Do not allow constants to be bound by lambda expressions
[maxima.git] / src / commac.lisp
blob5cc21bcb0ed1ab8616ee1fae08a1caa91506b69d
1 ;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; ;;;;;
4 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
5 ;;; All rights reserved ;;;;;
6 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 (in-package :maxima)
10 (defmacro defun-prop (f arg &body body)
11 (assert (listp f))
12 #+gcl (eval-when (eval) (compiler::compiler-def-hook (first f) body))
13 `(setf (get ',(first f) ',(second f)) #'(lambda ,arg ,@body)))
15 (defvar *prin1* nil) ;a function called instead of prin1.
17 ;; Should we give this a different name?
18 (defvar *fortran-print* nil
19 "Tells EXPLODEN we are printing numbers for Fortran so include the exponent marker.")
21 (defun appears (tree var)
22 (cond ((equal tree var)
23 (throw 'appears t))
24 ((atom tree) nil)
25 (t (appears (car tree) var)
26 (appears (cdr tree) var)))
27 nil)
29 (defun appears1 (tree var)
30 (cond ((eq tree var)
31 (throw 'appears t))
32 ((atom tree) nil)
34 (appears (car tree) var)
35 (appears (cdr tree) var)))
36 nil)
38 (defun appears-in (tree var)
39 "Yields t if var appears in tree"
40 (catch 'appears
41 (if (or (symbolp var) (fixnump var))
42 (appears1 tree var)
43 (appears tree var))))
45 ;; A more portable implementation of ml-typep. I (rtoy) think it
46 ;; would probably be better to replace uses of
47 ;; ml-typep with the corresponding Common Lisp typep or type-of or
48 ;; subtypep, as appropriate.
49 (defun ml-typep (x &optional type)
50 (cond (type
51 (cl:let ((pred (get type 'ml-typep)))
52 (if pred
53 (funcall pred x)
54 (typep x type))))
56 (typecase x
57 (cl:cons 'list)
58 (cl:fixnum 'fixnum)
59 (cl:integer 'bignum)
60 (cl:float 'flonum)
61 (cl:number 'number)
62 (cl:array 'array)
63 (cl:hash-table 'hash-table)
65 (type-of x))))))
67 (defprop :extended-number extended-number-p ml-typep)
68 (defprop array arrayp ml-typep)
69 (defprop atom atom ml-typep)
71 #+(or cmu scl)
72 (eval-when (:compile-toplevel :load-toplevel :execute)
73 (shadow '(cl:compiled-function-p) (find-package :maxima))
75 #+(or cmu scl)
76 (defun compiled-function-p (x)
77 (and (functionp x) (not (symbolp x))
78 (not (eval:interpreted-function-p x))))
80 (defprop compiled-function compiled-function-p ml-typep)
81 (defprop extended-number extended-number-p ml-typep)
82 (defprop fixnum fixnump ml-typep)
83 (defprop list consp ml-typep)
84 (defprop number numberp ml-typep)
85 (defprop string stringp ml-typep)
86 (defprop symbol symbolp ml-typep)
89 (defvar *maxima-arrays* nil
90 "Trying to track down any functional arrays in maxima")
92 ;;only remaining calls are for maclisp-type = nil
93 (defun *array (name maclisp-type &rest dimlist &aux aarray)
94 (cond ((member maclisp-type '(readtable obarray) :test #'eq)
95 (error " bad type ~S" maclisp-type)))
96 (pushnew name *maxima-arrays*) ;for tracking down old ones.
97 (setq aarray (make-array dimlist :initial-element (case maclisp-type
98 (fixnum 0)
99 (flonum 0.0)
100 (otherwise nil))))
101 (cond ((null name) aarray)
102 ((symbolp name)
103 (setf (symbol-array name) aarray)
104 name)
105 (t (error "~S is illegal first arg for *array" name))))
107 ;;; Change maclisp array referencing.
108 ;;; Idea1: Make changes in the code which will allow the code to still run in maclisp,
109 ;;;yet will allow, with the appropriate macro definitions of array,arraycall, etc,
110 ;;;to put the array into the value-cell.
111 ;;; Idea2: Make changes in the array referencing of (a dim1 dim2..) to (arraycall nil (symbol-array a) dim1..)
112 ;;;which would then allow expansion into something which is common lisp compatible, for
113 ;;;the day when (a 2 3) no longer is equivalent to (aref (symbol-function a) 2 3).
