
Agraph Tutorial

Stephen C. North
AT&T Shannon Laboratory, Florham Park, NJ, USA

north@research.att.com

July 15, 2002

1 Introduction

Agraph is a C library for graph programming. It defines data types and operations
for graphs comprised of attributed nodes, edges and subgraphs. Attributes may
be string name-value pairs for convenient file I/O, or internal C data structures for
efficient algorithm implementation.

Agraph is aimed at graph representation; it is not an library of higher-level
algorithms such as shortest path or network flow. We envision these as higher-
level libraries written on top of Agraph. Efforts were made in Agraph’s design to
strive for time and space efficiency. The basic (unattributed) graph representation
takes 48 bytes per node and 64 bytes per edge, so storage of graphs with millions
of objects is reasonable. For attributed graphs, Agraph also maintains an internal
shared string pool, so if all the nodes of a graph have "color"="red", only one
copy of color and red are made. There are other tricks that experts can exploit
for flat-out coding efficiency. For example, there are ways to inline the instructions
for edge list traversal and internal data structure access.

Agraph uses Phong Vo’s dictionary library, libcdt, to store node and edge sets.
This library provides a uniform interface to hash tables and splay trees, and its API
is usable for general programming (such as storing multisets, hash tables, lists and
queues) in Agraph programs.

2 Graph Objects

Almost all Agraph programming can be done with pointers to these data types:

• Agraph_t: a graph or subgraph

1

• Agnode_t: a node from a particular graph or subgraph

• Agedge_t: an edge from a particular graph or subgraph

• Agsym_t: a descriptor for a string-value pair attribute

• Agrec_t: an internal C data record attribute of a graph object

Agraph is responsible for its own memory management; allocation and deallo-
cation of Agraph data structures is always done through Agraph calls.

3 Graphs

A top-level graph (also called a root graph) defines a universe of nodes, edges,
subgraphs, data dictionaries and other information. A graph has a name and two
properties: whether it is directed or undirected, and whether it is strict (self-arcs
and multi-edges forbidden). 1

The following examples use the convention that G and g are Agraph_t*
(graph pointers), n, u, v, w are Agnode_t* (node pointers), and e, f are Agedge_t*
(edge pointers).

To make a new, empty top-level directed graph:

Agraph_t *g;
g = agopen("G", Agdirected, 0);

The first argument to agopen is any string, and is not interpreted by Agraph,
except it is recorded and preserved when the graph is written as a file.2 The second
argument is a graph type, and should be one of Agdirected,Agstrictdirected,
Agundirected, or Agstrictundirected. The third argument is an op-
tional pointer to a collection of methods for overriding certain default behaviors of
Agraph, and in most situations can just be 0.

You can get the name of a graph by agnameof(g), and you can get its prop-
erties by the predicate functions agisdirected(g) and agisstrict(g).

You can also construct a new graph by reading a file:

g = agread(stdin,0);

1It would be nice to also have a graph type allowing self-arcs but not multi-edges; mixed graphs
could also be useful.

2An application could, of course, maintain its own graph catalog using graph names.

2

Here, the graph’s name, type and contents including attributes depend on the
file contents. (The second argument is the same optional method pointer mentioned
above for agopen).

You can write a representation of a graph to a file:

g = agwrite(g,stdout);

agwrite creates an external representation of a graph’s contents and attributes
(except for internal attributes), that it can later be reconstructed by calling agread
on the same file.3

agnnodes(g) and agnedges(g) return the count of nodes and edges in a
graph (or subgraph).

To delete a graph and its associated data structures, (freeing their memory):

agclose(g);

Finally, there is an interesting if obscure function to concatenate the contents
of a graph file onto an existing graph, as shown here.

g = agconcat(g,stdin,0);

4 Nodes

In Agraph, a node is usually identified by a unique string name and a unique 32-bit
internal ID assigned by Agraph. (For convenience, you can also create ”anony-
mous” nodes by giving NULL as the node name.) A node also has in- and out-edge
sets.

Once you have a graph, you can create or search for nodes this way:

Agnode_t *n;
n = agnode(g,"node28",TRUE);

The first argument is a graph or subgraph in which the node is to be created.
The second is the name (or NULL for anonymous nodes.) When the third argument
is TRUE, the node is created if it doesn’t already exist. When it’s FALSE, as shown
below, then Agraph searches to locate an existing node with the given name.

n = agnode(g,"node28",FALSE);

3It is the application programmer’s job to convert between internal attributes to external strings
when graphs are read and written, if desired. This seemed better than inventing a complicated way
to automate this conversion.

