Do not allow constants to be bound by lambda expressions
[maxima.git] / src / comm2.lisp
blob87f7a97e09adfbfbb3848ea33a1b714c6db37291
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 (in-package :maxima)
10 ;; ** (c) Copyright 1982 Massachusetts Institute of Technology **
12 (macsyma-module comm2)
14 ;;;; DIFF2
16 (declare-top (special $props $dotdistrib))
18 (defmfun diffint (e x)
19 (let (a)
20 (cond ((null (cdddr e))
21 (cond ((alike1 x (caddr e)) (cadr e))
22 ((and (not (atom (caddr e))) (atom x) (not (free (caddr e) x)))
23 (mul2 (cadr e) (sdiff (caddr e) x)))
24 ((or ($constantp (setq a (sdiff (cadr e) x)))
25 (and (atom (caddr e)) (free a (caddr e))))
26 (mul2 a (caddr e)))
27 (t (simplifya (list '(%integrate) a (caddr e)) t))))
28 ((alike1 x (caddr e)) (addn (diffint1 (cdr e) x x) t))
29 (t (addn (cons (if (equal (setq a (sdiff (cadr e) x)) 0)
31 (simplifya (list '(%integrate) a (caddr e)
32 (cadddr e) (car (cddddr e)))
33 t))
34 (diffint1 (cdr e) x (caddr e)))
35 t)))))
37 (defun diffint1 (e x y)
38 (let ((u (sdiff (cadddr e) x)) (v (sdiff (caddr e) x)))
39 (list (if (pzerop u) 0 (mul2 u (maxima-substitute (cadddr e) y (car e))))
40 (if (pzerop v) 0 (mul3 v (maxima-substitute (caddr e) y (car e)) -1)))))
42 (defmfun diffsumprod (e x)
43 (cond ((or (not ($mapatom x)) (not (free (cadddr e) x)) (not (free (car (cddddr e)) x)))
44 (diff%deriv (list e x 1)))
45 ((eq (caddr e) x) 0)
46 (t (let ((u (sdiff (cadr e) x)))
47 (setq u (simplifya (list '(%sum)
48 (if (eq (caar e) '%sum) u (div u (cadr e)))
49 (caddr e) (cadddr e) (car (cddddr e)))
50 t))
51 (if (eq (caar e) '%sum) u (mul2 e u))))))
53 (defmfun difflaplace (e x)
54 (cond ((or (not (atom x)) (eq (cadddr e) x)) (diff%deriv (list e x 1)))
55 ((eq (caddr e) x) 0)
56 (t ($laplace (sdiff (cadr e) x) (caddr e) (cadddr e)))))
58 (defmfun diff-%at (e x)
59 (cond ((freeof x e) 0)
60 ((not (freeofl x (hand-side (caddr e) 'r))) (diff%deriv (list e x 1)))
61 (t ($at (sdiff (cadr e) x) (caddr e)))))
63 (defmfun diffncexpt (e x)
64 (let ((base* (cadr e))
65 (pow (caddr e)))
66 (cond ((and (mnump pow) (or (not (fixnump pow)) (< pow 0))) ; POW cannot be 0
67 (diff%deriv (list e x 1)))
68 ((and (atom base*) (eq base* x) (free pow base*))
69 (mul2* pow (list '(mncexpt) base* (add2 pow -1))))
70 ((fixnump pow)
71 (let ((deriv (sdiff base* x))
72 (ans nil))
73 (do ((i 0 (1+ i))) ((= i pow))
74 (push (list '(mnctimes) (list '(mncexpt) base* i)
75 (list '(mnctimes) deriv
76 (list '(mncexpt) base* (- pow 1 i))))
77 ans))
78 (addn ans nil)))
79 ((and (not (depends pow x)) (or (atom pow) (and (atom base*) (free pow base*))))
80 (let ((deriv (sdiff base* x))
81 (index (gensumindex)))
82 (simplifya
83 (list '(%sum)
84 (list '(mnctimes) (list '(mncexpt) base* index)
85 (list '(mnctimes) deriv
86 (list '(mncexpt) base*
87 (list '(mplus) pow -1 (list '(mtimes) -1 index)))))
88 index 0 (list '(mplus) pow -1)) nil)))
89 (t (diff%deriv (list e x 1))))))
91 (defmfun stotaldiff (e)
92 (cond ((or (mnump e) (constant e)) 0)
93 ((or (atom e) (member 'array (cdar e) :test #'eq))
94 (let ((w (mget (if (atom e) e (caar e)) 'depends)))
95 (if w (cons '(mplus)
96 (mapcar #'(lambda (x)
97 (list '(mtimes) (chainrule e x) (list '(%del) x)))
98 w))
99 (list '(%del) e))))
100 ((specrepp e) (stotaldiff (specdisrep e)))
101 ((eq (caar e) 'mnctimes)
102 (let (($dotdistrib t))
103 (add2 (ncmuln (cons (stotaldiff (cadr e)) (cddr e)) t)
104 (ncmul2 (cadr e) (stotaldiff (ncmuln (cddr e) t))))))
105 ((eq (caar e) 'mncexpt)
106 (if (and (fixnump (caddr e)) (> (caddr e) 0))
107 (stotaldiff (list '(mnctimes) (cadr e)
108 (ncpower (cadr e) (1- (caddr e)))))
109 (list '(%derivative) e)))
110 (t (addn (cons 0 (mapcar #'(lambda (x)
111 (mul2 (sdiff e x) (list '(%del simp) x)))
112 (extractvars (margs e))))
113 t))))
115 (defun extractvars (e &aux vars)
116 (cond ((null e) nil)
117 ((atom (car e))
118 (cond ((not (maxima-constantp (car e)))
119 (cond ((setq vars (mget (car e) 'depends))
120 ;; The symbol has dependencies. Put the dependencies on
121 ;; the list of extracted vars.