114 ;;;I. change (array a typ dim1 dim2..) to expand to (defvar a (make-array (list dim1 dim2 ...) :type typ')
115 ;;;II. change (a dim1 dim2..) to (arraycall nil (symbol-array a) dim1 dim2 ..)
116 ;;;III define
117 ;;(defmacro symbol-array (ar)
118 ;; `(symbol-function ,ar))
119 ;;(defmacro arraycall (ignore ar &rest dims)
120 ;; `(aref ,ar ,@ dims))
121 ;;;IV. change array setting to use (setf (arraycall nil ar dim1.. ) val)
122 ;;;which will generate the correct setting code on the lispm and will
123 ;;;still work in maclisp.
125 (defmacro maxima-error (datum &rest args)
126 `(cerror "without any special action" ,datum ,@args))
128 (defmacro show (&rest l)
129 (loop for v in l
130 collecting `(format t "~%The value of ~A is ~A" ',v ,v) into tem
131 finally (return `(progn ,@ tem))))
133 (defmacro defquote (fn (aa . oth) &body rest &aux help ans)
134 (setq help (intern (format nil "~a-~a" fn '#:aux)))
135 (cond ((eq aa '&rest)
136 (setq ans
137 (list
138 `(defmacro ,fn (&rest ,(car oth))
139 `(,',help ',,(car oth)))
140 `(defun ,help (,(car oth)) ,@rest))))
141 (t (when (member '&rest oth)
142 (error "at present &rest may only occur as first item in a defquote argument"))
143 (setq ans
144 (list
145 `(defmacro ,fn (,aa . other)
146 (setq other (loop for v in other collecting (list 'quote v)))
147 (check-arg other (eql (length other) ,(length oth))
148 ,(format nil "wrong number of args to ~a" fn))
149 `(,',help ',,aa ,@ other))
150 `(defun ,help (,aa ,@ oth) ,@rest)))))
151 `(progn ,@ans))
154 ;;the resulting function will translate to defvar and will behave
155 ;;correctly for the evaluator.
157 ;;(defun gg fexpr (ll)
158 ;; body)
159 ;;(defquote gg (&rest ll)
160 ;; body)
162 ;;(DEFQUOTE GG ( &rest C)
163 ;; (list (car c) (second c) ))
164 ;;the big advantage of using the following over defmspec is that it
165 ;;seems to translate more easily, since it is a fn.
166 ;;New functions which wanted quoted arguments should be defined using
167 ;;defquote
170 (defun onep (x) (eql 1 x))
172 (defun extended-number-p (x)
173 (member (type-of x) '(bignum rational float )))
175 (defvar *scan-string-buffer* nil)
177 (defun macsyma-read-string (a-string &aux answer)
178 (cond ((not (or (search "$" a-string :test #'char-equal)
179 (search ";" a-string :test #'char-equal)))
180 (vector-push-extend #\$ a-string)))
181 (with-input-from-string (stream a-string)
182 (setq answer (third (mread stream)))
183 answer))
185 (defvar *sharp-read-buffer*
186 (make-array 140 :element-type ' #.(array-element-type "a") :fill-pointer 0 :adjustable t))
188 (defun x$-cl-macro-read (stream sub-char arg)
189 (declare (ignore arg))
190 ($-read-aux sub-char stream))
192 (defun $-read-aux (arg stream &aux (meval-flag t) (*mread-prompt* ""))
193 (declare (special *mread-prompt*)
194 (ignore arg))
195 (setf (fill-pointer *sharp-read-buffer*) 0)
196 (cond ((eql #\$ (peek-char t stream))
197 (tyi stream)
198 (setq meval-flag nil)))
199 (with-output-to-string (st *sharp-read-buffer*)
200 (let (char)
201 (loop while (not (eql char #\$))
203 (setq char (tyi stream))
204 (write-char char st))))
205 (if meval-flag
206 (list 'meval* (list 'quote (macsyma-read-string *sharp-read-buffer*)))
207 (list 'quote (macsyma-read-string *sharp-read-buffer*))))
209 (set-dispatch-macro-character #\# #\$ #'x$-cl-macro-read)
211 (defvar *macsyma-readtable*)
213 (defun find-lisp-readtable-for-macsyma ()
214 (cond ((and (boundp '*macsyma-readtable*)