3

The function agdegree(n, in, out) gives the degree of a node, where
in and out select the edge sets. agdegree(n,TRUE,FALSE) returns in-
degree, agdegree(n,FALSE,TRUE) returns out-degree, and agdegree(n,TRUE,TRUE)
returns their sum.

agnameof(n) returns the printable string name of a node. Note that for var-
ious reasons this string may be a temporary buffer that is overwritten by subsequent
calls. Thus, printf("%s %s\n",agnameof(agtail(e)),agnameof(aghead(e)))
is unsafe because the buffer may be overwritten when the arguments to printf are
being computed.

A node can be deleted from a graph or subgraph by agdelnode(n).

5 Edges

An edge is a node pair: an ordered pair in a directed graph, unordered in an undi-
rected graph. For convenience there is a common edge data structure for both kinds
and the endpoints are the fields ”tail” and ”head” (but there is no special interpre-
tation of these fields in an undirected graph). An edge is made by the

Agnode_t *u, *v;
Agedge_t *e;

/* assume u and v are already defined */
e = agedge(u,v,"e28",TRUE);

u and v must belong to the same graph or subgraph for the operation to suc-
ceed. The “name” of an edge (more correctly, label) is treated as a unique identifier
for edges between a particular node pair. That is, there can only be at most one edge
labeled e28 between any given u and v, but there can be many other edges e28
between other nodes.

agtail(e) and aghead(e) return the endpoints of e. Alternatively, e->node
is the “other” endpoint with respect to the node from which e was obtained. A
common idiom is: for (e = agfstout(n); e; e = agnxtout(e))
f(e->node);

agedge can also search for edges:

e = agedge(u,v,NULL,FALSE); /* finds any u,v edge */
e = agedge(u,v,"e8",FALSE); /* finds a u,v edge with name "e8" */

An edge can be deleted from a graph or subgraph by agdeledge(e).

4

6 Traversals

Agraph has functions for walking graph objects. For example, we can scan all the
edges of a graph (directed or undirected) by the following:

for (n = agfstnode(g); n; n = agnxtnode(n)) {
for (e = agfstout(n); e; n = agnxtout(e)) {

/* do something with e */
}

}

The functions agfstin(n) and afnxtin(e) are provided for walking in-
edge lists.

In the case of a directed edge, the meaning of “out” is somewhat obvious. For
undirected graphs, Agraph assigns an arbitrary internal orientation to all edges for
its internal bookkeeping. (It’s from lower to higher internal ID.)

To visit all the edges of a node in an undirected graph:

for (e = agfstedge(n); e; n = agnxtedge(e,n))
/* do something with e */

Traversals are guaranteed to visit the nodes of a graph, or edges of a node, in
their order of creation in the root graph (unless we allow programmers to override
object ordering, as mentioned in section 14).

7 External Attributes

Graph objects may have associated string name-value pairs. When a graph file
is read, Agraph’s parser takes care of the details of this, so attributed can just be
added anywhere in the file. In C programs, values must be declared before use.

Agraph assumes that all objects of a given kind (graphs/subgraphs, nodes, or
edges) have the same attributes - there’s no notion of subtyping within attributes.
Information about attributes is stored in data dictionaries. Each graph has three (for
graphs/subgraphs, nodes, and edges) for which you’ll need the helpful predefined
constants AGRAPH, AGNODE and AGEDGE in calls to create, search and walk
these dictionaries.

To create an attribute:

Agsym_t *sym;
sym = agattr(g,AGNODE,"shape","box");

5

If this succeeeds, sym points to a descriptor for the newly created (or updated)
attribute. (Thus, even if shape was previously declared and had some other de-
fault value, it would be set to box by the above.)

