2 * in2000.c - Linux device driver for the
3 * Always IN2000 ISA SCSI card.
5 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
21 * much of the inspiration and some of the code for this driver.
22 * The Linux IN2000 driver distributed in the Linux kernels through
23 * version 1.2.13 was an extremely valuable reference on the arcane
24 * (and still mysterious) workings of the IN2000's fifo. It also
25 * is where I lifted in2000_biosparam(), the gist of the card
26 * detection scheme, and other bits of code. Many thanks to the
27 * talented and courageous people who wrote, contributed to, and
28 * maintained that driver (including Brad McLean, Shaun Savage,
29 * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
30 * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
31 * Youngdale). I should also mention the driver written by
32 * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
33 * in the Linux-m68k distribution; it gave me a good initial
34 * understanding of the proper way to run a WD33c93 chip, and I
35 * ended up stealing lots of code from it.
37 * _This_ driver is (I feel) an improvement over the old one in
39 * - All problems relating to the data size of a SCSI request are
40 * gone (as far as I know). The old driver couldn't handle
41 * swapping to partitions because that involved 4k blocks, nor
42 * could it deal with the st.c tape driver unmodified, because
43 * that usually involved 4k - 32k blocks. The old driver never
44 * quite got away from a morbid dependence on 2k block sizes -
45 * which of course is the size of the card's fifo.
47 * - Target Disconnection/Reconnection is now supported. Any
48 * system with more than one device active on the SCSI bus
49 * will benefit from this. The driver defaults to what I'm
50 * calling 'adaptive disconnect' - meaning that each command
51 * is evaluated individually as to whether or not it should
52 * be run with the option to disconnect/reselect (if the
53 * device chooses), or as a "SCSI-bus-hog".
55 * - Synchronous data transfers are now supported. Because there
56 * are a few devices (and many improperly terminated systems)
57 * that choke when doing sync, the default is sync DISABLED
58 * for all devices. This faster protocol can (and should!)
59 * be enabled on selected devices via the command-line.
61 * - Runtime operating parameters can now be specified through
62 * either the LILO or the 'insmod' command line. For LILO do:
63 * "in2000=blah,blah,blah"
64 * and with insmod go like:
65 * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
66 * The defaults should be good for most people. See the comment
67 * for 'setup_strings' below for more details.
69 * - The old driver relied exclusively on what the Western Digital
70 * docs call "Combination Level 2 Commands", which are a great
71 * idea in that the CPU is relieved of a lot of interrupt
72 * overhead. However, by accepting a certain (user-settable)
73 * amount of additional interrupts, this driver achieves
74 * better control over the SCSI bus, and data transfers are
75 * almost as fast while being much easier to define, track,
78 * - You can force detection of a card whose BIOS has been disabled.
80 * - Multiple IN2000 cards might almost be supported. I've tried to
81 * keep it in mind, but have no way to test...
85 * tagged queuing. multiple cards.
89 * When using this or any other SCSI driver as a module, you'll
90 * find that with the stock kernel, at most _two_ SCSI hard
91 * drives will be linked into the device list (ie, usable).
92 * If your IN2000 card has more than 2 disks on its bus, you
93 * might want to change the define of 'SD_EXTRA_DEVS' in the
94 * 'hosts.h' file from 2 to whatever is appropriate. It took
95 * me a while to track down this surprisingly obscure and
96 * undocumented little "feature".
99 * People with bug reports, wish-lists, complaints, comments,
100 * or improvements are asked to pah-leeez email me (John Shifflett)
101 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
102 * this thing into as good a shape as possible, and I'm positive
103 * there are lots of lurking bugs and "Stupid Places".
107 #include <linux/module.h>
109 #include <asm/system.h>
110 #include <linux/sched.h>
111 #include <linux/string.h>
112 #include <linux/delay.h>
113 #include <linux/proc_fs.h>
115 #include <linux/ioport.h>
116 #include <linux/blkdev.h>
118 #include <linux/blk.h>
119 #include <linux/stat.h>
125 #define IN2000_VERSION "1.33"
126 #define IN2000_DATE "26/August/1998"
132 * 'setup_strings' is a single string used to pass operating parameters and
133 * settings from the kernel/module command-line to the driver. 'setup_args[]'
134 * is an array of strings that define the compile-time default values for
135 * these settings. If Linux boots with a LILO or insmod command-line, those
136 * settings are combined with 'setup_args[]'. Note that LILO command-lines
137 * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
138 * The driver recognizes the following keywords (lower case required) and
141 * - ioport:addr -Where addr is IO address of a (usually ROM-less) card.
142 * - noreset -No optional args. Prevents SCSI bus reset at boot time.
143 * - nosync:x -x is a bitmask where the 1st 7 bits correspond with
144 * the 7 possible SCSI devices (bit 0 for device #0, etc).
145 * Set a bit to PREVENT sync negotiation on that device.
146 * The driver default is sync DISABLED on all devices.
147 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
148 * period. Default is 500; acceptable values are 250 - 1000.
149 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
150 * x = 1 does 'adaptive' disconnects, which is the default
151 * and generally the best choice.
152 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
153 * various types of debug output to printed - see the DB_xxx
154 * defines in in2000.h
155 * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that
156 * determines how the /proc interface works and what it
157 * does - see the PR_xxx defines in in2000.h
160 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
161 * _must_ be a colon between a keyword and its numeric argument, with no
163 * - Keywords are separated by commas, no spaces, in the standard kernel
164 * command-line manner.
165 * - A keyword in the 'nth' comma-separated command-line member will overwrite
166 * the 'nth' element of setup_args[]. A blank command-line member (in
167 * other words, a comma with no preceding keyword) will _not_ overwrite
168 * the corresponding setup_args[] element.
170 * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
171 * - in2000=ioport:0x220,noreset
172 * - in2000=period:250,disconnect:2,nosync:0x03
173 * - in2000=debug:0x1e
177 /* Normally, no defaults are specified... */
178 static char *setup_args
[] =
179 {"","","","","","","","",""};
181 /* filled in by 'insmod' */
182 static char *setup_strings
= 0;
185 MODULE_PARM(setup_strings
, "s");
189 static struct Scsi_Host
*instance_list
= 0;
193 static inline uchar
read_3393(struct IN2000_hostdata
*hostdata
, uchar reg_num
)
195 write1_io(reg_num
,IO_WD_ADDR
);
196 return read1_io(IO_WD_DATA
);
200 #define READ_AUX_STAT() read1_io(IO_WD_ASR)
203 static inline void write_3393(struct IN2000_hostdata
*hostdata
, uchar reg_num
, uchar value
)
205 write1_io(reg_num
,IO_WD_ADDR
);
206 write1_io(value
,IO_WD_DATA
);
210 static inline void write_3393_cmd(struct IN2000_hostdata
*hostdata
, uchar cmd
)
212 /* while (READ_AUX_STAT() & ASR_CIP)
214 write1_io(WD_COMMAND
,IO_WD_ADDR
);
215 write1_io(cmd
,IO_WD_DATA
);
219 static uchar
read_1_byte(struct IN2000_hostdata
*hostdata
)
223 write_3393(hostdata
,WD_CONTROL
, CTRL_IDI
| CTRL_EDI
| CTRL_POLLED
);
224 write_3393_cmd(hostdata
,WD_CMD_TRANS_INFO
|0x80);
226 asr
= READ_AUX_STAT();
228 x
= read_3393(hostdata
,WD_DATA
);
229 } while (!(asr
& ASR_INT
));
234 static void write_3393_count(struct IN2000_hostdata
*hostdata
, unsigned long value
)
236 write1_io(WD_TRANSFER_COUNT_MSB
,IO_WD_ADDR
);
237 write1_io((value
>> 16),IO_WD_DATA
);
238 write1_io((value
>> 8),IO_WD_DATA
);
239 write1_io(value
,IO_WD_DATA
);
243 static unsigned long read_3393_count(struct IN2000_hostdata
*hostdata
)
247 write1_io(WD_TRANSFER_COUNT_MSB
,IO_WD_ADDR
);
248 value
= read1_io(IO_WD_DATA
) << 16;
249 value
|= read1_io(IO_WD_DATA
) << 8;
250 value
|= read1_io(IO_WD_DATA
);
255 /* The 33c93 needs to be told which direction a command transfers its
256 * data; we use this function to figure it out. Returns true if there
257 * will be a DATA_OUT phase with this command, false otherwise.
258 * (Thanks to Joerg Dorchain for the research and suggestion.)