215 (readtablep *macsyma-readtable*))
216 *macsyma-readtable*)
217 (t (setq *macsyma-readtable* (copy-readtable nil))
218 (set-dispatch-macro-character #\# #\$ 'x$-cl-macro-read *macsyma-readtable*)
219 *macsyma-readtable*)))
221 (defun set-readtable-for-macsyma ()
222 (setq *readtable* (find-lisp-readtable-for-macsyma)))
224 (defvar *reset-var* t)
226 (defvar *variable-initial-values* (make-hash-table)
227 "Hash table containing all Maxima defmvar variables and their initial
228 values")
230 (defmacro defmvar (var &rest val-and-doc)
231 "If *reset-var* is true then loading or eval'ing will reset value, otherwise like defvar"
232 (cond ((> (length val-and-doc) 2)
233 (setq val-and-doc (list (car val-and-doc) (second val-and-doc)))))
234 `(progn
235 (unless (gethash ',var *variable-initial-values*)
236 (setf (gethash ',var *variable-initial-values*)
237 ,(first val-and-doc)))
238 (defvar ,var ,@val-and-doc)))
240 (defun $mkey (variable)
241 "($mkey '$demo)==>:demo"
242 (intern (string-left-trim "$" (string variable)) 'keyword))
244 (defmacro arg (x)
245 `(narg1 ,x narg-rest-argument))
247 (defun narg1 (x l &aux tem)
248 (cond ((null x) (length l))
249 (t (setq tem (nthcdr (1- x) l))
250 (cond ((null tem) (error "arg ~A beyond range ~A " x (length l)))
251 (t (car tem))))))
253 (defmacro listify (x)
254 `(listify1 ,x narg-rest-argument))
256 (defmacro setarg (i val)
257 `(setarg1 ,i ,val narg-rest-argument))
259 (defun setarg1 (i val l)
260 (setf (nth (1- i) l) val)
261 val)
263 (defun listify1 (n narg-rest-argument)
264 (cond ((minusp n) (copy-list (last narg-rest-argument (- n))) )
265 ((zerop n) nil)
266 (t (subseq narg-rest-argument 0 n))))
268 (defmacro defmfun (function &body rest &aux .n.)
269 (cond ((and (car rest) (symbolp (car rest)))
270 ;;old maclisp narg syntax
271 (setq .n. (car rest))
272 (setf (car rest)
273 `(&rest narg-rest-argument &aux (, .n. (length narg-rest-argument))))))
274 `(progn
275 ;; I (rtoy) think we can consider all defmfun's as translated functions.
276 (defprop ,function t translated)
277 (defun ,function . ,rest)))
279 ;;sample usage
280 ;;(defmfun foo a (show a )(show (listify a)) (show (arg 3)))
282 (defun exploden (symb)
283 (let* (#+(and gcl (not gmp)) (big-chunk-size 120)
284 #+(and gcl (not gmp)) (tentochunksize (expt 10 big-chunk-size))
285 string)
286 (cond ((symbolp symb)
287 (setq string (print-invert-case symb)))
288 ((floatp symb)
289 (setq string (exploden-format-float symb)))
291 ((integerp symb)
292 ;; When obase > 10, prepend leading zero to
293 ;; ensure that output is readable as a number.
294 (let ((leading-digit (if (> *print-base* 10) #\0)))
295 (cond
296 #+(and gcl (not gmp))
297 ((bignump symb)
298 (let* ((big symb)
299 ans rem tem
300 (chunks
301 (loop
302 do (multiple-value-setq (big rem)
303 (floor big tentochunksize))
304 collect rem
305 while (not (eql 0 big)))))
306 (setq chunks (nreverse chunks))
307 (setq ans (coerce (format nil "~d" (car chunks)) 'list))
308 (if (and leading-digit (not (digit-char-p (car ans) 10.)))
309 (setq ans (cons leading-digit ans)))
310 (loop for v in (cdr chunks)
311 do (setq tem (coerce (format nil "~d" v) 'list))
312 (loop for i below (- big-chunk-size (length tem))
313 do (setq tem (cons #\0 tem)))
314 (setq ans (nconc ans tem)))
315 (return-from exploden ans)))
317 (setq string (format nil "~A" symb))
318 (setq string (coerce string 'list))
319 (if (and leading-digit (not (digit-char-p (car string) 10.)))
