* better
[mascara-docs.git] / i386 / linux-2.3.21 / arch / ppc / 8xx_io / enet.c
blob879b326a789e4438990eba99302676e799f5e03a
1 /*
2 * Ethernet driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * I copied the basic skeleton from the lance driver, because I did not
6 * know how to write the Linux driver, but I did know how the LANCE worked.
8 * This version of the driver is somewhat selectable for the different
9 * processor/board combinations. It works for the boards I know about
10 * now, and should be easily modified to include others. Some of the
11 * configuration information is contained in "commproc.h" and the
12 * remainder is here.
14 * Buffer descriptors are kept in the CPM dual port RAM, and the frame
15 * buffers are in the host memory.
17 * Right now, I am very watseful with the buffers. I allocate memory
18 * pages and then divide them into 2K frame buffers. This way I know I
19 * have buffers large enough to hold one frame within one buffer descriptor.
20 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
21 * will be much more memory efficient and will easily handle lots of
22 * small packets.
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/string.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/malloc.h>
32 #include <linux/interrupt.h>
33 #include <linux/pci.h>
34 #include <linux/init.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
40 #include <asm/8xx_immap.h>
41 #include <asm/pgtable.h>
42 #include <asm/mpc8xx.h>
43 #include <asm/bitops.h>
44 #include <asm/uaccess.h>
45 #include "commproc.h"
48 * Theory of Operation
50 * The MPC8xx CPM performs the Ethernet processing on SCC1. It can use
51 * an aribtrary number of buffers on byte boundaries, but must have at
52 * least two receive buffers to prevent constant overrun conditions.
54 * The buffer descriptors are allocated from the CPM dual port memory
55 * with the data buffers allocated from host memory, just like all other
56 * serial communication protocols. The host memory buffers are allocated
57 * from the free page pool, and then divided into smaller receive and
58 * transmit buffers. The size of the buffers should be a power of two,
59 * since that nicely divides the page. This creates a ring buffer
60 * structure similar to the LANCE and other controllers.
62 * Like the LANCE driver:
63 * The driver runs as two independent, single-threaded flows of control. One
64 * is the send-packet routine, which enforces single-threaded use by the
65 * dev->tbusy flag. The other thread is the interrupt handler, which is single
66 * threaded by the hardware and other software.
68 * The send packet thread has partial control over the Tx ring and 'dev->tbusy'
69 * flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
70 * queue slot is empty, it clears the tbusy flag when finished otherwise it sets
71 * the 'lp->tx_full' flag.
73 * The MBX has a control register external to the MPC8xx that has some
74 * control of the Ethernet interface. Control Register 1 has the
75 * following format:
76 * bit 0 - Set to enable Ethernet transceiver
77 * bit 1 - Set to enable Ethernet internal loopback
78 * bit 2 - Set to auto select AUI or TP port
79 * bit 3 - if bit 2 is 0, set to select TP port
80 * bit 4 - Set to disable full duplex (loopback)
81 * bit 5 - Set to disable XCVR collision test
82 * bit 6, 7 - Used for RS-232 control.
84 * EPPC-Bug sets this register to 0x98 for normal Ethernet operation,
85 * so we should not have to touch it.
87 * The following I/O is used by the MBX implementation of the MPC8xx to
88 * the MC68160 transceiver. It DOES NOT exactly follow the cookbook
89 * example from the MPC860 manual.
90 * Port A, 15 - SCC1 Ethernet Rx
91 * Port A, 14 - SCC1 Ethernet Tx
92 * Port A, 6 (CLK2) - SCC1 Ethernet Tx Clk
93 * Port A, 4 (CLK4) - SCC1 Ethernet Rx Clk
94 * Port C, 15 - SCC1 Ethernet Tx Enable
95 * Port C, 11 - SCC1 Ethernet Collision
96 * Port C, 10 - SCC1 Ethernet Rx Enable
98 * The RPX-Lite (that I had :-), was the MPC850SAR. It has a control
99 * register to enable Ethernet functions in the 68160, and the Ethernet
100 * was controlled by SCC2. So, the pin I/O was like this:
101 * Port A, 13 - SCC2 Ethernet Rx
102 * Port A, 12 - SCC2 Ethernet Tx
103 * Port A, 6 (CLK2) - Ethernet Tx Clk
104 * Port A, 4 (CLK4) - Ethernet Rx Clk
105 * Port B, 18 (RTS2) - Ethernet Tx Enable
106 * Port C, 8 (CD2) - Ethernet Rx Enable
107 * Port C, 9 (CTS2) - SCC Ethernet Collision
110 /* The number of Tx and Rx buffers. These are allocated from the page
111 * pool. The code may assume these are power of two, so it is best
112 * to keep them that size.
