1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
5 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
6 <title>LLVM Bitcode File Format
</title>
7 <link rel=
"stylesheet" href=
"llvm.css" type=
"text/css">
10 <div class=
"doc_title"> LLVM Bitcode File Format
</div>
12 <li><a href=
"#abstract">Abstract
</a></li>
13 <li><a href=
"#overview">Overview
</a></li>
14 <li><a href=
"#bitstream">Bitstream Format
</a>
16 <li><a href=
"#magic">Magic Numbers
</a></li>
17 <li><a href=
"#primitives">Primitives
</a></li>
18 <li><a href=
"#abbrevid">Abbreviation IDs
</a></li>
19 <li><a href=
"#blocks">Blocks
</a></li>
20 <li><a href=
"#datarecord">Data Records
</a></li>
21 <li><a href=
"#abbreviations">Abbreviations
</a></li>
22 <li><a href=
"#stdblocks">Standard Blocks
</a></li>
25 <li><a href=
"#wrapper">Bitcode Wrapper Format
</a>
27 <li><a href=
"#llvmir">LLVM IR Encoding
</a>
29 <li><a href=
"#basics">Basics
</a></li>
30 <li><a href=
"#MODULE_BLOCK">MODULE_BLOCK Contents
</a></li>
31 <li><a href=
"#PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents
</a></li>
32 <li><a href=
"#TYPE_BLOCK">TYPE_BLOCK Contents
</a></li>
33 <li><a href=
"#CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents
</a></li>
34 <li><a href=
"#FUNCTION_BLOCK">FUNCTION_BLOCK Contents
</a></li>
35 <li><a href=
"#TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents
</a></li>
36 <li><a href=
"#VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents
</a></li>
37 <li><a href=
"#METADATA_BLOCK">METADATA_BLOCK Contents
</a></li>
38 <li><a href=
"#METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents
</a></li>
42 <div class=
"doc_author">
43 <p>Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>,
44 <a href=
"http://www.reverberate.org">Joshua Haberman
</a>,
45 and
<a href=
"mailto:housel@acm.org">Peter S. Housel
</a>.
49 <!-- *********************************************************************** -->
50 <div class=
"doc_section"> <a name=
"abstract">Abstract
</a></div>
51 <!-- *********************************************************************** -->
53 <div class=
"doc_text">
55 <p>This document describes the LLVM bitstream file format and the encoding of
56 the LLVM IR into it.
</p>
60 <!-- *********************************************************************** -->
61 <div class=
"doc_section"> <a name=
"overview">Overview
</a></div>
62 <!-- *********************************************************************** -->
64 <div class=
"doc_text">
67 What is commonly known as the LLVM bitcode file format (also, sometimes
68 anachronistically known as bytecode) is actually two things: a
<a
69 href=
"#bitstream">bitstream container format
</a>
70 and an
<a href=
"#llvmir">encoding of LLVM IR
</a> into the container format.
</p>
73 The bitstream format is an abstract encoding of structured data, very
74 similar to XML in some ways. Like XML, bitstream files contain tags, and nested
75 structures, and you can parse the file without having to understand the tags.
76 Unlike XML, the bitstream format is a binary encoding, and unlike XML it
77 provides a mechanism for the file to self-describe
"abbreviations", which are
78 effectively size optimizations for the content.
</p>
80 <p>LLVM IR files may be optionally embedded into a
<a
81 href=
"#wrapper">wrapper
</a> structure that makes it easy to embed extra data
82 along with LLVM IR files.
</p>
84 <p>This document first describes the LLVM bitstream format, describes the
85 wrapper format, then describes the record structure used by LLVM IR files.
90 <!-- *********************************************************************** -->
91 <div class=
"doc_section"> <a name=
"bitstream">Bitstream Format
</a></div>
92 <!-- *********************************************************************** -->
94 <div class=
"doc_text">
97 The bitstream format is literally a stream of bits, with a very simple
98 structure. This structure consists of the following concepts:
102 <li>A
"<a href="#magic
">magic number</a>" that identifies the contents of
104 <li>Encoding
<a href=
"#primitives">primitives
</a> like variable bit-rate
106 <li><a href=
"#blocks">Blocks
</a>, which define nested content.
</li>
107 <li><a href=
"#datarecord">Data Records
</a>, which describe entities within the
109 <li>Abbreviations, which specify compression optimizations for the file.
</li>
113 href=
"CommandGuide/html/llvm-bcanalyzer.html">llvm-bcanalyzer
</a> tool can be
114 used to dump and inspect arbitrary bitstreams, which is very useful for
115 understanding the encoding.
</p>
119 <!-- ======================================================================= -->
120 <div class=
"doc_subsection"><a name=
"magic">Magic Numbers
</a>
123 <div class=
"doc_text">
125 <p>The first two bytes of a bitcode file are 'BC' (
0x42,
0x43).
126 The second two bytes are an application-specific magic number. Generic
127 bitcode tools can look at only the first two bytes to verify the file is
128 bitcode, while application-specific programs will want to look at all four.
</p>
132 <!-- ======================================================================= -->
133 <div class=
"doc_subsection"><a name=
"primitives">Primitives
</a>
136 <div class=
"doc_text">
139 A bitstream literally consists of a stream of bits, which are read in order
140 starting with the least significant bit of each byte. The stream is made up of a
141 number of primitive values that encode a stream of unsigned integer values.
142 These integers are encoded in two ways: either as
<a href=
"#fixedwidth">Fixed
143 Width Integers
</a> or as
<a href=
"#variablewidth">Variable Width
149 <!-- _______________________________________________________________________ -->
150 <div class=
"doc_subsubsection"> <a name=
"fixedwidth">Fixed Width Integers
</a>
153 <div class=
"doc_text">
155 <p>Fixed-width integer values have their low bits emitted directly to the file.
156 For example, a
3-bit integer value encodes
1 as
001. Fixed width integers
157 are used when there are a well-known number of options for a field. For
158 example, boolean values are usually encoded with a
1-bit wide integer.
163 <!-- _______________________________________________________________________ -->
164 <div class=
"doc_subsubsection"> <a name=
"variablewidth">Variable Width
167 <div class=
"doc_text">
169 <p>Variable-width integer (VBR) values encode values of arbitrary size,
170 optimizing for the case where the values are small. Given a
4-bit VBR field,
171 any
3-bit value (
0 through
7) is encoded directly, with the high bit set to
172 zero. Values larger than N-
1 bits emit their bits in a series of N-
1 bit
173 chunks, where all but the last set the high bit.
