Fix the inefficient evaluation of translated predicates
[maxima.git] / tests / rtestint.mac
blobf96e46e597f718a1fbe753a034cc2645e420f6af
1 (kill(all),0);
2 0$
4 /*
5  * This is a set of test integrals for testing various parts of the 
6  * integration routines. 
7  */
9 /*
10  * We're testing irinte now, which handles things like x^m*sqrt(R^(2*p+1))
11  * for integral values of m and p. 
12  */
13 R:c*x^2+b*x+a;
14 c*x^2+b*x+a;
16 /* matchsum - derivative divides */
17 integrate((4*x^3-x^2+4*x)^(-2/3)*(12*x^2-2*x+4),x);
18 3*(4*x^3-x^2+4*x)^(1/3);
21  * Tests of den1den1, 1/x/sqrt(R)
22  */
24 /* G&R a < 0, del < 0 */
25 integrate(1/x/sqrt(x^2-1),x);
26 -asin(1/abs(x));
28 /* G&R a > 0, del > 0 */
29 integrate(1/x/sqrt(x^2+1),x);
30 -asinh(1/abs(x));
32 /* G&R a > 0, del = 0 */
33 /*integrate(1/x/sqrt(x^2-2*x+1),x);*/
35 /* G&R a < 0, del < 0 */
36 integrate(1/x/sqrt(-6+5*x-x^2),x);
37 asin(5*x/abs(x)-12/abs(x))/sqrt(6);
39 /* Last case */
40 integrate(1/x/sqrt(-x^2+x-1),x);
41 %i*asinh(x/(sqrt(3)*abs(x))-2/(sqrt(3)*abs(x)));
45  * Test of denn, 1/sqrt(R^(2*p+1))
46  */
48 (assume(4*a*c-b^2>0), assume(c > 0), assume(a > 0), assume(b > 0), 
49  assume(R > 0), 0);
52 /* 1/sqrt(R), repeated roots */
53 integrate(1/sqrt(c*x^2+b*x+b^2/4/c),x);
54 log(x+b/(2*c))/sqrt(c);
56 /* 1/sqrt(R^(2*p+1), p > 0, repeated roots */
57 integrate(1/sqrt(c*x^2+b*x+b^2/4/c)^3,x);
58 -1/(2*c^(3/2)*(x+b/(2*c))^2);
62  * 1/sqrt(R), distinct roots, 
63  * G&R 2.261 case c > 0, del > 0
64  */
65 integrate(1/sqrt(R),x);
66 1/sqrt(c)*asinh((2*c*x+b)/sqrt(4*a*c-b^2));
69  * 1/sqrt(R^3), distinct roots,
70  * G&R 2.264 eq. 5 
71  */
72 factor(integrate(1/R^(3/2),x));
73 2*(2*c*x+b)/((4*a*c-b^2)*sqrt(c*x^2+b*x+a));
75 /* 
76  * General case.
77  * 1/sqrt(R^(2*p+1),
78  * G&R 2.263 eq. 3, for reduction; eq 4 for explicit solution.
79  */
80 factor(integrate(1/R^(5/2),x));
81 2*(2*c*x+b)*(8*c^2*x^2+8*b*c*x+12*a*c-b^2)
82          /(3*(4*a*c-b^2)^2*(c*x^2+b*x+a)^(3/2));
84  * Tests of den1denn, 1/x/sqrt(R^(2*p+1))
85  */
88  * G&R 2.268 gives the general solution for this:
89  *
90  * integrate(1/x/sqrt(R^(2*n+1)),x) =
91  *   1/(2*n-1)/a/sqrt(R^(2*n-1))
92  *   - b/2/a*integrate(1/sqrt(R^(2*n+1)),x)
93  *   + 1/a*integrate(1/x/sqrt(R^(2*n-1)),x)
94  *
95  * For this example, n = 1
96  *
97  * integrate(1/x/sqrt(R^3),x) =
98  *   1/a/sqrt(R)
99  *   - b/2/a*integrate(1/sqrt(R^3),x)
100  *   + 1/a*integrate(1/x/sqrt(R),x)
102  * and we already know the answers to the other two integrals.
103  */
104 integrate(1/x/sqrt(R^3),x);
105 -asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
106         /a^(3/2)
107         -2*b*c*x/(a*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
108         -b^2/(a*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))+1/(a*sqrt(c*x^2+b*x+a));
111  * Tests of nummdenn x^m/sqrt(R^(2*p+1))
112  */
115  * See G&R 2.264, eq 2:
117  * integrate(x/sqrt(R),x) =
118  *   sqrt(R)/c - b/(2*c)*integrate(1/sqrt(R),x)
119  */
120 integrate(x/sqrt(R),x);
121 sqrt(''R)/c-b*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(2*c^(3/2));
124  * See G&R 2.264, eq 3:
126  * integrate(x^2/sqrt(R),x) =
127  *   (x/(2*c)-3*b/(4*c^2))*sqrt(R) 
128  *     + (3*b^2/(8*c^2) - a/(2*c))*integrate(1/sqrt(R),x)
129  */
130 integrate(x^2/sqrt(R),x);
131 -a*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(2*c^(3/2))
132         +3*b^2*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(8*c^(5/2))
133         +x*sqrt(c*x^2+b*x+a)/(2*c)-3*b*sqrt(c*x^2+b*x+a)/(4*c^2);
137  * Test of repeated roots
138  */
139 integrate(x^2/sqrt(c*x^2+b*x+b^2/4/c),x);
140 b^2*log(x+b/(2*c))/(4*c^(5/2))+x^2/(2*sqrt(c))-b*x/(2*c^(3/2));
142 integrate(x^2/sqrt(c*x^2+b*x+b^2/4/c)^3,x);
143 log(x+b/(2*c))/c^(3/2)+b*x/(c^(5/2)*(x+b/(2*c))^2)
144                               +3*b^2/(8*c^(7/2)*(x+b/(2*c))^2);
146 integrate(x^2/sqrt(c*x^2+b*x+b^2/4/c)^5,x);
147 -1/(2*c^(5/2)*(x+b/(2*c))^2)+b/(3*c^(7/2)*(x+b/(2*c))^3)
148                                     -b^2/(16*c^(9/2)*(x+b/(2*c))^4);
151  * Test denmnumn sqrt(R^(2*p+1))/x^m.
152  */
154 integrate(sqrt(R)/x,x);
155 -sqrt(a)*asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))
156                         +2*a/(sqrt(4*a*c-b^2)*abs(x)))
157          +b*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(2*sqrt(c))+sqrt(c*x^2+b*x+a);
159 integrate(sqrt(R^3)/x,x),radexpand:all;
160 -a^(3/2)*asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))
161                         +2*a/(sqrt(4*a*c-b^2)*abs(x)))
162          +3*a*b*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(4*sqrt(c))
163          -b^3*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(16*c^(3/2))
164          +(c*x^2+b*x+a)^(3/2)/3+b*x*sqrt(c*x^2+b*x+a)/4
165          +b^2*sqrt(c*x^2+b*x+a)/(8*c)+a*sqrt(c*x^2+b*x+a);
167 integrate(sqrt(R)/x^2,x);
168 -b*asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
169          /(2*sqrt(a))
170          +sqrt(c)*asinh((2*c*x+b)/sqrt(4*a*c-b^2))-sqrt(c*x^2+b*x+a)/x;
172 integrate(sqrt(R^3)/x^2,x),radexpand:all;
173 -3*sqrt(a)*b
174           *asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
175          /2
176          +3*a*sqrt(c)*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/2
177          +3*b^2*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(8*sqrt(c))
178          -(c*x^2+b*x+a)^(3/2)/x+3*c*x*sqrt(c*x^2+b*x+a)/2
179          +9*b*sqrt(c*x^2+b*x+a)/4;
181 /* Same as above, but test a = 0 (nonconstquadenum) */
182 integrate(sqrt(R-a)/x,x);
183 b*log(2*sqrt(c)*sqrt(c*x^2+b*x)+2*c*x+b)/(2*sqrt(c))+sqrt(c*x^2+b*x);
185 integrate(sqrt((R-a)^3)/x,x),radexpand:all;
186 -b^3*log(2*sqrt(c)*sqrt(c*x^2+b*x)+2*c*x+b)/(16*c^(3/2))
187          +(c*x^2+b*x)^(3/2)/3+b*x*sqrt(c*x^2+b*x)/4+b^2*sqrt(c*x^2+b*x)/(8*c);
189 integrate(sqrt(R-a)/x^2,x);
190 sqrt(c)*log(2*sqrt(c)*sqrt(c*x^2+b*x)+2*c*x+b)-2*sqrt(c*x^2+b*x)/x;
192 integrate(sqrt((R-a)^3)/x^2,x),radexpand:all;
193 3*b^2*log(2*sqrt(c)*sqrt(c*x^2+b*x)+2*c*x+b)/(8*sqrt(c))
194          +(c*x^2+b*x)^(3/2)/(2*x)+3*b*sqrt(c*x^2+b*x)/4;
196 integrate(sqrt((R-a)^3)/x^3,x),radexpand:all;
197 3*b*sqrt(c)*log(2*sqrt(c)*sqrt(c*x^2+b*x)+2*c*x+b)/2
198          +(c*x^2+b*x)^(3/2)/x^2-3*b*sqrt(c*x^2+b*x)/x;
201  * Test denmdenn 1/sqrt(R^(2*p+1))/x^m
202  */
203 integrate(1/sqrt(R)/x^2,x);
204 b*asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
205          /(2*a^(3/2))
206          -sqrt(c*x^2+b*x+a)/(a*x);
208 integrate(1/sqrt(R)/x^3,x);