113 * We don't need to allocate pages for the transmitter. We just use
114 * the skbuffer directly.
116 #define CPM_ENET_RX_PAGES 4
117 #define CPM_ENET_RX_FRSIZE 2048
118 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
119 #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
120 #define TX_RING_SIZE 8 /* Must be power of two */
121 #define TX_RING_MOD_MASK 7 /* for this to work */
123 /* The CPM stores dest/src/type, data, and checksum for receive packets.
125 #define PKT_MAXBUF_SIZE 1518
126 #define PKT_MINBUF_SIZE 64
127 #define PKT_MAXBLR_SIZE 1520
129 /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
130 * tx_bd_base always point to the base of the buffer descriptors. The
131 * cur_rx and cur_tx point to the currently available buffer.
132 * The dirty_tx tracks the current buffer that is being sent by the
133 * controller. The cur_tx and dirty_tx are equal under both completely
134 * empty and completely full conditions. The empty/ready indicator in
135 * the buffer descriptor determines the actual condition.
137 struct cpm_enet_private {
138 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
139 struct sk_buff* tx_skbuff[TX_RING_SIZE];
140 ushort skb_cur;
141 ushort skb_dirty;
143 /* CPM dual port RAM relative addresses.
145 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
146 cbd_t *tx_bd_base;
147 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
148 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
149 scc_t *sccp;
150 struct net_device_stats stats;
151 char tx_full;
152 unsigned long lock;
155 static int cpm_enet_open(struct net_device *dev);
156 static int cpm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
157 static int cpm_enet_rx(struct net_device *dev);
158 static void cpm_enet_interrupt(void *dev_id);
159 static int cpm_enet_close(struct net_device *dev);
160 static struct net_device_stats *cpm_enet_get_stats(struct net_device *dev);
161 static void set_multicast_list(struct net_device *dev);
163 /* Get this from various configuration locations (depends on board).
165 /*static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/
167 /* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards
168 * use SCC2. This is easily extended if necessary.
170 #ifdef CONFIG_SCC2_ENET
171 #define CPM_CR_ENET CPM_CR_CH_SCC2
172 #define PROFF_ENET PROFF_SCC2
173 #define SCC_ENET 1 /* Index, not number! */
174 #define CPMVEC_ENET CPMVEC_SCC2
175 #endif
177 #ifdef CONFIG_SCC1_ENET
178 #define CPM_CR_ENET CPM_CR_CH_SCC1
179 #define PROFF_ENET PROFF_SCC1
180 #define SCC_ENET 0
181 #define CPMVEC_ENET CPMVEC_SCC1
182 #endif
184 static int
185 cpm_enet_open(struct net_device *dev)
188 /* I should reset the ring buffers here, but I don't yet know
189 * a simple way to do that.
192 dev->tbusy = 0;
193 dev->interrupt = 0;
194 dev->start = 1;
196 return 0; /* Always succeed */
199 static int
200 cpm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
202 struct cpm_enet_private *cep = (struct cpm_enet_private *)dev->priv;
203 volatile cbd_t *bdp;
204 unsigned long flags;
206 /* Transmitter timeout, serious problems. */
207 if (dev->tbusy) {
208 int tickssofar = jiffies - dev->trans_start;
209 if (tickssofar < 200)
210 return 1;
211 printk("%s: transmit timed out.\n", dev->name);
212 cep->stats.tx_errors++;
213 #ifndef final_version
215 int i;
216 cbd_t *bdp;
217 printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
218 cep->cur_tx, cep->tx_full ? " (full)" : "",
219 cep->cur_rx);
220 bdp = cep->tx_bd_base;
221 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
222 printk("%04x %04x %08x\n",
223 bdp->cbd_sc,
224 bdp->cbd_datlen,
225 bdp->cbd_bufaddr);
226 bdp = cep->rx_bd_base;
227 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
228 printk("%04x %04x %08x\n",
229 bdp->cbd_sc,
230 bdp->cbd_datlen,
231 bdp->cbd_bufaddr);
233 #endif
235 dev->tbusy=0;
236 dev->trans_start = jiffies;
238 return 0;
241 /* Block a timer-based transmit from overlapping. This could better be
242 done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
243 if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
244 printk("%s: Transmitter access conflict.\n", dev->name);
245 return 1;
248 if (test_and_set_bit(0, (void*)&cep->lock) != 0) {
249 printk("%s: tx queue lock!.\n", dev->name);
250 /* don't clear dev->tbusy flag. */
251 return 1;
254 /* Fill in a Tx ring entry */
255 bdp = cep->cur_tx;
257 #ifndef final_version
258 if (bdp->cbd_sc & BD_ENET_TX_READY) {
259 /* Ooops. All transmit buffers are full. Bail out.
