4368 /// the node's users.
4370 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4371 SDVTList VTs, const SDValue *Ops,
4372 unsigned NumOps) {
4373 // If an identical node already exists, use it.
4374 void *IP = 0;
4375 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4376 FoldingSetNodeID ID;
4377 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4378 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4379 return ON;
4382 if (!RemoveNodeFromCSEMaps(N))
4383 IP = 0;
4385 // Start the morphing.
4386 N->NodeType = Opc;
4387 N->ValueList = VTs.VTs;
4388 N->NumValues = VTs.NumVTs;
4390 // Clear the operands list, updating used nodes to remove this from their
4391 // use list. Keep track of any operands that become dead as a result.
4392 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4393 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4394 SDUse &Use = *I++;
4395 SDNode *Used = Use.getNode();
4396 Use.set(SDValue());
4397 if (Used->use_empty())
4398 DeadNodeSet.insert(Used);
4401 // If NumOps is larger than the # of operands we currently have, reallocate
4402 // the operand list.
4403 if (NumOps > N->NumOperands) {
4404 if (N->OperandsNeedDelete)
4405 delete[] N->OperandList;
4407 if (N->isMachineOpcode()) {
4408 // We're creating a final node that will live unmorphed for the
4409 // remainder of the current SelectionDAG iteration, so we can allocate
4410 // the operands directly out of a pool with no recycling metadata.
4411 N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4412 N->OperandsNeedDelete = false;
4413 } else {
4414 N->OperandList = new SDUse[NumOps];
4415 N->OperandsNeedDelete = true;
4419 // Assign the new operands.
4420 N->NumOperands = NumOps;
4421 for (unsigned i = 0, e = NumOps; i != e; ++i) {
4422 N->OperandList[i].setUser(N);
4423 N->OperandList[i].setInitial(Ops[i]);
4426 // Delete any nodes that are still dead after adding the uses for the
4427 // new operands.
4428 SmallVector<SDNode *, 16> DeadNodes;
4429 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4430 E = DeadNodeSet.end(); I != E; ++I)
4431 if ((*I)->use_empty())
4432 DeadNodes.push_back(*I);
4433 RemoveDeadNodes(DeadNodes);
4435 if (IP)
4436 CSEMap.InsertNode(N, IP); // Memoize the new node.
4437 return N;
4441 /// getTargetNode - These are used for target selectors to create a new node
4442 /// with specified return type(s), target opcode, and operands.
4444 /// Note that getTargetNode returns the resultant node. If there is already a
4445 /// node of the specified opcode and operands, it returns that node instead of
4446 /// the current one.
4447 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4448 return getNode(~Opcode, dl, VT).getNode();
4451 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4452 SDValue Op1) {
4453 return getNode(~Opcode, dl, VT, Op1).getNode();
4456 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4457 SDValue Op1, SDValue Op2) {
4458 return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4461 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4462 SDValue Op1, SDValue Op2,
4463 SDValue Op3) {
4464 return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4467 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4468 const SDValue *Ops, unsigned NumOps) {
4469 return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4472 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4473 MVT VT1, MVT VT2) {
4474 SDVTList VTs = getVTList(VT1, VT2);
4475 SDValue Op;
4476 return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4479 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4480 MVT VT2, SDValue Op1) {
4481 SDVTList VTs = getVTList(VT1, VT2);
4482 return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4485 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4486 MVT VT2, SDValue Op1,
4487 SDValue Op2) {
4488 SDVTList VTs = getVTList(VT1, VT2);
4489 SDValue Ops[] = { Op1, Op2 };
4490 return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4493 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4494 MVT VT2, SDValue Op1,
4495 SDValue Op2, SDValue Op3) {
4496 SDVTList VTs = getVTList(VT1, VT2);
4497 SDValue Ops[] = { Op1, Op2, Op3 };
4498 return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4501 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4502 MVT VT1, MVT VT2,
4503 const SDValue *Ops, unsigned NumOps) {
4504 SDVTList VTs = getVTList(VT1, VT2);
4505 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4508 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4509 MVT VT1, MVT VT2, MVT VT3,
4510 SDValue Op1, SDValue Op2) {
4511 SDVTList VTs = getVTList(VT1, VT2, VT3);
4512 SDValue Ops[] = { Op1, Op2 };
4513 return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4516 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4517 MVT VT1, MVT VT2, MVT VT3,
4518 SDValue Op1, SDValue Op2,
4519 SDValue Op3) {
4520 SDVTList VTs = getVTList(VT1, VT2, VT3);
4521 SDValue Ops[] = { Op1, Op2, Op3 };
4522 return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4525 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4526 MVT VT1, MVT VT2, MVT VT3,
4527 const SDValue *Ops, unsigned NumOps) {
4528 SDVTList VTs = getVTList(VT1, VT2, VT3);
4529 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4532 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4533 MVT VT2, MVT VT3, MVT VT4,
4534 const SDValue *Ops, unsigned NumOps) {
4535 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4536 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4539 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4540 const std::vector<MVT> &ResultTys,
4541 const SDValue *Ops, unsigned NumOps) {
4542 return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4545 /// getNodeIfExists - Get the specified node if it's already available, or
4546 /// else return NULL.
4547 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4548 const SDValue *Ops, unsigned NumOps) {
4549 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4550 FoldingSetNodeID ID;
4551 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4552 void *IP = 0;
4553 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4554 return E;
4556 return NULL;
4559 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4560 /// This can cause recursive merging of nodes in the DAG.
4562 /// This version assumes From has a single result value.