209 c*asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
210          /(2*a^(3/2))
211          -3*b^2
212            *asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
213           /(8*a^(5/2))+3*b*sqrt(c*x^2+b*x+a)/(4*a^2*x)
214          -sqrt(c*x^2+b*x+a)/(2*a*x^2);
216 integrate(1/sqrt(R^3)/x^2,x);
217 3*b*asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
218          /(2*a^(5/2))
219          -8*c^2*x/(a*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
220          +3*b^2*c*x/(a^2*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
221          -1/(a*x*sqrt(c*x^2+b*x+a))-4*b*c/(a*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
222          +3*b^3/(2*a^2*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
223          -3*b/(2*a^2*sqrt(c*x^2+b*x+a));
225 integrate(1/sqrt(R^3)/x^3,x);
226 3*c*asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
227          /(2*a^(5/2))
228          -15*b^2
229             *asinh(b*x/(sqrt(4*a*c-b^2)*abs(x))+2*a/(sqrt(4*a*c-b^2)*abs(x)))
230           /(8*a^(7/2))+13*b*c^2*x/(a^2*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
231          -15*b^3*c*x/(4*a^3*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
232          +5*b/(4*a^2*x*sqrt(c*x^2+b*x+a))-1/(2*a*x^2*sqrt(c*x^2+b*x+a))
233          +13*b^2*c/(2*a^2*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
234          -15*b^4/(8*a^3*(4*a*c-b^2)*sqrt(c*x^2+b*x+a))
235          -3*c/(2*a^2*sqrt(c*x^2+b*x+a))+15*b^2/(8*a^3*sqrt(c*x^2+b*x+a));
237 /* Same as above, but test the case of a = 0 (test noconstquad) */
238 integrate(1/sqrt(R-a)/x^2,x);
239 4*c*sqrt(c*x^2+b*x)/(3*b^2*x)-2*sqrt(c*x^2+b*x)/(3*b*x^2);
241 integrate(1/sqrt(R-a)/x^3,x);
242 -16*c^2*sqrt(c*x^2+b*x)/(15*b^3*x)+8*c*sqrt(c*x^2+b*x)/(15*b^2*x^2)
243                                           -2*sqrt(c*x^2+b*x)/(5*b*x^3);
245 integrate(1/sqrt((R-a)^3)/x^2,x),radexpand:all;
246 -32*c^3*x/(5*b^4*sqrt(c*x^2+b*x))+4*c/(5*b^2*x*sqrt(c*x^2+b*x))
247                                          -2/(5*b*x^2*sqrt(c*x^2+b*x))
248                                          -16*c^2/(5*b^3*sqrt(c*x^2+b*x));
250 integrate(1/sqrt((R-a)^3)/x^3,x),radexpand:all;
251 256*c^4*x/(35*b^5*sqrt(c*x^2+b*x))-32*c^2/(35*b^3*x*sqrt(c*x^2+b*x))
252                                           +16*c/(35*b^2*x^2*sqrt(c*x^2+b*x))
253                                           -2/(7*b*x^3*sqrt(c*x^2+b*x))
254                                           +128*c^3/(35*b^4*sqrt(c*x^2+b*x));
257  * Test nummnumn x^m*sqrt(R^(2*p+1))
258  */
260 integrate(sqrt(R),x);
261 a*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(2*sqrt(c))
262         -b^2*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(8*c^(3/2))
263         +x*sqrt(c*x^2+b*x+a)/2+b*sqrt(c*x^2+b*x+a)/(4*c);
265 integrate(x*sqrt(R),x);
266 -a*b*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(4*c^(3/2))
267         +b^3*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(16*c^(5/2))
268         +(c*x^2+b*x+a)^(3/2)/(3*c)-b*x*sqrt(c*x^2+b*x+a)/(4*c)
269         -b^2*sqrt(c*x^2+b*x+a)/(8*c^2);
271 integrate(x^2*sqrt(R),x);
272 a*(5*b^2-4*a*c)*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(32*c^(5/2))
273         -b^2*(5*b^2-4*a*c)*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(128*c^(7/2))
274         +x*(c*x^2+b*x+a)^(3/2)/(4*c)-5*b*(c*x^2+b*x+a)^(3/2)/(24*c^2)
275         +(5*b^2-4*a*c)*x*sqrt(c*x^2+b*x+a)/(32*c^2)
276         +b*(5*b^2-4*a*c)*sqrt(c*x^2+b*x+a)/(64*c^3);
278 integrate(x^3*sqrt(R),x);
279 -7*a*b*(5*b^2-4*a*c)*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(320*c^(7/2))
280         +7*b^3*(5*b^2-4*a*c)*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(1280*c^(9/2))
281         +a^2*b*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(10*c^(5/2))
282         -a*b^3*asinh((2*c*x+b)/sqrt(4*a*c-b^2))/(40*c^(7/2))
283         +x^2*(c*x^2+b*x+a)^(3/2)/(5*c)-7*b*x*(c*x^2+b*x+a)^(3/2)/(40*c^2)
284         -2*a*(c*x^2+b*x+a)^(3/2)/(15*c^2)+7*b^2*(c*x^2+b*x+a)^(3/2)/(48*c^3)
285         -7*b*(5*b^2-4*a*c)*x*sqrt(c*x^2+b*x+a)/(320*c^3)
286         +a*b*x*sqrt(c*x^2+b*x+a)/(10*c^2)
287         -7*b^2*(5*b^2-4*a*c)*sqrt(c*x^2+b*x+a)/(640*c^4)
288         +a*b^2*sqrt(c*x^2+b*x+a)/(20*c^3);
290 /* Integration is not correct: invalid 'false' term in results - ID: 3470668 */
291 (assume(4*a*c > 1), 0);
294 integrate(x^4 / (a*x^2 + x + c)^(5/2), x);
295 'integrate(x^4 / (a*x^2 + x + c)^(5/2), x);
297 (forget(4*a*c > 1), 0);
300 /*------------------------------------------------------------------------------*/
302  * I (rtoy) have not verified any of these, except for the cases so marked.
303  */
306  * Sample integrals from MIT LCS TR-092, Wang's thesis on definite integration
307  */
309 /* p. 59 */
310 /* Verified by doing the indefinite integral and taking limits */
311 /* Tests mtoinf and zmtorat */
312 factor(integrate((x^2+a1*x+b1)/(x^4+10*x^2+9),x,minf,inf));
313 %pi*(b1+3)/12;
315 /* p. 62 */
317  * Evaluating the indefinite integral and taking appropriate limits 
318  * gives the equivalent answer
319  */
320 /* Tests ztoinf and zmtorat */
321 factor(integrate((x^2+a1*x+b1)/(x^4+10*x^2+9),x,0,inf));
322 (%pi*b1+3*log(3)*a1+3*%pi)/24;
325  * p. 62 
327  * Wang gives 2*%pi/3/sqrt(3), which is equivalent.  Why doesn't maxima
328  * know that atan(sqrt(3)) is %pi/3?
329  */
330 /* Verified by doing evaluating indefinite integral */
331 /* Tests ztoinf and zmtorat */
332 integrate(1/(x^2+x+1),x,0,inf);
333 2*sqrt(3)*atan(sqrt(3))/3;
335 /* p. 64 */
337  * Using contour integration, we see this has poles at %i and 2*%i.  The
338  * residues are 0 and -%i/3, respectively, so the integral is 2*%pi/3.
339  */
340 /* Tests ztoinf and zmtorat */
341 integrate((x-%i)/((x-2*%i)*(x^2+1)),x,minf,inf);
342 2*%pi/3;
344 /* p. 64 */
345 /* Tests ztoinf and zmtorat */
346 integrate((x-%i)/((x-2*%i)*(x^2+1)),x,0,inf);
347 (2*%i*log(2)+2*%pi)/6;
349 /* 
350  * p. 67 
351  * 
352  * Wang gives 4*%pi/9/sqrt(3)-1/2, which is equivalent.
353  */
355 /* Verified via indefinite integral */
356 /* Tests ztoinf and zmtorat */
357 integrate(1/(x^2+x+1)^3,x,0,inf);
358 (8*sqrt(3)*%pi-27)/54;
361 /* p. 70 */
362 /* Verified via indefinite integral */
363 /* Tests ztoinf and batapp */
364 integrate(1/((1+x)*sqrt(x)),x,0,inf);
365 %pi;
367 /* p. 71 */
369  * First, we need assume(k < 0, k+1>0).  Then we also need to tell
370  * maxima k is not an integer.  Then maxima can evaluate this integral. 