260 * This should not happen, since dev->tbusy should be set.
262 printk("%s: tx queue full!.\n", dev->name);
263 cep->lock = 0;
264 return 1;
266 #endif
268 /* Clear all of the status flags.
270 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
272 /* If the frame is short, tell CPM to pad it.
274 if (skb->len <= ETH_ZLEN)
275 bdp->cbd_sc |= BD_ENET_TX_PAD;
276 else
277 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
279 /* Set buffer length and buffer pointer.
281 bdp->cbd_datlen = skb->len;
282 bdp->cbd_bufaddr = __pa(skb->data);
284 /* Save skb pointer.
286 cep->tx_skbuff[cep->skb_cur] = skb;
288 cep->stats.tx_bytes += skb->len;
289 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
291 /* Push the data cache so the CPM does not get stale memory
292 * data.
294 flush_dcache_range(skb->data, skb->data + skb->len);
296 /* Send it on its way. Tell CPM its ready, interrupt when done,
297 * its the last BD of the frame, and to put the CRC on the end.
299 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
301 dev->trans_start = jiffies;
303 /* If this was the last BD in the ring, start at the beginning again.
305 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
306 bdp = cep->tx_bd_base;
307 else
308 bdp++;
310 save_flags(flags);
311 cli();
312 cep->lock = 0;
313 if (bdp->cbd_sc & BD_ENET_TX_READY)
314 cep->tx_full = 1;
315 else
316 dev->tbusy=0;
317 restore_flags(flags);
319 cep->cur_tx = (cbd_t *)bdp;
321 return 0;
324 /* The interrupt handler.
325 * This is called from the CPM handler, not the MPC core interrupt.
327 static void
328 cpm_enet_interrupt(void *dev_id)
330 struct net_device *dev = dev_id;
331 volatile struct cpm_enet_private *cep;
332 volatile cbd_t *bdp;
333 ushort int_events;
334 int must_restart;
336 cep = (struct cpm_enet_private *)dev->priv;
337 if (dev->interrupt)
338 printk("%s: Re-entering the interrupt handler.\n", dev->name);
340 dev->interrupt = 1;
342 /* Get the interrupt events that caused us to be here.
344 int_events = cep->sccp->scc_scce;
345 cep->sccp->scc_scce = int_events;
346 must_restart = 0;
348 /* Handle receive event in its own function.
350 if (int_events & SCCE_ENET_RXF)
351 cpm_enet_rx(dev_id);
353 /* Check for a transmit error. The manual is a little unclear
354 * about this, so the debug code until I get it figured out. It
355 * appears that if TXE is set, then TXB is not set. However,
356 * if carrier sense is lost during frame transmission, the TXE
357 * bit is set, "and continues the buffer transmission normally."
358 * I don't know if "normally" implies TXB is set when the buffer
359 * descriptor is closed.....trial and error :-).
362 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
364 if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
365 bdp = cep->dirty_tx;
366 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
367 if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
368 break;
370 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
371 cep->stats.tx_heartbeat_errors++;
372 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
373 cep->stats.tx_window_errors++;
374 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
375 cep->stats.tx_aborted_errors++;
376 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
377 cep->stats.tx_fifo_errors++;
378 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
379 cep->stats.tx_carrier_errors++;
382 /* No heartbeat or Lost carrier are not really bad errors.
383 * The others require a restart transmit command.
385 if (bdp->cbd_sc &
386 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
387 must_restart = 1;
388 cep->stats.tx_errors++;
391 cep->stats.tx_packets++;
393 /* Deferred means some collisions occurred during transmit,
394 * but we eventually sent the packet OK.