260 static int is_dir_out(Scsi_Cmnd
*cmd
)
262 switch (cmd
->cmnd
[0]) {
263 case WRITE_6
: case WRITE_10
: case WRITE_12
:
264 case WRITE_LONG
: case WRITE_SAME
: case WRITE_BUFFER
:
265 case WRITE_VERIFY
: case WRITE_VERIFY_12
:
266 case COMPARE
: case COPY
: case COPY_VERIFY
:
267 case SEARCH_EQUAL
: case SEARCH_HIGH
: case SEARCH_LOW
:
268 case SEARCH_EQUAL_12
: case SEARCH_HIGH_12
: case SEARCH_LOW_12
:
269 case FORMAT_UNIT
: case REASSIGN_BLOCKS
: case RESERVE
:
270 case MODE_SELECT
: case MODE_SELECT_10
: case LOG_SELECT
:
271 case SEND_DIAGNOSTIC
: case CHANGE_DEFINITION
: case UPDATE_BLOCK
:
272 case SET_WINDOW
: case MEDIUM_SCAN
: case SEND_VOLUME_TAG
:
282 static struct sx_period sx_table
[] = {
293 static int round_period(unsigned int period
)
297 for (x
=1; sx_table
[x
].period_ns
; x
++) {
298 if ((period
<= sx_table
[x
-0].period_ns
) &&
299 (period
> sx_table
[x
-1].period_ns
)) {
306 static uchar
calc_sync_xfer(unsigned int period
, unsigned int offset
)
310 period
*= 4; /* convert SDTR code to ns */
311 result
= sx_table
[round_period(period
)].reg_value
;
312 result
|= (offset
< OPTIMUM_SX_OFF
)?offset
:OPTIMUM_SX_OFF
;
318 static void in2000_execute(struct Scsi_Host
*instance
);
320 int in2000_queuecommand (Scsi_Cmnd
*cmd
, void (*done
)(Scsi_Cmnd
*))
322 struct IN2000_hostdata
*hostdata
;
326 hostdata
= (struct IN2000_hostdata
*)cmd
->host
->hostdata
;
328 DB(DB_QUEUE_COMMAND
,printk("Q-%d-%02x-%ld(",cmd
->target
,cmd
->cmnd
[0],cmd
->pid
))
330 /* Set up a few fields in the Scsi_Cmnd structure for our own use:
331 * - host_scribble is the pointer to the next cmd in the input queue
332 * - scsi_done points to the routine we call when a cmd is finished
333 * - result is what you'd expect
336 cmd
->host_scribble
= NULL
;
337 cmd
->scsi_done
= done
;
340 /* We use the Scsi_Pointer structure that's included with each command
341 * as a scratchpad (as it's intended to be used!). The handy thing about
342 * the SCp.xxx fields is that they're always associated with a given
343 * cmd, and are preserved across disconnect-reselect. This means we
344 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
345 * if we keep all the critical pointers and counters in SCp:
346 * - SCp.ptr is the pointer into the RAM buffer
347 * - SCp.this_residual is the size of that buffer
348 * - SCp.buffer points to the current scatter-gather buffer
349 * - SCp.buffers_residual tells us how many S.G. buffers there are
350 * - SCp.have_data_in helps keep track of >2048 byte transfers
351 * - SCp.sent_command is not used
352 * - SCp.phase records this command's SRCID_ER bit setting
356 cmd
->SCp
.buffer
= (struct scatterlist
*)cmd
->buffer
;
357 cmd
->SCp
.buffers_residual
= cmd
->use_sg
- 1;
358 cmd
->SCp
.ptr
= (char *)cmd
->SCp
.buffer
->address
;
359 cmd
->SCp
.this_residual
= cmd
->SCp
.buffer
->length
;
362 cmd
->SCp
.buffer
= NULL
;
363 cmd
->SCp
.buffers_residual
= 0;
364 cmd
->SCp
.ptr
= (char *)cmd
->request_buffer
;
365 cmd
->SCp
.this_residual
= cmd
->request_bufflen
;
367 cmd
->SCp
.have_data_in
= 0;
369 /* We don't set SCp.phase here - that's done in in2000_execute() */
371 /* WD docs state that at the conclusion of a "LEVEL2" command, the
372 * status byte can be retrieved from the LUN register. Apparently,
373 * this is the case only for *uninterrupted* LEVEL2 commands! If
374 * there are any unexpected phases entered, even if they are 100%
375 * legal (different devices may choose to do things differently),
376 * the LEVEL2 command sequence is exited. This often occurs prior
377 * to receiving the status byte, in which case the driver does a
378 * status phase interrupt and gets the status byte on its own.
379 * While such a command can then be "resumed" (ie restarted to
380 * finish up as a LEVEL2 command), the LUN register will NOT be
381 * a valid status byte at the command's conclusion, and we must
382 * use the byte obtained during the earlier interrupt. Here, we
383 * preset SCp.Status to an illegal value (0xff) so that when
384 * this command finally completes, we can tell where the actual
385 * status byte is stored.
388 cmd
->SCp
.Status
= ILLEGAL_STATUS_BYTE
;
390 /* We need to disable interrupts before messing with the input
391 * queue and calling in2000_execute().
398 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
399 * commands are added to the head of the queue so that the desired
400 * sense data is not lost before REQUEST_SENSE executes.
403 if (!(hostdata
->input_Q
) || (cmd
->cmnd
[0] == REQUEST_SENSE
)) {
404 cmd
->host_scribble
= (uchar
*)hostdata
->input_Q
;
405 hostdata
->input_Q
= cmd
;
407 else { /* find the end of the queue */
408 for (tmp
=(Scsi_Cmnd
*)hostdata
->input_Q
; tmp
->host_scribble
;
409 tmp
=(Scsi_Cmnd
*)tmp
->host_scribble
)
411 tmp
->host_scribble
= (uchar
*)cmd
;
414 /* We know that there's at least one command in 'input_Q' now.
415 * Go see if any of them are runnable!
418 in2000_execute(cmd
->host
);
420 DB(DB_QUEUE_COMMAND
,printk(")Q-%ld ",cmd
->pid
))
422 restore_flags(flags
);
429 * This routine attempts to start a scsi command. If the host_card is
430 * already connected, we give up immediately. Otherwise, look through
431 * the input_Q, using the first command we find that's intended
432 * for a currently non-busy target/lun.
433 * Note that this function is always called with interrupts already
434 * disabled (either from in2000_queuecommand() or in2000_intr()).
436 static void in2000_execute (struct Scsi_Host
*instance
)
438 struct IN2000_hostdata
*hostdata
;
439 Scsi_Cmnd
*cmd
, *prev
;
443 unsigned short flushbuf
[16];
446 hostdata
= (struct IN2000_hostdata
*)instance
->hostdata
;
448 DB(DB_EXECUTE
,printk("EX("))
450 if (hostdata
->selecting
|| hostdata
->connected
) {
452 DB(DB_EXECUTE
,printk(")EX-0 "))
458 * Search through the input_Q for a command destined
459 * for an idle target/lun.
462 cmd
= (Scsi_Cmnd
*)hostdata
->input_Q
;
465 if (!(hostdata
->busy
[cmd
->target
] & (1 << cmd
->lun
)))
468 cmd
= (Scsi_Cmnd
*)cmd
->host_scribble
;
471 /* quit if queue empty or all possible targets are busy */
475 DB(DB_EXECUTE
,printk(")EX-1 "))
480 /* remove command from queue */
483 prev
->host_scribble
= cmd
->host_scribble
;
485 hostdata
->input_Q
= (Scsi_Cmnd
*)cmd
->host_scribble
;
487 #ifdef PROC_STATISTICS
488 hostdata
->cmd_cnt
[cmd
->target
]++;
492 * Start the selection process
496 write_3393(hostdata
,WD_DESTINATION_ID
, cmd
->target
);
498 write_3393(hostdata
,WD_DESTINATION_ID
, cmd
->target
| DSTID_DPD
);
500 /* Now we need to figure out whether or not this command is a good
501 * candidate for disconnect/reselect. We guess to the best of our
502 * ability, based on a set of hierarchical rules. When several
503 * devices are operating simultaneously, disconnects are usually
504 * an advantage. In a single device system, or if only 1 device
505 * is being accessed, transfers usually go faster if disconnects
508 * + Commands should NEVER disconnect if hostdata->disconnect =
509 * DIS_NEVER (this holds for tape drives also), and ALWAYS
510 * disconnect if hostdata->disconnect = DIS_ALWAYS.
511 * + Tape drive commands should always be allowed to disconnect.
512 * + Disconnect should be allowed if disconnected_Q isn't empty.
513 * + Commands should NOT disconnect if input_Q is empty.
514 * + Disconnect should be allowed if there are commands in input_Q
515 * for a different target/lun. In this case, the other commands
516 * should be made disconnect-able, if not already.
518 * I know, I know - this code would flunk me out of any
519 * "C Programming 101" class ever offered. But it's easy
520 * to change around and experiment with for now.
523 cmd
->SCp
.phase
= 0; /* assume no disconnect */
524 if (hostdata
->disconnect
== DIS_NEVER
)
526 if (hostdata
->disconnect
== DIS_ALWAYS
)
528 if (cmd
->device
->type
== 1) /* tape drive? */
530 if (hostdata
->disconnected_Q
) /* other commands disconnected? */
532 if (!(hostdata
->input_Q
)) /* input_Q empty? */
534 for (prev
=(Scsi_Cmnd
*)hostdata
->input_Q
; prev
;
535 prev
=(Scsi_Cmnd
*)prev
->host_scribble
) {
536 if ((prev
->target
!= cmd
->target
) || (prev
->lun
!= cmd
->lun
)) {
537 for (prev
=(Scsi_Cmnd
*)hostdata
->input_Q
; prev
;
538 prev
=(Scsi_Cmnd
*)prev
->host_scribble
)
548 #ifdef PROC_STATISTICS
549 hostdata
->disc_allowed_cnt
[cmd
->target
]++;
553 write_3393(hostdata
,WD_SOURCE_ID
,((cmd
->SCp
.phase
)?SRCID_ER
:0));
555 write_3393(hostdata
,WD_TARGET_LUN
, cmd
->lun
);
556 write_3393(hostdata
,WD_SYNCHRONOUS_TRANSFER
,hostdata
->sync_xfer
[cmd
->target
]);
557 hostdata
->busy
[cmd
->target
] |= (1 << cmd
->lun
);
559 if ((hostdata
->level2
<= L2_NONE
) ||
560 (hostdata
->sync_stat
[cmd
->target
] == SS_UNSET
)) {
563 * Do a 'Select-With-ATN' command. This will end with
564 * one of the following interrupts:
565 * CSR_RESEL_AM: failure - can try again later.
566 * CSR_TIMEOUT: failure - give up.
567 * CSR_SELECT: success - proceed.
570 hostdata
->selecting
= cmd
;
572 /* Every target has its own synchronous transfer setting, kept in
573 * the sync_xfer array, and a corresponding status byte in sync_stat[].
574 * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
575 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
576 * means that the parameters are undetermined as yet, and that we
577 * need to send an SDTR message to this device after selection is
578 * complete. We set SS_FIRST to tell the interrupt routine to do so,
579 * unless we don't want to even _try_ synchronous transfers: In this
580 * case we set SS_SET to make the defaults final.
582 if (hostdata
->sync_stat
[cmd
->target
] == SS_UNSET
) {
583 if (hostdata
->sync_off
& (1 << cmd
->target
))
584 hostdata
->sync_stat
[cmd
->target
] = SS_SET
;
586 hostdata
->sync_stat
[cmd
->target
] = SS_FIRST
;
588 hostdata
->state
= S_SELECTING
;
589 write_3393_count(hostdata
,0); /* this guarantees a DATA_PHASE interrupt */
590 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN
);
596 * Do a 'Select-With-ATN-Xfer' command. This will end with
597 * one of the following interrupts:
598 * CSR_RESEL_AM: failure - can try again later.
599 * CSR_TIMEOUT: failure - give up.
600 * anything else: success - proceed.
603 hostdata
->connected
= cmd
;
604 write_3393(hostdata
,WD_COMMAND_PHASE
, 0);
606 /* copy command_descriptor_block into WD chip
607 * (take advantage of auto-incrementing)
610 write1_io(WD_CDB_1
, IO_WD_ADDR
);
611 for (i
=0; i
<cmd
->cmd_len
; i
++)
612 write1_io(cmd
->cmnd
[i
], IO_WD_DATA
);
614 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
615 * it's doing a 'select-and-transfer'. To be safe, we write the
616 * size of the CDB into the OWN_ID register for every case. This
617 * way there won't be problems with vendor-unique, audio, etc.