By using a NULL pointer as the value, you can use the same function to search
the attribute definitions of a graph.

sym = agattr(g,AGNODE,"shape",0);
if (sym) printf("The default shape is %s.\n",sym->defval);

Instead of looking for a particular attribute, it is possible to iterate over all of
them:

sym = 0; /* to get the first one */
while (sym = agnxtattr(g,AGNODE,sym)
printf("%s = %s\n",sym->name,sym->defval);

Assuming an attribute already exists for some object, its value can be obtained,
either using the string name or an Agsym_t* as an index. To use the string name:

str = agget(n,"shape");
agset(n,"shape","hexagon");

If an attribute will be referenced often, it is faster to use its descriptor as an
index, as shown here:

Agsym_t *sym;
sym = agattr(g,AGNODE,"shape","box");
str = agxget(n,sym);
agxset(n,sym,"hexagon");

8 Internal Attributes

Each graph object (graph, node or edge) may have a list of associated internal
data records. The layout of each such record is programmer-defined, except each
must have an Agrec_t header. The records are allocated through Agraph. For
example:

typedef struct mynode_s {
Agrec_t h;
int count;

} mynode_t;

6

mynode_t *data;
Agnode_t *n;
n = agnode(g,"mynodename",TRUE);
data = (mynode_t*)agbindrec(n,"mynode_t",sizeof(mynode_t),FALSE);
data->count = 1;

In a similar way, aggetrec searches for a record that must already exist;
agdelrec removes a record from an object.

Two other points:
1. For convenience, there is a way to “lock” the data pointer of a graph object

to point to a given record. In the above example, we could then simply cast this
pointer to the appropriate type for direct (un-typesafe) access to the data.

(mydata_t*) (n->base.data)->count = 1;

Although each graph object may have its own unique, individual collection of
records, for convenience, there are functions that update an entire graph by allo-
cating or removing the same record from all nodes, edges or subgraphs at the same
time. These functions are:

void aginit(Agraph_t *g, int kind, char *rec_name,
int rec_size, int move_to_front);

void agclean(Agraph_t *g, int kind, char *rec_name);

9 Subgraphs

Subgraphs are an important construct in Agraph. They are intended for organizing
subsets of graph objects and can be used interchangably with top-level graphs in
almost all Agraph functions.

A subgraph may contain any nodes or edges of its parent. (When an edge is
inserted in a subgraph, its nodes are also implicitly inserted if necessary. Similarly,
insertion of a node or edge automatically implies insertion in all containing sub-
graphs up to the root.) Subgraphs of a graph form a hierarchy (a tree). Agraph has
functions to create, search, and walk subgraphs.

Agraph_t *agfstsubg(Agraph_t *g);
Agraph_t *agnxtsubg(Agraph_t *subg);

For example,

7

Agraph_t *g, *h0, *h1;
g = agread(stdin,0);

h0 = agsubg(g,"mysubgraph",FALSE); /* search for subgraph by name */
h1 = agsubg(g,"mysubgraph",TRUE); /* create subgraph by name */

assert (g == agparent(h1)); /* agparent is up one level */
assert (g == agroot(h1)); /* agroot is the top level graph */

The functions agsubnode and agsubedge take a subgraph pointer, and a
pointer to an object from another subgraph of the same graph (or possibly a top-
level object) and rebind the pointer to a copy of the object from the requested
subgraph. If createflag is nonzero, then the object is created if necessary;
otherwise the request is only treated as a search and returns 0 for failure.

Agnode_t *agsubnode(Agraph_t *g, Agnode_t *n, int createflag);
Agedge_t *agsubedge(Agraph_t *g, Agedge_t *e, int createflag);

A subgraph can be removed by agdelsubg(g,subg)or by agclose(subg).
When a node is in more than one subgraph, distinct node structures are allo-

cated for each instance. Thus, node pointers comparison cannot meaningfully be
used for testing equality if the pointers could have come from different subgraphs
- use ID instead.

if (u == v) /* wrong */
if (AGID(u) == AGID(v)) /* right */

10 Utility Functions and Macros

For convenience, Agraph provides some polymorphic functions and macros that
apply to all Agraph objects. (Most of these functions could be implemented in
terms of others already described, or by accessing fields in the Agobj_t base
object.

• AGTYPE(obj): object type AGRAPH, AGNODE, or AGEDGE (a small
integer)

• AGID(obj): internal object ID (an unsigned long)

• AGSEQ(obj): object creation timestamp (an integer)

8

• AGDATA(obj): data record pointer (an Agrec_t*)

Other functions, as listed below, return the graph of an object, its string name,
test whether it is a root graph object, and provide a polymorphic interface to remove
objects.

