1 /* $Id: dma.h,v 1.3 1997/03/16 06:20:39 cort Exp $
2 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3 * Written by Hennus Bergman, 1992.
4 * High DMA channel support & info by Hannu Savolainen
5 * and John Boyd, Nov. 1992.
6 * Changes for ppc sound by Christoph Nadig
9 #include <linux/config.h>
11 #include <linux/spinlock.h>
12 #include <asm/system.h>
15 * Note: Adapted for PowerPC by Gary Thomas
16 * Modified by Cort Dougan <cort@cs.nmt.edu>
18 * None of this really applies for Power Macintoshes. There is
19 * basically just enough here to get kernel/dma.c to compile.
21 * There may be some comments or restrictions made here which are
22 * not valid for the PReP platform. Take what you read
23 * with a grain of salt.
30 #ifndef MAX_DMA_CHANNELS
31 #define MAX_DMA_CHANNELS 8
34 /* The maximum address that we can perform a DMA transfer to on this platform */
35 /* Doesn't really apply... */
36 #define MAX_DMA_ADDRESS 0xFFFFFFFF
38 /* in arch/ppc/kernel/setup.c -- Cort */
39 extern unsigned long DMA_MODE_WRITE
, DMA_MODE_READ
;
40 extern unsigned long ISA_DMA_THRESHOLD
;
43 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
44 #define dma_outb outb_p
52 * NOTES about DMA transfers:
54 * controller 1: channels 0-3, byte operations, ports 00-1F
55 * controller 2: channels 4-7, word operations, ports C0-DF
57 * - ALL registers are 8 bits only, regardless of transfer size
58 * - channel 4 is not used - cascades 1 into 2.
59 * - channels 0-3 are byte - addresses/counts are for physical bytes
60 * - channels 5-7 are word - addresses/counts are for physical words
61 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
62 * - transfer count loaded to registers is 1 less than actual count
63 * - controller 2 offsets are all even (2x offsets for controller 1)
64 * - page registers for 5-7 don't use data bit 0, represent 128K pages
65 * - page registers for 0-3 use bit 0, represent 64K pages
67 * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
68 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
69 * Note that addresses loaded into registers must be _physical_ addresses,
70 * not logical addresses (which may differ if paging is active).
72 * Address mapping for channels 0-3:
74 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
75 * | ... | | ... | | ... |
76 * | ... | | ... | | ... |
77 * | ... | | ... | | ... |
78 * P7 ... P0 A7 ... A0 A7 ... A0
79 * | Page | Addr MSB | Addr LSB | (DMA registers)
81 * Address mapping for channels 5-7:
83 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
84 * | ... | \ \ ... \ \ \ ... \ \
85 * | ... | \ \ ... \ \ \ ... \ (not used)
86 * | ... | \ \ ... \ \ \ ... \
87 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
88 * | Page | Addr MSB | Addr LSB | (DMA registers)
90 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
91 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
92 * the hardware level, so odd-byte transfers aren't possible).
94 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
95 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
96 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
100 /* used in nasty hack for sound - see prep_setup_arch() -- Cort */
101 extern long ppc_cs4232_dma
, ppc_cs4232_dma2
;
103 #define SND_DMA1 ppc_cs4232_dma
104 #define SND_DMA2 ppc_cs4232_dma2
107 #define SND_DMA1 CONFIG_MSS_DMA
108 #define SND_DMA2 CONFIG_MSS_DMA2
115 /* 8237 DMA controllers */
116 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
117 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
119 /* DMA controller registers */
120 #define DMA1_CMD_REG 0x08 /* command register (w) */
121 #define DMA1_STAT_REG 0x08 /* status register (r) */
122 #define DMA1_REQ_REG 0x09 /* request register (w) */
123 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
124 #define DMA1_MODE_REG 0x0B /* mode register (w) */
125 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
126 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