4564 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4565 DAGUpdateListener *UpdateListener) {
4566 SDNode *From = FromN.getNode();
4567 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4568 "Cannot replace with this method!");
4569 assert(From != To.getNode() && "Cannot replace uses of with self");
4571 // Iterate over all the existing uses of From. New uses will be added
4572 // to the beginning of the use list, which we avoid visiting.
4573 // This specifically avoids visiting uses of From that arise while the
4574 // replacement is happening, because any such uses would be the result
4575 // of CSE: If an existing node looks like From after one of its operands
4576 // is replaced by To, we don't want to replace of all its users with To
4577 // too. See PR3018 for more info.
4578 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4579 while (UI != UE) {
4580 SDNode *User = *UI;
4582 // This node is about to morph, remove its old self from the CSE maps.
4583 RemoveNodeFromCSEMaps(User);
4585 // A user can appear in a use list multiple times, and when this
4586 // happens the uses are usually next to each other in the list.
4587 // To help reduce the number of CSE recomputations, process all
4588 // the uses of this user that we can find this way.
4589 do {
4590 SDUse &Use = UI.getUse();
4591 ++UI;
4592 Use.set(To);
4593 } while (UI != UE && *UI == User);
4595 // Now that we have modified User, add it back to the CSE maps. If it
4596 // already exists there, recursively merge the results together.
4597 AddModifiedNodeToCSEMaps(User, UpdateListener);
4601 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4602 /// This can cause recursive merging of nodes in the DAG.
4604 /// This version assumes that for each value of From, there is a
4605 /// corresponding value in To in the same position with the same type.
4607 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4608 DAGUpdateListener *UpdateListener) {
4609 #ifndef NDEBUG
4610 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4611 assert((!From->hasAnyUseOfValue(i) ||
4612 From->getValueType(i) == To->getValueType(i)) &&
4613 "Cannot use this version of ReplaceAllUsesWith!");
4614 #endif
4616 // Handle the trivial case.
4617 if (From == To)
4618 return;
4620 // Iterate over just the existing users of From. See the comments in
4621 // the ReplaceAllUsesWith above.
4622 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4623 while (UI != UE) {
4624 SDNode *User = *UI;
4626 // This node is about to morph, remove its old self from the CSE maps.
4627 RemoveNodeFromCSEMaps(User);
4629 // A user can appear in a use list multiple times, and when this
4630 // happens the uses are usually next to each other in the list.
4631 // To help reduce the number of CSE recomputations, process all
4632 // the uses of this user that we can find this way.
4633 do {
4634 SDUse &Use = UI.getUse();
4635 ++UI;
4636 Use.setNode(To);
4637 } while (UI != UE && *UI == User);
4639 // Now that we have modified User, add it back to the CSE maps. If it
4640 // already exists there, recursively merge the results together.
4641 AddModifiedNodeToCSEMaps(User, UpdateListener);
4645 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4646 /// This can cause recursive merging of nodes in the DAG.
4648 /// This version can replace From with any result values. To must match the
4649 /// number and types of values returned by From.
4650 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4651 const SDValue *To,
4652 DAGUpdateListener *UpdateListener) {
4653 if (From->getNumValues() == 1) // Handle the simple case efficiently.
4654 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4656 // Iterate over just the existing users of From. See the comments in
4657 // the ReplaceAllUsesWith above.
4658 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4659 while (UI != UE) {
4660 SDNode *User = *UI;
4662 // This node is about to morph, remove its old self from the CSE maps.
4663 RemoveNodeFromCSEMaps(User);
4665 // A user can appear in a use list multiple times, and when this
4666 // happens the uses are usually next to each other in the list.
4667 // To help reduce the number of CSE recomputations, process all
4668 // the uses of this user that we can find this way.
4669 do {
4670 SDUse &Use = UI.getUse();
4671 const SDValue &ToOp = To[Use.getResNo()];
4672 ++UI;
4673 Use.set(ToOp);
4674 } while (UI != UE && *UI == User);
4676 // Now that we have modified User, add it back to the CSE maps. If it
4677 // already exists there, recursively merge the results together.
4678 AddModifiedNodeToCSEMaps(User, UpdateListener);
4682 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4683 /// uses of other values produced by From.getNode() alone. The Deleted
4684 /// vector is handled the same way as for ReplaceAllUsesWith.
4685 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4686 DAGUpdateListener *UpdateListener){
4687 // Handle the really simple, really trivial case efficiently.
4688 if (From == To) return;
4690 // Handle the simple, trivial, case efficiently.
4691 if (From.getNode()->getNumValues() == 1) {
4692 ReplaceAllUsesWith(From, To, UpdateListener);
4693 return;
4696 // Iterate over just the existing users of From. See the comments in
4697 // the ReplaceAllUsesWith above.
4698 SDNode::use_iterator UI = From.getNode()->use_begin(),
4699 UE = From.getNode()->use_end();
4700 while (UI != UE) {
4701 SDNode *User = *UI;
4702 bool UserRemovedFromCSEMaps = false;
4704 // A user can appear in a use list multiple times, and when this
4705 // happens the uses are usually next to each other in the list.
4706 // To help reduce the number of CSE recomputations, process all
4707 // the uses of this user that we can find this way.
4708 do {
4709 SDUse &Use = UI.getUse();
4711 // Skip uses of different values from the same node.
4712 if (Use.getResNo() != From.getResNo()) {
4713 ++UI;
4714 continue;
4717 // If this node hasn't been modified yet, it's still in the CSE maps,
4718 // so remove its old self from the CSE maps.