320 (setq string (cons leading-digit string)))
321 (return-from exploden string)))))
323 (t (setq string (format nil "~A" symb))))
324 (assert (stringp string))
325 (coerce string 'list)))
327 (defvar *exploden-strip-float-zeros* t) ;; NIL => allow trailing zeros
329 (defun exploden-format-float (symb)
330 (declare (special $maxfpprintprec))
331 (let ((a (abs symb))
332 string
333 (effective-printprec (if (or (= $fpprintprec 0)
334 (> $fpprintprec $maxfpprintprec))
335 $maxfpprintprec
336 $fpprintprec)))
337 ;; When printing out something for Fortran, we want to be
338 ;; sure to print the exponent marker so that Fortran
339 ;; knows what kind of number it is. It turns out that
340 ;; Fortran's exponent markers are the same as Lisp's so
341 ;; we just need to make sure the exponent marker is
342 ;; printed.
343 (if *fortran-print*
344 (setq string (cond
345 ;; Strings for non-finite numbers as specified for input in Fortran 2003 spec;
346 ;; they apparently did not exist in earlier versions.
347 ((float-nan-p symb) "NAN")
348 ((float-inf-p symb) (if (< symb 0) "-INF" "INF"))
349 (t (format nil "~e" symb))))
350 (multiple-value-bind (form digits)
351 (cond
352 ((zerop a)
353 (values "~,vf" 1))
354 ;; Work around for GCL bug #47404.
355 ;; Avoid numeric comparisons with NaN, which erroneously return T.
356 #+gcl ((or (float-inf-p symb) (float-nan-p symb))
357 (return-from exploden-format-float (format nil "~a" symb)))
358 ((<= 0.001 a 1e7)
359 (let*
360 ((integer-log10 (floor (/ (log a) #.(log 10.0))))
361 (scale (1+ integer-log10)))
362 (if (< scale effective-printprec)
363 (values "~,vf" (- effective-printprec scale))
364 (values "~,ve" (1- effective-printprec)))))
365 #-gcl ((or (float-inf-p symb) (float-nan-p symb))
366 (return-from exploden-format-float (format nil "~a" symb)))
368 (values "~,ve" (1- effective-printprec))))
370 ;; Call FORMAT using format string chosen above.
371 (setq string (format nil form digits a))
373 ;; EXPLODEN is often called after NFORMAT, so it doesn't
374 ;; usually see a negative argument. I can't guarantee
375 ;; a non-negative argument, so handle negative here.
376 (if (< symb 0)
377 (setq string (concatenate 'string "-" string)))))
379 (if *exploden-strip-float-zeros*
380 (or (strip-float-zeros string) string)
381 string)))
383 (defun trailing-zeros-regex-f-0 (s) (funcall #.(maxima-nregex::regex-compile "^(.*\\.[0-9]*[1-9])00*$") s))
384 (defun trailing-zeros-regex-f-1 (s) (funcall #.(maxima-nregex::regex-compile "^(.*\\.0)00*$") s))
385 (defun trailing-zeros-regex-e-0 (s) (funcall #.(maxima-nregex::regex-compile "^(.*\\.[0-9]*[1-9])00*([^0-9][+-][0-9]*)$") s))
386 (defun trailing-zeros-regex-e-1 (s) (funcall #.(maxima-nregex::regex-compile "^(.*\\.0)00*([^0-9][+-][0-9]*)$") s))
388 ;; Return S with trailing zero digits stripped off, or NIL if there are none.
390 (defun strip-float-zeros (s)
391 (cond
392 ((or (trailing-zeros-regex-f-0 s) (trailing-zeros-regex-f-1 s))
393 (let
394 ((group1 (aref maxima-nregex::*regex-groups* 1)))
395 (subseq s (first group1) (second group1))))
396 ((or (trailing-zeros-regex-e-0 s) (trailing-zeros-regex-e-1 s))
397 (let*
398 ((group1 (aref maxima-nregex::*regex-groups* 1))
399 (s1 (subseq s (first group1) (second group1)))
400 (group2 (aref maxima-nregex::*regex-groups* 2))
401 (s2 (subseq s (first group2) (second group2))))
402 (concatenate 'string s1 s2)))
403 (t nil)))
405 (defun explodec (symb) ;is called for symbols and numbers
406 (loop for v in (coerce (print-invert-case symb) 'list)
407 collect (intern (string v))))
409 ;;; If the 'string is all the same case, invert the case. Otherwise,
410 ;;; do nothing.