620 write_3393(hostdata
, WD_OWN_ID
, cmd
->cmd_len
);
622 /* When doing a non-disconnect command, we can save ourselves a DATA
623 * phase interrupt later by setting everything up now. With writes we
624 * need to pre-fill the fifo; if there's room for the 32 flush bytes,
625 * put them in there too - that'll avoid a fifo interrupt. Reads are
627 * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
628 * This results in the IO_FIFO_COUNT register rolling over to zero,
629 * and apparently the gate array logic sees this as empty, not full,
630 * so the 3393 chip is never signalled to start reading from the
631 * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
632 * Regardless, we fix this by temporarily pretending that the fifo
633 * is 16 bytes smaller. (I see now that the old driver has a comment
634 * about "don't fill completely" in an analogous place - must be the
635 * same deal.) This results in CDROM, swap partitions, and tape drives
636 * needing an extra interrupt per write command - I think we can live
640 if (!(cmd
->SCp
.phase
)) {
641 write_3393_count(hostdata
, cmd
->SCp
.this_residual
);
642 write_3393(hostdata
,WD_CONTROL
, CTRL_IDI
| CTRL_EDI
| CTRL_BUS
);
643 write1_io(0, IO_FIFO_WRITE
); /* clear fifo counter, write mode */
645 if (is_dir_out(cmd
)) {
646 hostdata
->fifo
= FI_FIFO_WRITING
;
647 if ((i
= cmd
->SCp
.this_residual
) > (IN2000_FIFO_SIZE
- 16) )
648 i
= IN2000_FIFO_SIZE
- 16;
649 cmd
->SCp
.have_data_in
= i
; /* this much data in fifo */
650 i
>>= 1; /* Gulp. Assuming modulo 2. */
651 sp
= (unsigned short *)cmd
->SCp
.ptr
;
652 f
= hostdata
->io_base
+ IO_FIFO
;
659 write2_io(*sp
++,IO_FIFO
);
663 /* Is there room for the flush bytes? */
665 if (cmd
->SCp
.have_data_in
<= ((IN2000_FIFO_SIZE
- 16) - 32)) {
674 write2_io(0,IO_FIFO
);
682 write1_io(0, IO_FIFO_READ
); /* put fifo in read mode */
683 hostdata
->fifo
= FI_FIFO_READING
;
684 cmd
->SCp
.have_data_in
= 0; /* nothing transfered yet */
689 write_3393_count(hostdata
,0); /* this guarantees a DATA_PHASE interrupt */
691 hostdata
->state
= S_RUNNING_LEVEL2
;
692 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN_XFER
);
696 * Since the SCSI bus can handle only 1 connection at a time,
697 * we get out of here now. If the selection fails, or when
698 * the command disconnects, we'll come back to this routine
699 * to search the input_Q again...
702 DB(DB_EXECUTE
,printk("%s%ld)EX-2 ",(cmd
->SCp
.phase
)?"d:":"",cmd
->pid
))
708 static void transfer_pio(uchar
*buf
, int cnt
,
709 int data_in_dir
, struct IN2000_hostdata
*hostdata
)
713 DB(DB_TRANSFER
,printk("(%p,%d,%s)",buf
,cnt
,data_in_dir
?"in":"out"))
715 write_3393(hostdata
,WD_CONTROL
, CTRL_IDI
| CTRL_EDI
| CTRL_POLLED
);
716 write_3393_count(hostdata
,cnt
);
717 write_3393_cmd(hostdata
,WD_CMD_TRANS_INFO
);
720 asr
= READ_AUX_STAT();
722 *buf
++ = read_3393(hostdata
,WD_DATA
);
723 } while (!(asr
& ASR_INT
));
727 asr
= READ_AUX_STAT();
729 write_3393(hostdata
,WD_DATA
, *buf
++);
730 } while (!(asr
& ASR_INT
));
733 /* Note: we are returning with the interrupt UN-cleared.
734 * Since (presumably) an entire I/O operation has
735 * completed, the bus phase is probably different, and
736 * the interrupt routine will discover this when it
737 * responds to the uncleared int.
744 static void transfer_bytes(Scsi_Cmnd
*cmd
, int data_in_dir
)
746 struct IN2000_hostdata
*hostdata
;
751 hostdata
= (struct IN2000_hostdata
*)cmd
->host
->hostdata
;
753 /* Normally, you'd expect 'this_residual' to be non-zero here.
754 * In a series of scatter-gather transfers, however, this
755 * routine will usually be called with 'this_residual' equal
756 * to 0 and 'buffers_residual' non-zero. This means that a
757 * previous transfer completed, clearing 'this_residual', and
758 * now we need to setup the next scatter-gather buffer as the
759 * source or destination for THIS transfer.
761 if (!cmd
->SCp
.this_residual
&& cmd
->SCp
.buffers_residual
) {
763 --cmd
->SCp
.buffers_residual
;
764 cmd
->SCp
.this_residual
= cmd
->SCp
.buffer
->length
;
765 cmd
->SCp
.ptr
= cmd
->SCp
.buffer
->address
;
768 /* Set up hardware registers */
770 write_3393(hostdata
,WD_SYNCHRONOUS_TRANSFER
,hostdata
->sync_xfer
[cmd
->target
]);
771 write_3393_count(hostdata
,cmd
->SCp
.this_residual
);
772 write_3393(hostdata
,WD_CONTROL
, CTRL_IDI
| CTRL_EDI
| CTRL_BUS
);
773 write1_io(0,IO_FIFO_WRITE
); /* zero counter, assume write */
775 /* Reading is easy. Just issue the command and return - we'll
776 * get an interrupt later when we have actual data to worry about.
780 write1_io(0,IO_FIFO_READ
);
781 if ((hostdata
->level2
>= L2_DATA
) ||
782 (hostdata
->level2
== L2_BASIC
&& cmd
->SCp
.phase
== 0)) {
783 write_3393(hostdata
,WD_COMMAND_PHASE
,0x45);
784 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN_XFER
);
785 hostdata
->state
= S_RUNNING_LEVEL2
;
788 write_3393_cmd(hostdata
,WD_CMD_TRANS_INFO
);
789 hostdata
->fifo
= FI_FIFO_READING
;
790 cmd
->SCp
.have_data_in
= 0;
794 /* Writing is more involved - we'll start the WD chip and write as
795 * much data to the fifo as we can right now. Later interrupts will
796 * write any bytes that don't make it at this stage.
799 if ((hostdata
->level2
>= L2_DATA
) ||
800 (hostdata
->level2
== L2_BASIC
&& cmd
->SCp
.phase
== 0)) {
801 write_3393(hostdata
,WD_COMMAND_PHASE
,0x45);
802 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN_XFER
);
803 hostdata
->state
= S_RUNNING_LEVEL2
;
806 write_3393_cmd(hostdata
,WD_CMD_TRANS_INFO
);
807 hostdata
->fifo
= FI_FIFO_WRITING
;
808 sp
= (unsigned short *)cmd
->SCp
.ptr
;
810 if ((i
= cmd
->SCp
.this_residual
) > IN2000_FIFO_SIZE
)
811 i
= IN2000_FIFO_SIZE
;
812 cmd
->SCp
.have_data_in
= i
;
813 i
>>= 1; /* Gulp. We assume this_residual is modulo 2 */
814 f
= hostdata
->io_base
+ IO_FIFO
;
821 write2_io(*sp
++,IO_FIFO
);
828 /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
829 * function in order to work in an SMP environment. (I'd be surprised
830 * if the driver is ever used by anyone on a real multi-CPU motherboard,
831 * but it _does_ need to be able to compile and run in an SMP kernel.)
834 static void in2000_intr (int irqnum
, void * dev_id
, struct pt_regs
*ptregs
)
836 struct Scsi_Host
*instance
;
837 struct IN2000_hostdata
*hostdata
;
838 Scsi_Cmnd
*patch
, *cmd
;
839 uchar asr
, sr
, phs
, id
, lun
, *ucp
, msg
;
841 unsigned long length
;
846 for (instance
= instance_list
; instance
; instance
= instance
->next
) {
847 if (instance
->irq
== irqnum
)
851 printk("*** Hmm... interrupts are screwed up! ***\n");
854 hostdata
= (struct IN2000_hostdata
*)instance
->hostdata
;
856 /* Get the spin_lock and disable further ints, for SMP */
860 #ifdef PROC_STATISTICS
864 /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
865 * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
866 * with a big logic array, so it's a little different than what you might
867 * expect). As far as I know, there's no reason that BOTH can't be active
868 * at the same time, but there's a problem: while we can read the 3393
869 * to tell if _it_ wants an interrupt, I don't know of a way to ask the
870 * fifo the same question. The best we can do is check the 3393 and if
871 * it _isn't_ the source of the interrupt, then we can be pretty sure
872 * that the fifo is the culprit.
873 * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
874 * IO_FIFO_COUNT register mirrors the fifo interrupt state. I
875 * assume that bit clear means interrupt active. As it turns
876 * out, the driver really doesn't need to check for this after
877 * all, so my remarks above about a 'problem' can safely be
878 * ignored. The way the logic is set up, there's no advantage
879 * (that I can see) to worrying about it.
881 * It seems that the fifo interrupt signal is negated when we extract
882 * bytes during read or write bytes during write.
883 * - fifo will interrupt when data is moving from it to the 3393, and
884 * there are 31 (or less?) bytes left to go. This is sort of short-
885 * sighted: what if you don't WANT to do more? In any case, our
886 * response is to push more into the fifo - either actual data or
887 * dummy bytes if need be. Note that we apparently have to write at
888 * least 32 additional bytes to the fifo after an interrupt in order
889 * to get it to release the ones it was holding on to - writing fewer
890 * than 32 will result in another fifo int.
891 * UPDATE: Again, info from Bill Earnest makes this more understandable:
892 * 32 bytes = two counts of the fifo counter register. He tells
893 * me that the fifo interrupt is a non-latching signal derived
894 * from a straightforward boolean interpretation of the 7
895 * highest bits of the fifo counter and the fifo-read/fifo-write
896 * state. Who'd a thought?
899 write1_io(0, IO_LED_ON
);
900 asr
= READ_AUX_STAT();
901 if (!(asr
& ASR_INT
)) { /* no WD33c93 interrupt? */
903 /* Ok. This is definitely a FIFO-only interrupt.
905 * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
906 * maybe more to come from the SCSI bus. Read as many as we can out of the
907 * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
908 * update have_data_in afterwards.
910 * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
911 * into the WD3393 chip (I think the interrupt happens when there are 31
912 * bytes left, but it may be fewer...). The 3393 is still waiting, so we
913 * shove some more into the fifo, which gets things moving again. If the
914 * original SCSI command specified more than 2048 bytes, there may still
915 * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
916 * Don't forget to update have_data_in. If we've already written out the
917 * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
918 * push out the remaining real data.