371  */
372 /* Tests ztoinf and batapp */
373 (assume(kj<0,kj+1>0,exp(kj)<1),0);
375 (declare(kj,noninteger),0);
377 integrate(x^kj/(x+3),x,0,inf);
378 3^kj*beta(kj+1,-kj);
380 /* p. 74 */
381 /* I think Wang meant the integral from a to inf, not 0 to inf. */
382 /* 
383  * Tests parse-integrand, method-by-limits, dintegrate,
384  * method-radical-poly, intsubs.
385  */
386 integrate(1/(x^2*sqrt(x^2-a^2)),x,a,inf);
387 1/a^2;
389 /* p. 76 */
391  * Wang gives 1024/6567561 
393  * This particular integral matches form III with M = 6, N = 6, A = B
394  * = C = 1.
396  * Based on his procedure, the case N>=M holds, and the integral is 
398  * H*diff(U(1,1+z2,1+z3),z2,6)
400  * evaluated at z2=z3=0, where U(a,b,c) = 1/(sqrt(c)*(b/2+sqrt(a*c)))
401  * and H = (-1)^N*sqrt(%pi)/2/gamma(3/2+N).  If we substitute the
402  * values in, we find the answer is 2048/6567561.
404  * Thus, Wang's answer is wrong.
405  */
406 /* 
407  * Tests method-by-limits, dintegrate, method-radical-poly, intsubs.
408  */
409 integrate(x^6/(x^2+x+1)^(15/2),x,0,inf);
410 2048/6567561;
412 /* p. 79 */
413 /* 
414  * The single pole in the upper half plane is %i, and the residue of
415  * exp(%i*x)/(x^2+1) is -%i/2*exp(-1), so the integral is as given.
416  */
417 /* Tests mtoinf, mtosc */
418 integrate(cos(x)/(x^2+1),x,minf,inf);
419 %e^(-1)*%pi;
421 /* p. 79 */
422 /* 
423  * The single pole in the upper half plane is %i, and the residue of
424  * x*exp(%i*x)/(x^2+1) is exp(-1)/2, so the integral is as given.
425  */
426 /* Tests mtoinf, mtosc */
427 integrate(x*sin(x)/(x^2+1),x,minf,inf);
428 %e^(-1)*%pi;
430 /* p. 79 */
431 /* This follows from the above example.  Besides the function is odd. */
432 integrate(x*cos(x)/(x^2+1),x,minf,inf);
435 /* p. 79 */
437  * Wang gives 
438  * %pi/2*((-1/sqrt(3)-%i)*%e^((sqrt(3)-%i)/2) + (%i-1/sqrt(3))*%e^((-sqrt(3)-%i)/2))
440  * That can't be right because the result has real and imaginary parts.
442  * Maxima calculates this correctly.
443  */
444 /* Tests mtoinf, mtosc */
445 integrate(x*cos(x)/(x^2+x+1),x,minf,inf);
446 %e^-(sqrt(3)/2)*(3*%pi*sin(1/2)-sqrt(3)*%pi*cos(1/2))/3;
448 /* p. 80 */
449 /* Tests mtoinf, mtosc */
450 integrate(1/(%e^(%i*x)*(x^2+1)),x,minf,inf);
451 %e^(-1)*%pi;
453 /* p. 80 */
454 /* 
455  * Wang gives %pi/%e
457  * I think Wang's answer is wrong.
459  * If we exponentialize the integrand, we get 
461  * %i*exp(-2*%i*x)/2/(x^2+1) - %i/2/(x^2+1).
463  * The integral of the second term is obviously %i*%pi/2.  The
464  * integral of the first term can be down via residues, using the
465  * residue at x = -%i, which is -exp(-2)/4.  Thus, the integral should
466  * be %i*%pi*exp(-2)/2-%i*%pi/2.  (We need to change the sign of the
467  * residue because we traverse the real axis in the opposite
468  * direction.)
469  */
470 /* Tests mtoinf, mtosc */
471 integrate(sin(x)/(%e^(%i*x)*(x^2+1)),x,minf,inf);
472 -%e^(-2)*(%e^2-1)*%i*%pi/2;
474 /* p. 80 */
476  * Wang gives %pi/%e^2
478  * I think Wang's answer is wrong.
480  * Using the same derivation as above, we get
482  * %i/2/(x^2+1)*(exp(-3*%i*x)-exp(-%i*x).
484  * We use the lower half plane and compute the residue at x = -%i,
485  * which is exp(-3)*(exp(2)-1)/4.  Thus, the integral is
486  * -%i*%pi*exp(-3)*(exp(2)-1)/2.
487  */
488 /* Tests mtoinf, mtosc */
489 integrate(sin(x)/(%e^(2*%i*x)*(x^2+1)),x,minf,inf);
490 -%e^(-3)*(%e^2-1)*%i*%pi/2;
492 /* Integration of products of sin(nz)/(nz) sometimes fails - ID: 3497046 */
493 integrate(sin(z)/z*sin(3*z)/(3*z)*sin(5*z)/(5*z)*sin(7*z)/(7*z),z,minf,inf);
494 44*%pi/315;
496 /* p. 83 */
498  * Wang gives 3*gamma(3/7)*cos(3*%pi/14)/(7*9^(3/7))
500  * I've verified the derivation and the value, so I think this is right.
501  */
502 /* Tests ztoinf, scaxn */
503 integrate(cos(9*x^(7/3)),x,0,inf);
504 3*gamma(3/7)*cos(3*%pi/14)/(7*9^(3/7));
507 /* p. 83 */
509  * Wang gives 3*gamma(3/7)*sin(3*%pi/14)/(7*9^(3/7))
511  * Verified.
512  */
513 /* Tests ztoinf, scaxn */
514 integrate(sin(9*x^(7/3)),x,0,inf);
515 3*gamma(3/7)*sin(3*%pi/14)/(7*9^(3/7));
518 /* p. 85 */
520  * Wang gives gamma((2*%i+4)/3)/3/(%i/2)^((2*%i+4)/3)
522  * I think this is right, in a sense.  The final formula he gives is
523  * wrong, but the derivation leading up to it is correct, except that
524  * he has the wrong value for integrate(x^m*exp(k*x^n),x,0,inf).
526  * However, Wang also says these integrals only converge if
527  * n-realpart(m)>1, and we have n=3 and realpart(m)=2, so we don't
528  * satisfy the convergence criterion.
529  */
531 integrate(x^(3/2*%i+3)/exp(%i*x^3/2),x,0,inf);
532 (-sqrt(3)*%i/2-1/2)*2^((2*%i+4)/3)*gamma((2*%i+4)/3)/3;
535 /* p. 86 */
537  * We can verify this by integrate(exp(%i*s*x)/sqrt(x),x,0,inf) and
538  * taking the imaginary part.  This satisfies the convergence
539  * criteria, and maxima returns the value
540  * sqrt(%pi)/sqrt(s)*exp(%i*%pi/4).  Thus, we get the answer below.
541  */
542 /* Tests ztoinf, sconvert, ggr */
543 (assume(s > 0), 0);
545 ratsimp(integrate(sin(s*x)/sqrt(x),x,0,inf));
546 sqrt(%pi)/(sqrt(2)*sqrt(s));
548 /* p. 87 */
549 /* Tests ztoinf, ssp */
550 (assume(r>0),0);
553 integrate(sin(r*x)/x,x,0,inf);
554 %pi/2;
556 /* p. 87 */
557 /* Tests ztoinf, ssp */
558 (assume(q>0),0);
560 integrate(sin(q*x)^2/x^2,x,0,inf);
561 %pi*q/2;
563 /* p. 92 */
565  * We can verify this integral by using
566  * integrate(x^k*log(x)^2/(x^2+1),x,0,inf), and the evaluate the
567  * result at k = 0.  The integral is a bit messy in terms of a beta
568  * function, the digamma, and trigamma functions.  But maxima can
569  * evaluate these at k = 0 and the result is %pi^3/8.
571  */
572 /* Tests method-by-limits, zto1, batap-inf */
573 integrate(log(x)^2/(x^2+1),x,0,inf);
574 %pi^3/8;
576 /* p. 93 */
578  * Wang gives 
580  * log(3)*3^k*beta(k+1,-k) + 3^k*diff(beta(r,-k),r) - diff(beta(k+1,r),r)
582  * where the first derivative is evaluated at r=1+k and the second at r=-k.
584  * Actually, we can have maxima compute it for us, because we want the
585  * derivative of x^k*beta(k+1,-k) which is
587  * log(3)*3^k*beta(k+1,-k)+3^k*(psi[0](k+1)-psi[0](-k))*beta(k+1,-k)
589  * Some simple numerical evaluations for k=-1/2 and k=-1/3 indicates
590  * that this result is probably correct.
591  */
592 /* Tests method-by-limits, zto1, batap-inf */
593 integrate(x^kj*log(x)/(x+3),x,0,inf);
594 3^kj*(psi[0](kj+1)-psi[0](-kj))*beta(kj+1,-kj)+log(3)*3^kj*beta(kj+1,-kj);
597  * This is the same integral as above, using the substitution 
598  * y=log(x).  See also Bug 1451351.