396 if (bdp->cbd_sc & BD_ENET_TX_DEF)
397 cep->stats.collisions++;
399 /* Free the sk buffer associated with this last transmit.
401 dev_kfree_skb(cep->tx_skbuff[cep->skb_dirty]/*, FREE_WRITE*/);
402 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
404 /* Update pointer to next buffer descriptor to be transmitted.
406 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
407 bdp = cep->tx_bd_base;
408 else
409 bdp++;
411 /* I don't know if we can be held off from processing these
412 * interrupts for more than one frame time. I really hope
413 * not. In such a case, we would now want to check the
414 * currently available BD (cur_tx) and determine if any
415 * buffers between the dirty_tx and cur_tx have also been
416 * sent. We would want to process anything in between that
417 * does not have BD_ENET_TX_READY set.
420 /* Since we have freed up a buffer, the ring is no longer
421 * full.
423 if (cep->tx_full && dev->tbusy) {
424 cep->tx_full = 0;
425 dev->tbusy = 0;
426 mark_bh(NET_BH);
429 cep->dirty_tx = (cbd_t *)bdp;
432 if (must_restart) {
433 volatile cpm8xx_t *cp;
435 /* Some transmit errors cause the transmitter to shut
436 * down. We now issue a restart transmit. Since the
437 * errors close the BD and update the pointers, the restart
438 * _should_ pick up without having to reset any of our
439 * pointers either.
441 cp = cpmp;
442 cp->cp_cpcr =
443 mk_cr_cmd(CPM_CR_ENET, CPM_CR_RESTART_TX) | CPM_CR_FLG;
444 while (cp->cp_cpcr & CPM_CR_FLG);
448 /* Check for receive busy, i.e. packets coming but no place to
449 * put them. This "can't happen" because the receive interrupt
450 * is tossing previous frames.
452 if (int_events & SCCE_ENET_BSY) {
453 cep->stats.rx_dropped++;
454 printk("CPM ENET: BSY can't happen.\n");
457 dev->interrupt = 0;
459 return;
462 /* During a receive, the cur_rx points to the current incoming buffer.
463 * When we update through the ring, if the next incoming buffer has
464 * not been given to the system, we just set the empty indicator,
465 * effectively tossing the packet.
467 static int
468 cpm_enet_rx(struct net_device *dev)
470 struct cpm_enet_private *cep;
471 volatile cbd_t *bdp;
472 struct sk_buff *skb;
473 ushort pkt_len;
475 cep = (struct cpm_enet_private *)dev->priv;
477 /* First, grab all of the stats for the incoming packet.
478 * These get messed up if we get called due to a busy condition.
480 bdp = cep->cur_rx;
482 for (;;) {
483 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
484 break;
486 #ifndef final_version
487 /* Since we have allocated space to hold a complete frame, both
488 * the first and last indicators should be set.
490 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
491 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
492 printk("CPM ENET: rcv is not first+last\n");
493 #endif
495 /* Frame too long or too short.
497 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
498 cep->stats.rx_length_errors++;
499 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
500 cep->stats.rx_frame_errors++;
501 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
502 cep->stats.rx_crc_errors++;
503 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
504 cep->stats.rx_crc_errors++;
506 /* Report late collisions as a frame error.
507 * On this error, the BD is closed, but we don't know what we
508 * have in the buffer. So, just drop this frame on the floor.
510 if (bdp->cbd_sc & BD_ENET_RX_CL) {
511 cep->stats.rx_frame_errors++;
513 else {
515 /* Process the incoming frame.
517 cep->stats.rx_packets++;
518 pkt_len = bdp->cbd_datlen;
519 cep->stats.rx_bytes += pkt_len;
521 /* This does 16 byte alignment, much more than we need.
523 skb = dev_alloc_skb(pkt_len);
525 if (skb == NULL) {
526 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
527 cep->stats.rx_dropped++;
529 else {
530 skb->dev = dev;
531 skb_put(skb,pkt_len); /* Make room */
532 eth_copy_and_sum(skb,
533 (unsigned char *)__va(bdp->cbd_bufaddr),
534 pkt_len, 0);
535 skb->protocol=eth_type_trans(skb,dev);
536 netif_rx(skb);
540 /* Clear the status flags for this buffer.
542 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
544 /* Mark the buffer empty.
546 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
548 /* Update BD pointer to next entry.