Agraph_t *agraphof(void*);
char *agnameof(void*);
int agisarootobj(void*);
int agdelete(Agraph_t *g, void *obj);

11 Expert-level tweaks

Callbacks. There is a way to register client functions to be called whenever graph
objects are inserted, or modified, or are about to be deleted from a graph or sub-
graph. The arguments to the callback functions for insertion and deletion (an
agobjfnt) are the object and a pointer to a closure (a piece of data controlled
by the client). The object update callback (an agobjupdfn_t) also receives the
data dictionary entry pointer for the name-value pair that was changed.

typedef void (*agobjfn_t)(Agobj_t *obj, void *arg);
typedef void (*agobjupdfn_t)(Agobj_t *obj, void *arg, Agsym_t *sym);

struct Agcbdisc_s {
struct {

agobjfn_t ins;
agobjupdfn_t mod;
agobjfn_t del;

} graph, node, edge;
} ;

Callback functions are installed by agpushdisc, which also takes a pointer
to a closure or client data structure state that is later passed to the callback
function when it is invoked.

void agpushdisc(Agraph_t *g, Agcbdisc_t *disc, void *state);

Callbacks are removed by agpopdisc [sic], which deletes a previously in-
stalled set of callbacks anywhere in the stack. This function returns zero for suc-
cess. (In real life this function isn’t used much; generally callbacks are set up and
left alone for the lifetime of a graph.)

9

int agpopdisc(Agraph_t *g, Agcbdisc_t *disc);

The default is for callbacks to be issued synchronously, but it is possible to
hold them in a queue of pending callbacks to be delivered on demand. This feature
is controlled by the interface:

int agcallbacks(Agraph_t *g, int flag); /* return prev value */

If the flag is zero, callbacks are kept pending. If the flag is one, pending call-
backs are immediately issued, and the graph is put into immediate callback mode.
(Therefore the state must be reset via agcallbacks if they are to be kept pending
again.)

Note: it is a small inconsistency that Agraph depends on the client to maintain
the storage for the callback function structure. (Thus it should probably not be
allocated on the dynamic stack.) The semantics of agpopdisc currently identify
callbacks by the address of this structure so it would take a bit of reworking to fix
this. In practice, callback functions are usually passed in a static struct.

Disciplines. A graph has an associated set of methods (”disciplines”) for file
I/O, memory management and graph object ID assignment.

struct Agdisc_s {
Agmemdisc_t *mem;
Agiddisc_t *id;
Agiodisc_t *io;

} ;

A pointer to this structure can be passed to agopen and agread (and agconcat)
to override Agraph’s defaults.

The memory management discipline allows calling alternative versions of mal-
loc, particularly, Vo’s Vmalloc, which offers memory allocation in arenas or pools.
The benefit is that Agraph can allocate a graph and its objects within a shared pool,
to provide fine-grained tracking of its memory resources and the option of free-
ing the entire graph and associated objects by closing the area in constant time, if
finalization of individual graph objects isn’t needed.4

Other functions allow access to a graph’s heap for memory allocation. (It prob-
ably only makes sense to use this feature in combination with an optional arena-
based memory manager, as described below under Disciplines.)

4This could be fixed.

10

typedef struct Agmemdisc_s { /* memory allocator */
void *(*open)(void); /* independent of other resources */
void *(*alloc)(void *state, size_t req);
void *(*resize)(void *state, void *ptr, size_t old, size_t req);
void (*free)(void *state, void *ptr);
void (*close)(void *state);

} Agmemdisc_t;

void *agalloc(Agraph_t *g, size_t size);
void *agrealloc(Agraph_t *g, void *ptr, size_t oldsize, size_t size);
void agfree(Agraph_t *g, void *ptr);
struct _vmalloc_s *agheap(Agraph_t *g);

typedef struct Agiddisc_s { /* object ID allocator */
void *(*open)(Agraph_t *g); /* associated with a graph */
long (*map)(void *state, int objtype, char *str, unsigned long *id, int createflag);
long (*alloc)(void *state, int objtype, unsigned long id);
void (*free)(void *state, int objtype, unsigned long id);
char *(*print)(void *state, int objtype, unsigned long id);
void (*close)(void *state);

} Agiddisc_t;

typedef struct Agiodisc_s {
int (*afread)(void *chan, char *buf, int bufsize);
int (*putstr)(void *chan, char *str);
int (*flush)(void *chan); /* sync */
/* error messages? */

} Agiodisc_t ;

The file I/O functions were turned into a discipline (instead of hard-coding calls
to the C stdio library into Agraph) because some Agraph clients could have their
own stream I/O routines, or could “read” a graph from a memory buffer instead of
an external file. (Note, it is also possible to separately redefine agerror(char*),
overriding Agraph’s default, for example, to display error messages in a screen di-
alog instead of the standard error stream.)