599  */
600 /* Tests method-by-limits, zto1, batap-inf */
601 integrate(x*exp((kj+1)*x)/(exp(x)+3),x,minf,inf);
602 3^kj*(psi[0](kj+1)-psi[0](-kj))*beta(kj+1,-kj)+log(3)*3^kj*beta(kj+1,-kj);
604 /* p. 94
606  * subres/red gcd gets a "quotient is not exact" error.  spmod works better.
608  * The substitution y=1/x produces the same integral with a negative
609  * sign, so the answer must be zero.
610  */
611 /* Tests method-by-limits, dintlog */
613 integrate((atan(x^(1/3)) + atan(x^(-1/3)))*log(x)/(x^2+1),x,0,inf);
616 /* p. 95 */
618  * Wang gives %pi/sin(5*%pi/7)
620  * Based on his thesis, integration by parts for
621  * integrate(log(1+x^(7/2))/x^2,0,inf) gives
623  *                  |inf
624  * -log(1+x^(7/2))/x|    - integrate(-1/x*7/2*x^(5/2)/(1+x^(7/2)),x,0,inf)
625  *                  |0
627  * = 7/2*integrate(x^(3/2)/(x^(7/2)+1),x,0,inf)
629  * Use the substitution (maxima doesn't do this) x = y^2 to get
631  * = 7*integrate(y^4/(y^7+1),y,0,inf)
633  * = %pi/sin(5*%pi/7)
635  * gcd:red gives a "quotient is not exact" error, so use
636  * spmod.  We need intanalysis false to give the routine a chance.
637  * (If true, we return the integral unevaluated.  I think this is
638  * because solve fails to find the roots of x^(7/2)+1=0 correctly.)
639  */
640 /* Tests method-by-limits, dintlog, dintbypart, ztoinf, batapp */
641 (intanalysis:false, 0);
644 integrate(log(x^(7/2)+1)/x^2,x,0,inf);
645 /*%pi/sin(5*%pi/7);*/
646 /* The result of the integral is beta(5/7,2/7). This simplifies to 
647    %pi/sin(5*%pi/z). Because we have introduced a symmetry rule for
648    the beta function, Maxima first simplifies to beta(2/7,5/7). 
649    The equivalent result is %pi/sin(2*%pi/7). 03/2009 (DK) */
650 %pi/sin(2*%pi/7);
652 (intanalysis:true, 0);
655 /* p. 97 */
656 /* Verified via indefinite integral */
657 /* Tests dintegrate, method-by-limits, method-radical-poly */
658 factor(integrate(1/(exp(x/3)*(5/exp(x/3)+7)),x,0,inf));
659 3*(log(12)-log(7))/5;
661 /* p. 97 */
662 /* Verified via indefinite integral */
663 integrate(exp(x/4)/(9*exp(x/2)+4),x,minf,inf);
664 %pi/3;
666 /* p. 99 */
667 /* Wang says %pi 
669  * Not sure if this is right or not.  Maxima is using rectzto%pi2 to
670  * evaluate this integral.
672  * If we follow Wang's derivation, we need to find q(z) such that
673  * q(z)-q(z+2*%i*%pi) = z.  We find that q(z) = %i/(4*%pi)*z^2+z/2.
675  * R(z) = 1/((z-1/z)/2-%i.  We need to find the poles of R(z) such
676  * that 0 <= Im(z) < 2*%pi.  In this case, the (only) pole is z = %i.
677  * We need to then find the residue of q(z)/(sinh(z)-%i) at z =
678  * glog(%i) = %i*%pi/2.  Maxima says the residue is -%i/2.  Hence the
679  * value of the integral is 2*%i*%pi*(-%i/2) = %pi.
680  */
681 /* Tests mtoinf, rectzto%pi2 */
682 integrate(x/(sinh(x)-%i),x,minf,inf);
683 %pi;
686 /* p. 101 */
687 /* Tests ztoinf, ggr */
688 integrate(exp(-x^2),x,0,inf);
689 sqrt(%pi)/2;
691 /* p. 102 */
693  * The substitution y=s*t produces 1/sqrt(s)*integrate(y^(-1/2)*exp(-y),y,0,inf), 
694  * which is gamma(1/2)/sqrt(s).
695  */
696 /* Tests ztoinf, ggr */
697 integrate(1/sqrt(t)/exp(s*t),t,0,inf);
698 sqrt(%pi)/sqrt(s);
701  * Write this as imagpart(integrate(exp(%i*s*x)/exp(x),x)).  Evaluate
702  * the result at x=inf and at x=0.  We get the expected answer.
703  */
705 integrate(sin(s*x)/exp(x),x,0,inf);
706 s/(s^2+1);
708 /* p. 103 */
710  * There's a typo in Wang's thesis.  He has the integrand as
711  * exp(-s*t)*x^(1/3)*log(x).  I changed the x's to t's.
713  * Also, Wang says the answer is
715  * -gamma(1/3)*(log(s)-psi(4/3))/(6*s^(4/3))
717  * Assuming psi(4/3) is maxima's digamma function, psi[0](4/3), this
718  * result is 1/2 of the result maxima produces.
720  * Consider integrate(t^(z+1/3)*exp(-s*t),t,0,inf).  Differentiating
721  * this wrt to z gives us the integral we're looking for, when we
722  * evaluate the result at z = 0.
724  * But this integral is equal to
725  * 1/s^(z+4/3)*integrate(y^(z+1/3)*exp(-y),y,0,inf), which is a Gamma
726  * function.  Thus, we have
728  * gamma(z+4/3)/s^(z+4/3)
730  * Differentiate wrt to z:
732  * s^(-z-4/3)*(psi[0](z+4/3)-log(s))*gamma(z+4/3)
734  * Evaluate at z = 0:
736  * gamma(1/3)*(psi[0](4/3)-log(s))/(3*s^(4/3))
738  * This is the answer we get below, once we evaluate psi[0](4/3).
739  * Wang's thesis is off by a factor of 2.
740  */
741 integrate(exp(-s*t)*t^(1/3)*log(t),t,0,inf);
742 gamma(1/3)*(-3*log(3)/2-%pi/(2*sqrt(3))-%gamma+3)/(3*s^(4/3))
743         -gamma(1/3)*log(s)/(3*s^(4/3));
745 /* p. 106 */
746 /* Verified via indefinite integral */
747 ratsimp(integrate(1/(x^2-3),x,0,1) - sqrt(3)*log(2-sqrt(3))/6);
750 /* p. 109 */
751 /* Verified via indefinite integral */
752 integrate(cos(x)^2-sin(x),x,0,2*%pi);
753 %pi;
755 /* p. 109 */
757  * Wang says 2*%pi
759  * Evaluation of the indefinite integral says 0.
760  */
761 integrate(exp(2*%i*x)/(exp(%i*x)+3),x,0,2*%pi);
764 /* p. 110 */
766  * Wang gives the equivalent 6/5*gamma(2/3)*gamma(3/4)/gamma(5/12)
767  */
768 integrate(cos(x)^(1/3)*sin(x)^(1/2),x,0,%pi/2);
769 beta(3/4,2/3)/2;
771 /* p. 112 */
773  * Wang gives the equivalent 18/7*sqrt(%pi)*gamma(2/3)/gamma(1/6)
774  */
775 integrate(cos(x)^(1/3)*sin(x)^2,x,-%pi/2,%pi/2);
776 beta(2/3,3/2);
778 /* p. 112 */
779 integrate(cos(x)^3*sin(x)^2,x,3*%pi/2,3*%pi);
780 2/15;
782 /* p. 114 */
784  * Wang gives -%i/3*plog((3+%i*sqrt(7))/4)
786  * The rectform is -atan(sqrt(7)/3)/3, which is -acos(3/4)/3, 
787  * which is -1/3*(%pi/2-asin(3/4))=-%pi/6+asin(3/4)/3.  
788  * Maxima gives an answer with the opposite sign.
790  * But we can evaluate the indefinite integral to be
792  *   -asin(3/x)/3.
794  * Hence the answer should be %pi/6-asin(3/4)/3.
796  * Wang's thesis is wrong.
797  */
798 integrate(1/(x*sqrt(x^2-9)),x,3,4);
799 %pi/6-asin(3/4)/3;
802 /* p. 114 */
803 /* Verified via indefinite integral */
804 logcontract(integrate(1/((x+1)*sqrt(4-x^2)),x,0,2) - sqrt(3)*log(sqrt(3)+2)/3);
807 /* p. 120 */
809  * Maxima asks if k is an integer, but it doesn't matter,
810  * and I don't know how to tell maxima that k isn't an integer.
812  */
813 (assume(k1>0),declare(k1,noninteger),0);
816  * This is not such a good integral to use.  log(x) is negative over
817  * the integration limits, so integrand is complex.  Let's change the
818  * integrand to be (-log(x))^k1, instead, which is real-valued.
820  * In this case, it's easy to see that the substitution y=-log(x)
821  * gives as a gamma function.