411 #-(or scl allegro)
412 (defun maybe-invert-string-case (string)
413 (let ((all-upper t)
414 (all-lower t)
415 (length (length string)))
416 (dotimes (i length)
417 (let ((ch (char string i)))
418 (when (both-case-p ch)
419 (if (upper-case-p ch)
420 (setq all-lower nil)
421 (setq all-upper nil)))))
422 (cond (all-upper
423 (string-downcase string))
424 (all-lower
425 (string-upcase string))
427 string))))
429 #+(or scl allegro)
430 (defun maybe-invert-string-case (string)
431 (cond (#+scl (eq ext:*case-mode* :lower)
432 #+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
433 string)
435 (let ((all-upper t)
436 (all-lower t)
437 (length (length string)))
438 (dotimes (i length)
439 (let ((ch (aref string i)))
440 (when (both-case-p ch)
441 (if (upper-case-p ch)
442 (setq all-lower nil)
443 (setq all-upper nil)))))
444 (cond (all-upper
445 (string-downcase string))
446 (all-lower
447 (string-upcase string))
449 string))))))
451 (defun intern-invert-case (string)
452 ;; Like read-from-string with readtable-case :invert
453 ;; Supply package argument in case this function is called
454 ;; from outside the :maxima package.
455 (intern (maybe-invert-string-case string) :maxima))
458 #-(or gcl scl allegro)
459 (let ((local-table (copy-readtable nil)))
460 (setf (readtable-case local-table) :invert)
461 (defun print-invert-case (sym)
462 (let ((*readtable* local-table)
463 (*print-case* :upcase))
464 (princ-to-string sym))))
466 #+(or scl allegro)
467 (let ((local-table (copy-readtable nil)))
468 (unless #+scl (eq ext:*case-mode* :lower)
469 #+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
470 (setf (readtable-case local-table) :invert))
471 (defun print-invert-case (sym)
472 (cond (#+scl (eq ext:*case-mode* :lower)
473 #+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
474 (let ((*readtable* local-table)
475 (*print-case* :downcase))
476 (princ-to-string sym)))
478 (let ((*readtable* local-table)
479 (*print-case* :upcase))
480 (princ-to-string sym))))))
482 #+gcl
483 (defun print-invert-case (sym)
484 (cond ((symbolp sym)
485 (let* ((str (princ-to-string sym))
486 (have-upper nil)
487 (have-lower nil)
488 (converted-str
489 (map 'string (lambda (c)
490 (cond ((upper-case-p c)
491 (setf have-upper t)
492 (char-downcase c))
493 ((lower-case-p c)
494 (setf have-lower t)
495 (char-upcase c))
496 (t c)))
497 str)))
498 (if (and have-upper have-lower)
500 converted-str)))
501 (t (princ-to-string sym))))
503 (defun implode (list)
504 (declare (optimize (speed 3)))
505 (intern-invert-case (map 'string #'(lambda (v)
506 (etypecase v
507 (character v)
508 (symbol (char (symbol-name v) 0))
509 (integer (code-char v))))
510 list)))
512 ;; Note: symb can also be a number, not just a symbol.
513 (defun explode (symb)
514 (declare (optimize (speed 3)))
515 (map 'list #'(lambda (v) (intern (string v))) (format nil "~a" symb)))
517 ;;; return the first character of the name of a symbol or a string or char
518 (defun get-first-char (symb)
519 (declare (optimize (speed 3)))
520 (char (string symb) 0))
522 (defun getchar (symb i)
523 (let ((str (string symb)))
524 (if (<= 1 i (length str))
525 (intern (string (char str (1- i))))
526 nil)))
528 (defun ascii (n)
529 (intern (string n)))
531 (defun maknam (lis)
532 (loop for v in lis
533 when (symbolp v)
534 collecting (char (symbol-name v) 0) into tem
535 else
536 when (characterp v)
537 collecting v into tem
538 else do (maxima-error "bad entry")
539 finally
540 (return (make-symbol (maybe-invert-string-case (coerce tem 'string))))))
542 ;;for those window labels etc. that are wrong type.
543 ;; is not only called for symbols, but also on numbers
544 (defun flatc (sym)
545 (length (explodec sym)))
547 (defun flatsize (sym &aux (*print-circle* t))
548 (length (exploden sym)))
550 (defmacro safe-zerop (x)
551 (if (symbolp x)
552 `(and (numberp ,x) (zerop ,x))
553 `(let ((.x. ,x))
554 (and (numberp .x.) (zerop .x.)))))
556 (defmacro signp (sym x)
557 (cond ((atom x)
558 (let ((test
559 (case sym
560 (e `(zerop ,x))
561 (l `(< ,x 0))
562 (le `(<= ,x 0))
563 (g `(> ,x 0))
564 (ge `(>= ,x 0))
565 (n `(not (zerop ,x))))))
566 `(and (numberp ,x) ,test)))
567 (t `(let ((.x. ,x))
568 (signp ,sym .x.)))))