The ID assignment discipline makes it possible for an Agraph client control
this namespace. For instance, in one application, the client creates IDs that are
pointers into another object space defined by a front-end interpreter. In general, the
ID discipline must provide a map between internal IDs and external strings. open

11

and close allow initialization and finalization for a given graph; alloc and
free explicitly create and destroy IDs. map is called to convert an external string
name into an ID for a given object type (AGRAPH, AGNODE, or AGEDGE), with
an optional flag that tells if the ID should be allocated if it does not already exist.
print\ is called to convert an internal ID back to a string.

Finally, to make this mechanism accessible, Agraph provides functions to cre-
ate objects by ID instead of external name:

Agnode_t *agidnode(Agraph_t *g, unsigned long id, int createflag);
Agedge_t *agidedge(Agnode_t *t, Agnode_t *h, unsigned long id, int createflag);

Flattened node and edge lists. For flat-out efficiency, there is a way of lin-
earizing the splay trees in which node and sets are stored, converting them into flat
lists. After this they can be walked very quickly. This is done by:

voi agflatten(Agraph_t *g, int flag);
int agisflattened(Agraph_t *g);

Shared string pool. As mentioned, Agraph maintains a shared string pool per
graph. Agraph has functions to directly create and destroy references to shared
strings.

char *agstrdup(Agraph_t *, char *);
char *agstrbind(Agraph_t *g, char*);
int agstrfree(Agraph_t *, char *);

Error Handling. Agraph invokes an internal function, agerror that prints
a message on stderr to report a fatal error. An application may provide its own
version of this function to override fatal error handling. The error codes are listed
below. Most of these error should “never” occur.5

void agerror(int code, char *str);
#define AGERROR_SYNTAX 1 /* error encountered in lexing or parsing */
#define AGERROR_MEMORY 2 /* out of memory */
#define AGERROR_UNIMPL 3 /* unimplemented feature */
#define AGERROR_MTFLOCK 4 /* move to front lock has been set */
#define AGERROR_CMPND 5 /* conflict in restore_endpoint() */
#define AGERROR_BADOBJ 6 /* passed an illegal pointer */
#define AGERROR_IDOVFL 7 /* object ID overflow */
#define AGERROR_FLAT 8 /* attempt to break a flat lock */
#define AGERROR_WRONGGRAPH 9 /* mismatched graph and object */

5Also, a graph file syntax error really shouldn’t be fatal; this can easily be remedied.

12

12 Related Libraries

Libgraph is a predecessor of Agraph and lives on as the base library of the dot and
neato layout tools. Programs that invoke libdot or libneato APIs therefore need
libgraph, not Agraph, at least until dot and neato are updated.

A key difference between the two libraries is the handling of C data structure
attributes. libgraph hard-wires these at the end of the graph, node and edge structs.
That is, an application programmer defines the structs graphinfo, nodeinfo and
edgeinfo before including graph.h, and the library inquires of the size of these
structures at runtime so it can allocate graph objects of the proper size. Because
there is only one shot at defining attributes, this design creates an impediment to
writing separate algorithm libraries.

In Agraph, the nesting of subgraphs forms a tree. In Libgraph, a subgraph can
belong to more than one parent, so they form a DAG (directed acyclic graph). Lib-
graph actually represents this DAG as a special meta-graph that is navigated by
Libgraph calls. After gaining experience with Libgraph, we decided this complex-
ity was not worth its cost.

Finally, there are some syntactic differences in the APIs. Where most Agraph
calls take just a graph object, the equivalent Libgraph calls take both a graph/subgraph
and an object, and Libgraph rebinds the object to the given graph or subgraph.