822  */
824 integrate(log(x)^k1,x,0,1);
825 (-1)^k1*gamma(k1+1);
827 integrate((-log(x))^k1,x,0,1);
828 k1*gamma(k1);
830 /* p. 120 */
831 integrate(sqrt(log(x))/x^2,x,1,inf);
832 sqrt(%pi)/2;
834 /* p. 120 */
836  * Wang says -sqrt(%pi)/sqrt(4/3) = -sqrt(3)*sqrt(%pi)/2.
838  * This is wrong.  Clearly, the integrand is positive, so the integral
839  * must be positive.
841  * The issue is that radexpand is true so the Risch integrator is
842  * doing something not quite right and getting the sign wrong.  If we
843  * set radexpand to false, we get the correct answer.
844  */
845 radexpand:false;
846 false;
848 integrate(x^(1/3)/sqrt(-log(x)),x,0,1);
849 sqrt(3)*sqrt(%pi)/2;
851 domain:complex;
852 complex;
854 /* [ 1731624 ] asked about sign of yx in integral containing only z */
855 integrate(exp(sqrt(x^3)),x,0,1);
856 2*((-1)^(1/3)*gamma_incomplete(2/3,-1)-(-1)^(1/3)*gamma(2/3))/3;
857 /* with radexpand:true and domain:real we get
858    integrate(exp(sqrt(x^3)),x)  ->  -2*gamma_incomplete(2/3,-x^(3/2))/3
859    (which is not correct) due to invalid simplification in 
860    integrate-exp-special
863 domain:real;
864 real;
866 radexpand:true;
867 true;
869 /* p. 121 */
871  * Wang gives 4*diff(beta(r,3/2),r)
872  * evaluated at r = 1.
874  * Maxima says 4*factor(ratsimp(subst(1,r,diff(makegamma(beta(r,3/2)),r))))
875  * = 16*(3*log(2)-4)/9.  Good.
876  */
877 factor(integrate(sqrt(1-sqrt(x))*log(x)/sqrt(x),x,0,1));
878 16*(3*log(2)-4)/9;
880 /*------------------------------------------------------------------------------*/
882 /* Problems from Moses' thesis, Appendix D, problems proposed by McIntosh */
884 /* Problem 1 */
886  * Answer = 1/a*asin(a/r/sqrt(2*h)) 
888  * (This answer seems wrong.  The derivative has the wrong sign?)
889  */
890 (assume(h>0),0);
893 ratsimp(integrate(1/r/sqrt(2*h*r^2-a^2),r) + asin(a/sqrt(2)/sqrt(h)/abs(r))/a);
896 /* Problem 2 */
898  * Answer = -1/sqrt(a^2-eps^2)*asin(sqrt(a^2+eps^2)/sqrt(2*h)/r)
899  */
901 integrate(1/sqrt(2*h*r^2-a^2-eps^2),r);
904 /* Problem 3 */
906  * Answer = 1/2/a*asin((h*r^2-a^2)/r^2/sqrt(h^2-2*k*a^2))
907  * h^2 > 2*a^2*k
909  */
910 (assume(h^2>2*a^2*k),0);
912 factor(integrate(1/r/sqrt(2*h*r^2-a^2-2*k*r^4),r));
913 1/2/a*asin((h*r^2-a^2)/r^2/sqrt(h^2-2*k*a^2));
915 /* Problem 4 */
917  * Answer = 1/2/sqrt(a^2+eps^2)*asin((h*r^2-(a^2+eps^2))/r^2/sqrt(h^2-2*k*(a^2+eps^2)))
918  * h^2 > 2*(a^2+eps^2)*k
920  * Maxima doesn't get stuck anymore, but I can't figure out the magic
921  * assume expression so that integrate doesn't ask questions anymore.
922  */
924 (assume(2*eps^2*k+2*a^2*k-h^2 < 0),0);
926 integrate(1/r/sqrt(2*h*r^2-a^2-eps^2-2*k*r^4),r);
927 1/2/sqrt(a^2+eps^2)*asin((h*r^2-(a^2+eps^2))/r^2/sqrt(h^2-2*k*(a^2+eps^2)));
930 /* Problem 5 */
932  * Answer = 1/a*asin((k*r-a^2)/r/sqrt(k^2+2*h*a^2))
933  * k^2+2*h*a^2 > 0
935  * This answer seems wrong.  The derivative doesn't match.
937  * Maxima's answer has a derivative that matches.
938  */
939 factor(integrate(1/r/sqrt(2*h*r^2-a^2-2*k*r),r));
940 -asin((k*r+a^2)/(sqrt(k^2+2*a^2*h)*r))/a;
942 /* Problem 6 */
944  * Answer = 1/(a^2+eps^2)*asin((k*r-(a^2+eps^2))/r/sqrt(k^2+2*h*(a^2+eps^2)))
945  * k^2+2*h*a^2 > 0
947  * Same issue as problem 5.
949  * Maxima's answer has a derivative that matches.
950  */
952 factor(integrate(1/r/sqrt(2*h*r^2-a^2-eps^2-2*k*r),r));
953 -asin((k*r+eps^2+a^2)/(sqrt(k^2+(2*eps^2+2*a^2)*h)*r))/sqrt(eps^2+a^2);
955 /* Problem 7 */
956 integrate(x/sqrt(2*e*x^2-a^2),x);
957 sqrt(2*e*x^2-a^2)/(2*e);
959 /* Problem 8 */
960 integrate(x/sqrt(2*e*x^2-a^2-eps^2),x);
961 sqrt(2*e*x^2-eps^2-a^2)/(2*e);
963 /* Problem 9 */
965  * Answer is 1/2/sqrt(2*k)*asin((2*k*r^2-e)/sqrt(e^2-2*k*a^2))
966  * e^2>2*k*a^2
968  */
969 (assume(e^2>2*k*a^2,k>0,e>0),0);
971 factor(integrate(r/sqrt(2*e*r^2-a^2-2*k*r^4),r));
972 1/2/sqrt(2*k)*asin((2*k*r^2-e)/sqrt(e^2-2*k*a^2));
974 /* Problem 10 */
976  * Answer is 1/2/sqrt(2*k)*asin((2*k*r^2-e)/sqrt(e^2-2*k*(a^2+eps^2)))
977  * e^2>2*k*a^2
979  * For some reason, maxima returns
980  * -%i*asinh((2*k*r^2-e)/sqrt((2*eps^2+2*a^2)*k-e^2))/(2*sqrt(2)*sqrt(k))
982  * Using the fact that asin(%i*x) = %i*asinh(x), we see that the
983  * answer is identical.