919 * (Big thanks to Bill Earnest for getting me out of the mud in here.)
922 cmd
= (Scsi_Cmnd
*)hostdata
->connected
; /* assume we're connected */
923 CHECK_NULL(cmd
,"fifo_int")
925 if (hostdata
->fifo
== FI_FIFO_READING
) {
927 DB(DB_FIFO
,printk("{R:%02x} ",read1_io(IO_FIFO_COUNT
)))
929 sp
= (unsigned short *)(cmd
->SCp
.ptr
+ cmd
->SCp
.have_data_in
);
930 i
= read1_io(IO_FIFO_COUNT
) & 0xfe;
931 i
<<= 2; /* # of words waiting in the fifo */
932 f
= hostdata
->io_base
+ IO_FIFO
;
939 *sp
++ = read2_io(IO_FIFO
);
943 i
= sp
- (unsigned short *)(cmd
->SCp
.ptr
+ cmd
->SCp
.have_data_in
);
945 cmd
->SCp
.have_data_in
+= i
;
948 else if (hostdata
->fifo
== FI_FIFO_WRITING
) {
950 DB(DB_FIFO
,printk("{W:%02x} ",read1_io(IO_FIFO_COUNT
)))
952 /* If all bytes have been written to the fifo, flush out the stragglers.
953 * Note that while writing 16 dummy words seems arbitrary, we don't
954 * have another choice that I can see. What we really want is to read
955 * the 3393 transfer count register (that would tell us how many bytes
956 * needed flushing), but the TRANSFER_INFO command hasn't completed
957 * yet (not enough bytes!) and that register won't be accessible. So,
958 * we use 16 words - a number obtained through trial and error.
959 * UPDATE: Bill says this is exactly what Always does, so there.
960 * More thanks due him for help in this section.
963 if (cmd
->SCp
.this_residual
== cmd
->SCp
.have_data_in
) {
965 while (i
--) /* write 32 dummy bytes */
966 write2_io(0,IO_FIFO
);
969 /* If there are still bytes left in the SCSI buffer, write as many as we
970 * can out to the fifo.
974 sp
= (unsigned short *)(cmd
->SCp
.ptr
+ cmd
->SCp
.have_data_in
);
975 i
= cmd
->SCp
.this_residual
- cmd
->SCp
.have_data_in
; /* bytes yet to go */
976 j
= read1_io(IO_FIFO_COUNT
) & 0xfe;
977 j
<<= 2; /* how many words the fifo has room for */
981 write2_io(*sp
++,IO_FIFO
);
983 i
= sp
- (unsigned short *)(cmd
->SCp
.ptr
+ cmd
->SCp
.have_data_in
);
985 cmd
->SCp
.have_data_in
+= i
;
990 printk("*** Spurious FIFO interrupt ***");
993 write1_io(0, IO_LED_OFF
);
995 /* release the SMP spin_lock and restore irq state */
996 CLISPIN_UNLOCK(flags
);
1000 /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
1001 * may also be asserted, but we don't bother to check it: we get more
1002 * detailed info from FIFO_READING and FIFO_WRITING (see below).
1005 cmd
= (Scsi_Cmnd
*)hostdata
->connected
; /* assume we're connected */
1006 sr
= read_3393(hostdata
,WD_SCSI_STATUS
); /* clear the interrupt */
1007 phs
= read_3393(hostdata
,WD_COMMAND_PHASE
);
1009 if (!cmd
&& (sr
!= CSR_RESEL_AM
&& sr
!= CSR_TIMEOUT
&& sr
!= CSR_SELECT
)) {
1010 printk("\nNR:wd-intr-1\n");
1011 write1_io(0, IO_LED_OFF
);
1013 /* release the SMP spin_lock and restore irq state */
1014 CLISPIN_UNLOCK(flags
);
1018 DB(DB_INTR
,printk("{%02x:%02x-",asr
,sr
))
1020 /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1021 * guaranteed to be in response to the completion of the transfer.
1022 * If we were reading, there's probably data in the fifo that needs
1023 * to be copied into RAM - do that here. Also, we have to update
1024 * 'this_residual' and 'ptr' based on the contents of the
1025 * TRANSFER_COUNT register, in case the device decided to do an
1026 * intermediate disconnect (a device may do this if it has to
1027 * do a seek, or just to be nice and let other devices have
1028 * some bus time during long transfers).
1029 * After doing whatever is necessary with the fifo, we go on and
1030 * service the WD3393 interrupt normally.
1033 if (hostdata
->fifo
== FI_FIFO_READING
) {
1035 /* buffer index = start-of-buffer + #-of-bytes-already-read */
1037 sp
= (unsigned short *)(cmd
->SCp
.ptr
+ cmd
->SCp
.have_data_in
);
1039 /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1041 i
= (cmd
->SCp
.this_residual
- read_3393_count(hostdata
)) - cmd
->SCp
.have_data_in
;
1042 i
>>= 1; /* Gulp. We assume this will always be modulo 2 */
1043 f
= hostdata
->io_base
+ IO_FIFO
;
1050 *sp
++ = read2_io(IO_FIFO
);
1054 hostdata
->fifo
= FI_FIFO_UNUSED
;
1055 length
= cmd
->SCp
.this_residual
;
1056 cmd
->SCp
.this_residual
= read_3393_count(hostdata
);
1057 cmd
->SCp
.ptr
+= (length
- cmd
->SCp
.this_residual
);
1059 DB(DB_TRANSFER
,printk("(%p,%d)",cmd
->SCp
.ptr
,cmd
->SCp
.this_residual
))
1063 else if (hostdata
->fifo
== FI_FIFO_WRITING
) {
1064 hostdata
->fifo
= FI_FIFO_UNUSED
;
1065 length
= cmd
->SCp
.this_residual
;
1066 cmd
->SCp
.this_residual
= read_3393_count(hostdata
);
1067 cmd
->SCp
.ptr
+= (length
- cmd
->SCp
.this_residual
);
1069 DB(DB_TRANSFER
,printk("(%p,%d)",cmd
->SCp
.ptr
,cmd
->SCp
.this_residual
))
1073 /* Respond to the specific WD3393 interrupt - there are quite a few! */
1078 DB(DB_INTR
,printk("TIMEOUT"))
1080 if (hostdata
->state
== S_RUNNING_LEVEL2
)
1081 hostdata
->connected
= NULL
;
1083 cmd
= (Scsi_Cmnd
*)hostdata
->selecting
; /* get a valid cmd */
1084 CHECK_NULL(cmd
,"csr_timeout")
1085 hostdata
->selecting
= NULL
;
1088 cmd
->result
= DID_NO_CONNECT
<< 16;
1089 hostdata
->busy
[cmd
->target
] &= ~(1 << cmd
->lun
);
1090 hostdata
->state
= S_UNCONNECTED
;
1091 cmd
->scsi_done(cmd
);
1093 /* We are not connected to a target - check to see if there
1094 * are commands waiting to be executed.
1097 in2000_execute(instance
);
1101 /* Note: this interrupt should not occur in a LEVEL2 command */
1104 DB(DB_INTR
,printk("SELECT"))
1105 hostdata
->connected
= cmd
= (Scsi_Cmnd
*)hostdata
->selecting
;
1106 CHECK_NULL(cmd
,"csr_select")
1107 hostdata
->selecting
= NULL
;
1109 /* construct an IDENTIFY message with correct disconnect bit */
1111 hostdata
->outgoing_msg
[0] = (0x80 | 0x00 | cmd
->lun
);
1113 hostdata
->outgoing_msg
[0] |= 0x40;
1115 if (hostdata
->sync_stat
[cmd
->target
] == SS_FIRST
) {
1117 printk(" sending SDTR ");
1120 hostdata
->sync_stat
[cmd
->target
] = SS_WAITING
;
1122 /* tack on a 2nd message to ask about synchronous transfers */
1124 hostdata
->outgoing_msg
[1] = EXTENDED_MESSAGE
;
1125 hostdata
->outgoing_msg
[2] = 3;
1126 hostdata
->outgoing_msg
[3] = EXTENDED_SDTR
;
1127 hostdata
->outgoing_msg
[4] = OPTIMUM_SX_PER
/4;
1128 hostdata
->outgoing_msg
[5] = OPTIMUM_SX_OFF
;
1129 hostdata
->outgoing_len
= 6;
1132 hostdata
->outgoing_len
= 1;
1134 hostdata
->state
= S_CONNECTED
;
1138 case CSR_XFER_DONE
|PHS_DATA_IN
:
1139 case CSR_UNEXP
|PHS_DATA_IN
:
1140 case CSR_SRV_REQ
|PHS_DATA_IN
:
1141 DB(DB_INTR
,printk("IN-%d.%d",cmd
->SCp
.this_residual
,cmd
->SCp
.buffers_residual
))
1142 transfer_bytes(cmd
, DATA_IN_DIR
);
1143 if (hostdata
->state
!= S_RUNNING_LEVEL2
)
1144 hostdata
->state
= S_CONNECTED
;
1148 case CSR_XFER_DONE
|PHS_DATA_OUT
:
1149 case CSR_UNEXP
|PHS_DATA_OUT
:
1150 case CSR_SRV_REQ
|PHS_DATA_OUT
:
1151 DB(DB_INTR
,printk("OUT-%d.%d",cmd
->SCp
.this_residual
,cmd
->SCp
.buffers_residual
))
1152 transfer_bytes(cmd
, DATA_OUT_DIR
);
1153 if (hostdata
->state
!= S_RUNNING_LEVEL2
)
1154 hostdata
->state
= S_CONNECTED
;
1158 /* Note: this interrupt should not occur in a LEVEL2 command */
1160 case CSR_XFER_DONE
|PHS_COMMAND
:
1161 case CSR_UNEXP
|PHS_COMMAND
:
1162 case CSR_SRV_REQ
|PHS_COMMAND
:
1163 DB(DB_INTR
,printk("CMND-%02x,%ld",cmd
->cmnd
[0],cmd
->pid
))
1164 transfer_pio(cmd
->cmnd
, cmd
->cmd_len
, DATA_OUT_DIR
, hostdata
);
1165 hostdata
->state
= S_CONNECTED
;
1169 case CSR_XFER_DONE
|PHS_STATUS
:
1170 case CSR_UNEXP
|PHS_STATUS
:
1171 case CSR_SRV_REQ
|PHS_STATUS
:
1172 DB(DB_INTR
,printk("STATUS="))
1174 cmd
->SCp
.Status
= read_1_byte(hostdata
);
1175 DB(DB_INTR
,printk("%02x",cmd
->SCp
.Status
))
1176 if (hostdata
->level2
>= L2_BASIC
) {
1177 sr
= read_3393(hostdata
,WD_SCSI_STATUS
); /* clear interrupt */
1178 hostdata
->state
= S_RUNNING_LEVEL2
;
1179 write_3393(hostdata
,WD_COMMAND_PHASE
, 0x50);