550 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
551 bdp = cep->rx_bd_base;
552 else
553 bdp++;
556 cep->cur_rx = (cbd_t *)bdp;
558 return 0;
561 static int
562 cpm_enet_close(struct net_device *dev)
564 /* Don't know what to do yet.
567 return 0;
570 static struct net_device_stats *cpm_enet_get_stats(struct net_device *dev)
572 struct cpm_enet_private *cep = (struct cpm_enet_private *)dev->priv;
574 return &cep->stats;
577 /* Set or clear the multicast filter for this adaptor.
578 * Skeleton taken from sunlance driver.
579 * The CPM Ethernet implementation allows Multicast as well as individual
580 * MAC address filtering. Some of the drivers check to make sure it is
581 * a group multicast address, and discard those that are not. I guess I
582 * will do the same for now, but just remove the test if you want
583 * individual filtering as well (do the upper net layers want or support
584 * this kind of feature?).
587 static void set_multicast_list(struct net_device *dev)
589 struct cpm_enet_private *cep;
590 struct dev_mc_list *dmi;
591 u_char *mcptr, *tdptr;
592 volatile scc_enet_t *ep;
593 int i, j;
594 cep = (struct cpm_enet_private *)dev->priv;
596 /* Get pointer to SCC area in parameter RAM.
598 ep = (scc_enet_t *)dev->base_addr;
600 if (dev->flags&IFF_PROMISC) {
602 /* Log any net taps. */
603 printk("%s: Promiscuous mode enabled.\n", dev->name);
604 cep->sccp->scc_pmsr |= SCC_PMSR_PRO;
605 } else {
607 cep->sccp->scc_pmsr &= ~SCC_PMSR_PRO;
609 if (dev->flags & IFF_ALLMULTI) {
610 /* Catch all multicast addresses, so set the
611 * filter to all 1's.
613 ep->sen_gaddr1 = 0xffff;
614 ep->sen_gaddr2 = 0xffff;
615 ep->sen_gaddr3 = 0xffff;
616 ep->sen_gaddr4 = 0xffff;
618 else {
619 /* Clear filter and add the addresses in the list.
621 ep->sen_gaddr1 = 0;
622 ep->sen_gaddr2 = 0;
623 ep->sen_gaddr3 = 0;
624 ep->sen_gaddr4 = 0;
626 dmi = dev->mc_list;
628 for (i=0; i<dev->mc_count; i++) {
630 /* Only support group multicast for now.
632 if (!(dmi->dmi_addr[0] & 1))
633 continue;
635 /* The address in dmi_addr is LSB first,
636 * and taddr is MSB first. We have to
637 * copy bytes MSB first from dmi_addr.
639 mcptr = (u_char *)dmi->dmi_addr + 5;
640 tdptr = (u_char *)&ep->sen_taddrh;
641 for (j=0; j<6; j++)
642 *tdptr++ = *mcptr--;
644 /* Ask CPM to run CRC and set bit in
645 * filter mask.
647 cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_SET_GADDR) | CPM_CR_FLG;
648 /* this delay is necessary here -- Cort */
649 udelay(10);
650 while (cpmp->cp_cpcr & CPM_CR_FLG);
656 /* Initialize the CPM Ethernet on SCC. If EPPC-Bug loaded us, or performed
657 * some other network I/O, a whole bunch of this has already been set up.
658 * It is no big deal if we do it again, we just have to disable the
659 * transmit and receive to make sure we don't catch the CPM with some
660 * inconsistent control information.
662 int __init cpm_enet_init(void)
664 struct net_device *dev;
665 struct cpm_enet_private *cep;
666 int i, j;
667 unsigned char *eap;
668 unsigned long mem_addr;
669 pte_t *pte;
670 bd_t *bd;
671 volatile cbd_t *bdp;
672 volatile cpm8xx_t *cp;
673 volatile scc_t *sccp;
674 volatile scc_enet_t *ep;
675 volatile immap_t *immap;
677 cp = cpmp; /* Get pointer to Communication Processor */
679 immap = (immap_t *)IMAP_ADDR; /* and to internal registers */
681 bd = (bd_t *)__res;
683 /* Allocate some private information.
685 cep = (struct cpm_enet_private *)kmalloc(sizeof(*cep), GFP_KERNEL);
686 /*memset(cep, 0, sizeof(*cep));*/
687 __clear_user(cep,sizeof(*cep));
689 /* Create an Ethernet device instance.