</p>
175 <p>For example, the value
27 (
0x1B) is encoded as
1011 0011 when emitted as a
176 vbr4 value. The first set of four bits indicates the value
3 (
011) with a
177 continuation piece (indicated by a high bit of
1). The next word indicates a
178 value of
24 (
011 <<
3) with no continuation. The sum (
3+
24) yields the value
184 <!-- _______________________________________________________________________ -->
185 <div class=
"doc_subsubsection"> <a name=
"char6">6-bit characters
</a></div>
187 <div class=
"doc_text">
189 <p>6-bit characters encode common characters into a fixed
6-bit field. They
190 represent the following characters with the following
6-bit values:
</p>
192 <div class=
"doc_code">
194 'a' .. 'z'
— 0 ..
25
195 'A' .. 'Z'
— 26 ..
51
196 '
0' .. '
9'
— 52 ..
61
202 <p>This encoding is only suitable for encoding characters and strings that
203 consist only of the above characters. It is completely incapable of encoding
204 characters not in the set.
</p>
208 <!-- _______________________________________________________________________ -->
209 <div class=
"doc_subsubsection"> <a name=
"wordalign">Word Alignment
</a></div>
211 <div class=
"doc_text">
213 <p>Occasionally, it is useful to emit zero bits until the bitstream is a
214 multiple of
32 bits. This ensures that the bit position in the stream can be
215 represented as a multiple of
32-bit words.
</p>
220 <!-- ======================================================================= -->
221 <div class=
"doc_subsection"><a name=
"abbrevid">Abbreviation IDs
</a>
224 <div class=
"doc_text">
227 A bitstream is a sequential series of
<a href=
"#blocks">Blocks
</a> and
228 <a href=
"#datarecord">Data Records
</a>. Both of these start with an
229 abbreviation ID encoded as a fixed-bitwidth field. The width is specified by
230 the current block, as described below. The value of the abbreviation ID
231 specifies either a builtin ID (which have special meanings, defined below) or
232 one of the abbreviation IDs defined for the current block by the stream itself.
236 The set of builtin abbrev IDs is:
240 <li><tt>0 -
<a href=
"#END_BLOCK">END_BLOCK
</a></tt> — This abbrev ID marks
241 the end of the current block.
</li>
242 <li><tt>1 -
<a href=
"#ENTER_SUBBLOCK">ENTER_SUBBLOCK
</a></tt> — This
243 abbrev ID marks the beginning of a new block.
</li>
244 <li><tt>2 -
<a href=
"#DEFINE_ABBREV">DEFINE_ABBREV
</a></tt> — This defines
245 a new abbreviation.
</li>
246 <li><tt>3 -
<a href=
"#UNABBREV_RECORD">UNABBREV_RECORD
</a></tt> — This ID
247 specifies the definition of an unabbreviated record.
</li>
250 <p>Abbreviation IDs
4 and above are defined by the stream itself, and specify
251 an
<a href=
"#abbrev_records">abbreviated record encoding
</a>.
</p>
255 <!-- ======================================================================= -->
256 <div class=
"doc_subsection"><a name=
"blocks">Blocks
</a>
259 <div class=
"doc_text">
262 Blocks in a bitstream denote nested regions of the stream, and are identified by
263 a content-specific id number (for example, LLVM IR uses an ID of
12 to represent
264 function bodies). Block IDs
0-
7 are reserved for
<a href=
"#stdblocks">standard blocks
</a>
265 whose meaning is defined by Bitcode; block IDs
8 and greater are
266 application specific. Nested blocks capture the hierarchical structure of the data
267 encoded in it, and various properties are associated with blocks as the file is
268 parsed. Block definitions allow the reader to efficiently skip blocks
269 in constant time if the reader wants a summary of blocks, or if it wants to
270 efficiently skip data it does not understand. The LLVM IR reader uses this
271 mechanism to skip function bodies, lazily reading them on demand.
275 When reading and encoding the stream, several properties are maintained for the
276 block. In particular, each block maintains:
280 <li>A current abbrev id width. This value starts at
2 at the beginning of
281 the stream, and is set every time a
282 block record is entered. The block entry specifies the abbrev id width for
283 the body of the block.
</li>
285 <li>A set of abbreviations. Abbreviations may be defined within a block, in
286 which case they are only defined in that block (neither subblocks nor
287 enclosing blocks see the abbreviation). Abbreviations can also be defined
288 inside a
<tt><a href=
"#BLOCKINFO">BLOCKINFO
</a></tt> block, in which case
289 they are defined in all blocks that match the ID that the BLOCKINFO block is
295 As sub blocks are entered, these properties are saved and the new sub-block has
296 its own set of abbreviations, and its own abbrev id width. When a sub-block is
297 popped, the saved values are restored.
302 <!-- _______________________________________________________________________ -->
303 <div class=
"doc_subsubsection"> <a name=
"ENTER_SUBBLOCK">ENTER_SUBBLOCK
306 <div class=
"doc_text">
308 <p><tt>[ENTER_SUBBLOCK, blockid
<sub>vbr8
</sub>, newabbrevlen
<sub>vbr4
</sub>,
309 <align32bits
>, blocklen
<sub>32</sub>]
</tt></p>
312 The
<tt>ENTER_SUBBLOCK
</tt> abbreviation ID specifies the start of a new block
313 record. The
<tt>blockid
</tt> value is encoded as an
8-bit VBR identifier, and
314 indicates the type of block being entered, which can be
315 a
<a href=
"#stdblocks">standard block
</a> or an application-specific block.
316 The
<tt>newabbrevlen
</tt> value is a
4-bit VBR, which specifies the abbrev id
317 width for the sub-block. The
<tt>blocklen
</tt> value is a
32-bit aligned value
318 that specifies the size of the subblock in
32-bit words. This value allows the
319 reader to skip over the entire block in one jump.
324 <!-- _______________________________________________________________________ -->
325 <div class=
"doc_subsubsection"> <a name=
"END_BLOCK">END_BLOCK
328 <div class=
"doc_text">
330 <p><tt>[END_BLOCK,
<align32bits
>]
</tt></p>
333 The
<tt>END_BLOCK
</tt> abbreviation ID specifies the end of the current block
334 record. Its end is aligned to
32-bits to ensure that the size of the block is
335 an even multiple of
32-bits.
342 <!-- ======================================================================= -->
343 <div class=
"doc_subsection"><a name=
"datarecord">Data Records
</a>
346 <div class=
"doc_text">
348 Data records consist of a record code and a number of (up to)
64-bit
349 integer values. The interpretation of the code and values is
350 application specific and may vary between different block types.
351 Records can be encoded either using an unabbrev record, or with an
352 abbreviation. In the LLVM IR format, for example, there is a record
353 which encodes the target triple of a module. The code is
354 <tt>MODULE_CODE_TRIPLE
</tt>, and the values of the record are the
355 ASCII codes for the characters in the string.
360 <!-- _______________________________________________________________________ -->
361 <div class=
"doc_subsubsection"> <a name=
"UNABBREV_RECORD">UNABBREV_RECORD
364 <div class=
"doc_text">
366 <p><tt>[UNABBREV_RECORD, code
<sub>vbr6
</sub>, numops
<sub>vbr6
</sub>,
367 op0
<sub>vbr6
</sub>, op1
<sub>vbr6
</sub>, ...]