122 (union* vars (extractvars (cdr e))))
124 ;; Put the symbol on the list of extracted vars.
125 (union* (ncons (car e)) (extractvars (cdr e))))))
126 (t (extractvars (cdr e)))))
127 ((member 'array (cdaar e) :test #'eq)
128 (union* (ncons (car e)) (extractvars (cdr e))))
129 (t (union* (extractvars (cdar e)) (extractvars (cdr e))))))
131 ;;;; AT
133 ;;dummy-variable-operators is defined in COMM, which uses it inside of SUBST1.
134 (declare-top (special atvars *atp* munbound dummy-variable-operators))
136 (defmfun $atvalue (exp eqs val)
137 (let (dl vl fun)
138 (cond ((notloreq eqs) (improper-arg-err eqs '$atvalue))
139 ((or (atom exp) (and (eq (caar exp) '%derivative) (atom (cadr exp))))
140 (improper-arg-err exp '$atvalue)))
141 (cond ((not (eq (caar exp) '%derivative))
142 (setq fun (caar exp) vl (cdr exp) dl (listof0s vl)))
143 (t (setq fun (caaadr exp) vl (cdadr exp))
144 (dolist (v vl)
145 (setq dl (nconc dl (ncons (or (getf (cddr exp) v) 0)))))))
146 (if (or (mopp fun) (eq fun 'mqapply)) (improper-arg-err exp '$atvalue))
147 (atvarschk vl)
148 (do ((vl1 vl (cdr vl1)) (l atvars (cdr l))) ((null vl1))
149 (if (and (symbolp (car vl1)) (not (kindp (car vl1) '$constant)))
150 (setq val (maxima-substitute (car l) (car vl1) val))
151 (improper-arg-err (cons '(mlist) vl) '$atvalue)))
152 (setq eqs (if (eq (caar eqs) 'mequal) (list eqs) (cdr eqs)))
153 (setq eqs (do ((eqs eqs (cdr eqs)) (l)) ((null eqs) l)
154 (if (not (member (cadar eqs) vl :test #'eq))
155 (improper-arg-err (car eqs) '$atvalue))
156 (setq l (nconc l (ncons (cons (cadar eqs) (caddar eqs)))))))
157 (setq vl (do ((vl vl (cdr vl)) (l)) ((null vl) l)
158 (setq l (nconc l (ncons (cdr (or (assoc (car vl) eqs :test #'eq)
159 (cons nil munbound))))))))
160 (do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
161 ((null atvalues)
162 (mputprop fun (cons (list dl vl val) (mget fun 'atvalues)) 'atvalues))
163 (when (and (equal (caar atvalues) dl) (equal (cadar atvalues) vl))
164 (rplaca (cddar atvalues) val) (return nil)))
165 (add2lnc fun $props)
166 val))
168 (defprop %at simp-%at operators)
170 (defun simp-%at (expr ignored simp-flag)
171 (declare (ignore ignored))
172 (twoargcheck expr)
173 (let* ((arg (simpcheck (cadr expr) simp-flag))
174 (e (resimplify (caddr expr)))
175 (eqn (if ($listp e)
176 (if (= ($length e) 1) ($first e) (cons '(mlist simp) (cdr ($sort e))))
177 e)))
178 (cond (($constantp arg) arg)
179 ((alike1 eqn '((mlist))) arg)
180 ((at-not-dependent eqn arg))
181 (t (eqtest (list '(%at) arg eqn) expr)))))
183 ;; Remove any variable from EQN if ARG is not dependent on it.
184 (defun at-not-dependent (eqn arg)
185 (if (eq (caar eqn) 'mequal)
186 (setq eqn (list '(mlist) eqn)))
187 (multiple-value-bind (e0 e1) (at-not-dependent-find-vars eqn arg)
188 (if e0
189 (if e1
190 (let*
191 ((e1 (mapcar #'(lambda (x) (list '(mequal) x ($assoc x eqn))) e1))
192 (eqn1 (if (= (length e1) 1) (first e1) (cons '(mlist) e1))))
193 (list '(%at) arg eqn1))
194 arg))))
196 ;; Test dependence via derivative to account for declared dependencies.
197 (defun at-not-dependent-find-vars (eqn arg)
198 (let ((e (mapcar #'second (rest eqn))))
199 (partition-by #'(lambda (x) (at-not-dependent-find-vars-1 x arg)) e)))
201 (defun at-not-dependent-find-vars-1 (x arg)
202 (if ($mapatom x)
203 (eql (mfuncall '$diff arg x) 0)
204 ;; We might be called with something like -1*x as the variable.