1180 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN_XFER
);
1183 hostdata
->state
= S_CONNECTED
;
1188 case CSR_XFER_DONE
|PHS_MESS_IN
:
1189 case CSR_UNEXP
|PHS_MESS_IN
:
1190 case CSR_SRV_REQ
|PHS_MESS_IN
:
1191 DB(DB_INTR
,printk("MSG_IN="))
1193 msg
= read_1_byte(hostdata
);
1194 sr
= read_3393(hostdata
,WD_SCSI_STATUS
); /* clear interrupt */
1196 hostdata
->incoming_msg
[hostdata
->incoming_ptr
] = msg
;
1197 if (hostdata
->incoming_msg
[0] == EXTENDED_MESSAGE
)
1198 msg
= EXTENDED_MESSAGE
;
1200 hostdata
->incoming_ptr
= 0;
1202 cmd
->SCp
.Message
= msg
;
1205 case COMMAND_COMPLETE
:
1206 DB(DB_INTR
,printk("CCMP-%ld",cmd
->pid
))
1207 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1208 hostdata
->state
= S_PRE_CMP_DISC
;
1212 DB(DB_INTR
,printk("SDP"))
1213 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1214 hostdata
->state
= S_CONNECTED
;
1217 case RESTORE_POINTERS
:
1218 DB(DB_INTR
,printk("RDP"))
1219 if (hostdata
->level2
>= L2_BASIC
) {
1220 write_3393(hostdata
,WD_COMMAND_PHASE
, 0x45);
1221 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN_XFER
);
1222 hostdata
->state
= S_RUNNING_LEVEL2
;
1225 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1226 hostdata
->state
= S_CONNECTED
;
1231 DB(DB_INTR
,printk("DIS"))
1232 cmd
->device
->disconnect
= 1;
1233 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1234 hostdata
->state
= S_PRE_TMP_DISC
;
1237 case MESSAGE_REJECT
:
1238 DB(DB_INTR
,printk("REJ"))
1242 if (hostdata
->sync_stat
[cmd
->target
] == SS_WAITING
)
1243 hostdata
->sync_stat
[cmd
->target
] = SS_SET
;
1244 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1245 hostdata
->state
= S_CONNECTED
;
1248 case EXTENDED_MESSAGE
:
1249 DB(DB_INTR
,printk("EXT"))
1251 ucp
= hostdata
->incoming_msg
;
1254 printk("%02x",ucp
[hostdata
->incoming_ptr
]);
1256 /* Is this the last byte of the extended message? */
1258 if ((hostdata
->incoming_ptr
>= 2) &&
1259 (hostdata
->incoming_ptr
== (ucp
[1] + 1))) {
1261 switch (ucp
[2]) { /* what's the EXTENDED code? */
1263 id
= calc_sync_xfer(ucp
[3],ucp
[4]);
1264 if (hostdata
->sync_stat
[cmd
->target
] != SS_WAITING
) {
1266 /* A device has sent an unsolicited SDTR message; rather than go
1267 * through the effort of decoding it and then figuring out what
1268 * our reply should be, we're just gonna say that we have a
1269 * synchronous fifo depth of 0. This will result in asynchronous
1270 * transfers - not ideal but so much easier.
1271 * Actually, this is OK because it assures us that if we don't
1272 * specifically ask for sync transfers, we won't do any.
1275 write_3393_cmd(hostdata
,WD_CMD_ASSERT_ATN
); /* want MESS_OUT */
1276 hostdata
->outgoing_msg
[0] = EXTENDED_MESSAGE
;
1277 hostdata
->outgoing_msg
[1] = 3;
1278 hostdata
->outgoing_msg
[2] = EXTENDED_SDTR
;
1279 hostdata
->outgoing_msg
[3] = hostdata
->default_sx_per
/4;
1280 hostdata
->outgoing_msg
[4] = 0;
1281 hostdata
->outgoing_len
= 5;
1282 hostdata
->sync_xfer
[cmd
->target
] =
1283 calc_sync_xfer(hostdata
->default_sx_per
/4,0);
1286 hostdata
->sync_xfer
[cmd
->target
] = id
;
1289 printk("sync_xfer=%02x",hostdata
->sync_xfer
[cmd
->target
]);
1291 hostdata
->sync_stat
[cmd
->target
] = SS_SET
;
1292 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1293 hostdata
->state
= S_CONNECTED
;
1296 write_3393_cmd(hostdata
,WD_CMD_ASSERT_ATN
); /* want MESS_OUT */
1297 printk("sending WDTR ");
1298 hostdata
->outgoing_msg
[0] = EXTENDED_MESSAGE
;
1299 hostdata
->outgoing_msg
[1] = 2;
1300 hostdata
->outgoing_msg
[2] = EXTENDED_WDTR
;
1301 hostdata
->outgoing_msg
[3] = 0; /* 8 bit transfer width */
1302 hostdata
->outgoing_len
= 4;
1303 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1304 hostdata
->state
= S_CONNECTED
;
1307 write_3393_cmd(hostdata
,WD_CMD_ASSERT_ATN
); /* want MESS_OUT */
1308 printk("Rejecting Unknown Extended Message(%02x). ",ucp
[2]);
1309 hostdata
->outgoing_msg
[0] = MESSAGE_REJECT
;
1310 hostdata
->outgoing_len
= 1;
1311 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1312 hostdata
->state
= S_CONNECTED
;
1315 hostdata
->incoming_ptr
= 0;
1318 /* We need to read more MESS_IN bytes for the extended message */
1321 hostdata
->incoming_ptr
++;
1322 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1323 hostdata
->state
= S_CONNECTED
;
1328 printk("Rejecting Unknown Message(%02x) ",msg
);
1329 write_3393_cmd(hostdata
,WD_CMD_ASSERT_ATN
); /* want MESS_OUT */
1330 hostdata
->outgoing_msg
[0] = MESSAGE_REJECT
;
1331 hostdata
->outgoing_len
= 1;
1332 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1333 hostdata
->state
= S_CONNECTED
;
1338 /* Note: this interrupt will occur only after a LEVEL2 command */
1340 case CSR_SEL_XFER_DONE
:
1342 /* Make sure that reselection is enabled at this point - it may
1343 * have been turned off for the command that just completed.
1346 write_3393(hostdata
,WD_SOURCE_ID
, SRCID_ER
);
1348 DB(DB_INTR
,printk("SX-DONE-%ld",cmd
->pid
))
1349 cmd
->SCp
.Message
= COMMAND_COMPLETE
;
1350 lun
= read_3393(hostdata
,WD_TARGET_LUN
);
1351 DB(DB_INTR
,printk(":%d.%d",cmd
->SCp
.Status
,lun
))
1352 hostdata
->connected
= NULL
;
1353 hostdata
->busy
[cmd
->target
] &= ~(1 << cmd
->lun
);
1354 hostdata
->state
= S_UNCONNECTED
;
1355 if (cmd
->SCp
.Status
== ILLEGAL_STATUS_BYTE
)
1356 cmd
->SCp
.Status
= lun
;
1357 if (cmd
->cmnd
[0] == REQUEST_SENSE
&& cmd
->SCp
.Status
!= GOOD
)
1358 cmd
->result
= (cmd
->result
& 0x00ffff) | (DID_ERROR
<< 16);
1360 cmd
->result
= cmd
->SCp
.Status
| (cmd
->SCp
.Message
<< 8);
1361 cmd
->scsi_done(cmd
);
1363 /* We are no longer connected to a target - check to see if
1364 * there are commands waiting to be executed.
1367 in2000_execute(instance
);
1370 printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",asr
,sr
,phs
,cmd
->pid
);
1375 /* Note: this interrupt will occur only after a LEVEL2 command */
1378 DB(DB_INTR
,printk("SDP"))
1379 hostdata
->state
= S_RUNNING_LEVEL2
;
1380 write_3393(hostdata
,WD_COMMAND_PHASE
, 0x41);
1381 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN_XFER
);
1385 case CSR_XFER_DONE
|PHS_MESS_OUT
:
1386 case CSR_UNEXP
|PHS_MESS_OUT
:
1387 case CSR_SRV_REQ
|PHS_MESS_OUT
:
1388 DB(DB_INTR
,printk("MSG_OUT="))
1390 /* To get here, we've probably requested MESSAGE_OUT and have
1391 * already put the correct bytes in outgoing_msg[] and filled
1392 * in outgoing_len. We simply send them out to the SCSI bus.
1393 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1394 * it - like when our SDTR message is rejected by a target. Some
1395 * targets send the REJECT before receiving all of the extended
1396 * message, and then seem to go back to MESSAGE_OUT for a byte
1397 * or two. Not sure why, or if I'm doing something wrong to
1398 * cause this to happen. Regardless, it seems that sending
1399 * NOP messages in these situations results in no harm and
1400 * makes everyone happy.
1403 if (hostdata
->outgoing_len
== 0) {
1404 hostdata
->outgoing_len
= 1;
1405 hostdata
->outgoing_msg
[0] = NOP
;
1407 transfer_pio(hostdata
->outgoing_msg
, hostdata
->outgoing_len
,
1408 DATA_OUT_DIR
, hostdata
);
1409 DB(DB_INTR
,printk("%02x",hostdata
->outgoing_msg
[0]))
1410 hostdata
->outgoing_len
= 0;
1411 hostdata
->state
= S_CONNECTED
;
1415 case CSR_UNEXP_DISC
:
1417 /* I think I've seen this after a request-sense that was in response
1418 * to an error condition, but not sure. We certainly need to do
1419 * something when we get this interrupt - the question is 'what?'.
1420 * Let's think positively, and assume some command has finished
1421 * in a legal manner (like a command that provokes a request-sense),
1422 * so we treat it as a normal command-complete-disconnect.
1426 /* Make sure that reselection is enabled at this point - it may
1427 * have been turned off for the command that just completed.