</tt></p>
370 An
<tt>UNABBREV_RECORD
</tt> provides a default fallback encoding, which is both
371 completely general and extremely inefficient. It can describe an arbitrary
372 record by emitting the code and operands as VBRs.
376 For example, emitting an LLVM IR target triple as an unabbreviated record
377 requires emitting the
<tt>UNABBREV_RECORD
</tt> abbrevid, a vbr6 for the
378 <tt>MODULE_CODE_TRIPLE
</tt> code, a vbr6 for the length of the string, which is
379 equal to the number of operands, and a vbr6 for each character. Because there
380 are no letters with values less than
32, each letter would need to be emitted as
381 at least a two-part VBR, which means that each letter would require at least
12
382 bits. This is not an efficient encoding, but it is fully general.
387 <!-- _______________________________________________________________________ -->
388 <div class=
"doc_subsubsection"> <a name=
"abbrev_records">Abbreviated Record
391 <div class=
"doc_text">
393 <p><tt>[
<abbrevid
>, fields...]
</tt></p>
396 An abbreviated record is a abbreviation id followed by a set of fields that are
397 encoded according to the
<a href=
"#abbreviations">abbreviation definition
</a>.
398 This allows records to be encoded significantly more densely than records
399 encoded with the
<tt><a href=
"#UNABBREV_RECORD">UNABBREV_RECORD
</a></tt> type,
400 and allows the abbreviation types to be specified in the stream itself, which
401 allows the files to be completely self describing. The actual encoding of
402 abbreviations is defined below.
405 <p>The record code, which is the first field of an abbreviated record,
406 may be encoded in the abbreviation definition (as a literal
407 operand) or supplied in the abbreviated record (as a Fixed or VBR
412 <!-- ======================================================================= -->
413 <div class=
"doc_subsection"><a name=
"abbreviations">Abbreviations
</a>
416 <div class=
"doc_text">
418 Abbreviations are an important form of compression for bitstreams. The idea is
419 to specify a dense encoding for a class of records once, then use that encoding
420 to emit many records. It takes space to emit the encoding into the file, but
421 the space is recouped (hopefully plus some) when the records that use it are
426 Abbreviations can be determined dynamically per client, per file. Because the
427 abbreviations are stored in the bitstream itself, different streams of the same
428 format can contain different sets of abbreviations according to the needs
429 of the specific stream.
430 As a concrete example, LLVM IR files usually emit an abbreviation
431 for binary operators. If a specific LLVM module contained no or few binary
432 operators, the abbreviation does not need to be emitted.
436 <!-- _______________________________________________________________________ -->
437 <div class=
"doc_subsubsection"><a name=
"DEFINE_ABBREV">DEFINE_ABBREV
440 <div class=
"doc_text">
442 <p><tt>[DEFINE_ABBREV, numabbrevops
<sub>vbr5
</sub>, abbrevop0, abbrevop1,
446 A
<tt>DEFINE_ABBREV
</tt> record adds an abbreviation to the list of currently
447 defined abbreviations in the scope of this block. This definition only exists
448 inside this immediate block
— it is not visible in subblocks or enclosing
449 blocks. Abbreviations are implicitly assigned IDs sequentially starting from
4
450 (the first application-defined abbreviation ID). Any abbreviations defined in a
451 <tt>BLOCKINFO
</tt> record for the particular block type
452 receive IDs first, in order, followed by any
453 abbreviations defined within the block itself. Abbreviated data records
454 reference this ID to indicate what abbreviation they are invoking.
458 An abbreviation definition consists of the
<tt>DEFINE_ABBREV
</tt> abbrevid
459 followed by a VBR that specifies the number of abbrev operands, then the abbrev
460 operands themselves. Abbreviation operands come in three forms. They all start
461 with a single bit that indicates whether the abbrev operand is a literal operand
462 (when the bit is
1) or an encoding operand (when the bit is
0).
466 <li>Literal operands
— <tt>[
1<sub>1</sub>, litvalue
<sub>vbr8
</sub>]
</tt>
467 — Literal operands specify that the value in the result is always a single
468 specific value. This specific value is emitted as a vbr8 after the bit
469 indicating that it is a literal operand.
</li>
470 <li>Encoding info without data
— <tt>[
0<sub>1</sub>,
471 encoding
<sub>3</sub>]
</tt> — Operand encodings that do not have extra
472 data are just emitted as their code.
474 <li>Encoding info with data
— <tt>[
0<sub>1</sub>, encoding
<sub>3</sub>,
475 value
<sub>vbr5
</sub>]
</tt> — Operand encodings that do have extra data are
476 emitted as their code, followed by the extra data.
480 <p>The possible operand encodings are:
</p>
483 <li>Fixed (code
1): The field should be emitted as
484 a
<a href=
"#fixedwidth">fixed-width value
</a>, whose width is specified by
485 the operand's extra data.
</li>
486 <li>VBR (code
2): The field should be emitted as
487 a
<a href=
"#variablewidth">variable-width value
</a>, whose width is
488 specified by the operand's extra data.
</li>
489 <li>Array (code
3): This field is an array of values. The array operand
490 has no extra data, but expects another operand to follow it, indicating
491 the element type of the array. When reading an array in an abbreviated
492 record, the first integer is a vbr6 that indicates the array length,
493 followed by the encoded elements of the array. An array may only occur as
494 the last operand of an abbreviation (except for the one final operand that
495 gives the array's type).
</li>
496 <li>Char6 (code
4): This field should be emitted as
497 a
<a href=
"#char6">char6-encoded value
</a>. This operand type takes no
498 extra data. Char6 encoding is normally used as an array element type.
500 <li>Blob (code
5): This field is emitted as a vbr6, followed by padding to a
501 32-bit boundary (for alignment) and an array of
8-bit objects. The array of
502 bytes is further followed by tail padding to ensure that its total length is
503 a multiple of
4 bytes. This makes it very efficient for the reader to
504 decode the data without having to make a copy of it: it can use a pointer to
505 the data in the mapped in file and poke directly at it. A blob may only
506 occur as the last operand of an abbreviation.
</li>
510 For example, target triples in LLVM modules are encoded as a record of the
511 form
<tt>[TRIPLE, 'a', 'b', 'c', 'd']
</tt>. Consider if the bitstream emitted
512 the following abbrev entry:
515 <div class=
"doc_code">
524 When emitting a record with this abbreviation, the above entry would be emitted
528 <div class=
"doc_code">
530 <tt>[
4<sub>abbrevwidth
</sub>,
2<sub>4</sub>,
4<sub>vbr6
</sub>,
0<sub>6</sub>,
531 1<sub>6</sub>,
2<sub>6</sub>,
3<sub>6</sub>]
</tt>
535 <p>These values are:
</p>
538 <li>The first value,
4, is the abbreviation ID for this abbreviation.