Lgraph is a successor to Agraph, written in C++ by Gordon Woodhull. It
follows Agraph’s overall graph model (particularly, its subgraphs and emphasis on
efficient dynamic graph operations) but uses the C++ type system of templates and
inheritance to provide typesafe, modular and efficient internal attributes. (LGraph
relies on cdt for dictionary sets, with an STL-like C++ interface layer.) A fairly
mature prototype of the Dynagraph system (a successor to dot and neato to handle
online maintenance of dynamic diagrams) has been prototyped in LGraph. See the
dgwin (Dynagraph for Windows) page http://www.research.att.com/
sw/tools/graphviz/dgwin for further details.

13 Interface to other languages

There is a 3rd-party PERL module for Graphviz that contains bindings for Lib-
graph (note, not Agraph) as well as the dot and neato layout programs. Graphviz
itself contains a TCL/tk binding for Agraph as well as the other libraries.

13

14 Open Issues

Node and Edge Ordering. The intent in Agraph’s design was to eventually sup-
port user-defined node and edge set ordering, overriding the default (which is ob-
ject creation timestamp order). For example, in topologically embedded graphs,
edge lists could potentially be sorted in clockwise order around nodes. Because
Agraph assumes that all edge sets in the same Agraph_t have the same ordering,
there should probably be a new primitive to switching node or edge set ordering
functions. Please contact the author if you need this feature.

XML. XML dialects such as GXL and GraphML have been proposed for
graphs. Although it is simple to encode nodes and edges in XML, there are sub-
tleties to representing more complicated structures, such as Agraph’s subgraphs
and nesting of attribute defaults. We’ve prototyped an XML parser and would like
to complete and release this work if we had a compelling application. (Simple
XML output of graphs is not difficult to program.)

Graph views; external graphs. At times it would be convenient to relate one
graph’s objects to another’s without making one into a subgraph of another. At
other times there is a need to populate a graph from objects delivered on demand
from a foreign API (such as a relational database that stores graphs). We are now
experimenting with attacks on some of these problems.

Additional primitives. To be done: Object renaming, cloning, etc.

15 Example

The following is a simple Agraph filter that reads a graph and emits its strongly
connected components, each as a separate graph plus an overview map of the re-
lationship between the components. To save space, the auxiliary functions in the
header ingraph.h are not shown; the entire program can be found in the graphviz
source code release under tools/src.

About lines 40-50 are the declarations for internal records for nodes and edges.
Line 50-80 define access functions and macros for fields in these records. Lines 90-
130 define a simple stack structure needed for the strongly connected component
algorithm and down to line 138 are some global definitions for the program.

The rest of the code can be read from back-to-front. From around line 300
to the end is boilerplate code that handles command line arguments and opening
multiple graph files. The real work is done starting with the function process about
line 265, which works on one graph at a time. After initializing the node and edge
internal records, it creates a new graph for the overview map, and it calls visit on
unvisited nodes to find components. visit implements a standard algorithm to form

14

the next strongly connected component on a stack. When one has been completed,
a new subgraph is created and the nodes of the component are installed. (There is
an option to skip trivial components that contain only one node.) nodeInduce is
called to process the outedges of nodes in this subgraph. Such edges either belong
to the component (and are added to it), or else point to a node in another component
that must already have been processed.

/*
This software may only be used by you under license from AT&T Corp.
(“AT&T”). A copy of AT&T’s Source Code Agreement is available at
AT&T’s Internet website having the URL:
<http://www.research.att.com/sw/tools/graphviz/license/source.html>
If you received this software without first entering into a license
with AT&T, you have an infringing copy of this software and cannot use
it without violating AT&T’s intellectual property rights.

*/
10

/*
* Written by Stephen North
* Updated by Emden Gansner
*/

/*
* This is a filter that reads a graph, searches for strongly
* connected components, and writes each as a separate graph
* along with a map of the components.
*/ 20
#ifdef HAVE CONFIG H
#include <gvconfig.h>

#endif

#include <stdio.h>

#ifdef HAVE UNISTD H
#include <unistd.h>

#endif
#include <agraph.h>

#include <ingraphs.h> 30

#ifndef HAVE GETOPT DECL
#include <getopt.h>

#endif

#define INF ((unsigned int)(−1))

typedef struct Agraphinfo t {
Agrec t h;
Agnode t* rep; 40

15

} Agraphinfo t;

typedef struct Agnodeinfo t {
Agrec t h;
unsigned int val;
Agraph t* scc;