205 ;; (That might or might not be a bug in itself, but let it go for the moment.)
206 ;; Try to extract a variable and test for dependence on that.
207 ;; If there are 2 or more variables, return NIL (i.e., not at-not-dependent).
208 (let ((v ($listofvars x)))
209 (if (eql ($length v) 1)
210 (at-not-dependent-find-vars-1 ($first v) arg)))))
212 (defmfun $at (expr ateqs)
213 (if (notloreq ateqs) (improper-arg-err ateqs '$at))
214 (atscan (let ((*atp* t)) ($psubstitute ateqs expr)) ateqs))
216 (defun atscan (expr ateqs)
217 (cond ((or (atom expr)
218 (eq (caar expr) 'mrat)
219 (like ateqs '((mlist))))
220 expr)
221 ((eq (caar expr) '%derivative)
222 (or (and (not (atom (cadr expr)))
223 (let ((vl (cdadr expr)) dl)
224 (dolist (v vl)
225 (setq dl (nconc dl (ncons (or (getf (cddr expr) v) 0)))))
226 (atfind (caaadr expr)
227 (cdr ($psubstitute ateqs (cons '(mlist) vl)))
228 dl)))
229 (list '(%at) expr ateqs)))
230 ((member (caar expr) dummy-variable-operators :test #'eq)
231 (list '(%at) expr ateqs))
232 ((at1 expr))
233 (t (recur-apply #'(lambda (x) (atscan x ateqs)) expr))))
235 (defun at1 (expr)
236 (atfind (caar expr) (cdr expr) (listof0s (cdr expr))))
238 (defun atfind (fun vl dl)
239 (do ((atvalues (mget fun 'atvalues) (cdr atvalues)))
240 ((null atvalues))
241 (and (equal (caar atvalues) dl)
242 (do ((l (cadar atvalues) (cdr l)) (vl vl (cdr vl)))
243 ((null l) t)
244 (if (and (not (equal (car l) (car vl)))
245 (not (eq (car l) munbound)))
246 (return nil)))
247 (return (prog2
248 (atvarschk vl)
249 (substitutel vl atvars (caddar atvalues)))))))
251 (defun listof0s (llist)
252 (do ((llist llist (cdr llist)) (l nil (cons 0 l)))
253 ((null llist) l)))
255 (declare-top (special $ratfac genvar varlist $keepfloat))
257 (defmvar $logconcoeffp nil)
259 (defmfun $logcontract (e)
260 (lgcreciprocal (logcon e))) ; E is assumed to be simplified.
262 (defun logcon (e)
263 (cond ((atom e) e)
264 ((member (caar e) '(mplus mtimes) :test #'eq)
265 (if (not (lgcsimplep e)) (setq e (lgcsort e)))
266 (cond ((mplusp e) (lgcplus e))
267 ((mtimesp e) (lgctimes e))
268 (t (logcon e))))
269 (t (recur-apply #'logcon e))))
271 ;; The logcontract algorithm for a sum.
273 ;; The function accumulates the arguments of things like log(a)+log(b) into a
274 ;; list called LOG. It calls out to lgctimes to deal with things like
275 ;; a*log(b). When all the arguments have been processed, it simplifies all the
276 ;; logarithmic arguments using sratsimp.
277 (defun lgcplus (e)
278 (let ((log) (notlogs))
279 (dolist (arg (cdr e))
280 (cond
281 ((atom arg) (push arg notlogs))
282 ;; Only gather up log(x), not log[x]. It's not particularly obvious
283 ;; whether log(x)+log[y] should become log(x*y) or log[x*y], so we just
284 ;; ignore the fact that log[x] is a logarithm.
285 ((and (eq (caar arg) '%log)
286 (not (member 'array (car arg))))
287 (push (logcon (second arg)) log))
288 ((eq (caar arg) 'mtimes)
289 (let ((y (lgctimes arg)))
290 (if (or (atom y) (not (eq (caar y) '%log)))
291 (push y notlogs)
292 (push (cadr y) log))))
294 (push (logcon arg) notlogs))))
295 (cond
296 ((null log)
297 (subst0 (cons '(mplus) (nreverse notlogs)) e))
299 (let ((simplified-log (lgcsimp
300 (let (($ratfac t))
301 (sratsimp (muln log t))))))
302 (addn (cons simplified-log notlogs) t))))))
304 ;; The logcontract algorithm for a product
306 ;; The main transformation this does is of the form 3*log(x) => log(x^3). To
307 ;; make this work, we find the first %log term and insert any coefficients we
308 ;; find into that. Coefficients are identified by LOGCONCOEFFP, which checks the
309 ;; $LOGCONCOEFFP user variable.
310 (defun lgctimes (e)
311 ;; Apply logcontract to the arguments. It's possible that the subsequent
312 ;; simplification means that the result isn't a product any more. In that
313 ;; case, just return it.