1430 write_3393(hostdata
,WD_SOURCE_ID
, SRCID_ER
);
1432 printk(" - Already disconnected! ");
1433 hostdata
->state
= S_UNCONNECTED
;
1435 /* release the SMP spin_lock and restore irq state */
1436 CLISPIN_UNLOCK(flags
);
1439 DB(DB_INTR
,printk("UNEXP_DISC-%ld",cmd
->pid
))
1440 hostdata
->connected
= NULL
;
1441 hostdata
->busy
[cmd
->target
] &= ~(1 << cmd
->lun
);
1442 hostdata
->state
= S_UNCONNECTED
;
1443 if (cmd
->cmnd
[0] == REQUEST_SENSE
&& cmd
->SCp
.Status
!= GOOD
)
1444 cmd
->result
= (cmd
->result
& 0x00ffff) | (DID_ERROR
<< 16);
1446 cmd
->result
= cmd
->SCp
.Status
| (cmd
->SCp
.Message
<< 8);
1447 cmd
->scsi_done(cmd
);
1449 /* We are no longer connected to a target - check to see if
1450 * there are commands waiting to be executed.
1453 in2000_execute(instance
);
1459 /* Make sure that reselection is enabled at this point - it may
1460 * have been turned off for the command that just completed.
1463 write_3393(hostdata
,WD_SOURCE_ID
, SRCID_ER
);
1464 DB(DB_INTR
,printk("DISC-%ld",cmd
->pid
))
1466 printk(" - Already disconnected! ");
1467 hostdata
->state
= S_UNCONNECTED
;
1469 switch (hostdata
->state
) {
1470 case S_PRE_CMP_DISC
:
1471 hostdata
->connected
= NULL
;
1472 hostdata
->busy
[cmd
->target
] &= ~(1 << cmd
->lun
);
1473 hostdata
->state
= S_UNCONNECTED
;
1474 DB(DB_INTR
,printk(":%d",cmd
->SCp
.Status
))
1475 if (cmd
->cmnd
[0] == REQUEST_SENSE
&& cmd
->SCp
.Status
!= GOOD
)
1476 cmd
->result
= (cmd
->result
& 0x00ffff) | (DID_ERROR
<< 16);
1478 cmd
->result
= cmd
->SCp
.Status
| (cmd
->SCp
.Message
<< 8);
1479 cmd
->scsi_done(cmd
);
1481 case S_PRE_TMP_DISC
:
1482 case S_RUNNING_LEVEL2
:
1483 cmd
->host_scribble
= (uchar
*)hostdata
->disconnected_Q
;
1484 hostdata
->disconnected_Q
= cmd
;
1485 hostdata
->connected
= NULL
;
1486 hostdata
->state
= S_UNCONNECTED
;
1488 #ifdef PROC_STATISTICS
1489 hostdata
->disc_done_cnt
[cmd
->target
]++;
1494 printk("*** Unexpected DISCONNECT interrupt! ***");
1495 hostdata
->state
= S_UNCONNECTED
;
1498 /* We are no longer connected to a target - check to see if
1499 * there are commands waiting to be executed.
1502 in2000_execute(instance
);
1507 DB(DB_INTR
,printk("RESEL"))
1509 /* First we have to make sure this reselection didn't */
1510 /* happen during Arbitration/Selection of some other device. */
1511 /* If yes, put losing command back on top of input_Q. */
1513 if (hostdata
->level2
<= L2_NONE
) {
1515 if (hostdata
->selecting
) {
1516 cmd
= (Scsi_Cmnd
*)hostdata
->selecting
;
1517 hostdata
->selecting
= NULL
;
1518 hostdata
->busy
[cmd
->target
] &= ~(1 << cmd
->lun
);
1519 cmd
->host_scribble
= (uchar
*)hostdata
->input_Q
;
1520 hostdata
->input_Q
= cmd
;
1528 hostdata
->busy
[cmd
->target
] &= ~(1 << cmd
->lun
);
1529 cmd
->host_scribble
= (uchar
*)hostdata
->input_Q
;
1530 hostdata
->input_Q
= cmd
;
1533 printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",asr
,sr
,phs
);
1541 /* OK - find out which device reselected us. */
1543 id
= read_3393(hostdata
,WD_SOURCE_ID
);
1546 /* and extract the lun from the ID message. (Note that we don't
1547 * bother to check for a valid message here - I guess this is
1548 * not the right way to go, but....)
1551 lun
= read_3393(hostdata
,WD_DATA
);
1552 if (hostdata
->level2
< L2_RESELECT
)
1553 write_3393_cmd(hostdata
,WD_CMD_NEGATE_ACK
);
1556 /* Now we look for the command that's reconnecting. */
1558 cmd
= (Scsi_Cmnd
*)hostdata
->disconnected_Q
;
1561 if (id
== cmd
->target
&& lun
== cmd
->lun
)
1564 cmd
= (Scsi_Cmnd
*)cmd
->host_scribble
;
1567 /* Hmm. Couldn't find a valid command.... What to do? */
1570 printk("---TROUBLE: target %d.%d not in disconnect queue---",id
,lun
);
1574 /* Ok, found the command - now start it up again. */
1577 patch
->host_scribble
= cmd
->host_scribble
;
1579 hostdata
->disconnected_Q
= (Scsi_Cmnd
*)cmd
->host_scribble
;
1580 hostdata
->connected
= cmd
;
1582 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1583 * because these things are preserved over a disconnect.
1584 * But we DO need to fix the DPD bit so it's correct for this command.
1587 if (is_dir_out(cmd
))
1588 write_3393(hostdata
,WD_DESTINATION_ID
,cmd
->target
);
1590 write_3393(hostdata
,WD_DESTINATION_ID
,cmd
->target
| DSTID_DPD
);
1591 if (hostdata
->level2
>= L2_RESELECT
) {
1592 write_3393_count(hostdata
,0); /* we want a DATA_PHASE interrupt */
1593 write_3393(hostdata
,WD_COMMAND_PHASE
, 0x45);
1594 write_3393_cmd(hostdata
,WD_CMD_SEL_ATN_XFER
);
1595 hostdata
->state
= S_RUNNING_LEVEL2
;
1598 hostdata
->state
= S_CONNECTED
;
1600 DB(DB_INTR
,printk("-%ld",cmd
->pid
))
1604 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--",asr
,sr
,phs
);
1607 write1_io(0, IO_LED_OFF
);
1609 DB(DB_INTR
,printk("} "))
1611 /* release the SMP spin_lock and restore irq state */
1612 CLISPIN_UNLOCK(flags
);
1618 #define RESET_CARD 0
1619 #define RESET_CARD_AND_BUS 1
1622 static int reset_hardware(struct Scsi_Host
*instance
, int type
)
1624 struct IN2000_hostdata
*hostdata
;
1626 unsigned long flags
;
1628 hostdata
= (struct IN2000_hostdata
*)instance
->hostdata
;
1630 write1_io(0, IO_LED_ON
);
1631 if (type
== RESET_CARD_AND_BUS
) {
1632 write1_io(0,IO_CARD_RESET
);
1633 x
= read1_io(IO_HARDWARE
);
1635 x
= read_3393(hostdata
,WD_SCSI_STATUS
); /* clear any WD intrpt */
1636 write_3393(hostdata
,WD_OWN_ID
, instance
->this_id
|
1637 OWNID_EAF
| OWNID_RAF
| OWNID_FS_8
);
1638 write_3393(hostdata
,WD_CONTROL
, CTRL_IDI
| CTRL_EDI
| CTRL_POLLED
);
1639 write_3393(hostdata
,WD_SYNCHRONOUS_TRANSFER
,
1640 calc_sync_xfer(hostdata
->default_sx_per
/4,DEFAULT_SX_OFF
));
1643 write1_io(0,IO_FIFO_WRITE
); /* clear fifo counter */
1644 write1_io(0,IO_FIFO_READ
); /* start fifo out in read mode */
1645 write_3393(hostdata
,WD_COMMAND
, WD_CMD_RESET
);
1646 while (!(READ_AUX_STAT() & ASR_INT
))
1647 ; /* wait for RESET to complete */
1649 x
= read_3393(hostdata
,WD_SCSI_STATUS
); /* clear interrupt */
1650 restore_flags(flags
);
1651 write_3393(hostdata
,WD_QUEUE_TAG
,0xa5); /* any random number */
1652 qt
= read_3393(hostdata
,WD_QUEUE_TAG
);
1655 write_3393(hostdata
,WD_QUEUE_TAG
,0);
1657 write_3393(hostdata
,WD_TIMEOUT_PERIOD
, TIMEOUT_PERIOD_VALUE
);
1658 write_3393(hostdata
,WD_CONTROL
, CTRL_IDI
| CTRL_EDI
| CTRL_POLLED
);
1659 write1_io(0, IO_LED_OFF
);
1665 int in2000_reset(Scsi_Cmnd
*cmd
, unsigned int reset_flags
)
1667 unsigned long flags
;
1668 struct Scsi_Host
*instance
;
1669 struct IN2000_hostdata
*hostdata
;
1672 instance
= cmd
->host
;
1673 hostdata
= (struct IN2000_hostdata
*)instance
->hostdata
;
1675 printk("scsi%d: Reset. ", instance
->host_no
);
1679 /* do scsi-reset here */
1681 reset_hardware(instance
, RESET_CARD_AND_BUS
);
1682 for (x
= 0; x
< 8; x
++) {
1683 hostdata
->busy
[x
] = 0;
1684 hostdata
->sync_xfer
[x
] = calc_sync_xfer(DEFAULT_SX_PER
/4,DEFAULT_SX_OFF
);
1685 hostdata
->sync_stat
[x
] = SS_UNSET
; /* using default sync values */
1687 hostdata
->input_Q
= NULL
;
1688 hostdata
->selecting
= NULL
;
1689 hostdata
->connected
= NULL
;
1690 hostdata
->disconnected_Q
= NULL
;
1691 hostdata
->state
= S_UNCONNECTED
;
1692 hostdata
->fifo
= FI_FIFO_UNUSED
;
1693 hostdata
->incoming_ptr
= 0;
1694 hostdata
->outgoing_len
= 0;
1696 cmd
->result
= DID_RESET
<< 16;
1697 restore_flags(flags
);
1703 int in2000_abort (Scsi_Cmnd
*cmd
)
1705 struct Scsi_Host
*instance
;
1706 struct IN2000_hostdata
*hostdata
;
1707 Scsi_Cmnd
*tmp
, *prev
;
1708 unsigned long flags
;
1710 unsigned long timeout
;
1715 instance
= cmd
->host
;
1716 hostdata
= (struct IN2000_hostdata
*)instance
->hostdata
;
1718 printk ("scsi%d: Abort-", instance
->host_no
);
1719 printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ",
1720 READ_AUX_STAT(),read_3393_count(hostdata
),cmd
->SCp
.this_residual
,cmd
->SCp
.buffers_residual
,
1721 cmd
->SCp
.have_data_in
,read1_io(IO_FIFO_COUNT
));
1724 * Case 1 : If the command hasn't been issued yet, we simply remove it
1728 tmp
= (Scsi_Cmnd
*)hostdata
->input_Q
;
1733 prev
->host_scribble
= cmd
->host_scribble
;
1734 cmd
->host_scribble
= NULL
;
1735 cmd
->result
= DID_ABORT
<< 16;
1736 printk("scsi%d: Abort - removing command %ld from input_Q. ",
1737 instance
->host_no
, cmd
->pid
);
1738 cmd
->scsi_done(cmd
);
1739 restore_flags(flags
);
1740 return SCSI_ABORT_SUCCESS
;
1743 tmp
= (Scsi_Cmnd
*)tmp
->host_scribble
;
1747 * Case 2 : If the command is connected, we're going to fail the abort
1748 * and let the high level SCSI driver retry at a later time or
1751 * Timeouts, and therefore aborted commands, will be highly unlikely
1752 * and handling them cleanly in this situation would make the common
1753 * case of noresets less efficient, and would pollute our code. So,
1757 if (hostdata
->connected
== cmd
) {
1759 printk("scsi%d: Aborting connected command %ld - ",
1760 instance
->host_no
, cmd
->pid
);
1762 printk("sending wd33c93 ABORT command - ");
1763 write_3393(hostdata
, WD_CONTROL
, CTRL_IDI
| CTRL_EDI
| CTRL_POLLED
);
1764 write_3393_cmd(hostdata
, WD_CMD_ABORT
);
1766 /* Now we have to attempt to flush out the FIFO... */
1768 printk("flushing fifo - ");
1771 asr
= READ_AUX_STAT();
1773 read_3393(hostdata
, WD_DATA
);
1774 } while (!(asr
& ASR_INT
) && timeout
-- > 0);
1775 sr
= read_3393(hostdata
, WD_SCSI_STATUS
);
1776 printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1777 asr
, sr
, read_3393_count(hostdata
), timeout
);
1780 * Abort command processed.