984  */
985 (assume(2*eps^2*k+2*a^2*k-e^2>0),0);
987 factor(integrate(r/sqrt(2*e*r^2-a^2-eps^2-2*k*r^4),r));
988 -%i*asinh((2*k*r^2-e)/sqrt((2*eps^2+2*a^2)*k-e^2))/(2*sqrt(2)*sqrt(k));
991 /* Problem 11 */
993  * Answer is sqrt(2*E*r^2-a^2-2*k*r)/2*E
994  *            + 1/(2*h*E*sqrt(-2*E))*asin((2*E*r+k)/sqrt(k^2-2*E-a^2)
995  * E < 0
996  */
997 (assume(E<0,k^2+2*E*a^2>0,k>0),0);
999 integrate(r/sqrt(2*E*r^2-a^2-2*k*r),r);
1000 sqrt(2*E*r^2-2*k*r-a^2)/(2*E)-k*asin((4*E*r-2*k)/sqrt(4*k^2+8*a^2*E))
1001                                       /(2*sqrt(2)*sqrt(-E)*E);
1003 /* Bug 1741705 */
1004 factor(integrate(1/(sin(x)^2+1),x,0,8));
1005 (atan(sqrt(2)*sin(8)/cos(8))+3*%pi)/sqrt(2);
1007 ratsimp(integrate(1/(sin(x)^2+1),x,-8,0));
1008 (atan(sqrt(2)*sin(8)/cos(8))+3*%pi)/sqrt(2);
1010 ratsimp(integrate(1/(sin(x/3)^2+1),x,0,24));
1011 (3*atan(sqrt(2)*sin(8)/cos(8))+9*%pi)/sqrt(2);
1013 ratsimp(integrate(1/(sin(x-3)^2+1),x,3,11));
1014 (atan(sqrt(2)*sin(8)/cos(8))+3*%pi)/sqrt(2);
1016 /* defint log(sqrt(q^2-1)+1) asks about YX - ID: 924868 */
1017 integrate( log(sqrt(q^2-1)+1),q,0,1);
1018 'integrate( log(sqrt(q^2-1)+1),q,0,1);
1019 /*  should be 
1020  *  ((4*asinh(1)+(2-sqrt(2))*%i*%pi+(-2^(3/2)))/2^(3/2));
1021  */
1023 /* Bug 1748168 */
1024 integrate(1/(2+cos(x)),x,-%pi/2,%pi/2);
1025 (2/9)*sqrt(3)*%pi;
1027 /* Bug 1781537 */
1028 integrate(cos(x-c),x,c,%pi/2+c);
1031 integrate(cos(x)^3/sin(x)^4,x,1,2);
1032 1/sin(2)-1/(3*sin(2)^3)-1/sin(1)+1/(3*sin(1)^3);
1034 /* [ 1828956 ] Integration yields wrong results */
1035 /* assume & integrate - ID: 3522750 */
1036 (assume(x>0,l>x),0);
1038 integrate(integrate((acos(x/l)+acos(y/l)-%pi/2)/(2*%pi),y,0,sqrt(l^2-x^2)),x,0,l);
1039 l^2/(4*%pi);
1040 is(l>x);
1041 true;
1042 (forget(x>0,l>x),0);
1045 /* principal value integral */
1046 /* [ 657382 ] defint/limit infinite loop */
1048 /* Because of changes to timesin this does no longer work 
1049 integrate(1/(1-x^5), x, 0, inf);
1050 0-(2*sqrt(2*sqrt(5)+10)*atan((sqrt(5)-3)*sqrt(2*sqrt(5)+10)/(4*sqrt(5)))
1051         +2*sqrt(10-2*sqrt(5))*atan(sqrt(10-2*sqrt(5))*(sqrt(5)+3)/(4*sqrt(5)))
1052         -sqrt(2)*sqrt(sqrt(5)+5)*%pi-sqrt(2)*sqrt(5-sqrt(5))*%pi)
1053         /20;
1054 */        
1056 integrate(1/x, x, minf, inf);
1059 /* #2513 wrong principle value integral */
1060 integrate(1/((x-1)*(x-2)),x,0,3);
1061 -2*log(2);
1063 /* integrate(sin(x)^2/x,x,minf,inf) gives not zero - ID: 3480954 */
1064 integrate(sin(x)^2/x,x,minf,inf);
1067 /* [ 1051437 ] Trig integral error */
1068 integrate(2*cot(x)^2*cos(2*x)/(csc(2*x)+cot(2*x)), x);
1069 log(sin(x)^2+cos(x)^2+2*cos(x)+1) + log(sin(x)^2+cos(x)^2-2*cos(x)+1) + cos(2*x);
1071 /* [ 1960200 ] integrate function raises "too many contexts" error */
1072 float(rectform(integrate(integrate(x^2*y^2*(sin(2.*x)+%i*cos(2.*y))*exp(%i*20.*x)*exp(%i*30.*y),x,-1,-10),y,-5,15)));
1073 6.127592006717518 - 40.62195392101798 * %i;
1075 /* [ 2210087 ] integrate((x+1)^2.0,x) loops endlessly */
1076 integrate((x+1)^2.0,x);
1077 .3333333333333333*(x+1)^3.0;
1079 integrate(x^3/(1 + + 4*x^2 + 6*x^4 + 4*x^6 + x^8 ), x, 0, inf);
1080 1/12;
1082 /* [ 1668087 ] integrate(1/cosh(x/R)^4,x,-inf,inf) = 0 */
1083 /* already assumed a>0 */
1084 integrate(1/cosh(x/a)^4,x,-inf,inf);
1085 4*a/3;
1087 /* [ 1309432 ] integrate(1/cosh(a*x)^2,x,-inf,inf); */
1088 /* already assumed a>0 */
1089 integrate(1/cosh(x/a)^2,x,-inf,inf);
1090 2*a;
1092 /* [ 1860487 ] MONSTERTRIG endless recursion */
1093 integrate (x*(cos(2*x) + sin(x)), x);
1094 (2*x*sin(2*x)+cos(2*x))/4+sin(x)-x*cos(x);
1096 /* [ 1631094 ] integrate(sin(n*x)*x, x) => linear time when n is an integer */
1097 integrate(sin(1000000000*x)*x, x);
1098 (sin(1000000000*x)-1000000000*x*cos(1000000000*x))/1000000000000000000;
1100 /* [ 1847543 ] Integration problem of a special periodic function */
1101 integrate( 1/(11/10+sin(2*%pi*x)), x);
1102 10*atan((22*sin(2*%pi*x)/(cos(2*%pi*x)+1)+20)/(2*sqrt(21)))
1103         /(sqrt(21)*%pi);
1105 /* [ 1054472 ] defint(log(1+exp(A+B*cos(phi))),phi,0,%pi) wrong */
1107 /* Commenting this example out
1108  * There is a problem: The integral does not return the noun form, but
1109  * gives an error: "sign: argument cannot be imaginary; found %i".
1110  * If we execute this integral within the testsuite, 
1111  * this integral seems to loop endlessly
1113 integrate(log(1+exp(cos(phi))),phi,0,%pi);
1114 'integrate(log(1+exp(cos(phi))),phi,0,%pi);
1118 /* atan2 function is a special case in lisp function INTEGRATOR.
1119    There were no regression tests for it. */
1120 integrate(atan2(y,x),x);
1121 y*log(y^2+x^2)/2+x*atan(y/x);
1123 /* Note: Fixing bug #3246 changed the answer to an equivalent one.
1124    Therefore, compare the ratsimp-ed difference of the expressions to zero. */
1125 ratsimp(integrate(atan2(y,x),y) - (y*atan(y/x)-(x*log(y^2/x^2+1)/2)));
1128 /* Bug ID: 3023997 - integrate(x*atan2(x,y),x) -> noun form
1129  * We have generalized the special case for the atan2 function.
1130  */
1131 integrate(y*atan2(y,x),y);
1132 y^2*atan(y/x)/2-(x^2*y-x^3*atan(y/x))/(2*x);
1134 /* [ 2501765 ] integrate((-14*x^2-32)/(x^4+3*x^2+1)^2,x,0,inf); */
1135 integrate(1/(x^4+3*x^2+1)^2,x,0,inf);
1136 (sqrt(3-sqrt(5))*(3*sqrt(2)*sqrt(5)+15*sqrt(2))*%pi
1137   +sqrt(sqrt(5)+3)*(15*sqrt(2)-3*sqrt(2)*sqrt(5))*%pi)
1138 /400;
1140 /* integrate(exp(-x^n),x,0,1) bug for n >2 - ID: 3469184 */
1141 integrate(exp(-t^4),t,0,1);
1142 (gamma(1/4)-gamma_incomplete(1/4,1))/4;
1144 integrate(exp(sqrt(x)),x,1,5);
1145 2*(sqrt(5)*%e^sqrt(5)-%e^sqrt(5));
1147  /* [ 1899352 ] integrate asks about (y-1)(y+1) after assume(y^2>1) */
1148 (assume(y^2>1),0);
1150 ratsimp(integrate(log(x^2+y^2),x,0,1));
1151 log(y^2+1)+2*atan(1/y)*y-2;
1152 (forget(y^2>1),0);
1155 /* integrate(sqrt(t)*log(t)^(1/2),t,0,1) wrong sign - ID: 2847436 */
1156 integrate(sqrt(t)*log(t)^(1/2),t,0,1);
1157 sqrt(2)*sqrt(%pi)*%i/(3^(3/2));
1159 /* #2732 wrong answer for similar to gaussian integral */
1160 integrate(exp(-x^2-1/x^2),x,-inf,inf);
1161 %e^-2*sqrt(%pi);
1163 /* Integrals of the type: c*z^w*log(z)^m*exp(-t^s) for 0 to inf */
1165 integrate(exp(-t),t,0,inf);
1167 integrate(exp(-t^2),t,0,inf);
1168 sqrt(%pi)/2;
1169 integrate(exp(-t^3),t,0,inf);
1170 gamma(1/3)/3;
1171 integrate(exp(-t^4),t,0,inf);