} Agnodeinfo t;

#ifdef INLINE
#define getrep(g) (((Agraphinfo t*)(g−>base.data))−>rep) 50
#define setrep(g,rep) (getrep(g) = rep)
#define getscc(n) (((Agnodeinfo t*)((n)−>base.data))−>scc)
#define setscc(n,sub) (getscc(n) = sub)
#define getval(n) (((Agnodeinfo t*)((n)−>base.data))−>val)
#define setval(n,newval) (getval(n) = newval)
#else
static Agnode t *
getrep(Agraph t *g)
{

return (((Agraphinfo t*)(g−>base.data))−>rep); 60
}
static void
setrep(Agraph t *g, Agnode t *rep)
{

((Agraphinfo t*)(g−>base.data))−>rep = rep;
}
static Agraph t *
getscc(Agnode t *n)
{

return (((Agnodeinfo t*)(n−>base.data))−>scc); 70
}
static void
setscc(Agnode t *n, Agraph t *scc)
{

((Agnodeinfo t*)(n−>base.data))−>scc = scc;
}
static int
getval(Agnode t *n)
{

return (((Agnodeinfo t*)(n−>base.data))−>val); 80
}
static void
setval(Agnode t *n, int v)
{

((Agnodeinfo t*)(n−>base.data))−>val = v;
}
#endif

/********* stack ***********/

16

typedef struct { 90
Agnode t** data;
Agnode t** ptr;

} Stack;

static void
initStack (Stack* sp, int sz)
{

sp−>data = (Agnode t**)malloc(sz*sizeof(Agnode t*));
sp−>ptr = sp−>data;

} 100

static void
freeStack (Stack* sp)
{

free (sp−>data);
}

#ifdef INLINE
#define push(sp,n) (*((sp)−>ptr++) = n)
#define top(sp) (*((sp)−>ptr − 1)) 110
#define pop(sp) (*(−−((sp)−>ptr)))
#else
static void
push (Stack* sp, Agnode t* n)
{

*(sp−>ptr++) = n;
}

static Agnode t*
top (Stack* sp) 120
{

return *(sp−>ptr − 1);
}

static Agnode t*
pop (Stack* sp)
{

sp−>ptr−−;
return *(sp−>ptr);

} 130
#endif

/********* end stack ***********/

typedef struct {
int Comp;
int ID;

17

int N nodes in nontriv SCC;
} sccstate; 140

int wantDegenerateComp;
int Silent;
int Verbose;
char* CmdName;
char** Files;

static void
nodeInduce(Agraph t *g)
{ 150

Agnode t *n, *rootn;
Agedge t *e;

for (n = agfstnode(g); n; n = agnxtnode(n)) {
rootn = agsubnode(agroot(g),n,FALSE);
for (e = agfstout(rootn); e; e = agnxtout(e)) {

if (agsubnode(g,aghead(e),FALSE)) agsubedge(g,e,TRUE);
else {

if (getscc(aghead(e)) && getscc(agtail(e)))
agedge(getrep(getscc(agtail(e))),getrep(getscc(aghead(e))), 160

NIL(char*),TRUE);
}

}
}

}

static int
visit(Agnode t *n, Agraph t* map, Stack* sp, sccstate* st)
{

unsigned int m,min; 170
Agnode t* t;
Agraph t* subg;
Agedge t* e;

min = ++(st−>ID);
setval(n,min);
push (sp, n);

for (e = agfstout(n); e; e = agnxtout(e)) {
t = aghead(e); 180
if (getval(t) == 0) m = visit(t,map,sp,st);
else m = getval(t);
if (m < min) min = m;

}

if (getval(n) == min) {
if (!wantDegenerateComp && (top(sp) == n)) {

18

setval(n,INF);
pop(sp);

} 190
else {

char name[32];
Agraph t* G = agraphof(n);;
sprintf(name,"cluster_%d",(st−>Comp)++);
subg = agsubg(G,name,TRUE);
agbindrec(subg,"scc_graph",sizeof(Agraphinfo t),TRUE);
setrep(subg,agnode(map,name,TRUE));
do {

t = pop(sp);
agsubnode(subg,t,TRUE); 200
setval(t,INF);
setscc(t,subg);
st−>N nodes in nontriv SCC++;