314 (setq e (subst0 (cons '(mtimes) (mapcar 'logcon (cdr e))) e))
315 (if (not (mtimesp e))
317 (let ((log) (notlogs) (decints))
318 (dolist (arg (cdr e))
319 (cond ((and (null log) (not (atom arg))
320 (eq (caar arg) '%log) (not (equal (cadr arg) -1)))
321 (setq log (cadr arg)))
322 ((logconcoeffp arg) (push arg decints))
323 (t (setq notlogs (push arg notlogs)))))
324 (cond
325 ((or (null log) (null decints)) e)
326 (t (muln (cons (lgcsimp (power log (muln decints t)))
327 notlogs)
328 t))))))
330 (defun lgcsimp (e)
331 (cond ((atom e)
332 ;; e.g. log(1) -> 0, or log(%e) -> 1
333 (simplify (list '(%log) e)))
334 ((and (mexptp e) (eq (cadr e) '$%e))
335 ;; log(%e^expr) -> expr
336 (simplify (list '(%log) e)))
338 (list '(%log simp) e))))
340 ;; Tests that its argument is a sum of terms that are "simple".
342 ;; A "simple" term is either completely free of logarithms, is a logarithm
343 ;; itself, or is a number times a logarithm.
345 ;; This function assumes that its argument is not an atom.
346 (defun lgcsimplep (e)
347 (flet ((lgc-nonsimple-arg-p (arg)
348 (not (or (atom arg)
349 (eq (caar arg) '%log)
350 (not (isinop arg '%log))
351 ;; Product of a number with a logarithm e.g. 3*log(x)
352 (and (eq (caar arg) 'mtimes)
353 (null (cdddr arg))
354 (mnump (cadr arg))
355 (not (atom (caddr arg)))
356 (eq (caar (caddr arg)) '%log))))))
357 (and (eq (caar e) 'mplus)
358 (not (find-if #'lgc-nonsimple-arg-p (cdr e))))))
360 ;; Sort the argument so that coefficients come before logarithms and logarithms
361 ;; come before everything else.
362 (defun lgcsort (e)
363 (let ((logs) (notlogs) (decints) (varlist))
364 ;; Split the variables in E into logs, notlogs and coefficients. The list of
365 ;; variables is calculated by NEWVAR (and stored in the special variable
366 ;; VARLIST, which is why we have to bind it above).
367 (dolist (var (newvar e))
368 (cond
369 ((and (not (atom var)) (eq (caar var) '%log)) (push var logs))
370 ((logconcoeffp var) (push var decints))
371 (t (push var notlogs))))
372 (let* ((vl (nreconc decints (nconc (sort logs #'great)
373 (nreverse notlogs))))
374 (e1 (ratdisrep (ratrep e vl))))
375 (if (alike1 e e1) e e1))))
377 ;; lgcreciprocal performs the transformation log(1/x) => -log(x)
378 (defun lgcreciprocal (e)
379 (let (num denom)
380 (cond
381 ((atom e) e)
382 ((and (eq (caar e) '%log)
383 (setq num (member ($num (cadr e)) '(1 -1) :test #'equal))
384 (not (equal (setq denom ($denom (cadr e))) 1)))
385 (list '(mtimes simp) -1
386 (list '(%log simp) (if (= (car num) 1) denom (neg denom)))))
387 (t (recur-apply #'lgcreciprocal e)))))
389 (defun logconcoeffp (e)
390 (if $logconcoeffp
391 (is `(($logconcoeffp) ,e))
392 (maxima-integerp e)))
394 ;;;; RTCON
396 (declare-top (special $radexpand $domain))
398 (defmvar $rootsconmode t)
400 (defun $rootscontract (e) ; E is assumed to be simplified
401 (let ((radpe (and $radexpand (not (eq $radexpand '$all)) (eq $domain '$real)))
402 ($radexpand nil))
403 (rtcon e radpe)))
405 (defun rtcon (e radpe)
406 (cond ((atom e) e)
407 ((eq (caar e) 'mtimes)
408 (do ((x (cdr e) (cdr x)) (roots) (notroots) (y))
409 ((null x)
410 (cond ((null roots) (subst0 (cons '(mtimes) (nreverse notroots)) e))
411 (t (if $rootsconmode
412 (destructuring-let (((min gcd lcm) (rtc-getinfo roots)))
413 (cond ((and (= min gcd) (not (= gcd 1))
414 (not (= min lcm))
415 (not (eq $rootsconmode '$all)))
416 (setq roots
417 (rt-separ
418 (list gcd
419 (rtcon
420 (rtc-fixitup
421 (rtc-divide-by-gcd roots gcd)
422 nil) radpe)
424 nil)))
425 ((eq $rootsconmode '$all)
426 (setq roots
427 (rt-separ (simp-roots lcm roots)
428 nil))))))