</li>
539 <li>The second value,
2, is the record code for
<tt>TRIPLE
</tt> records within LLVM IR file
<tt>MODULE_BLOCK
</tt> blocks.
</li>
540 <li>The third value,
4, is the length of the array.
</li>
541 <li>The rest of the values are the char6 encoded values
542 for
<tt>"abcd"</tt>.
</li>
546 With this abbreviation, the triple is emitted with only
37 bits (assuming a
547 abbrev id width of
3). Without the abbreviation, significantly more space would
548 be required to emit the target triple. Also, because the
<tt>TRIPLE
</tt> value
549 is not emitted as a literal in the abbreviation, the abbreviation can also be
550 used for any other string value.
555 <!-- ======================================================================= -->
556 <div class=
"doc_subsection"><a name=
"stdblocks">Standard Blocks
</a>
559 <div class=
"doc_text">
562 In addition to the basic block structure and record encodings, the bitstream
563 also defines specific built-in block types. These block types specify how the
564 stream is to be decoded or other metadata. In the future, new standard blocks
565 may be added. Block IDs
0-
7 are reserved for standard blocks.
570 <!-- _______________________________________________________________________ -->
571 <div class=
"doc_subsubsection"><a name=
"BLOCKINFO">#
0 - BLOCKINFO
574 <div class=
"doc_text">
577 The
<tt>BLOCKINFO
</tt> block allows the description of metadata for other
578 blocks. The currently specified records are:
581 <div class=
"doc_code">
583 [SETBID (#
1), blockid]
585 [BLOCKNAME, ...name...]
586 [SETRECORDNAME, RecordID, ...name...]
591 The
<tt>SETBID
</tt> record (code
1) indicates which block ID is being
592 described.
<tt>SETBID
</tt> records can occur multiple times throughout the
593 block to change which block ID is being described. There must be
594 a
<tt>SETBID
</tt> record prior to any other records.
598 Standard
<tt>DEFINE_ABBREV
</tt> records can occur inside
<tt>BLOCKINFO
</tt>
599 blocks, but unlike their occurrence in normal blocks, the abbreviation is
600 defined for blocks matching the block ID we are describing,
<i>not
</i> the
601 <tt>BLOCKINFO
</tt> block itself. The abbreviations defined
602 in
<tt>BLOCKINFO
</tt> blocks receive abbreviation IDs as described
603 in
<tt><a href=
"#DEFINE_ABBREV">DEFINE_ABBREV
</a></tt>.
606 <p>The
<tt>BLOCKNAME
</tt> record (code
2) can optionally occur in this block. The elements of
607 the record are the bytes of the string name of the block. llvm-bcanalyzer can use
608 this to dump out bitcode files symbolically.
</p>
610 <p>The
<tt>SETRECORDNAME
</tt> record (code
3) can also optionally occur in this block. The
611 first operand value is a record ID number, and the rest of the elements of the record are
612 the bytes for the string name of the record. llvm-bcanalyzer can use
613 this to dump out bitcode files symbolically.
</p>
616 Note that although the data in
<tt>BLOCKINFO
</tt> blocks is described as
617 "metadata," the abbreviations they contain are essential for parsing records
618 from the corresponding blocks. It is not safe to skip them.
623 <!-- *********************************************************************** -->
624 <div class=
"doc_section"> <a name=
"wrapper">Bitcode Wrapper Format
</a></div>
625 <!-- *********************************************************************** -->
627 <div class=
"doc_text">
630 Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
631 structure. This structure contains a simple header that indicates the offset
632 and size of the embedded BC file. This allows additional information to be
633 stored alongside the BC file. The structure of this file header is:
636 <div class=
"doc_code">
638 <tt>[Magic
<sub>32</sub>, Version
<sub>32</sub>, Offset
<sub>32</sub>,
639 Size
<sub>32</sub>, CPUType
<sub>32</sub>]
</tt>
644 Each of the fields are
32-bit fields stored in little endian form (as with
645 the rest of the bitcode file fields). The Magic number is always
646 <tt>0x0B17C0DE</tt> and the version is currently always
<tt>0</tt>. The Offset
647 field is the offset in bytes to the start of the bitcode stream in the file, and
648 the Size field is the size in bytes of the stream. CPUType is a target-specific
649 value that can be used to encode the CPU of the target.
654 <!-- *********************************************************************** -->
655 <div class=
"doc_section"> <a name=
"llvmir">LLVM IR Encoding
</a></div>
656 <!-- *********************************************************************** -->
658 <div class=
"doc_text">
661 LLVM IR is encoded into a bitstream by defining blocks and records. It uses
662 blocks for things like constant pools, functions, symbol tables, etc. It uses
663 records for things like instructions, global variable descriptors, type
664 descriptions, etc. This document does not describe the set of abbreviations
665 that the writer uses, as these are fully self-described in the file, and the
666 reader is not allowed to build in any knowledge of this.
671 <!-- ======================================================================= -->
672 <div class=
"doc_subsection"><a name=
"basics">Basics
</a>
675 <!-- _______________________________________________________________________ -->
676 <div class=
"doc_subsubsection"><a name=
"ir_magic">LLVM IR Magic Number
</a></div>
678 <div class=
"doc_text">
681 The magic number for LLVM IR files is:
684 <div class=
"doc_code">
686 <tt>[
0x0<sub>4</sub>,
0xC<sub>4</sub>,
0xE<sub>4</sub>,
0xD<sub>4</sub>]
</tt>
691 When combined with the bitcode magic number and viewed as bytes, this is
692 <tt>"BC 0xC0DE"</tt>.
697 <!-- _______________________________________________________________________ -->
698 <div class=
"doc_subsubsection"><a name=
"ir_signed_vbr">Signed VBRs
</a></div>
700 <div class=
"doc_text">
703 <a href=
"#variablewidth">Variable Width Integer
</a> encoding is an efficient way to
704 encode arbitrary sized unsigned values, but is an extremely inefficient for
705 encoding signed values, as signed values are otherwise treated as maximally large
710 As such, signed VBR values of a specific width are emitted as follows:
714 <li>Positive values are emitted as VBRs of the specified width, but with their
715 value shifted left by one.
</li>
716 <li>Negative values are emitted as VBRs of the specified width, but the negated
717 value is shifted left by one, and the low bit is set.
</li>
721 With this encoding, small positive and small negative values can both
722 be emitted efficiently. Signed VBR encoding is used in
723 <tt>CST_CODE_INTEGER
</tt> and
<tt>CST_CODE_WIDE_INTEGER
</tt> records
724 within
<tt>CONSTANTS_BLOCK
</tt> blocks.