1782 * We must disconnect.
1785 printk("sending wd33c93 DISCONNECT command - ");
1786 write_3393_cmd(hostdata
, WD_CMD_DISCONNECT
);
1789 asr
= READ_AUX_STAT();
1790 while ((asr
& ASR_CIP
) && timeout
-- > 0)
1791 asr
= READ_AUX_STAT();
1792 sr
= read_3393(hostdata
, WD_SCSI_STATUS
);
1793 printk("asr=%02x, sr=%02x.",asr
,sr
);
1795 hostdata
->busy
[cmd
->target
] &= ~(1 << cmd
->lun
);
1796 hostdata
->connected
= NULL
;
1797 hostdata
->state
= S_UNCONNECTED
;
1798 cmd
->result
= DID_ABORT
<< 16;
1799 cmd
->scsi_done(cmd
);
1801 in2000_execute (instance
);
1803 restore_flags(flags
);
1804 return SCSI_ABORT_SUCCESS
;
1808 * Case 3: If the command is currently disconnected from the bus,
1809 * we're not going to expend much effort here: Let's just return
1810 * an ABORT_SNOOZE and hope for the best...
1813 for (tmp
=(Scsi_Cmnd
*)hostdata
->disconnected_Q
; tmp
;
1814 tmp
=(Scsi_Cmnd
*)tmp
->host_scribble
)
1816 restore_flags(flags
);
1817 printk("Sending ABORT_SNOOZE. ");
1818 return SCSI_ABORT_SNOOZE
;
1822 * Case 4 : If we reached this point, the command was not found in any of
1825 * We probably reached this point because of an unlikely race condition
1826 * between the command completing successfully and the abortion code,
1827 * so we won't panic, but we will notify the user in case something really
1831 in2000_execute (instance
);
1833 restore_flags(flags
);
1834 printk("scsi%d: warning : SCSI command probably completed successfully"
1835 " before abortion. ", instance
->host_no
);
1836 return SCSI_ABORT_NOT_RUNNING
;
1841 #define MAX_IN2000_HOSTS 3
1842 #define MAX_SETUP_ARGS (sizeof(setup_args) / sizeof(char *))
1843 #define SETUP_BUFFER_SIZE 200
1844 static char setup_buffer
[SETUP_BUFFER_SIZE
];
1845 static char setup_used
[MAX_SETUP_ARGS
];
1846 static int done_setup
= 0;
1848 void __init
in2000_setup (char *str
, int *ints
)
1853 strncpy(setup_buffer
,str
,SETUP_BUFFER_SIZE
);
1854 setup_buffer
[SETUP_BUFFER_SIZE
- 1] = '\0';
1857 while (*p1
&& (i
< MAX_SETUP_ARGS
)) {
1858 p2
= strchr(p1
, ',');
1871 for (i
=0; i
<MAX_SETUP_ARGS
; i
++)
1877 /* check_setup_args() returns index if key found, 0 if not
1880 static int __init
check_setup_args(char *key
, int *flags
, int *val
, char *buf
)
1885 for (x
=0; x
<MAX_SETUP_ARGS
; x
++) {
1888 if (!strncmp(setup_args
[x
], key
, strlen(key
)))
1891 if (x
== MAX_SETUP_ARGS
)
1894 cp
= setup_args
[x
] + strlen(key
);
1899 if ((*cp
>= '0') && (*cp
<= '9')) {
1900 *val
= simple_strtoul(cp
,NULL
,0);
1907 /* The "correct" (ie portable) way to access memory-mapped hardware
1908 * such as the IN2000 EPROM and dip switch is through the use of
1909 * special macros declared in 'asm/io.h'. We use readb() and readl()
1910 * when reading from the card's BIOS area in in2000_detect().
1912 static const unsigned int *bios_tab
[] in2000__INITDATA
= {
1913 (unsigned int *)0xc8000,
1914 (unsigned int *)0xd0000,
1915 (unsigned int *)0xd8000,
1919 static const unsigned short base_tab
[] in2000__INITDATA
= {
1926 static const int int_tab
[] in2000__INITDATA
= {
1934 int __init
in2000_detect(Scsi_Host_Template
* tpnt
)
1936 struct Scsi_Host
*instance
;
1937 struct IN2000_hostdata
*hostdata
;
1941 unsigned short base
;
1948 /* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1949 * pretty straightforward and fool-proof operation. There are 3
1950 * possible locations for the IN2000 EPROM in memory space - if we
1951 * find a BIOS signature, we can read the dip switch settings from
1952 * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1953 * of the switch bits we get the card's address in IO space. There's
1954 * an image of the dip switch there, also, so we have a way to back-
1955 * check that this really is an IN2000 card. Very nifty. Use the
1956 * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1960 if (!done_setup
&& setup_strings
)
1961 in2000_setup(setup_strings
,0);
1964 for (bios
= 0; bios_tab
[bios
]; bios
++) {
1965 if (check_setup_args("ioport",&flags
,&val
,buf
)) {
1967 switches
= ~inb(base
+ IO_SWITCHES
) & 0xff;
1968 printk("Forcing IN2000 detection at IOport 0x%x ",base
);
1972 * There have been a couple of BIOS versions with different layouts
1973 * for the obvious ID strings. We look for the 2 most common ones and
1974 * hope that they cover all the cases...
1976 else if (readl(bios_tab
[bios
]+0x04) == 0x41564f4e ||
1977 readl(bios_tab
[bios
]+0x0c) == 0x61776c41) {
1978 printk("Found IN2000 BIOS at 0x%x ",(unsigned int)bios_tab
[bios
]);
1980 /* Read the switch image that's mapped into EPROM space */
1982 switches
= ~((readb(bios_tab
[bios
]+0x08) & 0xff));
1984 /* Find out where the IO space is */
1986 x
= switches
& (SW_ADDR0
| SW_ADDR1
);
1989 /* Check for the IN2000 signature in IO space. */
1991 x
= ~inb(base
+ IO_SWITCHES
) & 0xff;
1992 if (x
!= switches
) {
1993 printk("Bad IO signature: %02x vs %02x.\n",x
,switches
);
2000 /* OK. We have a base address for the IO ports - run a few safety checks */
2002 if (!(switches
& SW_BIT7
)) { /* I _think_ all cards do this */
2003 printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n",base
);
2007 /* Let's assume any hardware version will work, although the driver
2008 * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
2009 * print out the rev number for reference later, but accept them all.