429 (rtc-fixitup roots notroots))))
430 (cond ((atom (car x))
431 (cond ((eq (car x) '$%i) (setq roots (rt-separ (list 2 -1) roots)))
432 (t (setq notroots (cons (car x) notroots)))))
433 ((and (eq (caaar x) 'mexpt) (ratnump (setq y (caddar x))))
434 (setq roots (rt-separ (list (caddr y)
435 (list '(mexpt)
436 (rtcon (cadar x) radpe) (cadr y)))
437 roots)))
439 ((and radpe (eq (caaar x) 'mabs))
440 (setq roots (rt-separ (list 2 `((mexpt) ,(rtcon (cadar x) radpe) 2) 1)
441 roots)))
442 (t (setq notroots (cons (rtcon (car x) radpe) notroots))))))
443 ((and radpe (eq (caar e) 'mabs))
444 (power (power (rtcon (cadr e) radpe) 2) '((rat simp) 1 2)))
445 (t (recur-apply #'(lambda (x) (rtcon x radpe)) e))))
447 ;; RT-SEPAR separates like roots into their appropriate "buckets",
448 ;; where a bucket looks like:
449 ;; ((<denom of power> (<term to be raised> <numer of power>)
450 ;; (<term> <numer>)) etc)
452 (defun rt-separ (a roots)
453 (let ((u (assoc (car a) roots :test #'equal)))
454 (cond (u (nconc u (cdr a))) (t (setq roots (cons a roots)))))
455 roots)
457 (defun simp-roots (lcm root-list)
458 (let (root1)
459 (do ((x root-list (cdr x)))
460 ((null x) (push lcm root1))
461 (push (list '(mexpt) (muln (cdar x) nil) (quotient lcm (caar x)))
462 root1))))
464 (defun rtc-getinfo (llist)
465 (let ((m (caar llist)) (g (caar llist)) (l (caar llist)))
466 (do ((x (cdr llist) (cdr x)))
467 ((null x) (list m g l))
468 (setq m (min m (caar x)) g (gcd g (caar x)) l (lcm l (caar x))))))
470 (defun rtc-fixitup (roots notroots)
471 (mapcar #'(lambda (x) (rplacd x (list (sratsimp (muln (cdr x) (not $rootsconmode))))))
472 roots)
473 (muln (nconc (mapcar #'(lambda (x) (power* (cadr x) `((rat) 1 ,(car x))))
474 roots)
475 notroots)
476 (not $rootsconmode)))
478 (defun rtc-divide-by-gcd (llist gcd)
479 (mapcar #'(lambda (x) (rplaca x (quotient (car x) gcd))) llist)
480 llist)
482 (defmfun $nterms (e)
483 (cond ((zerop1 e) 0)
484 ((atom e) 1)
485 ((eq (caar e) 'mtimes)
486 (if (equal -1 (cadr e)) (setq e (cdr e)))
487 (do ((l (cdr e) (cdr l)) (c 1 (* c ($nterms (car l)))))
488 ((null l) c)))
489 ((eq (caar e) 'mplus)
490 (do ((l (cdr e) (cdr l)) (c 0 (+ c ($nterms (car l)))))
491 ((null l) c)))
492 ((and (eq (caar e) 'mexpt) (integerp (caddr e)) (plusp (caddr e)))
493 ($binomial (+ (caddr e) ($nterms (cadr e)) -1) (caddr e)))
494 ((specrepp e) ($nterms (specdisrep e)))
495 (t 1)))
497 ;;;; ATAN2
499 (declare-top (special $numer $logarc $trigsign))
501 ;; atan2 distributes over lists, matrices, and equations
502 (defprop $atan2 (mlist $matrix mequal) distribute_over)
504 (defun simpatan2 (expr vestigial z) ; atan2(y,x) ~ atan(y/x)
505 (declare (ignore vestigial))
506 (twoargcheck expr)
507 (let (y x signy signx)
508 (setq y (simpcheck (cadr expr) z)
509 x (simpcheck (caddr expr) z))
510 (cond ((and (zerop1 y) (zerop1 x))
511 (merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
512 ( ;; float contagion
513 (and (or (numberp x) (ratnump x)) ; both numbers
514 (or (numberp y) (ratnump y)) ; ... but not bigfloats
515 (or $numer (floatp x) (floatp y))) ; at least one float
516 (atan2 ($float y) ($float x)))
517 ( ;; bfloat contagion
518 (and (mnump x)
519 (mnump y)
520 (or ($bfloatp x) ($bfloatp y))) ; at least one bfloat
521 (setq x ($bfloat x)
522 y ($bfloat y))
523 (*fpatan y (list x)))
524 ;; Simplifify infinities
525 ((or (eq x '$inf)
526 (alike1 x '((mtimes) -1 $minf)))
527 ;; Simplify atan2(y,inf) -> 0
529 ((or (eq x '$minf)
530 (alike1 x '((mtimes) -1 $inf)))
531 ;; Simplify atan2(y,minf) -> %pi for realpart(y)>=0 or
532 ;; -%pi for realpart(y)<0. When sign of y unknwon, return noun form.