730 <!-- _______________________________________________________________________ -->
731 <div class=
"doc_subsubsection"><a name=
"ir_blocks">LLVM IR Blocks
</a></div>
733 <div class=
"doc_text">
736 LLVM IR is defined with the following blocks:
740 <li>8 — <a href=
"#MODULE_BLOCK"><tt>MODULE_BLOCK
</tt></a> — This is the top-level block that
741 contains the entire module, and describes a variety of per-module
743 <li>9 — <a href=
"#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK
</tt></a> — This enumerates the parameter
745 <li>10 — <a href=
"#TYPE_BLOCK"><tt>TYPE_BLOCK
</tt></a> — This describes all of the types in
747 <li>11 — <a href=
"#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK
</tt></a> — This describes constants for a
748 module or function.
</li>
749 <li>12 — <a href=
"#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK
</tt></a> — This describes a function
751 <li>13 — <a href=
"#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK
</tt></a> — This describes the type symbol
753 <li>14 — <a href=
"#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK
</tt></a> — This describes a value symbol
755 <li>15 — <a href=
"#METADATA_BLOCK"><tt>METADATA_BLOCK
</tt></a> — This describes metadata items.
</li>
756 <li>16 — <a href=
"#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT
</tt></a> — This contains records associating metadata with function instruction values.
</li>
761 <!-- ======================================================================= -->
762 <div class=
"doc_subsection"><a name=
"MODULE_BLOCK">MODULE_BLOCK Contents
</a>
765 <div class=
"doc_text">
767 <p>The
<tt>MODULE_BLOCK
</tt> block (id
8) is the top-level block for LLVM
768 bitcode files, and each bitcode file must contain exactly one. In
769 addition to records (described below) containing information
770 about the module, a
<tt>MODULE_BLOCK
</tt> block may contain the
771 following sub-blocks:
775 <li><a href=
"#BLOCKINFO"><tt>BLOCKINFO
</tt></a></li>
776 <li><a href=
"#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK
</tt></a></li>
777 <li><a href=
"#TYPE_BLOCK"><tt>TYPE_BLOCK
</tt></a></li>
778 <li><a href=
"#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK
</tt></a></li>
779 <li><a href=
"#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK
</tt></a></li>
780 <li><a href=
"#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK
</tt></a></li>
781 <li><a href=
"#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK
</tt></a></li>
782 <li><a href=
"#METADATA_BLOCK"><tt>METADATA_BLOCK
</tt></a></li>
787 <!-- _______________________________________________________________________ -->
788 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_VERSION">MODULE_CODE_VERSION Record
</a>
791 <div class=
"doc_text">
793 <p><tt>[VERSION, version#]
</tt></p>
795 <p>The
<tt>VERSION
</tt> record (code
1) contains a single value
796 indicating the format version. Only version
0 is supported at this
800 <!-- _______________________________________________________________________ -->
801 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_TRIPLE">MODULE_CODE_TRIPLE Record
</a>
804 <div class=
"doc_text">
805 <p><tt>[TRIPLE, ...string...]
</tt></p>
807 <p>The
<tt>TRIPLE
</tt> record (code
2) contains a variable number of
808 values representing the bytes of the
<tt>target triple
</tt>
809 specification string.
</p>
812 <!-- _______________________________________________________________________ -->
813 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_DATALAYOUT">MODULE_CODE_DATALAYOUT Record
</a>
816 <div class=
"doc_text">
817 <p><tt>[DATALAYOUT, ...string...]
</tt></p>
819 <p>The
<tt>DATALAYOUT
</tt> record (code
3) contains a variable number of
820 values representing the bytes of the
<tt>target datalayout
</tt>
821 specification string.
</p>
824 <!-- _______________________________________________________________________ -->
825 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_ASM">MODULE_CODE_ASM Record
</a>
828 <div class=
"doc_text">
829 <p><tt>[ASM, ...string...]
</tt></p>
831 <p>The
<tt>ASM
</tt> record (code
4) contains a variable number of
832 values representing the bytes of
<tt>module asm
</tt> strings, with
833 individual assembly blocks separated by newline (ASCII
10) characters.
</p>
836 <!-- _______________________________________________________________________ -->
837 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME Record
</a>
840 <div class=
"doc_text">
841 <p><tt>[SECTIONNAME, ...string...]
</tt></p>
843 <p>The
<tt>SECTIONNAME
</tt> record (code
5) contains a variable number
844 of values representing the bytes of a single section name
845 string. There should be one
<tt>SECTIONNAME
</tt> record for each
846 section name referenced (e.g., in global variable or function
847 <tt>section
</tt> attributes) within the module. These records can be
848 referenced by the
1-based index in the
<i>section
</i> fields of
849 <tt>GLOBALVAR
</tt> or
<tt>FUNCTION
</tt> records.
</p>
852 <!-- _______________________________________________________________________ -->
853 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_DEPLIB">MODULE_CODE_DEPLIB Record
</a>
856 <div class=
"doc_text">
857 <p><tt>[DEPLIB, ...string...]
</tt></p>
859 <p>The
<tt>DEPLIB
</tt> record (code
6) contains a variable number of
860 values representing the bytes of a single dependent library name
861 string, one of the libraries mentioned in a
<tt>deplibs
</tt>
862 declaration. There should be one
<tt>DEPLIB
</tt> record for each
863 library name referenced.
</p>
866 <!-- _______________________________________________________________________ -->
867 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_GLOBALVAR">MODULE_CODE_GLOBALVAR Record
</a>
870 <div class=
"doc_text">
871 <p><tt>[GLOBALVAR, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal]
</tt></p>
873 <p>The
<tt>GLOBALVAR
</tt> record (code
7) marks the declaration or
874 definition of a global variable. The operand fields are:
</p>
877 <li><i>pointer type
</i>: The type index of the pointer type used to point to
878 this global variable
</li>
880 <li><i>isconst
</i>: Non-zero if the variable is treated as constant within
881 the module, or zero if it is not
</li>
883 <li><i>initid
</i>: If non-zero, the value index of the initializer for this
884 variable, plus
1.