127 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
128 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
129 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
131 #define DMA2_CMD_REG 0xD0 /* command register (w) */
132 #define DMA2_STAT_REG 0xD0 /* status register (r) */
133 #define DMA2_REQ_REG 0xD2 /* request register (w) */
134 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
135 #define DMA2_MODE_REG 0xD6 /* mode register (w) */
136 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
137 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
138 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
139 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
140 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
142 #define DMA_ADDR_0 0x00 /* DMA address registers */
143 #define DMA_ADDR_1 0x02
144 #define DMA_ADDR_2 0x04
145 #define DMA_ADDR_3 0x06
146 #define DMA_ADDR_4 0xC0
147 #define DMA_ADDR_5 0xC4
148 #define DMA_ADDR_6 0xC8
149 #define DMA_ADDR_7 0xCC
151 #define DMA_CNT_0 0x01 /* DMA count registers */
152 #define DMA_CNT_1 0x03
153 #define DMA_CNT_2 0x05
154 #define DMA_CNT_3 0x07
155 #define DMA_CNT_4 0xC2
156 #define DMA_CNT_5 0xC6
157 #define DMA_CNT_6 0xCA
158 #define DMA_CNT_7 0xCE
160 #define DMA_LO_PAGE_0 0x87 /* DMA page registers */
161 #define DMA_LO_PAGE_1 0x83
162 #define DMA_LO_PAGE_2 0x81
163 #define DMA_LO_PAGE_3 0x82
164 #define DMA_LO_PAGE_5 0x8B
165 #define DMA_LO_PAGE_6 0x89
166 #define DMA_LO_PAGE_7 0x8A
168 #define DMA_HI_PAGE_0 0x487 /* DMA page registers */
169 #define DMA_HI_PAGE_1 0x483
170 #define DMA_HI_PAGE_2 0x481
171 #define DMA_HI_PAGE_3 0x482
172 #define DMA_HI_PAGE_5 0x48B
173 #define DMA_HI_PAGE_6 0x489
174 #define DMA_HI_PAGE_7 0x48A
176 #define DMA1_EXT_REG 0x40B
177 #define DMA2_EXT_REG 0x4D6
179 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
180 #define DMA_AUTOINIT 0x10
182 extern spinlock_t dma_spin_lock
;
184 static __inline__
unsigned long claim_dma_lock(void)
187 spin_lock_irqsave(&dma_spin_lock
, flags
);
191 static __inline__
void release_dma_lock(unsigned long flags
)
193 spin_unlock_irqrestore(&dma_spin_lock
, flags
);
196 /* enable/disable a specific DMA channel */
197 static __inline__
void enable_dma(unsigned int dmanr
)
200 * The Radstone PPC2 and PPC2a boards have inverted DREQ
201 * lines (active low) so each command needs to be logically
204 unsigned char ucDmaCmd
=0x00;
206 if(_prep_type
==_PREP_Radstone
)
210 case RS_SYS_TYPE_PPC2
:
211 case RS_SYS_TYPE_PPC2a
:
212 case RS_SYS_TYPE_PPC2ep
:
215 * DREQ lines are active low
224 * DREQ lines are active high
233 dma_outb(0, DMA2_MASK_REG
); /* This may not be enabled */
234 dma_outb(ucDmaCmd
, DMA2_CMD_REG
); /* Enable group */
238 dma_outb(dmanr
, DMA1_MASK_REG
);
239 dma_outb(ucDmaCmd
, DMA1_CMD_REG
); /* Enable group */
242 dma_outb(dmanr
& 3, DMA2_MASK_REG
);
246 static __inline__
void disable_dma(unsigned int dmanr
)
249 dma_outb(dmanr
| 4, DMA1_MASK_REG
);
251 dma_outb((dmanr
& 3) | 4, DMA2_MASK_REG
);
254 /* Clear the 'DMA Pointer Flip Flop'.
255 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
256 * Use this once to initialize the FF to a known state.
257 * After that, keep track of it. :-)
258 * --- In order to do that, the DMA routines below should ---
259 * --- only be used while interrupts are disabled! ---
261 static __inline__
void clear_dma_ff(unsigned int dmanr
)
264 dma_outb(0, DMA1_CLEAR_FF_REG
);
266 dma_outb(0, DMA2_CLEAR_FF_REG
);
269 /* set mode (above) for a specific DMA channel */
270 static __inline__
void set_dma_mode(unsigned int dmanr
, char mode
)
273 dma_outb(mode
| dmanr
, DMA1_MODE_REG
);
275 dma_outb(mode
| (dmanr
&3), DMA2_MODE_REG
);
278 /* Set only the page register bits of the transfer address.
279 * This is used for successive transfers when we know the contents of
280 * the lower 16 bits of the DMA current address register, but a 64k boundary
281 * may have been crossed.