1172 gamma(1/4)/4;
1174 integrate(t*exp(-t),t,0,inf);
1176 integrate(t^2*exp(-t),t,0,inf);
1178 integrate(t^3*exp(-t),t,0,inf);
1180 integrate(t^4*exp(-t),t,0,inf);
1183 integrate(t*exp(-t^2),t,0,inf);
1184 1/2;
1185 integrate(t^2*exp(-t^2),t,0,inf);
1186 sqrt(%pi)/4;
1187 integrate(t^3*exp(-t^2),t,0,inf);
1188 1/2;
1189 integrate(t^4*exp(-t^2),t,0,inf);
1190 3*sqrt(%pi)/8;
1192 integrate(t^-2*exp(-t^-2),t,0,inf);
1193 sqrt(%pi)/2;
1194 integrate(t^-3*exp(-t^-2),t,0,inf);
1195 1/2;
1196 integrate(t^-4*exp(-t^-2),t,0,inf);
1197 sqrt(%pi)/4;
1199 integrate(t^(1/2)*exp(-t^2),t,0,inf);
1200 gamma(3/4)/2;
1201 integrate(t^(1/3)*exp(-t^2),t,0,inf);
1202 gamma(2/3)/2;
1203 integrate(t^(2/3)*exp(-t^2),t,0,inf);
1204 gamma(5/6)/2;
1206 integrate(exp(-t)*log(t),t,0,inf);
1207 -%gamma;
1208 integrate(t*exp(-t)*log(t),t,0,inf);
1209 1-%gamma;
1210 integrate(t^2*exp(-t)*log(t),t,0,inf);
1211 3-2*%gamma;
1213 integrate(t*exp(-t)*log(t)^2,t,0,inf);
1214 (%pi^2+6*%gamma^2-12*%gamma)/6;
1215 integrate(t*exp(-t^(1/2))*log(t)^2,t,0,inf);
1216 8*%pi^2+48*%gamma^2-176*%gamma+96;
1217 integrate(t*exp(-t^2)*log(t),t,0,inf);
1218 -%gamma/4;
1221 /* Integrals of the type: c*z^w*log(z)^m*exp(-t^s) for x to inf */
1223 (assume(x>0),done);
1224 done;
1226 /* Expand Gamma and Incomplete Gamma functions */
1227 gamma_expand:true;
1228 true;
1230 integrate(exp(-t),t,x,inf);
1231 %e^-x;
1232 integrate(exp(-t^2),t,x,inf);
1233 sqrt(%pi)*erfc(x)/2;
1234 integrate(exp(-t^3),t,x,inf);
1235 gamma_incomplete(1/3,x^3)/3;
1236 integrate(exp(-t^4),t,x,inf);
1237 gamma_incomplete(1/4,x^4)/4;
1239 integrate(t*exp(-t),t,x,inf);
1240 (x+1)*%e^-x;
1241 integrate(t^2*exp(-t),t,x,inf);
1242 (x^2+2*x+2)*%e^-x;
1243 integrate(t^3*exp(-t),t,x,inf);
1244 (x^3+3*x^2+6*x+6)*%e^-x;
1245 integrate(t^4*exp(-t),t,x,inf);
1246 (x^4+4*x^3+12*x^2+24*x+24)*%e^-x;
1248 integrate(t*exp(-t^2),t,x,inf);
1249 %e^-x^2/2;
1250 integrate(t^2*exp(-t^2),t,x,inf);
1251 %e^-x^2*(sqrt(%pi)*%e^x^2*erfc(x)+2*x)/4;
1252 integrate(t^3*exp(-t^2),t,x,inf);
1253 (x^2+1)*%e^-x^2/2;
1254 integrate(t^4*exp(-t^2),t,x,inf);
1255 %e^-x^2*(3*sqrt(%pi)*%e^x^2*erfc(x)+4*x^3+6*x)/8;
1257 integrate(t^-2*exp(-t^-2),t,x,inf);
1258 -sqrt(%pi)*(erfc(1/x)-1)/2;
1259 integrate(t^-3*exp(-t^-2),t,x,inf);
1260 %e^-(1/x^2)*(%e^(1/x^2)-1)/2;
1261 integrate(t^-4*exp(-t^-2),t,x,inf);
1262 -%e^-(1/x^2)*(sqrt(%pi)*(erfc(1/x)-1)*x*%e^(1/x^2)+2)/(4*x);
1264 integrate(t^(1/2)*exp(-t^2),t,x,inf);
1265 gamma_incomplete(3/4,x^2)/2;
1266 integrate(t^(1/3)*exp(-t^2),t,x,inf);
1267 gamma_incomplete(2/3,x^2)/2;
1268 integrate(t^(2/3)*exp(-t^2),t,x,inf);
1269 gamma_incomplete(5/6,x^2)/2;
1271 integrate(exp(-t)*log(t),t,x,inf);
1272 -%e^-x*((%e^x-1)*log(x)+(%gamma-hypergeometric_regularized([1,1],[2,2],-x)*x)
1273                         *%e^x);
1274 integrate(t*exp(-t)*log(t),t,x,inf);
1275 -%e^-x*((%e^x-x-1)*log(x)+(-hypergeometric_regularized([2,2],[3,3],-x)*x^2
1276                           +%gamma-1)
1277                           *%e^x);
1278 integrate(t^2*exp(-t)*log(t),t,x,inf);
1279 -%e^-x*((2*%e^x-x^2-2*x-2)*log(x)+(-4*hypergeometric_regularized(
1280                                       [3,3],[4,4],-x)*x^3
1281                                   +2*%gamma-3)
1282                                   *%e^x);
1284 integrate(t*exp(-t)*log(t),t,x,inf);
1285 -%e^-x*((%e^x-x-1)*log(x)+(-hypergeometric_regularized([2,2],[3,3],-x)*x^2
1286                           +%gamma-1)
1287                           *%e^x);
1288 integrate(t*exp(-t^(1/2))*log(t),t,x,inf);
1289 %e^-sqrt(x)*((-12*%e^sqrt(x)+6*x+12)*log(x)+sqrt(x)*(2*x+12)*log(x)
1290                                            +(144
1291                                             *hypergeometric_regularized(
1292                                              [4,4],[5,5],-sqrt(x))*x^2
1293                                             -24*%gamma+44)
1294                                             *%e^sqrt(x));
1296 /* Integrals of the type: c*z^r*log(z)^n*(1-z)^s*log(1-z)^m */
1298 integrate(t*log(t)*(1-t)*log(1-t),t,0,1);
1299 (3*%pi^2-37)/-108;
1300 integrate(t^2*log(t)*(1-t)*log(1-t),t,0,1);
1301 (3*%pi^2-37)/-216;
1302 integrate(t^2*log(t)^2*(1-t)*log(1-t),t,0,1);
1303 (576*zeta(3)+56*%pi^2-1317)/3456;
1304 integrate(t^2*log(t)^2*(1-t)^2*log(1-t),t,0,1);
1305 (72000*zeta(3)+9400*%pi^2-191243)/1080000;
1306 integrate(t^2*log(t)^2*(1-t)^2*log(1-t)^2,t,0,1);
1307 (3384000*zeta(3)+6000*%pi^4+747800*%pi^2-12135541)/-16200000;
1309 /* integrate -> too many contexts - ID: 2838268 */
1310 integrate(t*cos(1.0*t),t);
1311 t*sin(t)+cos(t);
1313 /* definite integral - bad answer - ID: 2880886 */
1314 integrate(cos(x)^2 * (1 + sin(x)^2)^-3,x,0,%pi/2);
1315 7*%pi/2^(11/2);
1317 (forget(x>0),gamma_expand:false,done);
1318 done;
1320 /* BUG ID: 2906049 - integration failure with option integrate_use_rootsof
1321  * This example is more simple than the example in the bug report.
1322  */
1323 %rnum:0;
1325 integrate((a*x^2+b*x+c)/(d*x^3+a*x^2+b),x),integrate_use_rootsof:true;
1326 'lsum((c+%r1*b+%r1^2*a)*log(x-%r1)/(3*%r1^2*d+2*%r1*a),%r1,
1327             rootsof(d*%r1^3+a*%r1^2+b,%r1));
1329 /* fourier integral incorrect - ID: 2875784 */
1330 integrate(cos(x)*sin(x)/x, x, minf, inf);
1331 %pi/2;
1333 integrate(exp(%i*x)*sin(x)/x, x, minf, inf);
1334 %pi/2;
1336 integrate(exp(-%i*x)*sin(x)/x, x, minf, inf);
1337 %pi/2;
1339 /* Bug ID: 655270 - Incomplete integration
1340  */
1341 integrate(sin(3*asin(x)),x);
1342 (4*x^4-6*x^2+1)/-4;
1343 integrate(sin(4*asin(x)),x);
1344 (15*((1-x^2)^(3/2)/5-x^2*(1-x^2)^(3/2)/5)
1345        +sqrt(1-x)*sqrt(x+1)*(93*x^4-106*x^2+13))/-60;
1346        
1347 /* Bug ID: 3029610 - integrate and %e_to_numlog
1349 integrate((exp(3/2*log(x))+1)/sqrt(x),x);
1350 2*(x^2/4+sqrt(x));
1352 integrate(3*sqrt(x)*exp(3/2*log(x)),x);
1353 x^3;
1355 /* someday this should return 2*%pi */
1356 /* that would require handling the discontinuity in
1357    gamma_incomplete(0, exp(%i*x))                               */
1358 integrate(exp(cos(x))*cos(sin(x)),x,0,2*%pi);
1359 'integrate(exp(cos(x))*cos(sin(x)),x,0,2*%pi);
1361 /* Bug ID: 3039452 - integrate(sqrt(t^c)/(t*(b*t^c+a)),t) hangs
1362  */
1363 /* These assumptions are already present. Consider to delete it more early.