570 (defvar *prompt-on-read-hang* nil)
571 (defvar *read-hang-prompt* "")
573 (defun tyi-raw (&optional (stream *standard-input*) eof-option)
574 ;; Adding this extra EOF test, because the testsuite generates
575 ;; unexpected end of input-stream with Windows XP and GCL 2.6.8.
576 #+gcl
577 (when (eql (peek-char nil stream nil eof-option) eof-option)
578 (return-from tyi-raw eof-option))
580 (let ((ch (read-char-no-hang stream nil eof-option)))
581 (if ch
583 (progn
584 (when (and *prompt-on-read-hang* *read-hang-prompt*)
585 (princ *read-hang-prompt*)
586 (force-output *standard-output*))
587 (read-char stream nil eof-option)))))
589 (defun tyi (&optional (stream *standard-input*) eof-option)
590 (let ((ch (tyi-raw stream eof-option)))
591 (if (eql ch eof-option)
593 (backslash-check ch stream eof-option))))
595 ; The sequences of characters
596 ; <anything-except-backslash>
597 ; (<backslash> <newline> | <backslash> <return> | <backslash> <return> <newline>)+
598 ; <anything>
599 ; are reduced to <anything-except-backslash> <anything> .
600 ; Note that this has no effect on <backslash> <anything-but-newline-or-return> .
602 (let ((previous-tyi #\a))
603 (defun backslash-check (ch stream eof-option)
604 (if (eql previous-tyi #\\ )
605 (progn (setq previous-tyi #\a) ch)
606 (setq previous-tyi
607 (if (eql ch #\\ )
608 (let ((next-char (peek-char nil stream nil eof-option)))
609 (if (or (eql next-char #\newline) (eql next-char #\return))
610 (eat-continuations ch stream eof-option)
611 ch))
612 ch))))
613 ; We have just read <backslash> and we know the next character is <newline> or <return>.
614 ; Eat line continuations until we come to something which doesn't match, or we reach eof.
615 (defun eat-continuations (ch stream eof-option)
616 (setq ch (tyi-raw stream eof-option))
617 (do () ((not (or (eql ch #\newline) (eql ch #\return))))
618 (let ((next-char (peek-char nil stream nil eof-option)))
619 (if (and (eql ch #\return) (eql next-char #\newline))
620 (tyi-raw stream eof-option)))
621 (setq ch (tyi-raw stream eof-option))
622 (let ((next-char (peek-char nil stream nil eof-option)))
623 (if (and (eql ch #\\ ) (or (eql next-char #\return) (eql next-char #\newline)))
624 (setq ch (tyi-raw stream eof-option))
625 (return-from eat-continuations ch))))
626 ch))
628 (defvar ^w nil)
630 (defun $timedate (&optional (time (get-universal-time)) tz)
631 (cond
632 ((and (consp tz) (eq (caar tz) 'rat))
633 (setq tz (/ (second tz) (third tz))))
634 ((floatp tz)
635 (setq tz (rationalize tz))))
636 (if tz (setq tz (/ (round tz 1/60) 60)))
637 (let*
638 ((time-integer (mfuncall '$floor time))
639 (time-fraction (sub time time-integer))
640 (time-millis (mfuncall '$round (mul 1000 time-fraction))))
641 (when (= time-millis 1000)
642 (setq time-integer (1+ time-integer))
643 (setq time-millis 0))
644 (multiple-value-bind
645 (second minute hour date month year day-of-week dst-p tz)
646 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
647 ;; so work around null TZ here.
648 (if tz (decode-universal-time time-integer (- tz))
649 (decode-universal-time time-integer))
650 (declare (ignore day-of-week #+gcl dst-p))
651 ;; DECODE-UNIVERSAL-TIME might return a timezone offset
652 ;; which is a multiple of 1/3600 but not 1/60.
653 ;; We need a multiple of 1/60 because our formatted
654 ;; timezone offset has only minutes and seconds.