2012 hrev
= inb(base
+ IO_HARDWARE
);
2014 /* Bit 2 tells us if interrupts are disabled */
2015 if (switches
& SW_DISINT
) {
2016 printk("The IN-2000 SCSI card at IOport 0x%03x ",base
);
2017 printk("is not configured for interrupt operation!\n");
2018 printk("This driver requires an interrupt: cancelling detection.\n");
2022 /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2026 tpnt
->proc_dir
= &proc_scsi_in2000
; /* done more than once? harmless. */
2028 instance
= scsi_register(tpnt
, sizeof(struct IN2000_hostdata
));
2030 instance_list
= instance
;
2031 hostdata
= (struct IN2000_hostdata
*)instance
->hostdata
;
2032 instance
->io_port
= hostdata
->io_base
= base
;
2033 hostdata
->dip_switch
= switches
;
2034 hostdata
->hrev
= hrev
;
2036 write1_io(0,IO_FIFO_WRITE
); /* clear fifo counter */
2037 write1_io(0,IO_FIFO_READ
); /* start fifo out in read mode */
2038 write1_io(0,IO_INTR_MASK
); /* allow all ints */
2039 x
= int_tab
[(switches
& (SW_INT0
| SW_INT1
)) >> SW_INT_SHIFT
];
2040 if (request_irq(x
, in2000_intr
, SA_INTERRUPT
, "in2000", NULL
)) {
2041 printk("in2000_detect: Unable to allocate IRQ.\n");
2046 instance
->n_io_port
= 13;
2047 request_region(base
, 13, "in2000"); /* lock in this IO space for our use */
2049 for (x
= 0; x
< 8; x
++) {
2050 hostdata
->busy
[x
] = 0;
2051 hostdata
->sync_xfer
[x
] = calc_sync_xfer(DEFAULT_SX_PER
/4,DEFAULT_SX_OFF
);
2052 hostdata
->sync_stat
[x
] = SS_UNSET
; /* using default sync values */
2053 #ifdef PROC_STATISTICS
2054 hostdata
->cmd_cnt
[x
] = 0;
2055 hostdata
->disc_allowed_cnt
[x
] = 0;
2056 hostdata
->disc_done_cnt
[x
] = 0;
2059 hostdata
->input_Q
= NULL
;
2060 hostdata
->selecting
= NULL
;
2061 hostdata
->connected
= NULL
;
2062 hostdata
->disconnected_Q
= NULL
;
2063 hostdata
->state
= S_UNCONNECTED
;
2064 hostdata
->fifo
= FI_FIFO_UNUSED
;
2065 hostdata
->level2
= L2_BASIC
;
2066 hostdata
->disconnect
= DIS_ADAPTIVE
;
2067 hostdata
->args
= DEBUG_DEFAULTS
;
2068 hostdata
->incoming_ptr
= 0;
2069 hostdata
->outgoing_len
= 0;
2070 hostdata
->default_sx_per
= DEFAULT_SX_PER
;
2072 /* Older BIOS's had a 'sync on/off' switch - use its setting */
2074 if (readl(bios_tab
[bios
]+0x04) == 0x41564f4e && (switches
& SW_SYNC_DOS5
))
2075 hostdata
->sync_off
= 0x00; /* sync defaults to on */
2077 hostdata
->sync_off
= 0xff; /* sync defaults to off */
2079 #ifdef PROC_INTERFACE
2080 hostdata
->proc
= PR_VERSION
|PR_INFO
|PR_STATISTICS
|
2081 PR_CONNECTED
|PR_INPUTQ
|PR_DISCQ
|
2083 #ifdef PROC_STATISTICS
2084 hostdata
->int_cnt
= 0;
2088 if (check_setup_args("nosync",&flags
,&val
,buf
))
2089 hostdata
->sync_off
= val
;
2091 if (check_setup_args("period",&flags
,&val
,buf
))
2092 hostdata
->default_sx_per
= sx_table
[round_period((unsigned int)val
)].period_ns
;
2094 if (check_setup_args("disconnect",&flags
,&val
,buf
)) {
2095 if ((val
>= DIS_NEVER
) && (val
<= DIS_ALWAYS
))
2096 hostdata
->disconnect
= val
;
2098 hostdata
->disconnect
= DIS_ADAPTIVE
;
2101 if (check_setup_args("noreset",&flags
,&val
,buf
))
2102 hostdata
->args
^= A_NO_SCSI_RESET
;
2104 if (check_setup_args("level2",&flags
,&val
,buf
))
2105 hostdata
->level2
= val
;
2107 if (check_setup_args("debug",&flags
,&val
,buf
))
2108 hostdata
->args
= (val
& DB_MASK
);
2110 #ifdef PROC_INTERFACE
2111 if (check_setup_args("proc",&flags
,&val
,buf
))
2112 hostdata
->proc
= val
;
2116 x
= reset_hardware(instance
,(hostdata
->args
& A_NO_SCSI_RESET
)?RESET_CARD
:RESET_CARD_AND_BUS
);
2118 hostdata
->microcode
= read_3393(hostdata
,WD_CDB_1
);
2121 hostdata
->chip
= C_WD33C93B
;
2123 hostdata
->chip
= C_WD33C93A
;
2126 hostdata
->chip
= C_WD33C93
;
2128 printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ",
2130 instance
->irq
,hostdata
->io_base
,
2131 (switches
& SW_FLOPPY
)?"Yes":"No",
2132 (switches
& SW_SYNC_DOS5
)?"Yes":"No");
2133 printk("hardware_ver=%02x chip=%s microcode=%02x\n",
2135 (hostdata
->chip
==C_WD33C93
)?"WD33c93":
2136 (hostdata
->chip
==C_WD33C93A
)?"WD33c93A":
2137 (hostdata
->chip
==C_WD33C93B
)?"WD33c93B":"unknown",
2138 hostdata
->microcode
);
2140 printk("setup_args = ");
2141 for (x
=0; x
<MAX_SETUP_ARGS
; x
++)
2142 printk("%s,",setup_args
[x
]);
2145 if (hostdata
->sync_off
== 0xff)
2146 printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2147 printk("IN2000 driver version %s - %s\n",IN2000_VERSION
,IN2000_DATE
);
2150 return detect_count
;
2154 /* NOTE: I lifted this function straight out of the old driver,
2155 * and have not tested it. Presumably it does what it's
2159 int in2000_biosparam(Disk
*disk
, kdev_t dev
, int *iinfo
)
2163 size
= disk
->capacity
;
2166 iinfo
[2] = size
>> 11;
2168 /* This should approximate the large drive handling that the DOS ASPI manager
2169 uses. Drives very near the boundaries may not be handled correctly (i.e.
2170 near 2.0 Gb and 4.0 Gb) */
2172 if (iinfo
[2] > 1024) {
2175 iinfo
[2] = disk
->capacity
/ (iinfo
[0] * iinfo
[1]);
2177 if (iinfo
[2] > 1024) {
2180 iinfo
[2] = disk
->capacity
/ (iinfo
[0] * iinfo
[1]);
2182 if (iinfo
[2] > 1024) {
2185 iinfo
[2] = disk
->capacity
/ (iinfo
[0] * iinfo
[1]);
2192 struct proc_dir_entry proc_scsi_in2000
= {
2193 PROC_SCSI_IN2000
, 6, "in2000",
2194 S_IFDIR
| S_IRUGO
| S_IXUGO
, 2
2198 int in2000_proc_info(char *buf
, char **start
, off_t off
, int len
, int hn
, int in
)
2201 #ifdef PROC_INTERFACE
2205 unsigned long flags
;
2206 struct Scsi_Host
*instance
;
2207 struct IN2000_hostdata
*hd
;
2210 static int stop
= 0;
2212 for (instance
=instance_list
; instance
; instance
=instance
->next
) {
2213 if (instance
->host_no
== hn
)
2217 printk("*** Hmm... Can't find host #%d!\n",hn
);
2220 hd
= (struct IN2000_hostdata
*)instance
->hostdata
;
2222 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2223 * keywords (same format as command-line, but only ONE per read):
2234 if (!strncmp(bp
,"debug:",6)) {
2236 hd
->args
= simple_strtoul(bp
,NULL
,0) & DB_MASK
;
2238 else if (!strncmp(bp
,"disconnect:",11)) {
2240 x
= simple_strtoul(bp
,NULL
,0);
2241 if (x
< DIS_NEVER
|| x
> DIS_ALWAYS
)
2245 else if (!strncmp(bp
,"period:",7)) {
2247 x
= simple_strtoul(bp
,NULL
,0);
2248 hd
->default_sx_per
= sx_table
[round_period((unsigned int)x
)].period_ns
;
2250 else if (!strncmp(bp
,"resync:",7)) {
2252 x
= simple_strtoul(bp
,NULL
,0);
2255 hd
->sync_stat
[i
] = SS_UNSET
;
2257 else if (!strncmp(bp
,"proc:",5)) {
2259 hd
->proc
= simple_strtoul(bp
,NULL
,0);
2261 else if (!strncmp(bp
,"level2:",7)) {
2263 hd
->level2
= simple_strtoul(bp
,NULL
,0);
2272 if (hd
->proc
& PR_VERSION
) {
2273 sprintf(tbuf
,"\nVersion %s - %s. Compiled %s %s",
2274 IN2000_VERSION
,IN2000_DATE
,__DATE__
,__TIME__
);
2277 if (hd
->proc
& PR_INFO
) {
2278 sprintf(tbuf
,"\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s",
2279 (hd
->dip_switch
& 0x7f), instance
->irq
, hd
->io_base
,
2280 (hd
->dip_switch
& 0x40)?"Yes":"No",
2281 (hd
->dip_switch
& 0x20)?"Yes":"No");
2283 strcat(bp
,"\nsync_xfer[] = ");
2284 for (x
=0; x
<7; x
++) {
2285 sprintf(tbuf
,"\t%02x",hd
->sync_xfer
[x
]);
2288 strcat(bp
,"\nsync_stat[] = ");
2289 for (x
=0; x
<7; x
++) {
2290 sprintf(tbuf
,"\t%02x",hd
->sync_stat
[x
]);
2294 #ifdef PROC_STATISTICS
2295 if (hd
->proc
& PR_STATISTICS
) {
2296 strcat(bp
,"\ncommands issued: ");
2297 for (x
=0; x
<7; x
++) {
2298 sprintf(tbuf
,"\t%ld",hd
->cmd_cnt
[x
]);
2301 strcat(bp
,"\ndisconnects allowed:");
2302 for (x
=0; x
<7; x
++) {
2303 sprintf(tbuf
,"\t%ld",hd
->disc_allowed_cnt
[x
]);
2306 strcat(bp
,"\ndisconnects done: ");
2307 for (x
=0; x
<7; x
++) {
2308 sprintf(tbuf
,"\t%ld",hd
->disc_done_cnt
[x
]);
2311 sprintf(tbuf
,"\ninterrupts: \t%ld",hd
->int_cnt
);
2315 if (hd
->proc
& PR_CONNECTED
) {
2316 strcat(bp
,"\nconnected: ");
2317 if (hd
->connected
) {
2318 cmd
= (Scsi_Cmnd
*)hd
->connected
;
2319 sprintf(tbuf
," %ld-%d:%d(%02x)",
2320 cmd
->pid
, cmd
->target
, cmd
->lun
, cmd
->cmnd
[0]);
2324 if (hd
->proc
& PR_INPUTQ
) {
2325 strcat(bp
,"\ninput_Q: ");
2326 cmd
= (Scsi_Cmnd
*)hd
->input_Q
;
2328 sprintf(tbuf
," %ld-%d:%d(%02x)",
2329 cmd
->pid
, cmd
->target
, cmd
->lun
, cmd
->cmnd
[0]);
2331 cmd
= (Scsi_Cmnd
*)cmd
->host_scribble
;
2334 if (hd
->proc
& PR_DISCQ
) {
2335 strcat(bp
,"\ndisconnected_Q:");
2336 cmd
= (Scsi_Cmnd
*)hd
->disconnected_Q
;
2338 sprintf(tbuf
," %ld-%d:%d(%02x)",
2339 cmd
->pid
, cmd
->target
, cmd
->lun
, cmd
->cmnd
[0]);
2341 cmd
= (Scsi_Cmnd
*)cmd
->host_scribble
;
2344 if (hd
->proc
& PR_TEST
) {
2345 ; /* insert your own custom function here */
2348 restore_flags(flags
);
2352 return 0; /* return 0 to signal end-of-file */
2354 if (off
> 0x40000) /* ALWAYS stop after 256k bytes have been read */
2356 if (hd
->proc
& PR_STOP
) /* stop every other time */
2360 #else /* PROC_INTERFACE */
2364 #endif /* PROC_INTERFACE */
2371 Scsi_Host_Template driver_template
= IN2000
;
2373 #include "scsi_module.c"