</li>
886 <li><a name=
"linkage"><i>linkage
</i></a>: An encoding of the linkage
887 type for this variable:
889 <li><tt>external
</tt>: code
0</li>
890 <li><tt>weak
</tt>: code
1</li>
891 <li><tt>appending
</tt>: code
2</li>
892 <li><tt>internal
</tt>: code
3</li>
893 <li><tt>linkonce
</tt>: code
4</li>
894 <li><tt>dllimport
</tt>: code
5</li>
895 <li><tt>dllexport
</tt>: code
6</li>
896 <li><tt>extern_weak
</tt>: code
7</li>
897 <li><tt>common
</tt>: code
8</li>
898 <li><tt>private
</tt>: code
9</li>
899 <li><tt>weak_odr
</tt>: code
10</li>
900 <li><tt>linkonce_odr
</tt>: code
11</li>
901 <li><tt>available_externally
</tt>: code
12</li>
902 <li><tt>linker_private
</tt>: code
13</li>
906 <li><i>alignment
</i>: The logarithm base
2 of the variable's requested
907 alignment, plus
1</li>
909 <li><i>section
</i>: If non-zero, the
1-based section index in the
910 table of
<a href=
"#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME
</a>
913 <li><a name=
"visibility"><i>visibility
</i></a>: If present, an
914 encoding of the visibility of this variable:
916 <li><tt>default
</tt>: code
0</li>
917 <li><tt>hidden
</tt>: code
1</li>
918 <li><tt>protected
</tt>: code
2</li>
922 <li><i>threadlocal
</i>: If present and non-zero, indicates that the variable
923 is
<tt>thread_local
</tt></li>
925 <li><i>unnamed_addr
</i>: If present and non-zero, indicates that the variable
926 has
<tt>unnamed_addr
<tt></li>
931 <!-- _______________________________________________________________________ -->
932 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_FUNCTION">MODULE_CODE_FUNCTION Record
</a>
935 <div class=
"doc_text">
937 <p><tt>[FUNCTION, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc]
</tt></p>
939 <p>The
<tt>FUNCTION
</tt> record (code
8) marks the declaration or
940 definition of a function. The operand fields are:
</p>
943 <li><i>type
</i>: The type index of the function type describing this function
</li>
945 <li><i>callingconv
</i>: The calling convention number:
947 <li><tt>ccc
</tt>: code
0</li>
948 <li><tt>fastcc
</tt>: code
8</li>
949 <li><tt>coldcc
</tt>: code
9</li>
950 <li><tt>x86_stdcallcc
</tt>: code
64</li>
951 <li><tt>x86_fastcallcc
</tt>: code
65</li>
952 <li><tt>arm_apcscc
</tt>: code
66</li>
953 <li><tt>arm_aapcscc
</tt>: code
67</li>
954 <li><tt>arm_aapcs_vfpcc
</tt>: code
68</li>
958 <li><i>isproto
</i>: Non-zero if this entry represents a declaration
959 rather than a definition
</li>
961 <li><i>linkage
</i>: An encoding of the
<a href=
"#linkage">linkage type
</a>
962 for this function
</li>
964 <li><i>paramattr
</i>: If nonzero, the
1-based parameter attribute index
965 into the table of
<a href=
"#PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY
</a>
968 <li><i>alignment
</i>: The logarithm base
2 of the function's requested
969 alignment, plus
1</li>
971 <li><i>section
</i>: If non-zero, the
1-based section index in the
972 table of
<a href=
"#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME
</a>
975 <li><i>visibility
</i>: An encoding of the
<a href=
"#visibility">visibility
</a>
976 of this function
</li>
978 <li><i>gc
</i>: If present and nonzero, the
1-based garbage collector
979 index in the table of
980 <a href=
"#MODULE_CODE_GCNAME">MODULE_CODE_GCNAME
</a> entries.
</li>
982 <li><i>unnamed_addr
</i>: If present and non-zero, indicates that the function
983 has
<tt>unnamed_addr
<tt></li>
988 <!-- _______________________________________________________________________ -->
989 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_ALIAS">MODULE_CODE_ALIAS Record
</a>
992 <div class=
"doc_text">
994 <p><tt>[ALIAS, alias type, aliasee val#, linkage, visibility]
</tt></p>
996 <p>The
<tt>ALIAS
</tt> record (code
9) marks the definition of an
997 alias. The operand fields are
</p>
1000 <li><i>alias type
</i>: The type index of the alias
</li>
1002 <li><i>aliasee val#
</i>: The value index of the aliased value
</li>
1004 <li><i>linkage
</i>: An encoding of the
<a href=
"#linkage">linkage type
</a>
1007 <li><i>visibility
</i>: If present, an encoding of the
1008 <a href=
"#visibility">visibility
</a> of the alias
</li>
1013 <!-- _______________________________________________________________________ -->
1014 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_PURGEVALS">MODULE_CODE_PURGEVALS Record
</a>
1017 <div class=
"doc_text">
1018 <p><tt>[PURGEVALS, numvals]
</tt></p>
1020 <p>The
<tt>PURGEVALS
</tt> record (code
10) resets the module-level
1021 value list to the size given by the single operand value. Module-level
1022 value list items are added by
<tt>GLOBALVAR
</tt>,
<tt>FUNCTION
</tt>,
1023 and
<tt>ALIAS
</tt> records. After a
<tt>PURGEVALS
</tt> record is seen,
1024 new value indices will start from the given
<i>numvals
</i> value.
</p>
1027 <!-- _______________________________________________________________________ -->
1028 <div class=
"doc_subsubsection"><a name=
"MODULE_CODE_GCNAME">MODULE_CODE_GCNAME Record
</a>
1031 <div class=
"doc_text">
1032 <p><tt>[GCNAME, ...string...]
</tt></p>
1034 <p>The
<tt>GCNAME
</tt> record (code
11) contains a variable number of
1035 values representing the bytes of a single garbage collector name
1036 string. There should be one
<tt>GCNAME
</tt> record for each garbage
1037 collector name referenced in function
<tt>gc
</tt> attributes within
1038 the module. These records can be referenced by
1-based index in the
<i>gc
</i>
1039 fields of
<tt>FUNCTION
</tt> records.
</p>
1042 <!-- ======================================================================= -->
1043 <div class=
"doc_subsection"><a name=
"PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents
</a>
1046 <div class=
"doc_text">
1048 <p>The
<tt>PARAMATTR_BLOCK
</tt> block (id
9) contains a table of
1049 entries describing the attributes of function parameters. These
1050 entries are referenced by
1-based index in the
<i>paramattr
</i> field
1051 of module block
<a name=
"MODULE_CODE_FUNCTION"><tt>FUNCTION
</tt></a>
1052 records, or within the
<i>attr
</i> field of function block
<a
1053 href=
"#FUNC_CODE_INST_INVOKE"><tt>INST_INVOKE
</tt></a> and
<a
1054 href=
"#FUNC_CODE_INST_CALL"><tt>INST_CALL
</tt></a> records.
</p>
1056 <p>Entries within
<tt>PARAMATTR_BLOCK
</tt> are constructed to ensure
1057 that each is unique (i.e., no two indicies represent equivalent
1058 attribute lists).
</p>
1063 <!-- _______________________________________________________________________ -->
1064 <div class=
"doc_subsubsection"><a name=
"PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY Record
</a>
1067 <div class=
"doc_text">
1069 <p><tt>[ENTRY, paramidx0, attr0, paramidx1, attr1...]