655 (if (/= (mod tz 1/60) 0)
656 ($timedate time-integer (/ (round (- tz) 1/60) 60))
657 (let ((tz-offset
658 #-gcl (if dst-p (- 1 tz) (- tz))
659 #+gcl (- tz) ; bug in gcl https://savannah.gnu.org/bugs/?50570
661 (multiple-value-bind
662 (tz-hours tz-hour-fraction)
663 (truncate tz-offset)
664 (let
665 ((tz-sign (if (<= 0 tz-offset) #\+ #\-)))
666 (if (= time-millis 0)
667 (format nil "~4,'0d-~2,'0d-~2,'0d ~2,'0d:~2,'0d:~2,'0d~a~2,'0d:~2,'0d"
668 year month date hour minute second tz-sign (abs tz-hours) (floor (* 60 (abs tz-hour-fraction))))
669 (format nil "~4,'0d-~2,'0d-~2,'0d ~2,'0d:~2,'0d:~2,'0d.~3,'0d~a~2,'0d:~2,'0d"
670 year month date hour minute second time-millis tz-sign (abs tz-hours) (floor (* 60 (abs tz-hour-fraction))))))))))))
672 ;; Parse date/time strings in these formats (and only these):
674 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?([+-]hh:mm)?
675 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?([+-]hhmm)?
676 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?([+-]hh)?
677 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?[Z]?
679 ;; where (...)? indicates an optional group (occurs zero or one times)
680 ;; ...+ indicates one or more instances of ...,
681 ;; and [...] indicates literal character alternatives.
683 ;; Note that the nregex package doesn't handle optional groups or ...+.
684 ;; The notation above is only for describing the behavior of the parser.
686 ;; Trailing unparsed stuff causes the parser to fail (return NIL).
688 (defun match-date-yyyy-mm-dd (s) (funcall #.(maxima-nregex::regex-compile "^([0-9][0-9][0-9][0-9])-([0-9][0-9])-([0-9][0-9])") s))
689 (defun match-time-hh-mm-ss (s) (funcall #.(maxima-nregex::regex-compile "^[ T]([0-9][0-9]):([0-9][0-9]):([0-9][0-9])") s))
690 (defun match-fraction-nnn (s) (funcall #.(maxima-nregex::regex-compile "^[,.]([0-9][0-9]*)") s))
691 (defun match-tz-hh-mm (s) (funcall #.(maxima-nregex::regex-compile "^([+-])([0-9][0-9]):([0-9][0-9])$") s))
692 (defun match-tz-hhmm (s) (funcall #.(maxima-nregex::regex-compile "^([+-])([0-9][0-9])([0-9][0-9])$") s))
693 (defun match-tz-hh (s) (funcall #.(maxima-nregex::regex-compile "^([+-])([0-9][0-9])$") s))
694 (defun match-tz-Z (s) (funcall #.(maxima-nregex::regex-compile "^Z$") s))
696 (defun $parse_timedate (s)
697 (setq s (string-trim '(#\Space #\Tab #\Newline #\Return) s))
698 (let (year month day
699 (hours 0) (minutes 0) (seconds 0)
700 (seconds-fraction 0) seconds-fraction-numerator tz)
701 (if (match-date-yyyy-mm-dd s)
702 (progn
703 (multiple-value-setq (year month day) (extract-groups-integers s))
704 (setq s (subseq s (second (aref maxima-nregex::*regex-groups* 0)))))
705 (return-from $parse_timedate nil))
706 (when (match-time-hh-mm-ss s)
707 (multiple-value-setq (hours minutes seconds) (extract-groups-integers s))
708 (setq s (subseq s (second (aref maxima-nregex::*regex-groups* 0)))))
709 (when (match-fraction-nnn s)
710 (multiple-value-setq (seconds-fraction-numerator) (extract-groups-integers s))
711 (let ((group1 (aref maxima-nregex::*regex-groups* 1)))
712 (setq seconds-fraction (div seconds-fraction-numerator (expt 10 (- (second group1) (first group1))))))
713 (setq s (subseq s (second (aref maxima-nregex::*regex-groups* 0)))))
714 (cond
715 ((match-tz-hh-mm s)
716 (multiple-value-bind (tz-sign tz-hours tz-minutes) (extract-groups-integers s)
717 (setq tz (* tz-sign (+ tz-hours (/ tz-minutes 60))))))
718 ((match-tz-hhmm s)
719 (multiple-value-bind (tz-sign tz-hours tz-minutes) (extract-groups-integers s)
720 (setq tz (* tz-sign (+ tz-hours (/ tz-minutes 60))))))
721 ((match-tz-hh s)
722 (multiple-value-bind (tz-sign tz-hours) (extract-groups-integers s)
723 (setq tz (* tz-sign tz-hours))))
724 ((match-tz-Z s)
725 (setq tz 0))
727 (if (> (length s) 0)
728 (return-from $parse_timedate nil))))
730 (encode-time-with-all-parts year month day hours minutes seconds seconds-fraction (if tz (- tz)))))
732 (defun extract-groups-integers (s)
733 (let ((groups (coerce (subseq maxima-nregex::*regex-groups* 1 maxima-nregex::*regex-groupings*) 'list)))
734 (values-list (mapcar #'parse-integer-or-sign
735 (mapcar #'(lambda (ab) (subseq s (first ab) (second ab)))
736 groups)))))
738 (defun parse-integer-or-sign (s)
739 (cond
740 ((string= s "+") 1)
741 ((string= s "-") -1)
742 (t (parse-integer s))))
744 ; Clisp (2.49) / Windows does have a problem with dates before 1970-01-01,
745 ; therefore add 400 years in that case and subtract 12622780800
746 ; (= parse_timedate("2300-01-01Z") (Lisp starts with 1900-01-01) in timezone
747 ; GMT) afterwards.