4719 if (!UserRemovedFromCSEMaps) {
4720 RemoveNodeFromCSEMaps(User);
4721 UserRemovedFromCSEMaps = true;
4724 ++UI;
4725 Use.set(To);
4726 } while (UI != UE && *UI == User);
4728 // We are iterating over all uses of the From node, so if a use
4729 // doesn't use the specific value, no changes are made.
4730 if (!UserRemovedFromCSEMaps)
4731 continue;
4733 // Now that we have modified User, add it back to the CSE maps. If it
4734 // already exists there, recursively merge the results together.
4735 AddModifiedNodeToCSEMaps(User, UpdateListener);
4739 namespace {
4740 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4741 /// to record information about a use.
4742 struct UseMemo {
4743 SDNode *User;
4744 unsigned Index;
4745 SDUse *Use;
4748 /// operator< - Sort Memos by User.
4749 bool operator<(const UseMemo &L, const UseMemo &R) {
4750 return (intptr_t)L.User < (intptr_t)R.User;
4754 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4755 /// uses of other values produced by From.getNode() alone. The same value
4756 /// may appear in both the From and To list. The Deleted vector is
4757 /// handled the same way as for ReplaceAllUsesWith.
4758 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4759 const SDValue *To,
4760 unsigned Num,
4761 DAGUpdateListener *UpdateListener){
4762 // Handle the simple, trivial case efficiently.
4763 if (Num == 1)
4764 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4766 // Read up all the uses and make records of them. This helps
4767 // processing new uses that are introduced during the
4768 // replacement process.
4769 SmallVector<UseMemo, 4> Uses;
4770 for (unsigned i = 0; i != Num; ++i) {
4771 unsigned FromResNo = From[i].getResNo();
4772 SDNode *FromNode = From[i].getNode();
4773 for (SDNode::use_iterator UI = FromNode->use_begin(),
4774 E = FromNode->use_end(); UI != E; ++UI) {
4775 SDUse &Use = UI.getUse();
4776 if (Use.getResNo() == FromResNo) {
4777 UseMemo Memo = { *UI, i, &Use };
4778 Uses.push_back(Memo);
4783 // Sort the uses, so that all the uses from a given User are together.
4784 std::sort(Uses.begin(), Uses.end());
4786 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4787 UseIndex != UseIndexEnd; ) {
4788 // We know that this user uses some value of From. If it is the right
4789 // value, update it.
4790 SDNode *User = Uses[UseIndex].User;
4792 // This node is about to morph, remove its old self from the CSE maps.
4793 RemoveNodeFromCSEMaps(User);
4795 // The Uses array is sorted, so all the uses for a given User
4796 // are next to each other in the list.
4797 // To help reduce the number of CSE recomputations, process all
4798 // the uses of this user that we can find this way.
4799 do {
4800 unsigned i = Uses[UseIndex].Index;
4801 SDUse &Use = *Uses[UseIndex].Use;
4802 ++UseIndex;
4804 Use.set(To[i]);
4805 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4807 // Now that we have modified User, add it back to the CSE maps. If it
4808 // already exists there, recursively merge the results together.
4809 AddModifiedNodeToCSEMaps(User, UpdateListener);
4813 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4814 /// based on their topological order. It returns the maximum id and a vector
4815 /// of the SDNodes* in assigned order by reference.
4816 unsigned SelectionDAG::AssignTopologicalOrder() {
4818 unsigned DAGSize = 0;
4820 // SortedPos tracks the progress of the algorithm. Nodes before it are
4821 // sorted, nodes after it are unsorted. When the algorithm completes
4822 // it is at the end of the list.
4823 allnodes_iterator SortedPos = allnodes_begin();
4825 // Visit all the nodes. Move nodes with no operands to the front of
4826 // the list immediately. Annotate nodes that do have operands with their
4827 // operand count. Before we do this, the Node Id fields of the nodes
4828 // may contain arbitrary values. After, the Node Id fields for nodes
4829 // before SortedPos will contain the topological sort index, and the
4830 // Node Id fields for nodes At SortedPos and after will contain the
4831 // count of outstanding operands.
4832 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4833 SDNode *N = I++;
4834 unsigned Degree = N->getNumOperands();
4835 if (Degree == 0) {
4836 // A node with no uses, add it to the result array immediately.
4837 N->setNodeId(DAGSize++);
4838 allnodes_iterator Q = N;
4839 if (Q != SortedPos)
4840 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4841 ++SortedPos;
4842 } else {
4843 // Temporarily use the Node Id as scratch space for the degree count.
4844 N->setNodeId(Degree);
4848 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4849 // such that by the time the end is reached all nodes will be sorted.
4850 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4851 SDNode *N = I;
4852 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4853 UI != UE; ++UI) {
4854 SDNode *P = *UI;
4855 unsigned Degree = P->getNodeId();
4856 --Degree;
4857 if (Degree == 0) {
4858 // All of P's operands are sorted, so P may sorted now.
4859 P->setNodeId(DAGSize++);
4860 if (P != SortedPos)
4861 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4862 ++SortedPos;
4863 } else {
4864 // Update P's outstanding operand count.
4865 P->setNodeId(Degree);
4870 assert(SortedPos == AllNodes.end() &&
4871 "Topological sort incomplete!");
4872 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4873 "First node in topological sort is not the entry token!");
4874 assert(AllNodes.front().getNodeId() == 0 &&
4875 "First node in topological sort has non-zero id!");
4876 assert(AllNodes.front().getNumOperands() == 0 &&
4877 "First node in topological sort has operands!");
4878 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4879 "Last node in topologic sort has unexpected id!");
4880 assert(AllNodes.back().use_empty() &&
4881 "Last node in topologic sort has users!");
4882 assert(DAGSize == allnodes_size() && "Node count mismatch!");
4883 return DAGSize;
4888 //===----------------------------------------------------------------------===//
4889 // SDNode Class
4890 //===----------------------------------------------------------------------===//
4892 HandleSDNode::~HandleSDNode() {
4893 DropOperands();
4896 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4897 MVT VT, int64_t o)
4898 : SDNode(isa<GlobalVariable>(GA) &&
4899 cast<GlobalVariable>(GA)->isThreadLocal() ?