} while (t != n);
nodeInduce(subg);
if (!Silent) agwrite(subg,stdout);

}
}
return min;

} 210

static int
label(Agnode t *n, int nodecnt, int* edgecnt)
{

Agedge t *e;

setval(n,1);
nodecnt++;
for (e = agfstedge(n); e; e = agnxtedge(e,n)) {

(*edgecnt) += 1; 220
if (e−>node == n) e = agopp(e);
if (!getval(e−>node))

nodecnt = label(e−>node,nodecnt,edgecnt);
}
return nodecnt;

}

static int
countComponents(Agraph t *g, int* max degree, float *nontree frac)
{ 230

int nc = 0;
int sum edges = 0;
int sum nontree = 0;
int deg;
int n edges;
int n nodes;

19

Agnode t* n;

for (n = agfstnode(g); n; n = agnxtnode(n)) {
if (!getval(n)) { 240

nc++;
n edges = 0;
n nodes = label(n,0,&n edges);
sum edges += n edges;
sum nontree += (n edges − n nodes + 1);

}
}
if (max degree) {

int maxd = 0;
for (n = agfstnode(g); n; n = agnxtnode(n)) { 250

deg = agdegree(n,TRUE,TRUE);
if (maxd < deg) maxd = deg;
setval(n,0);

}
*max degree = maxd;

}
if (nontree frac) {

if (sum edges > 0) *nontree frac = (float)sum nontree / (float)sum edges;
else *nontree frac = 0.0;

} 260
return nc;

}

static void
process(Agraph t* G)
{

Agnode t* n;
Agraph t* map;
int nc = 0;
float nontree frac; 270
int Maxdegree;
Stack stack;
sccstate state;

aginit(G,AGRAPH,"scc_graph",sizeof(Agraphinfo t),TRUE);
aginit(G,AGNODE,"scc_node",sizeof(Agnodeinfo t),TRUE);
state.Comp = state.ID = 0;
state.N nodes in nontriv SCC = 0;

if (Verbose) 280
nc = countComponents(G,&Maxdegree,&nontree frac);

initStack(&stack, agnnodes(G) + 1);
map = agopen("scc_map",Agdirected,(Agdisc t *)0);
for (n = agfstnode(G); n; n = agnxtnode(n))

20

if (getval(n) == 0) visit(n,map,&stack,&state);
freeStack(&stack);
if (!Silent) agwrite(map,stdout);
agclose(map);

290
if (Verbose)

fprintf(stderr,"%d %d %d %d %.4f %d %.4f\n",
agnnodes(G), agnedges(G), nc, state.Comp,
state.N nodes in nontriv SCC / (double) agnnodes(G), Maxdegree,
nontree frac);

else
fprintf(stderr,"%d nodes, %d edges, %d strong components\n",

agnnodes(G), agnedges(G), state.Comp);

} 300

static char* useString =
"Usage: %s [-sdv?] <files>\n\
-s - silent\n\
-d - allow degenerate components\n\
-v - verbose\n\
-? - print usage\n\

If no files are specified, stdin is used\n";

static void 310
usage (int v)
{

printf (useString, CmdName);
exit (v);

}

static void
scanArgs(int argc,char **argv)
{

int c; 320

CmdName = argv[0];
while ((c = getopt(argc,argv,":?sdv")) != EOF) {

switch (c) {
case ’s’:

Silent = 1; break;
case ’d’:

wantDegenerateComp = 1; break;
case ’v’:

Verbose = 1; break; 330
case ’?’:

if (optopt == ’?’) usage(0);
else fprintf(stderr,"%s: option -%c unrecognized - ignored\n",

CmdName, c);

21

break;
}

}
argv += optind;
argc −= optind;

340
if (argc) Files = argv;

}

static Agraph t*
gread (FILE* fp)
{

return agread(fp,(Agdisc t*)0);
}

int 350
main(int argc, char **argv)
{

Agraph t* g;
ingraph state ig;

scanArgs(argc,argv);
newIngraph (&ig, Files, gread);

while ((g = nextGraph(&ig)) != 0) {
if (agisdirected(g)) process (g); 360
else fprintf (stderr, "Graph %s in %s is undirected - ignored\n",

agnameof(g), fileName(&ig));
agclose (g);

}

return 0;
}

22