533 (cond ((member (setq signy ($sign ($realpart x))) '($pos $pz $zero))
534 '$%pi)
535 ((eq signy '$neg) (mul -1 '$%pi))
536 (t (eqtest (list '($atan2) y x) expr))))
537 ((or (eq y '$inf)
538 (alike1 y '((mtimes) -1 $minf)))
539 ;; Simplify atan2(inf,x) -> %pi/2
540 (div '$%pi 2))
541 ((or (eq y '$minf)
542 (alike1 y '((mtimes -1 $inf))))
543 ;; Simplify atan2(minf,x) -> -%pi/2
544 (div '$%pi -2))
545 ((and (free x '$%i) (setq signx ($sign x))
546 (free y '$%i) (setq signy ($sign y))
547 (cond ((zerop1 y)
548 (cond ((eq signx '$neg) '$%pi)
549 ((member signx '($pos $pz)) 0)))
550 ((zerop1 x)
551 (cond ((eq signy '$neg) (div '$%pi -2))
552 ((member signy '($pos $pz)) (div '$%pi 2))))
553 ((alike1 y x)
554 (cond ((eq signx '$neg) (mul -3 (div '$%pi 4)))
555 ((member signx '($pos $pz)) (div '$%pi 4))))
556 ((alike1 y (mul -1 x))
557 (cond ((eq signx '$neg) (mul 3 (div '$%pi 4)))
558 ((member signx '($pos $pz)) (div '$%pi -4)))))))
559 ($logarc
560 (logarc '%atan2 (list ($logarc y) ($logarc x))))
561 ((and $trigsign (eq t (mminusp y)))
562 (neg (take '($atan2) (neg y) x)))
563 ;; atan2(y,x) = atan(y/x) + pi sign(y) (1-sign(x))/2
564 ((eq signx '$pos)
565 (take '(%atan) (div y x)))
566 ((and (eq signx '$neg)
567 (member (setq signy ($csign y)) '($pos $neg) :test #'eq))
568 (add (take '(%atan) (div y x))
569 (porm (eq signy '$pos) '$%pi)))
570 ((and (eq signx '$zero) (eq signy '$zero))
571 ;; Unfortunately, we'll rarely get here. For example,
572 ;; assume(equal(x,0)) atan2(x,x) simplifies via the alike1 case above
573 (merror (intl:gettext "atan2: atan2(0,0) is undefined.")))
574 (t (eqtest (list '($atan2) y x) expr)))))
576 ;;;; ARITHF
578 (defmfun $fibtophi (e &optional (lnorecurse nil))
579 (cond ((atom e) e)
580 ((eq (caar e) '$fib)
581 (setq e (cond (lnorecurse (cadr e)) (t ($fibtophi (cadr e) lnorecurse))))
582 (let ((phi (meval '$%phi)))
583 (div (add2 (power phi e) (neg (power (add2 1 (neg phi)) e)))
584 (add2 -1 (mul2 2 phi)))))
585 (t (recur-apply #'(lambda (x) ($fibtophi x lnorecurse)) e))))
587 (defmspec $numerval (l) (setq l (cdr l))
588 (do ((l l (cddr l)) (x (ncons '(mlist simp)))) ((null l) x)
589 (cond ((null (cdr l)) (merror (intl:gettext "numerval: expected an even number of arguments.")))
590 ((not (symbolp (car l)))
591 (merror (intl:gettext "numerval: expected a symbol; found ~M") (car l)))
592 ((boundp (car l))
593 (merror (intl:gettext "numerval: cannot declare a value because ~M is bound.") (car l))))
594 (mputprop (car l) (cadr l) '$numer)
595 (add2lnc (car l) $props)
596 (nconc x (ncons (car l)))))
598 (let (my-powers)
599 (declare (special my-powers))
601 (defmfun $derivdegree (e depvar var)
602 (let (my-powers) (declare (special my-powers)) (derivdeg1 e depvar var) (if (null my-powers) 0 (maximin my-powers '$max))))
604 (defun derivdeg1 (e depvar var)
605 (cond ((or (atom e) (specrepp e)))
606 ((eq (caar e) '%derivative)
607 (cond ((alike1 (cadr e) depvar)
608 (do ((l (cddr e) (cddr l))) ((null l))
609 (cond ((alike1 (car l) var)
610 (return (setq my-powers (cons (cadr l) my-powers)))))))))
611 (t (mapc #'(lambda (x) (derivdeg1 x depvar var)) (cdr e))))))
613 ;;;; BOX
615 ;; Set the the property reversealias
616 (defprop mbox $box reversealias)
617 (defprop mlabox $box reversealias)
619 (defmfun $dpart (&rest args)
620 (mpart args nil t nil '$dpart))
622 (defmfun $lpart (e &rest args)
623 (mpart args nil (list e) nil '$lpart))
625 (defmfun $box (e &optional (l nil l?))
626 (if l?
627 (list '(mlabox) e (box-label l))
628 (list '(mbox) e)))
630 (defmfun box (e label)
631 (if (eq label t)
632 (list '(mbox) e)
633 ($box e (car label))))
635 (defun box-label (x)
636 (if (atom x)
638 (coerce (mstring x) 'string)))
640 (defmfun $rembox (e &optional (l nil l?))
641 (let ((label (if l? (box-label l) '(nil))))
642 (rembox1 e label)))
644 (defun rembox1 (e label)
645 (cond ((atom e) e)
646 ((or (and (eq (caar e) 'mbox)
647 (or (equal label '(nil)) (member label '($unlabelled $unlabeled) :test #'eq)))
648 (and (eq (caar e) 'mlabox)
649 (or (equal label '(nil)) (equal label (caddr e)))))
650 (rembox1 (cadr e) label))
651 (t (recur-apply #'(lambda (x) (rembox1 x label)) e))))
653 ;;;; MAPF
655 (declare-top (special scanmapp))
657 (defmspec $scanmap (l)
658 (let ((scanmapp t))
659 (resimplify (apply #'scanmap1 (mmapev l)))))
661 (defmfun scanmap1 (func e &optional (flag nil flag?))