4900 // Thread Local
4901 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4902 // Non Thread Local
4903 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4904 DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4905 TheGlobal = const_cast<GlobalValue*>(GA);
4908 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4909 const Value *srcValue, int SVO,
4910 unsigned alignment, bool vol)
4911 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4912 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4913 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4914 assert(getAlignment() == alignment && "Alignment representation error!");
4915 assert(isVolatile() == vol && "Volatile representation error!");
4918 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4919 const SDValue *Ops,
4920 unsigned NumOps, MVT memvt, const Value *srcValue,
4921 int SVO, unsigned alignment, bool vol)
4922 : SDNode(Opc, dl, VTs, Ops, NumOps),
4923 MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4924 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4925 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4926 assert(getAlignment() == alignment && "Alignment representation error!");
4927 assert(isVolatile() == vol && "Volatile representation error!");
4930 /// getMemOperand - Return a MachineMemOperand object describing the memory
4931 /// reference performed by this memory reference.
4932 MachineMemOperand MemSDNode::getMemOperand() const {
4933 int Flags = 0;
4934 if (isa<LoadSDNode>(this))
4935 Flags = MachineMemOperand::MOLoad;
4936 else if (isa<StoreSDNode>(this))
4937 Flags = MachineMemOperand::MOStore;
4938 else if (isa<AtomicSDNode>(this)) {
4939 Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4941 else {
4942 const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4943 assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4944 if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4945 if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4948 int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4949 if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4951 // Check if the memory reference references a frame index
4952 const FrameIndexSDNode *FI =
4953 dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4954 if (!getSrcValue() && FI)
4955 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4956 Flags, 0, Size, getAlignment());
4957 else
4958 return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4959 Size, getAlignment());
4962 /// Profile - Gather unique data for the node.
4964 void SDNode::Profile(FoldingSetNodeID &ID) const {
4965 AddNodeIDNode(ID, this);
4968 /// getValueTypeList - Return a pointer to the specified value type.
4970 const MVT *SDNode::getValueTypeList(MVT VT) {
4971 if (VT.isExtended()) {
4972 static std::set<MVT, MVT::compareRawBits> EVTs;
4973 return &(*EVTs.insert(VT).first);
4974 } else {
4975 static MVT VTs[MVT::LAST_VALUETYPE];
4976 VTs[VT.getSimpleVT()] = VT;
4977 return &VTs[VT.getSimpleVT()];
4981 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4982 /// indicated value. This method ignores uses of other values defined by this
4983 /// operation.
4984 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4985 assert(Value < getNumValues() && "Bad value!");
4987 // TODO: Only iterate over uses of a given value of the node
4988 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4989 if (UI.getUse().getResNo() == Value) {
4990 if (NUses == 0)
4991 return false;
4992 --NUses;
4996 // Found exactly the right number of uses?
4997 return NUses == 0;
5001 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5002 /// value. This method ignores uses of other values defined by this operation.
5003 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5004 assert(Value < getNumValues() && "Bad value!");
5006 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5007 if (UI.getUse().getResNo() == Value)
5008 return true;
5010 return false;
5014 /// isOnlyUserOf - Return true if this node is the only use of N.
5016 bool SDNode::isOnlyUserOf(SDNode *N) const {
5017 bool Seen = false;
5018 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5019 SDNode *User = *I;
5020 if (User == this)
5021 Seen = true;
5022 else
5023 return false;
5026 return Seen;
5029 /// isOperand - Return true if this node is an operand of N.
5031 bool SDValue::isOperandOf(SDNode *N) const {
5032 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5033 if (*this == N->getOperand(i))
5034 return true;
5035 return false;
5038 bool SDNode::isOperandOf(SDNode *N) const {
5039 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5040 if (this == N->OperandList[i].getNode())
5041 return true;
5042 return false;
5045 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5046 /// be a chain) reaches the specified operand without crossing any
5047 /// side-effecting instructions. In practice, this looks through token
5048 /// factors and non-volatile loads. In order to remain efficient, this only
5049 /// looks a couple of nodes in, it does not do an exhaustive search.
5050 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5051 unsigned Depth) const {
5052 if (*this == Dest) return true;
5054 // Don't search too deeply, we just want to be able to see through
5055 // TokenFactor's etc.
5056 if (Depth == 0) return false;
5058 // If this is a token factor, all inputs to the TF happen in parallel. If any
5059 // of the operands of the TF reach dest, then we can do the xform.
5060 if (getOpcode() == ISD::TokenFactor) {
5061 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5062 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5063 return true;
5064 return false;
5067 // Loads don't have side effects, look through them.
5068 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5069 if (!Ld->isVolatile())
5070 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5072 return false;
5076 static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5077 SmallPtrSet<SDNode *, 32> &Visited) {
5078 if (found || !Visited.insert(N))
5079 return;
5081 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5082 SDNode *Op = N->getOperand(i).getNode();
5083 if (Op == P) {
5084 found = true;
5085 return;
5087 findPredecessor(Op, P, found, Visited);
5091 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5092 /// is either an operand of N or it can be reached by recursively traversing
5093 /// up the operands.