</tt></p>
1071 <p>The
<tt>ENTRY
</tt> record (code
1) contains an even number of
1072 values describing a unique set of function parameter attributes. Each
1073 <i>paramidx
</i> value indicates which set of attributes is
1074 represented, with
0 representing the return value attributes,
1075 0xFFFFFFFF representing function attributes, and other values
1076 representing
1-based function parameters. Each
<i>attr
</i> value is a
1077 bitmap with the following interpretation:
1081 <li>bit
0:
<tt>zeroext
</tt></li>
1082 <li>bit
1:
<tt>signext
</tt></li>
1083 <li>bit
2:
<tt>noreturn
</tt></li>
1084 <li>bit
3:
<tt>inreg
</tt></li>
1085 <li>bit
4:
<tt>sret
</tt></li>
1086 <li>bit
5:
<tt>nounwind
</tt></li>
1087 <li>bit
6:
<tt>noalias
</tt></li>
1088 <li>bit
7:
<tt>byval
</tt></li>
1089 <li>bit
8:
<tt>nest
</tt></li>
1090 <li>bit
9:
<tt>readnone
</tt></li>
1091 <li>bit
10:
<tt>readonly
</tt></li>
1092 <li>bit
11:
<tt>noinline
</tt></li>
1093 <li>bit
12:
<tt>alwaysinline
</tt></li>
1094 <li>bit
13:
<tt>optsize
</tt></li>
1095 <li>bit
14:
<tt>ssp
</tt></li>
1096 <li>bit
15:
<tt>sspreq
</tt></li>
1097 <li>bits
16–31:
<tt>align
<var>n
</var></tt></li>
1098 <li>bit
32:
<tt>nocapture
</tt></li>
1099 <li>bit
33:
<tt>noredzone
</tt></li>
1100 <li>bit
34:
<tt>noimplicitfloat
</tt></li>
1101 <li>bit
35:
<tt>naked
</tt></li>
1102 <li>bit
36:
<tt>inlinehint
</tt></li>
1103 <li>bits
37–39:
<tt>alignstack
<var>n
</var></tt>, represented as
1104 the logarithm base
2 of the requested alignment, plus
1</li>
1108 <!-- ======================================================================= -->
1109 <div class=
"doc_subsection"><a name=
"TYPE_BLOCK">TYPE_BLOCK Contents
</a>
1112 <div class=
"doc_text">
1114 <p>The
<tt>TYPE_BLOCK
</tt> block (id
10) contains records which
1115 constitute a table of type operator entries used to represent types
1116 referenced within an LLVM module. Each record (with the exception of
1117 <a href=
"#TYPE_CODE_NUMENTRY"><tt>NUMENTRY
</tt></a>) generates a
1118 single type table entry, which may be referenced by
0-based index from
1119 instructions, constants, metadata, type symbol table entries, or other
1120 type operator records.
1123 <p>Entries within
<tt>TYPE_BLOCK
</tt> are constructed to ensure that
1124 each entry is unique (i.e., no two indicies represent structurally
1125 equivalent types).
</p>
1129 <!-- _______________________________________________________________________ -->
1130 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_NUMENTRY">TYPE_CODE_NUMENTRY Record
</a>
1133 <div class=
"doc_text">
1135 <p><tt>[NUMENTRY, numentries]
</tt></p>
1137 <p>The
<tt>NUMENTRY
</tt> record (code
1) contains a single value which
1138 indicates the total number of type code entries in the type table of
1139 the module. If present,
<tt>NUMENTRY
</tt> should be the first record
1144 <!-- _______________________________________________________________________ -->
1145 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_VOID">TYPE_CODE_VOID Record
</a>
1148 <div class=
"doc_text">
1150 <p><tt>[VOID]
</tt></p>
1152 <p>The
<tt>VOID
</tt> record (code
2) adds a
<tt>void
</tt> type to the
1157 <!-- _______________________________________________________________________ -->
1158 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_FLOAT">TYPE_CODE_FLOAT Record
</a>
1161 <div class=
"doc_text">
1163 <p><tt>[FLOAT]
</tt></p>
1165 <p>The
<tt>FLOAT
</tt> record (code
3) adds a
<tt>float
</tt> (
32-bit
1166 floating point) type to the type table.
1170 <!-- _______________________________________________________________________ -->
1171 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_DOUBLE">TYPE_CODE_DOUBLE Record
</a>
1174 <div class=
"doc_text">
1176 <p><tt>[DOUBLE]
</tt></p>
1178 <p>The
<tt>DOUBLE
</tt> record (code
4) adds a
<tt>double
</tt> (
64-bit
1179 floating point) type to the type table.
1183 <!-- _______________________________________________________________________ -->
1184 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_LABEL">TYPE_CODE_LABEL Record
</a>
1187 <div class=
"doc_text">
1189 <p><tt>[LABEL]
</tt></p>
1191 <p>The
<tt>LABEL
</tt> record (code
5) adds a
<tt>label
</tt> type to
1196 <!-- _______________________________________________________________________ -->
1197 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_OPAQUE">TYPE_CODE_OPAQUE Record
</a>
1200 <div class=
"doc_text">
1202 <p><tt>[OPAQUE]
</tt></p>
1204 <p>The
<tt>OPAQUE
</tt> record (code
6) adds an
<tt>opaque
</tt> type to
1205 the type table. Note that distinct
<tt>opaque
</tt> types are not
1210 <!-- _______________________________________________________________________ -->
1211 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_INTEGER">TYPE_CODE_INTEGER Record
</a>
1214 <div class=
"doc_text">
1216 <p><tt>[INTEGER, width]
</tt></p>
1218 <p>The
<tt>INTEGER
</tt> record (code
7) adds an integer type to the
1219 type table. The single
<i>width
</i> field indicates the width of the
1224 <!-- _______________________________________________________________________ -->
1225 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_POINTER">TYPE_CODE_POINTER Record
</a>
1228 <div class=
"doc_text">
1230 <p><tt>[POINTER, pointee type, address space]
</tt></p>
1232 <p>The
<tt>POINTER
</tt> record (code
8) adds a pointer type to the
1233 type table. The operand fields are
</p>
1236 <li><i>pointee type
</i>: The type index of the pointed-to type
</li>
1238 <li><i>address space
</i>: If supplied, the target-specific numbered
1239 address space where the pointed-to object resides. Otherwise, the
1240 default address space is zero.