662 (let ((arg2 (specrepcheck e)) newarg2)
663 (cond ((eq func '$rat)
664 (merror (intl:gettext "scanmap: cannot apply 'rat'.")))
665 (flag?
666 (unless (eq flag '$bottomup)
667 (merror (intl:gettext "scanmap: third argument must be 'bottomup', if present; found ~M") flag))
668 (if (mapatom arg2)
669 (funcer func (ncons arg2))
670 (subst0 (funcer func
671 (ncons (mcons-op-args (mop arg2)
672 (mapcar #'(lambda (u)
673 (scanmap1 func u '$bottomup))
674 (margs arg2)))))
675 arg2)))
676 ((mapatom arg2)
677 (funcer func (ncons arg2)))
679 (setq newarg2 (specrepcheck (funcer func (ncons arg2))))
680 (cond ((mapatom newarg2)
681 newarg2)
682 ((and (alike1 (cadr newarg2) arg2) (null (cddr newarg2)))
683 (subst0 (cons (ncons (caar newarg2))
684 (ncons (subst0
685 (mcons-op-args (mop arg2)
686 (mapcar #'(lambda (u) (scanmap1 func u))
687 (margs arg2)))
688 arg2)))
689 newarg2))
691 (subst0 (mcons-op-args (mop newarg2)
692 (mapcar #'(lambda (u) (scanmap1 func u))
693 (margs newarg2)))
694 newarg2)))))))
696 (defun subgen (form) ; This function does mapping of subscripts.
697 (do ((ds (if (eq (caar form) 'mqapply) (list (car form) (cadr form))
698 (ncons (car form)))
699 (outermap1 #'dsfunc1 (simplify (car sub)) ds))
700 (sub (reverse (or (and (eq 'mqapply (caar form)) (cddr form))
701 (cdr form)))
702 (cdr sub)))
703 ((null sub) ds)))
705 (defun dsfunc1 (dsn dso)
706 (cond ((or (atom dso) (atom (car dso))) dso)
707 ((member 'array (car dso) :test #'eq)
708 (cond ((eq 'mqapply (caar dso))
709 (nconc (list (car dso) (cadr dso) dsn) (cddr dso)))
710 (t (nconc (list (car dso) dsn) (cdr dso)))))
711 (t (mapcar #'(lambda (d) (dsfunc1 dsn d)) dso))))
713 ;;;; GENMAT
715 (defmfun $genmatrix (a i2 &optional (j2 i2) (i1 1) (j1 i1))
716 (let ((f) (l (ncons '($matrix))))
717 (setq f (if (or (symbolp a) (hash-table-p a) (arrayp a))
718 #'(lambda (i j) (meval (list (list a 'array) i j)))
719 #'(lambda (i j) (mfuncall a i j))))
721 (if (notevery #'fixnump (list i2 j2 i1 j1))
722 (merror (intl:gettext "genmatrix: bounds must be integers; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
724 (if (or (> i1 i2) (> j1 j2))
725 (merror (intl:gettext "genmatrix: upper bounds must be greater than or equal to lower bounds; found ~M, ~M, ~M, ~M") i2 j2 i1 j1))
727 (dotimes (i (1+ (- i2 i1)))
728 (nconc l (ncons (ncons '(mlist)))))
729 (do ((i i1 (1+ i))
730 (l (cdr l) (cdr l)))
731 ((> i i2))
732 (do ((j j1 (1+ j)))
733 ((> j j2))
734 (nconc (car l) (ncons (funcall f i j)))))
737 ; Execute deep copy for copymatrix and copylist.
738 ; Resolves SF bug report [ 1224960 ] sideeffect with copylist.
739 ; An optimization would be to call COPY-TREE only on mutable expressions.
741 (defmfun $copymatrix (x)
742 (unless ($matrixp x)
743 (merror (intl:gettext "copymatrix: argument must be a matrix; found ~M") x))
744 (copy-tree x))
746 (defmfun $copylist (x)
747 (unless ($listp x)
748 (merror (intl:gettext "copylist: argument must be a list; found ~M") x))
749 (copy-tree x))
751 (defmfun $copy (x)
752 (copy-tree x))
754 ;;;; ADDROW
756 (defmfun $addrow (m &rest rows)
757 (declare (dynamic-extent rows))
758 (cond ((not ($matrixp m))
759 (merror
760 (intl:gettext "addrow: first argument must be a matrix; found ~M")
762 ((null rows) m)
764 (let ((m (copy-tree m)))
765 (dolist (r rows m)
766 (setq m (addrow m r)))))))
768 (defmfun $addcol (m &rest cols)
769 (declare (dynamic-extent cols))
770 (cond ((not ($matrixp m)) (merror (intl:gettext "addcol: first argument must be a matrix; found ~M") m))
771 ((null cols) m)
772 (t (let ((m ($transpose m)))
773 (dolist (c cols ($transpose m))
774 (setq m (addrow m ($transpose c))))))))
776 (defun addrow (m r)
777 (cond ((not (mxorlistp r)) (merror (intl:gettext "addrow or addcol: argument must be a matrix or list; found ~M") r))
778 ((and (cdr m)
779 (or (and (eq (caar r) 'mlist) (not (= (length (cadr m)) (length r))))
780 (and (eq (caar r) '$matrix)
781 (not (= (length (cadr m)) (length (cadr r))))
782 (prog2 (setq r ($transpose r))
783 (not (= (length (cadr m)) (length (cadr r))))))))
784 (merror (intl:gettext "addrow or addcol: incompatible structure."))))