5094 /// NOTE: this is an expensive method. Use it carefully.
5095 bool SDNode::isPredecessorOf(SDNode *N) const {
5096 SmallPtrSet<SDNode *, 32> Visited;
5097 bool found = false;
5098 findPredecessor(N, this, found, Visited);
5099 return found;
5102 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5103 assert(Num < NumOperands && "Invalid child # of SDNode!");
5104 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5107 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5108 switch (getOpcode()) {
5109 default:
5110 if (getOpcode() < ISD::BUILTIN_OP_END)
5111 return "<<Unknown DAG Node>>";
5112 if (isMachineOpcode()) {
5113 if (G)
5114 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5115 if (getMachineOpcode() < TII->getNumOpcodes())
5116 return TII->get(getMachineOpcode()).getName();
5117 return "<<Unknown Machine Node>>";
5119 if (G) {
5120 const TargetLowering &TLI = G->getTargetLoweringInfo();
5121 const char *Name = TLI.getTargetNodeName(getOpcode());
5122 if (Name) return Name;
5123 return "<<Unknown Target Node>>";
5125 return "<<Unknown Node>>";
5127 #ifndef NDEBUG
5128 case ISD::DELETED_NODE:
5129 return "<<Deleted Node!>>";
5130 #endif
5131 case ISD::PREFETCH: return "Prefetch";
5132 case ISD::MEMBARRIER: return "MemBarrier";
5133 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5134 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5135 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5136 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5137 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5138 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5139 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5140 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5141 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5142 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5143 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5144 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5145 case ISD::PCMARKER: return "PCMarker";
5146 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5147 case ISD::SRCVALUE: return "SrcValue";
5148 case ISD::MEMOPERAND: return "MemOperand";
5149 case ISD::EntryToken: return "EntryToken";
5150 case ISD::TokenFactor: return "TokenFactor";
5151 case ISD::AssertSext: return "AssertSext";
5152 case ISD::AssertZext: return "AssertZext";
5154 case ISD::BasicBlock: return "BasicBlock";
5155 case ISD::ARG_FLAGS: return "ArgFlags";
5156 case ISD::VALUETYPE: return "ValueType";
5157 case ISD::Register: return "Register";
5159 case ISD::Constant: return "Constant";
5160 case ISD::ConstantFP: return "ConstantFP";
5161 case ISD::GlobalAddress: return "GlobalAddress";
5162 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5163 case ISD::FrameIndex: return "FrameIndex";
5164 case ISD::JumpTable: return "JumpTable";
5165 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5166 case ISD::RETURNADDR: return "RETURNADDR";
5167 case ISD::FRAMEADDR: return "FRAMEADDR";
5168 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5169 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5170 case ISD::EHSELECTION: return "EHSELECTION";
5171 case ISD::EH_RETURN: return "EH_RETURN";
5172 case ISD::ConstantPool: return "ConstantPool";
5173 case ISD::ExternalSymbol: return "ExternalSymbol";
5174 case ISD::INTRINSIC_WO_CHAIN: {
5175 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5176 return Intrinsic::getName((Intrinsic::ID)IID);
5178 case ISD::INTRINSIC_VOID:
5179 case ISD::INTRINSIC_W_CHAIN: {
5180 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5181 return Intrinsic::getName((Intrinsic::ID)IID);
5184 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5185 case ISD::TargetConstant: return "TargetConstant";
5186 case ISD::TargetConstantFP:return "TargetConstantFP";
5187 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5188 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5189 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5190 case ISD::TargetJumpTable: return "TargetJumpTable";
5191 case ISD::TargetConstantPool: return "TargetConstantPool";
5192 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5194 case ISD::CopyToReg: return "CopyToReg";
5195 case ISD::CopyFromReg: return "CopyFromReg";
5196 case ISD::UNDEF: return "undef";
5197 case ISD::MERGE_VALUES: return "merge_values";
5198 case ISD::INLINEASM: return "inlineasm";
5199 case ISD::DBG_LABEL: return "dbg_label";
5200 case ISD::EH_LABEL: return "eh_label";
5201 case ISD::DECLARE: return "declare";
5202 case ISD::HANDLENODE: return "handlenode";
5203 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5204 case ISD::CALL: return "call";
5206 // Unary operators
5207 case ISD::FABS: return "fabs";
5208 case ISD::FNEG: return "fneg";
5209 case ISD::FSQRT: return "fsqrt";
5210 case ISD::FSIN: return "fsin";
5211 case ISD::FCOS: return "fcos";
5212 case ISD::FPOWI: return "fpowi";
5213 case ISD::FPOW: return "fpow";
5214 case ISD::FTRUNC: return "ftrunc";
5215 case ISD::FFLOOR: return "ffloor";
5216 case ISD::FCEIL: return "fceil";
5217 case ISD::FRINT: return "frint";
5218 case ISD::FNEARBYINT: return "fnearbyint";
5220 // Binary operators
5221 case ISD::ADD: return "add";
5222 case ISD::SUB: return "sub";
5223 case ISD::MUL: return "mul";
5224 case ISD::MULHU: return "mulhu";
5225 case ISD::MULHS: return "mulhs";
5226 case ISD::SDIV: return "sdiv";
5227 case ISD::UDIV: return "udiv";
5228 case ISD::SREM: return "srem";
5229 case ISD::UREM: return "urem";