283 static __inline__
void set_dma_page(unsigned int dmanr
, int pagenr
)
287 dma_outb(pagenr
, DMA_LO_PAGE_0
);
288 dma_outb(pagenr
>>8, DMA_HI_PAGE_0
);
291 dma_outb(pagenr
, DMA_LO_PAGE_1
);
292 dma_outb(pagenr
>>8, DMA_HI_PAGE_1
);
295 dma_outb(pagenr
, DMA_LO_PAGE_2
);
296 dma_outb(pagenr
>>8, DMA_HI_PAGE_2
);
299 dma_outb(pagenr
, DMA_LO_PAGE_3
);
300 dma_outb(pagenr
>>8, DMA_HI_PAGE_3
);
303 if (SND_DMA1
== 5 || SND_DMA2
== 5)
304 dma_outb(pagenr
, DMA_LO_PAGE_5
);
306 dma_outb(pagenr
& 0xfe, DMA_LO_PAGE_5
);
307 dma_outb(pagenr
>>8, DMA_HI_PAGE_5
);
310 if (SND_DMA1
== 6 || SND_DMA2
== 6)
311 dma_outb(pagenr
, DMA_LO_PAGE_6
);
313 dma_outb(pagenr
& 0xfe, DMA_LO_PAGE_6
);
314 dma_outb(pagenr
>>8, DMA_HI_PAGE_6
);
317 if (SND_DMA1
== 7 || SND_DMA2
== 7)
318 dma_outb(pagenr
, DMA_LO_PAGE_7
);
320 dma_outb(pagenr
& 0xfe, DMA_LO_PAGE_7
);
321 dma_outb(pagenr
>>8, DMA_HI_PAGE_7
);
327 /* Set transfer address & page bits for specific DMA channel.
328 * Assumes dma flipflop is clear.
330 static __inline__
void set_dma_addr(unsigned int dmanr
, unsigned int phys
)
333 dma_outb( phys
& 0xff, ((dmanr
&3)<<1) + IO_DMA1_BASE
);
334 dma_outb( (phys
>>8) & 0xff, ((dmanr
&3)<<1) + IO_DMA1_BASE
);
336 if (dmanr
== SND_DMA1
|| dmanr
== SND_DMA2
) {
337 dma_outb( phys
& 0xff, ((dmanr
&3)<<2) + IO_DMA2_BASE
);
338 dma_outb( (phys
>>8) & 0xff, ((dmanr
&3)<<2) + IO_DMA2_BASE
);
339 dma_outb( (dmanr
&3), DMA2_EXT_REG
);
341 dma_outb( (phys
>>1) & 0xff, ((dmanr
&3)<<2) + IO_DMA2_BASE
);
342 dma_outb( (phys
>>9) & 0xff, ((dmanr
&3)<<2) + IO_DMA2_BASE
);
345 set_dma_page(dmanr
, phys
>>16);
349 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
350 * a specific DMA channel.
351 * You must ensure the parameters are valid.
352 * NOTE: from a manual: "the number of transfers is one more
353 * than the initial word count"! This is taken into account.
354 * Assumes dma flip-flop is clear.
355 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
357 static __inline__
void set_dma_count(unsigned int dmanr
, unsigned int count
)
361 dma_outb( count
& 0xff, ((dmanr
&3)<<1) + 1 + IO_DMA1_BASE
);
362 dma_outb( (count
>>8) & 0xff, ((dmanr
&3)<<1) + 1 + IO_DMA1_BASE
);
364 if (dmanr
== SND_DMA1
|| dmanr
== SND_DMA2
) {
365 dma_outb( count
& 0xff, ((dmanr
&3)<<2) + 2 + IO_DMA2_BASE
);
366 dma_outb( (count
>>8) & 0xff, ((dmanr
&3)<<2) + 2 + IO_DMA2_BASE
);
368 dma_outb( (count
>>1) & 0xff, ((dmanr
&3)<<2) + 2 + IO_DMA2_BASE
);
369 dma_outb( (count
>>9) & 0xff, ((dmanr
&3)<<2) + 2 + IO_DMA2_BASE
);
375 /* Get DMA residue count. After a DMA transfer, this
376 * should return zero. Reading this while a DMA transfer is
377 * still in progress will return unpredictable results.
378 * If called before the channel has been used, it may return 1.
379 * Otherwise, it returns the number of _bytes_ left to transfer.
381 * Assumes DMA flip-flop is clear.
383 static __inline__
int get_dma_residue(unsigned int dmanr
)
385 unsigned int io_port
= (dmanr
<=3)? ((dmanr
&3)<<1) + 1 + IO_DMA1_BASE
386 : ((dmanr
&3)<<2) + 2 + IO_DMA2_BASE
;
388 /* using short to get 16-bit wrap around */
389 unsigned short count
;
391 count
= 1 + dma_inb(io_port
);
392 count
+= dma_inb(io_port
) << 8;
394 return (dmanr
<= 3 || dmanr
== SND_DMA1
|| dmanr
== SND_DMA2
)
395 ? count
: (count
<<1);
398 /* These are in kernel/dma.c: */
399 extern int request_dma(unsigned int dmanr
, const char * device_id
); /* reserve a DMA channel */
400 extern void free_dma(unsigned int dmanr
); /* release it again */
403 extern int isa_dma_bridge_buggy
;
405 #define isa_dma_bridge_buggy (0)
407 #endif /* _ASM_DMA_H */