785 (append m (if (eq (caar r) '$matrix) (cdr r) (ncons r))))
787 ;;;; ARRAYF
789 (defmfun $arraymake (ary subs)
790 (cond ((or (not ($listp subs)) (null (cdr subs)))
791 (merror (intl:gettext "arraymake: second argument must be a list of one or more elements; found ~M") subs))
792 ((symbolp ary)
793 (cons (cons (getopr ary) '(array)) (cdr subs)))
794 (t (cons '(mqapply array) (cons ary (cdr subs))))))
796 (defmspec $arrayinfo (ary)
797 (setq ary (cdr ary))
798 (arrayinfo-aux (car ary) (getvalue (car ary))))
800 (defun arrayinfo-aux (sym val)
801 (prog (arra ary)
802 (setq arra val)
803 (setq ary sym)
804 (if (and arra
805 (or (hash-table-p arra)
806 (arrayp arra)
807 (eq (marray-type arra) '$functional)))
808 (cond ((hash-table-p arra)
809 (let ((dim1 (gethash 'dim1 arra)))
810 (return (list* '(mlist) '$hash_table (if dim1 1 t)
811 (loop for u being the hash-keys in arra
812 unless (eq u 'dim1)
813 collect
814 (if dim1
816 (cons '(mlist simp) u)))))))
817 ((arrayp arra)
818 (return (let ((dims (array-dimensions arra)))
819 (list '(mlist) '$declared
820 ;; they don't want more info (array-type arra)
821 (length dims)
822 (cons '(mlist) (mapcar #'1- dims))))))
823 ((eq (marray-type arra) '$functional)
824 (return (arrayinfo-aux sym (mgenarray-content arra)))))
825 (let ((gen (safe-mgetl sym '(hashar array))) ary1)
826 (when (null gen)
827 (merror (intl:gettext "arrayinfo: ~M is not an array.") ary))
828 (setq ary1 (cadr gen))
829 (cond ((eq (car gen) 'hashar)
830 (setq ary1 (symbol-array ary1))
831 (return (append '((mlist simp) $hashed)
832 (cons (aref ary1 2)
833 (do ((i 3 (1+ i)) (l)
834 (n (cadr (arraydims ary1))))
835 ((= i n) (sort l #'(lambda (x y) (great y x))))
836 (do ((l1 (aref ary1 i) (cdr l1)))
837 ((null l1))
838 (push (cons '(mlist simp) (caar l1)) l)))))))
839 (t (setq ary1 (arraydims ary1))
840 (return (list '(mlist simp)
841 (cond ((safe-get ary 'array)
842 (cdr (assoc (car ary1)
843 '((t . $complete) (fixnum . $integer)
844 (flonum . $float)) :test #'eq)))
845 (t '$declared))
846 (length (cdr ary1))
847 (cons '(mlist simp) (mapcar #'1- (cdr ary1)))))))))))
849 ;;;; ALIAS
851 (declare-top (special greatorder lessorder))
853 (defmspec $ordergreat (l)
854 (if greatorder (merror (intl:gettext "ordergreat: reordering is not allowed.")))
855 (makorder (setq greatorder (reverse (cdr l))) '_))
857 (defmspec $orderless (l)
858 (if lessorder (merror (intl:gettext "orderless: reordering is not allowed.")))
859 (makorder (setq lessorder (cdr l)) '|#|))
861 (defun makorder (l char)
862 (do ((l l (cdr l))
863 (n 101 (1+ n)))
864 ((null l) '$done)
865 (alias (car l)
866 (implode (nconc (ncons char) (mexploden n)
867 (exploden (stripdollar (car l))))))))
869 (defmfun $unorder ()
870 (let ((l (delete nil
871 (cons '(mlist simp)
872 (nconc (mapcar #'(lambda (x) (remalias (getalias x))) lessorder)
873 (mapcar #'(lambda (x) (remalias (getalias x))) greatorder)))
874 :test #'eq)))
875 (setq lessorder nil greatorder nil)
878 ;;;; CONCAT
880 (defun $concat (&rest l)
881 (when (null l)
882 (merror (intl:gettext "concat: there must be at least one argument.")))
883 (let ((result-is-a-string (or (numberp (car l)) (stringp (car l)))))
884 (setq l (mapcan #'(lambda (x) (unless (atom x) (merror (intl:gettext "concat: argument must be an atom; found ~M") x)) (string* x)) l))
885 (if result-is-a-string
886 (coerce l 'string)
887 (getalias (implode (cons '#\$ l))))))