691 dev = init_etherdev(0, 0);
693 /* Get pointer to SCC area in parameter RAM.
695 ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]);
697 /* And another to the SCC register area.
699 sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]);
700 cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
702 /* Disable receive and transmit in case EPPC-Bug started it.
704 sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
706 /* Cookbook style from the MPC860 manual.....
707 * Not all of this is necessary if EPPC-Bug has initialized
708 * the network.
709 * So far we are lucky, all board configurations use the same
710 * pins, or at least the same I/O Port for these functions.....
711 * It can't last though......
714 /* Configure port A pins for Txd and Rxd.
716 immap->im_ioport.iop_papar |= (PA_ENET_RXD | PA_ENET_TXD);
717 immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD);
718 immap->im_ioport.iop_paodr &= ~PA_ENET_TXD;
720 /* Configure port C pins to enable CLSN and RENA.
722 immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA);
723 immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA);
724 immap->im_ioport.iop_pcso |= (PC_ENET_CLSN | PC_ENET_RENA);
726 /* Configure port A for TCLK and RCLK.
728 immap->im_ioport.iop_papar |= (PA_ENET_TCLK | PA_ENET_RCLK);
729 immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK);
731 /* Configure Serial Interface clock routing.
732 * First, clear all SCC bits to zero, then set the ones we want.
734 cp->cp_sicr &= ~SICR_ENET_MASK;
735 cp->cp_sicr |= SICR_ENET_CLKRT;
737 /* Manual says set SDDR, but I can't find anything with that
738 * name. I think it is a misprint, and should be SDCR. This
739 * has already been set by the communication processor initialization.
742 /* Allocate space for the buffer descriptors in the DP ram.
743 * These are relative offsets in the DP ram address space.
744 * Initialize base addresses for the buffer descriptors.
746 i = m8xx_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE);
747 ep->sen_genscc.scc_rbase = i;
748 cep->rx_bd_base = (cbd_t *)&cp->cp_dpmem[i];
750 i = m8xx_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE);
751 ep->sen_genscc.scc_tbase = i;
752 cep->tx_bd_base = (cbd_t *)&cp->cp_dpmem[i];
754 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
755 cep->cur_rx = cep->rx_bd_base;
757 /* Issue init Rx BD command for SCC.
758 * Manual says to perform an Init Rx parameters here. We have
759 * to perform both Rx and Tx because the SCC may have been
760 * already running.
761 * In addition, we have to do it later because we don't yet have
762 * all of the BD control/status set properly.
763 cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG;
764 while (cp->cp_cpcr & CPM_CR_FLG);
767 /* Initialize function code registers for big-endian.
769 ep->sen_genscc.scc_rfcr = SCC_EB;
770 ep->sen_genscc.scc_tfcr = SCC_EB;
772 /* Set maximum bytes per receive buffer.
773 * This appears to be an Ethernet frame size, not the buffer
774 * fragment size. It must be a multiple of four.
776 ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
778 /* Set CRC preset and mask.
780 ep->sen_cpres = 0xffffffff;
781 ep->sen_cmask = 0xdebb20e3;
783 ep->sen_crcec = 0; /* CRC Error counter */
784 ep->sen_alec = 0; /* alignment error counter */
785 ep->sen_disfc = 0; /* discard frame counter */
787 ep->sen_pads = 0x8888; /* Tx short frame pad character */
788 ep->sen_retlim = 15; /* Retry limit threshold */
790 ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
791 ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
793 ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
794 ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
796 /* Clear hash tables.
798 ep->sen_gaddr1 = 0;
799 ep->sen_gaddr2 = 0;
800 ep->sen_gaddr3 = 0;
801 ep->sen_gaddr4 = 0;
802 ep->sen_iaddr1 = 0;
803 ep->sen_iaddr2 = 0;
804 ep->sen_iaddr3 = 0;
805 ep->sen_iaddr4 = 0;
807 /* Set Ethernet station address.
809 * If we performed a MBX diskless boot, the Ethernet controller
810 * has been initialized and we copy the address out into our
811 * own structure.
813 * All other types of boards supply the address in the board
814 * information structure, so we copy that into the controller.