5230 case ISD::SMUL_LOHI: return "smul_lohi";
5231 case ISD::UMUL_LOHI: return "umul_lohi";
5232 case ISD::SDIVREM: return "sdivrem";
5233 case ISD::UDIVREM: return "udivrem";
5234 case ISD::AND: return "and";
5235 case ISD::OR: return "or";
5236 case ISD::XOR: return "xor";
5237 case ISD::SHL: return "shl";
5238 case ISD::SRA: return "sra";
5239 case ISD::SRL: return "srl";
5240 case ISD::ROTL: return "rotl";
5241 case ISD::ROTR: return "rotr";
5242 case ISD::FADD: return "fadd";
5243 case ISD::FSUB: return "fsub";
5244 case ISD::FMUL: return "fmul";
5245 case ISD::FDIV: return "fdiv";
5246 case ISD::FREM: return "frem";
5247 case ISD::FCOPYSIGN: return "fcopysign";
5248 case ISD::FGETSIGN: return "fgetsign";
5250 case ISD::SETCC: return "setcc";
5251 case ISD::VSETCC: return "vsetcc";
5252 case ISD::SELECT: return "select";
5253 case ISD::SELECT_CC: return "select_cc";
5254 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5255 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5256 case ISD::CONCAT_VECTORS: return "concat_vectors";
5257 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5258 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5259 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5260 case ISD::CARRY_FALSE: return "carry_false";
5261 case ISD::ADDC: return "addc";
5262 case ISD::ADDE: return "adde";
5263 case ISD::SADDO: return "saddo";
5264 case ISD::UADDO: return "uaddo";
5265 case ISD::SSUBO: return "ssubo";
5266 case ISD::USUBO: return "usubo";
5267 case ISD::SMULO: return "smulo";
5268 case ISD::UMULO: return "umulo";
5269 case ISD::SUBC: return "subc";
5270 case ISD::SUBE: return "sube";
5271 case ISD::SHL_PARTS: return "shl_parts";
5272 case ISD::SRA_PARTS: return "sra_parts";
5273 case ISD::SRL_PARTS: return "srl_parts";
5275 // Conversion operators.
5276 case ISD::SIGN_EXTEND: return "sign_extend";
5277 case ISD::ZERO_EXTEND: return "zero_extend";
5278 case ISD::ANY_EXTEND: return "any_extend";
5279 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5280 case ISD::TRUNCATE: return "truncate";
5281 case ISD::FP_ROUND: return "fp_round";
5282 case ISD::FLT_ROUNDS_: return "flt_rounds";
5283 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5284 case ISD::FP_EXTEND: return "fp_extend";
5286 case ISD::SINT_TO_FP: return "sint_to_fp";
5287 case ISD::UINT_TO_FP: return "uint_to_fp";
5288 case ISD::FP_TO_SINT: return "fp_to_sint";
5289 case ISD::FP_TO_UINT: return "fp_to_uint";
5290 case ISD::BIT_CONVERT: return "bit_convert";
5292 case ISD::CONVERT_RNDSAT: {
5293 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5294 default: assert(0 && "Unknown cvt code!");
5295 case ISD::CVT_FF: return "cvt_ff";
5296 case ISD::CVT_FS: return "cvt_fs";
5297 case ISD::CVT_FU: return "cvt_fu";
5298 case ISD::CVT_SF: return "cvt_sf";
5299 case ISD::CVT_UF: return "cvt_uf";
5300 case ISD::CVT_SS: return "cvt_ss";
5301 case ISD::CVT_SU: return "cvt_su";
5302 case ISD::CVT_US: return "cvt_us";
5303 case ISD::CVT_UU: return "cvt_uu";
5307 // Control flow instructions
5308 case ISD::BR: return "br";
5309 case ISD::BRIND: return "brind";
5310 case ISD::BR_JT: return "br_jt";
5311 case ISD::BRCOND: return "brcond";
5312 case ISD::BR_CC: return "br_cc";
5313 case ISD::RET: return "ret";
5314 case ISD::CALLSEQ_START: return "callseq_start";
5315 case ISD::CALLSEQ_END: return "callseq_end";
5317 // Other operators
5318 case ISD::LOAD: return "load";
5319 case ISD::STORE: return "store";
5320 case ISD::VAARG: return "vaarg";
5321 case ISD::VACOPY: return "vacopy";
5322 case ISD::VAEND: return "vaend";
5323 case ISD::VASTART: return "vastart";
5324 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5325 case ISD::EXTRACT_ELEMENT: return "extract_element";
5326 case ISD::BUILD_PAIR: return "build_pair";
5327 case ISD::STACKSAVE: return "stacksave";
5328 case ISD::STACKRESTORE: return "stackrestore";
5329 case ISD::TRAP: return "trap";
5331 // Bit manipulation
5332 case ISD::BSWAP: return "bswap";
5333 case ISD::CTPOP: return "ctpop";
5334 case ISD::CTTZ: return "cttz";
5335 case ISD::CTLZ: return "ctlz";
5337 // Debug info
5338 case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5339 case ISD::DEBUG_LOC: return "debug_loc";
5341 // Trampolines
5342 case ISD::TRAMPOLINE: return "trampoline";
5344 case ISD::CONDCODE:
5345 switch (cast<CondCodeSDNode>(this)->get()) {
5346 default: assert(0 && "Unknown setcc condition!");
5347 case ISD::SETOEQ: return "setoeq";
5348 case ISD::SETOGT: return "setogt";
5349 case ISD::SETOGE: return "setoge";
5350 case ISD::SETOLT: return "setolt";
5351 case ISD::SETOLE: return "setole";
5352 case ISD::SETONE: return "setone";
5354 case ISD::SETO: return "seto";
5355 case ISD::SETUO: return "setuo";
5356 case ISD::SETUEQ: return "setue";
5357 case ISD::SETUGT: return "setugt";
5358 case ISD::SETUGE: return "setuge";
5359 case ISD::SETULT: return "setult";
5360 case ISD::SETULE: return "setule";
5361 case ISD::SETUNE: return "setune";
5363 case ISD::SETEQ: return "seteq";
5364 case ISD::SETGT: return "setgt";
5365 case ISD::SETGE: return "setge";
5366 case ISD::SETLT: return "setlt";
5367 case ISD::SETLE: return "setle";
5368 case ISD::SETNE: return "setne";
5373 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5374 switch (AM) {
5375 default:
5376 return "";
5377 case ISD::PRE_INC:
5378 return "<pre-inc>";
5379 case ISD::PRE_DEC:
5380 return "<pre-dec>";
5381 case ISD::POST_INC:
5382 return "<post-inc>";
5383 case ISD::POST_DEC:
5384 return "<post-dec>";