748 ; see discussion on mailing list circa 2015-04-21: "parse_timedate error"
750 (if (and (string= (lisp-implementation-type) "CLISP") (string= *autoconf-windows* "true"))
751 ; Clisp/Windows case:
752 (defun encode-time-with-all-parts (year month day hours minutes seconds-integer seconds-fraction tz)
753 (add seconds-fraction
754 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
755 ;; so work around null TZ here.
756 (let
757 ((foo
758 (if tz
759 (encode-universal-time seconds-integer minutes hours day month (add year 400) tz)
760 (encode-universal-time seconds-integer minutes hours day month (add year 400)))))
761 (sub foo 12622780800))))
762 ; other Lisp / OS versions:
763 (defun encode-time-with-all-parts (year month day hours minutes seconds-integer seconds-fraction tz)
764 (add seconds-fraction
765 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
766 ;; so work around null TZ here.
767 (if tz
768 (encode-universal-time seconds-integer minutes hours day month year tz)
769 (encode-universal-time seconds-integer minutes hours day month year)))))
771 (defun $encode_time (year month day hours minutes seconds &optional tz-offset)
772 (when tz-offset
773 (setq tz-offset (sub 0 tz-offset))
774 (cond
775 ((and (consp tz-offset) (eq (caar tz-offset) 'rat))
776 (setq tz-offset (/ (second tz-offset) (third tz-offset))))
777 ((floatp tz-offset)
778 (setq tz-offset (rationalize tz-offset))))
779 (setq tz-offset (/ (round tz-offset 1/3600) 3600)))
780 (let*
781 ((seconds-integer (mfuncall '$floor seconds))
782 (seconds-fraction (sub seconds seconds-integer)))
783 (encode-time-with-all-parts year month day hours minutes seconds-integer seconds-fraction tz-offset)))
785 (defun $decode_time (seconds &optional tz)
786 (cond
787 ((and (consp tz) (eq (caar tz) 'rat))
788 (setq tz (/ (second tz) (third tz))))
789 ((floatp tz)
790 (setq tz (rationalize tz))))
791 (if tz (setq tz (/ (round tz 1/3600) 3600)))
792 (let*
793 ((seconds-integer (mfuncall '$floor seconds))
794 (seconds-fraction (sub seconds seconds-integer)))
795 (multiple-value-bind
796 (seconds minutes hours day month year day-of-week dst-p tz)
797 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
798 ;; so work around null TZ here.
799 (if tz (decode-universal-time seconds-integer (- tz))
800 (decode-universal-time seconds-integer))
801 (declare (ignore day-of-week #+gcl dst-p))
802 ;; HMM, CAN DECODE-UNIVERSAL-TIME RETURN TZ = NIL ??
803 (let ((tz-offset
804 #-gcl (if dst-p (- 1 tz) (- tz))
805 #+gcl (- tz) ; bug in gcl https://savannah.gnu.org/bugs/?50570
807 (list '(mlist) year month day hours minutes (add seconds seconds-fraction) ($ratsimp tz-offset))))))
809 ;;Some systems make everything functionp including macros:
810 (defun functionp (x)
811 (cond ((symbolp x)
812 (and (not (macro-function x))
813 (fboundp x) t))
814 ((cl:functionp x))))
816 ;; These symbols are shadowed because we use them also as special
817 ;; variables.
818 (deff break #'cl:break)
819 (deff gcd #'cl:gcd)
821 #+(and sbcl sb-package-locks)
822 (defun makunbound (sym)
823 (sb-ext:without-package-locks
824 (cl:makunbound sym)))