Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / Target / X86 / Disassembler / X86Disassembler.h
blob550cf9d40de2a3553103afd69462a3e785554138
1 //===- X86Disassembler.h - Disassembler for x86 and x86_64 ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
11 // 64-bit X86 instruction sets. The main decode sequence for an assembly
12 // instruction in this disassembler is:
14 // 1. Read the prefix bytes and determine the attributes of the instruction.
15 // These attributes, recorded in enum attributeBits
16 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
17 // provides a mapping from bitmasks to contexts, which are represented by
18 // enum InstructionContext (ibid.).
20 // 2. Read the opcode, and determine what kind of opcode it is. The
21 // disassembler distinguishes four kinds of opcodes, which are enumerated in
22 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
23 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
24 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
26 // 3. Depending on the opcode type, look in one of four ClassDecision structures
27 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
28 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
29 // a ModRMDecision (ibid.).
31 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
32 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
33 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
34 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
35 // ModR/M byte is required and how to interpret it.
37 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
38 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
39 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
40 // meanings of its operands.
42 // 6. For each operand, its encoding is an entry from OperandEncoding
43 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
44 // OperandType (ibid.). The encoding indicates how to read it from the
45 // instruction; the type indicates how to interpret the value once it has
46 // been read. For example, a register operand could be stored in the R/M
47 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
48 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
49 // register, for instance). Given this information, the operands can be
50 // extracted and interpreted.
52 // 7. As the last step, the disassembler translates the instruction information
53 // and operands into a format understandable by the client - in this case, an
54 // MCInst for use by the MC infrastructure.
56 // The disassembler is broken broadly into two parts: the table emitter that
57 // emits the instruction decode tables discussed above during compilation, and
58 // the disassembler itself. The table emitter is documented in more detail in
59 // utils/TableGen/X86DisassemblerEmitter.h.
61 // X86Disassembler.h contains the public interface for the disassembler,
62 // adhering to the MCDisassembler interface.
63 // X86Disassembler.cpp contains the code responsible for step 7, and for
64 // invoking the decoder to execute steps 1-6.
65 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
66 // table emitter and the disassembler.
67 // X86DisassemblerDecoder.h contains the public interface of the decoder,
68 // factored out into C for possible use by other projects.
69 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
70 // responsible for steps 1-6.
72 //===----------------------------------------------------------------------===//
74 #ifndef X86DISASSEMBLER_H
75 #define X86DISASSEMBLER_H
77 #define INSTRUCTION_SPECIFIER_FIELDS \
78 const char* name;
80 #define INSTRUCTION_IDS \
81 const InstrUID *instructionIDs;
83 #include "X86DisassemblerDecoderCommon.h"
85 #undef INSTRUCTION_SPECIFIER_FIELDS
86 #undef INSTRUCTION_IDS
88 #include "llvm/MC/MCDisassembler.h"
90 struct InternalInstruction;
92 namespace llvm {
94 class MCInst;
95 class MemoryObject;
96 class raw_ostream;
98 struct EDInstInfo;
100 namespace X86Disassembler {
102 /// X86GenericDisassembler - Generic disassembler for all X86 platforms.
103 /// All each platform class should have to do is subclass the constructor, and
104 /// provide a different disassemblerMode value.
105 class X86GenericDisassembler : public MCDisassembler {
106 protected:
107 /// Constructor - Initializes the disassembler.
109 /// @param mode - The X86 architecture mode to decode for.
110 X86GenericDisassembler(DisassemblerMode mode);
111 public:
112 ~X86GenericDisassembler();
114 /// getInstruction - See MCDisassembler.
115 bool getInstruction(MCInst &instr,
116 uint64_t &size,
117 const MemoryObject &region,
118 uint64_t address,
119 raw_ostream &vStream) const;
121 /// getEDInfo - See MCDisassembler.
122 EDInstInfo *getEDInfo() const;
123 private:
124 DisassemblerMode fMode;
127 /// X86_16Disassembler - 16-bit X86 disassembler.
128 class X86_16Disassembler : public X86GenericDisassembler {
129 public:
130 X86_16Disassembler() :
131 X86GenericDisassembler(MODE_16BIT) {
135 /// X86_16Disassembler - 32-bit X86 disassembler.
136 class X86_32Disassembler : public X86GenericDisassembler {
137 public:
138 X86_32Disassembler() :
139 X86GenericDisassembler(MODE_32BIT) {
143 /// X86_16Disassembler - 64-bit X86 disassembler.
144 class X86_64Disassembler : public X86GenericDisassembler {
145 public:
146 X86_64Disassembler() :
147 X86GenericDisassembler(MODE_64BIT) {
151 } // namespace X86Disassembler
153 } // namespace llvm
155 #endif