5388 std::string ISD::ArgFlagsTy::getArgFlagsString() {
5389 std::string S = "< ";
5391 if (isZExt())
5392 S += "zext ";
5393 if (isSExt())
5394 S += "sext ";
5395 if (isInReg())
5396 S += "inreg ";
5397 if (isSRet())
5398 S += "sret ";
5399 if (isByVal())
5400 S += "byval ";
5401 if (isNest())
5402 S += "nest ";
5403 if (getByValAlign())
5404 S += "byval-align:" + utostr(getByValAlign()) + " ";
5405 if (getOrigAlign())
5406 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5407 if (getByValSize())
5408 S += "byval-size:" + utostr(getByValSize()) + " ";
5409 return S + ">";
5412 void SDNode::dump() const { dump(0); }
5413 void SDNode::dump(const SelectionDAG *G) const {
5414 print(errs(), G);
5417 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5418 OS << (void*)this << ": ";
5420 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5421 if (i) OS << ",";
5422 if (getValueType(i) == MVT::Other)
5423 OS << "ch";
5424 else
5425 OS << getValueType(i).getMVTString();
5427 OS << " = " << getOperationName(G);
5430 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5431 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5432 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5433 OS << "<";
5434 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5435 int Idx = SVN->getMaskElt(i);
5436 if (i) OS << ",";
5437 if (Idx < 0)
5438 OS << "u";
5439 else
5440 OS << Idx;
5442 OS << ">";
5445 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5446 OS << '<' << CSDN->getAPIntValue() << '>';
5447 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5448 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5449 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5450 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5451 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5452 else {
5453 OS << "<APFloat(";
5454 CSDN->getValueAPF().bitcastToAPInt().dump();
5455 OS << ")>";
5457 } else if (const GlobalAddressSDNode *GADN =
5458 dyn_cast<GlobalAddressSDNode>(this)) {
5459 int64_t offset = GADN->getOffset();
5460 OS << '<';
5461 WriteAsOperand(OS, GADN->getGlobal());
5462 OS << '>';
5463 if (offset > 0)
5464 OS << " + " << offset;
5465 else
5466 OS << " " << offset;
5467 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5468 OS << "<" << FIDN->getIndex() << ">";
5469 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5470 OS << "<" << JTDN->getIndex() << ">";
5471 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5472 int offset = CP->getOffset();
5473 if (CP->isMachineConstantPoolEntry())
5474 OS << "<" << *CP->getMachineCPVal() << ">";
5475 else
5476 OS << "<" << *CP->getConstVal() << ">";
5477 if (offset > 0)
5478 OS << " + " << offset;
5479 else
5480 OS << " " << offset;
5481 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5482 OS << "<";
5483 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5484 if (LBB)
5485 OS << LBB->getName() << " ";
5486 OS << (const void*)BBDN->getBasicBlock() << ">";
5487 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5488 if (G && R->getReg() &&
5489 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5490 OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5491 } else {
5492 OS << " #" << R->getReg();
5494 } else if (const ExternalSymbolSDNode *ES =
5495 dyn_cast<ExternalSymbolSDNode>(this)) {
5496 OS << "'" << ES->getSymbol() << "'";
5497 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5498 if (M->getValue())
5499 OS << "<" << M->getValue() << ">";
5500 else
5501 OS << "<null>";
5502 } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5503 if (M->MO.getValue())
5504 OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5505 else
5506 OS << "<null:" << M->MO.getOffset() << ">";
5507 } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5508 OS << N->getArgFlags().getArgFlagsString();
5509 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5510 OS << ":" << N->getVT().getMVTString();
5512 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5513 const Value *SrcValue = LD->getSrcValue();
5514 int SrcOffset = LD->getSrcValueOffset();
5515 OS << " <";
5516 if (SrcValue)
5517 OS << SrcValue;
5518 else
5519 OS << "null";
5520 OS << ":" << SrcOffset << ">";
5522 bool doExt = true;
5523 switch (LD->getExtensionType()) {
5524 default: doExt = false; break;
5525 case ISD::EXTLOAD: OS << " <anyext "; break;
5526 case ISD::SEXTLOAD: OS << " <sext "; break;
5527 case ISD::ZEXTLOAD: OS << " <zext "; break;
5529 if (doExt)
5530 OS << LD->getMemoryVT().getMVTString() << ">";
5532 const char *AM = getIndexedModeName(LD->getAddressingMode());
5533 if (*AM)
5534 OS << " " << AM;
5535 if (LD->isVolatile())
5536 OS << " <volatile>";
5537 OS << " alignment=" << LD->getAlignment();
5538 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5539 const Value *SrcValue = ST->getSrcValue();
5540 int SrcOffset = ST->getSrcValueOffset();
5541 OS << " <";
5542 if (SrcValue)
5543 OS << SrcValue;
5544 else
5545 OS << "null";
5546 OS << ":" << SrcOffset << ">";
5548 if (ST->isTruncatingStore())
5549 OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5551 const char *AM = getIndexedModeName(ST->getAddressingMode());
5552 if (*AM)
5553 OS << " " << AM;
5554 if (ST->isVolatile())
5555 OS << " <volatile>";
5556 OS << " alignment=" << ST->getAlignment();
5557 } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5558 const Value *SrcValue = AT->getSrcValue();
5559 int SrcOffset = AT->getSrcValueOffset();
5560 OS << " <";
5561 if (SrcValue)
5562 OS << SrcValue;
5563 else
5564 OS << "null";
5565 OS << ":" << SrcOffset << ">";