1245 <!-- _______________________________________________________________________ -->
1246 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_FUNCTION">TYPE_CODE_FUNCTION Record
</a>
1249 <div class=
"doc_text">
1251 <p><tt>[FUNCTION, vararg, ignored, retty, ...paramty... ]
</tt></p>
1253 <p>The
<tt>FUNCTION
</tt> record (code
9) adds a function type to the
1254 type table. The operand fields are
</p>
1257 <li><i>vararg
</i>: Non-zero if the type represents a varargs function
</li>
1259 <li><i>ignored
</i>: This value field is present for backward
1260 compatibility only, and is ignored
</li>
1262 <li><i>retty
</i>: The type index of the function's return type
</li>
1264 <li><i>paramty
</i>: Zero or more type indices representing the
1265 parameter types of the function
</li>
1270 <!-- _______________________________________________________________________ -->
1271 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_STRUCT">TYPE_CODE_STRUCT Record
</a>
1274 <div class=
"doc_text">
1276 <p><tt>[STRUCT, ispacked, ...eltty...]
</tt></p>
1278 <p>The
<tt>STRUCT
</tt> record (code
10) adds a struct type to the
1279 type table. The operand fields are
</p>
1282 <li><i>ispacked
</i>: Non-zero if the type represents a packed structure
</li>
1284 <li><i>eltty
</i>: Zero or more type indices representing the element
1285 types of the structure
</li>
1289 <!-- _______________________________________________________________________ -->
1290 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_ARRAY">TYPE_CODE_ARRAY Record
</a>
1293 <div class=
"doc_text">
1295 <p><tt>[ARRAY, numelts, eltty]
</tt></p>
1297 <p>The
<tt>ARRAY
</tt> record (code
11) adds an array type to the type
1298 table. The operand fields are
</p>
1301 <li><i>numelts
</i>: The number of elements in arrays of this type
</li>
1303 <li><i>eltty
</i>: The type index of the array element type
</li>
1307 <!-- _______________________________________________________________________ -->
1308 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_VECTOR">TYPE_CODE_VECTOR Record
</a>
1311 <div class=
"doc_text">
1313 <p><tt>[VECTOR, numelts, eltty]
</tt></p>
1315 <p>The
<tt>VECTOR
</tt> record (code
12) adds a vector type to the type
1316 table. The operand fields are
</p>
1319 <li><i>numelts
</i>: The number of elements in vectors of this type
</li>
1321 <li><i>eltty
</i>: The type index of the vector element type
</li>
1325 <!-- _______________________________________________________________________ -->
1326 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_X86_FP80">TYPE_CODE_X86_FP80 Record
</a>
1329 <div class=
"doc_text">
1331 <p><tt>[X86_FP80]
</tt></p>
1333 <p>The
<tt>X86_FP80
</tt> record (code
13) adds an
<tt>x86_fp80
</tt> (
80-bit
1334 floating point) type to the type table.
1338 <!-- _______________________________________________________________________ -->
1339 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_FP128">TYPE_CODE_FP128 Record
</a>
1342 <div class=
"doc_text">
1344 <p><tt>[FP128]
</tt></p>
1346 <p>The
<tt>FP128
</tt> record (code
14) adds an
<tt>fp128
</tt> (
128-bit
1347 floating point) type to the type table.
1351 <!-- _______________________________________________________________________ -->
1352 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_PPC_FP128">TYPE_CODE_PPC_FP128 Record
</a>
1355 <div class=
"doc_text">
1357 <p><tt>[PPC_FP128]
</tt></p>
1359 <p>The
<tt>PPC_FP128
</tt> record (code
15) adds a
<tt>ppc_fp128
</tt>
1360 (
128-bit floating point) type to the type table.
1364 <!-- _______________________________________________________________________ -->
1365 <div class=
"doc_subsubsection"><a name=
"TYPE_CODE_METADATA">TYPE_CODE_METADATA Record
</a>
1368 <div class=
"doc_text">
1370 <p><tt>[METADATA]
</tt></p>
1372 <p>The
<tt>METADATA
</tt> record (code
16) adds a
<tt>metadata
</tt>
1373 type to the type table.
1377 <!-- ======================================================================= -->
1378 <div class=
"doc_subsection"><a name=
"CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents
</a>
1381 <div class=
"doc_text">
1383 <p>The
<tt>CONSTANTS_BLOCK
</tt> block (id
11) ...
1389 <!-- ======================================================================= -->
1390 <div class=
"doc_subsection"><a name=
"FUNCTION_BLOCK">FUNCTION_BLOCK Contents
</a>
1393 <div class=
"doc_text">
1395 <p>The
<tt>FUNCTION_BLOCK
</tt> block (id
12) ...
1398 <p>In addition to the record types described below, a
1399 <tt>FUNCTION_BLOCK
</tt> block may contain the following sub-blocks:
1403 <li><a href=
"#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK
</tt></a></li>
1404 <li><a href=
"#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK
</tt></a></li>
1405 <li><a href=
"#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT
</tt></a></li>
1411 <!-- ======================================================================= -->
1412 <div class=
"doc_subsection"><a name=
"TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents
</a>
1415 <div class=
"doc_text">
1417 <p>The
<tt>TYPE_SYMTAB_BLOCK
</tt> block (id
13) contains entries which
1418 map between module-level named types and their corresponding type
1424 <!-- _______________________________________________________________________ -->
1425 <div class=
"doc_subsubsection"><a name=
"TST_CODE_ENTRY">TST_CODE_ENTRY Record
</a>
1428 <div class=
"doc_text">
1430 <p><tt>[ENTRY, typeid, ...string...]
</tt></p>
1432 <p>The
<tt>ENTRY
</tt> record (code
1) contains a variable number of
1433 values, with the first giving the type index of the designated type,
1434 and the remaining values giving the character codes of the type
1435 name. Each entry corresponds to a single named type.
1440 <!-- ======================================================================= -->
1441 <div class=
"doc_subsection"><a name=
"VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents
</a>
1444 <div class=
"doc_text">
1446 <p>The
<tt>VALUE_SYMTAB_BLOCK
</tt> block (id
14) ...
1452 <!-- ======================================================================= -->
1453 <div class=
"doc_subsection"><a name=
"METADATA_BLOCK">METADATA_BLOCK Contents
</a>
1456 <div class=
"doc_text">
1458 <p>The
<tt>METADATA_BLOCK
</tt> block (id
15) ...
1464 <!-- ======================================================================= -->
1465 <div class=
"doc_subsection"><a name=
"METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents
</a>
1468 <div class=
"doc_text">
1470 <p>The
<tt>METADATA_ATTACHMENT
</tt> block (id
16) ...
1476 <!-- *********************************************************************** -->
1478 <address> <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
1479 src=
"http://jigsaw.w3.org/css-validator/images/vcss-blue" alt=
"Valid CSS"></a>
1480 <a href=
"http://validator.w3.org/check/referer"><img
1481 src=
"http://www.w3.org/Icons/valid-html401-blue" alt=
"Valid HTML 4.01"></a>
1482 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
1483 <a href=
"http://llvm.org">The LLVM Compiler Infrastructure
</a><br>
1484 Last modified: $Date$