816 eap = (unsigned char *)&(ep->sen_paddrh);
817 #ifndef CONFIG_MBX
818 for (i=5; i>=0; i--)
819 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
820 #else
821 for (i=5; i>=0; i--)
822 dev->dev_addr[i] = *eap++;
823 #endif
825 ep->sen_pper = 0; /* 'cause the book says so */
826 ep->sen_taddrl = 0; /* temp address (LSB) */
827 ep->sen_taddrm = 0;
828 ep->sen_taddrh = 0; /* temp address (MSB) */
830 /* Now allocate the host memory pages and initialize the
831 * buffer descriptors.
833 bdp = cep->tx_bd_base;
834 for (i=0; i<TX_RING_SIZE; i++) {
836 /* Initialize the BD for every fragment in the page.
838 bdp->cbd_sc = 0;
839 bdp->cbd_bufaddr = 0;
840 bdp++;
843 /* Set the last buffer to wrap.
845 bdp--;
846 bdp->cbd_sc |= BD_SC_WRAP;
848 bdp = cep->rx_bd_base;
849 for (i=0; i<CPM_ENET_RX_PAGES; i++) {
851 /* Allocate a page.
853 mem_addr = __get_free_page(GFP_KERNEL);
855 /* Make it uncached.
857 pte = find_pte(&init_mm, mem_addr);
858 pte_val(*pte) |= _PAGE_NO_CACHE;
859 flush_tlb_page(current->mm->mmap, mem_addr);
861 /* Initialize the BD for every fragment in the page.
863 for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
864 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
865 bdp->cbd_bufaddr = __pa(mem_addr);
866 mem_addr += CPM_ENET_RX_FRSIZE;
867 bdp++;
871 /* Set the last buffer to wrap.
873 bdp--;
874 bdp->cbd_sc |= BD_SC_WRAP;
876 /* Let's re-initialize the channel now. We have to do it later
877 * than the manual describes because we have just now finished
878 * the BD initialization.
880 cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG;
881 while (cp->cp_cpcr & CPM_CR_FLG);
883 cep->skb_cur = cep->skb_dirty = 0;
885 sccp->scc_scce = 0xffff; /* Clear any pending events */
887 /* Enable interrupts for transmit error, complete frame
888 * received, and any transmit buffer we have also set the
889 * interrupt flag.
891 sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
893 /* Install our interrupt handler.
895 cpm_install_handler(CPMVEC_ENET, cpm_enet_interrupt, dev);
897 /* Set GSMR_H to enable all normal operating modes.
898 * Set GSMR_L to enable Ethernet to MC68160.
900 sccp->scc_gsmrh = 0;
901 sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
903 /* Set sync/delimiters.
905 sccp->scc_dsr = 0xd555;
907 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
908 * start frame search 22 bit times after RENA.
910 sccp->scc_pmsr = (SCC_PMSR_ENCRC | SCC_PMSR_NIB22);
912 /* It is now OK to enable the Ethernet transmitter.
913 * Unfortunately, there are board implementation differences here.
915 #ifdef CONFIG_MBX
916 immap->im_ioport.iop_pcpar |= PC_ENET_TENA;
917 immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA;
918 #endif
920 #if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC)
921 cp->cp_pbpar |= PB_ENET_TENA;
922 cp->cp_pbdir |= PB_ENET_TENA;
924 /* And while we are here, set the configuration to enable ethernet.
926 *((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK;
927 *((volatile uint *)RPX_CSR_ADDR) |=
928 (BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS);
929 #endif
931 #ifdef CONFIG_BSEIP
932 cp->cp_pbpar |= PB_ENET_TENA;
933 cp->cp_pbdir |= PB_ENET_TENA;
935 /* BSE uses port B and C for PHY control.
937 cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS);
938 cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
939 cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
941 immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK;
942 immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK;
943 immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK;
944 immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK;
945 #endif
947 dev->base_addr = (unsigned long)ep;
948 dev->priv = cep;
949 #if 0
950 dev->name = "CPM_ENET";
951 #endif
953 /* The CPM Ethernet specific entries in the device structure. */
954 dev->open = cpm_enet_open;
955 dev->hard_start_xmit = cpm_enet_start_xmit;
956 dev->stop = cpm_enet_close;
957 dev->get_stats = cpm_enet_get_stats;
958 dev->set_multicast_list = set_multicast_list;
960 /* And last, enable the transmit and receive processing.
962 sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
964 printk("%s: CPM ENET Version 0.2, ", dev->name);
965 for (i=0; i<5; i++)
966 printk("%02x:", dev->dev_addr[i]);
967 printk("%02x\n", dev->dev_addr[5]);
969 return 0;