5566 if (AT->isVolatile())
5567 OS << " <volatile>";
5568 OS << " alignment=" << AT->getAlignment();
5572 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5573 print_types(OS, G);
5574 OS << " ";
5575 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5576 if (i) OS << ", ";
5577 OS << (void*)getOperand(i).getNode();
5578 if (unsigned RN = getOperand(i).getResNo())
5579 OS << ":" << RN;
5581 print_details(OS, G);
5584 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5585 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5586 if (N->getOperand(i).getNode()->hasOneUse())
5587 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5588 else
5589 cerr << "\n" << std::string(indent+2, ' ')
5590 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5593 cerr << "\n" << std::string(indent, ' ');
5594 N->dump(G);
5597 void SelectionDAG::dump() const {
5598 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5600 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5601 I != E; ++I) {
5602 const SDNode *N = I;
5603 if (!N->hasOneUse() && N != getRoot().getNode())
5604 DumpNodes(N, 2, this);
5607 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5609 cerr << "\n\n";
5612 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5613 print_types(OS, G);
5614 print_details(OS, G);
5617 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5618 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5619 const SelectionDAG *G, VisitedSDNodeSet &once) {
5620 if (!once.insert(N)) // If we've been here before, return now.
5621 return;
5622 // Dump the current SDNode, but don't end the line yet.
5623 OS << std::string(indent, ' ');
5624 N->printr(OS, G);
5625 // Having printed this SDNode, walk the children:
5626 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5627 const SDNode *child = N->getOperand(i).getNode();
5628 if (i) OS << ",";
5629 OS << " ";
5630 if (child->getNumOperands() == 0) {
5631 // This child has no grandchildren; print it inline right here.
5632 child->printr(OS, G);
5633 once.insert(child);
5634 } else { // Just the address. FIXME: also print the child's opcode
5635 OS << (void*)child;
5636 if (unsigned RN = N->getOperand(i).getResNo())
5637 OS << ":" << RN;
5640 OS << "\n";
5641 // Dump children that have grandchildren on their own line(s).
5642 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5643 const SDNode *child = N->getOperand(i).getNode();
5644 DumpNodesr(OS, child, indent+2, G, once);
5648 void SDNode::dumpr() const {
5649 VisitedSDNodeSet once;
5650 DumpNodesr(errs(), this, 0, 0, once);
5654 // getAddressSpace - Return the address space this GlobalAddress belongs to.
5655 unsigned GlobalAddressSDNode::getAddressSpace() const {
5656 return getGlobal()->getType()->getAddressSpace();
5660 const Type *ConstantPoolSDNode::getType() const {
5661 if (isMachineConstantPoolEntry())
5662 return Val.MachineCPVal->getType();
5663 return Val.ConstVal->getType();
5666 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5667 APInt &SplatUndef,
5668 unsigned &SplatBitSize,
5669 bool &HasAnyUndefs,
5670 unsigned MinSplatBits) {
5671 MVT VT = getValueType(0);
5672 assert(VT.isVector() && "Expected a vector type");
5673 unsigned sz = VT.getSizeInBits();
5674 if (MinSplatBits > sz)
5675 return false;
5677 SplatValue = APInt(sz, 0);
5678 SplatUndef = APInt(sz, 0);
5680 // Get the bits. Bits with undefined values (when the corresponding element
5681 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5682 // in SplatValue. If any of the values are not constant, give up and return
5683 // false.
5684 unsigned int nOps = getNumOperands();
5685 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5686 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5687 for (unsigned i = 0; i < nOps; ++i) {
5688 SDValue OpVal = getOperand(i);
5689 unsigned BitPos = i * EltBitSize;
5691 if (OpVal.getOpcode() == ISD::UNDEF)
5692 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5693 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5694 SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5695 zextOrTrunc(sz) << BitPos);
5696 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5697 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5698 else
5699 return false;
5702 // The build_vector is all constants or undefs. Find the smallest element
5703 // size that splats the vector.
5705 HasAnyUndefs = (SplatUndef != 0);
5706 while (sz > 8) {
5708 unsigned HalfSize = sz / 2;
5709 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5710 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5711 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5712 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5714 // If the two halves do not match (ignoring undef bits), stop here.
5715 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5716 MinSplatBits > HalfSize)
5717 break;
5719 SplatValue = HighValue | LowValue;
5720 SplatUndef = HighUndef & LowUndef;
5722 sz = HalfSize;
5725 SplatBitSize = sz;
5726 return true;
5729 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5730 // Find the first non-undef value in the shuffle mask.
5731 unsigned i, e;
5732 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5733 /* search */;
5735 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5737 // Make sure all remaining elements are either undef or the same as the first
5738 // non-undef value.
5739 for (int Idx = Mask[i]; i != e; ++i)
5740 if (Mask[i] >= 0 && Mask[i] != Idx)
5741 return false;
5742 return true;