1364 assume(a>0,b>0);
1365 [a>0,b>0]; */
1366 integrate(sqrt(t^c)/(t*(b*t^c+a)),t);
1367 2*atan(sqrt(b)*%e^(c*log(t)/2)/sqrt(a))/(sqrt(a)*sqrt(b)*c);
1368 forget(a>0,b>0);
1369 [a>0,b>0];
1371 /* Bug ID: 3045559 integrate(exp(-u^2), u, minf, x) => incorrect gamma_incomple
1372  */
1373 integrate(exp(-u^2),u,minf,x);
1374 sqrt(%pi)*erf(x)/2+sqrt(%pi)/2;
1376 /* integration error - ID: 3085498 */
1377 integrate(sqrt(1-cos(t)),t,0,2*%pi);
1378 2^(5/2);
1380 /* incorrect integration - ID: 3153533 */
1381 assume(x>2);
1382 [x>2];
1383 integrate(1/(x-z),z,1,x-1);
1384 log(x-1);
1385 forget(x>2);
1386 [x>2];
1388 /* integrate(x^2*exp(x)/(1+exp(x))^2, x, minf, inf); - ID: 3158526 */
1389 integrate(x^2*exp(x)/(1+exp(x))^2, x, minf, inf);
1390 %pi^2/3;
1392 /* integrate(abs(sin(x)),x,0,2*%pi) wrong result - ID: 3165872 */
1393 integrate(abs(sin(x)),x,0,2*%pi);
1394 'integrate(abs(sin(x)),x,0,2*%pi);
1396 /* integrate(sin(2x)atan(sin(x)),x) - ID: 3199708 */
1397 integrate(sin(2*x)*atan(sin(x)),x,0,%pi/2);
1398 %pi/2 - 1;
1400 /* wrong integration answer - ID: 2989983 */
1401 integrate(cos(w+T)/(1+1/2*cos(T))^2,T,0,2*%pi);
1402 -8*%pi*cos(w)/3^(3/2);
1404 /* wrong sign for integral of e^(-1/x^2) - ID: 3211937 */
1405 integrate(%e^(-1/x^2),x,0,1);
1406 sqrt(%pi)*erf(1)-sqrt(%pi)+%e^(-1)$
1408 /* definite integration introduces xy variable - ID: 3292707 */
1409 integrate((log((2-x)/2)+log(2))/(1-x), x, 0, 1);
1410 li[2](2)-(6*log(2)^2-6*log(-2)*log(2)+%pi^2)/6;
1412 /* Incorrect integral of log(1+a/(x*t)^2) - ID: 3291160 */
1413 integrate(log(1+7/(x^2)),x,1,inf);
1414 sqrt(7)*(2*atan(sqrt(7))-log(8)/sqrt(7))$
1416 /* Wrong sign in exponential integral - ID: 3517785 */
1417 integrate(1/(%e^(2*t)*sqrt(1-1/%e^(2*t))), t, 0, inf);
1420 /* integral from minf to inf of an absolute value combo fails - ID: 3313531 */
1421 integrate(abs(x - 1) + abs(x + 1) - 2*abs(x),x,minf,inf);
1424 /* definite integration - ID: 3315476 */
1425 integrate(1/2^x, x, 0, 1);
1426 1/(2*log(2));
1428 /* discontinuities in integral */
1429 /* error in integrating exp(-x)*sinh(sqrt(x)) - ID: 3292033 */
1430 integrate(exp(sqrt(x)-x), x, 0, inf);
1431 %e^(1/4)*gamma_incomplete(1,1/4)-%e^(1/4)*gamma_incomplete(1/2,1/4)/2
1432                                        +%e^(1/4)*(sqrt(%pi)+2)/2
1433                                        +%e^(1/4)*sqrt(%pi)/2-%e^(1/4);
1434 /* equivalent to:
1435    %e^(1/4)*gamma_incomplete(1,1/4)-%e^(1/4)*gamma_incomplete(1/2,1/4)/2
1436                                        +%e^(1/4)*sqrt(%pi);                     
1439 /* integrate(log(t)*log(t+1),t,0,1) gives Lisp error - ID: 3381012 */
1440 integrate(log(t)*log(t+1),t,0,1);
1441 -2*log(2)-%pi^2/12+2;
1443 /* integrate(log(2*sin(t/2)),t,0,%pi) contains false - ID: 3381037 */
1444 integrate(log(2*sin(t/2)),t,0,%pi);
1445 2*((8*%i*li[2](%i)+8*%i*li[2](-%i)-4*%pi*log(2)+%i*%pi^2)/8
1446  +%pi*log(2)/2-%i*%pi^2/12);
1447 /* above result is really zero */
1449 /* integrate error - ID: 3388801 */
1450 integrate( sqrt((x-474)^2/(107669-(x-474)^2)+1), x, 181, 474);
1451 sqrt(107669)*%i*log(2*sqrt(107669)*%i)-sqrt(107669)*%i*log(2*(2*sqrt(5455)*%i-293))$
1453 /* integrate erf fails - ID: 3454370 */
1454 integrate( erf(x+a)-erf(x-a), x, minf, inf);
1455 4*a;
1457 /* Wrong result for definite integral - ID: 3538167 */
1458 integrate(cos(3*x)/(5-4*cos(x)),x,0,2*%pi);
1459 %pi/12;
1461 /* #2575 Integration error: integrate(sqrt(k-k*cos(2*x)), x) */
1462 integrate(sqrt(cos(x)+1), x, -%pi, %pi);
1463 2^(5/2);
1465 /* #2776 Error when integrate sqrt */
1466 integrate ((1+exp(t))/sqrt(t+exp(t)), t, 0, 1);
1467 2*sqrt(%e+1)-2;
1469 /* #2862 Incorrect result for integrate(u/(u+1)^2,u,0,inf); */
1470 errcatch(integrate(u/(u+1)^2,u,0,inf));
1473 error;
1474 ["defint: integral is divergent."];
1477 /* #2903 Wrong integration over 1/(x+1) with bounds 0 to inf, since version 5.34.0 */
1478 errcatch(integrate(1/(x+1), x,0,inf));
1481 error;
1482 ["defint: integral is divergent."];
1485 /* #2919 Definite integration broken: integrate(1/(x^2), x, -inf, inf) gives zero  */
1486 errcatch(integrate(1/(x^2), x, -inf, inf));
1489 error;
1490 ["defint: integral is divergent."];
1492 /* other tests mentioned in #2919 */
1494 errcatch (integrate(1/x, x, 0, 1));
1497 error;
1498 ["defint: integral is divergent."];
1500 integrate(1/x, x, -1, 1);
1502 /* expected output: Principal Value -- dunno how to capture that */
1504 errcatch (integrate(1/x, x, 0, inf));
1507 error;
1508 ["defint: integral is divergent."];
1510 errcatch (integrate(1/x, x, 1, inf));
1513 error;
1514 ["defint: integral is divergent."];
1516 integrate(1/x, x, -inf, inf);
1518 /* expected output: Principal Value -- dunno how to capture that */
1520 errcatch (integrate(1/x^2, x, 0, 1));
1523 error;
1524 ["defint: integral is divergent."];
1526 errcatch (integrate(1/x^2, x, -1, 1));
1529 error;
1530 ["defint: integral is divergent."];
1532 errcatch (integrate(1/x^2, x, 0, inf));
1535 error;
1536 ["defint: integral is divergent."];
1538 /* #2987 Some divergent integrals give error, some don't */
1539 errcatch (integrate(exp(x)/x, x, 0, 1));
1542 error;
1543 ["defint: integral is divergent."];
1545 integrate(1/x^2, x, 1, inf);
1548 /* SF # 2633: ev(integrate,numer) gives strange result */
1549 (foo : ev(integrate(sin(2*%pi*x),x,0,1),numer), 0);
1552 freeof (false, foo);
1553 true;
1555 float (foo);
1556 0.0;
1558 /* Maxima used to call these integrals divergent even though it would yield 0
1559  * when both limits were inf.
1560  */
1561 integrate(exp(-x^2), x, minf, minf);
1564 integrate(const, x, minf, minf);
1567 /* Maxima used to give the bogus result "-false" for this integral even though
1568  * it would yield 0 when both limits were inf.
1569  */
1570 integrate(erf(x), x, minf, minf);
1573 /* From the mailing list on 29 Aug 2015. Maxima was leaving integrate(0,x) in the result.
1574  */
1575 (reset(integration_constant_counter), integrate(x=0,x));
1576 x^2/2 = %c1;
1578 /* SourceForge bug #3017 - "integrate_use_rootsof" leads to wrong result */
1579 %rnum:0;
1581 integrate(1/(x^(1/3)+x+1),x),integrate_use_rootsof:true;
1582 3*'lsum((%r1^2*log(x^(1/3)-%r1))/(3*%r1^2+1),%r1,
1583               rootsof(%r1^3+%r1+1,%r1));
1585 /* Bug #2507: Strange non-evaluation of integral
1587  * The problem was that the second integral was not evaluating
1588  * while the first one was.  The assume is also important because
1589  * the integral would evaluate if answered interactively.
1590  */
1591 (assume(n>0),0);
1594 integrate(1/sqrt(1+x^2*n),x,1,2);
1595 asinh(2*sqrt(n))/sqrt(n)-asinh(sqrt(n))/sqrt(n);
1597 integrate(1/sqrt(1+x^2/n),x,1,2);
1598 asinh(2/sqrt(n))*sqrt(n)-asinh(1/sqrt(n))*sqrt(n);
1600 (forget(n>0),0);
1603 /* mailing list 2015-11-23: "Change in behavior for taylor/integrate - a bug?" */
1605 (kill(f, x, c, deltax), trunc(integrate(taylor(f(x), x, c, 6), x, c-deltax, c+deltax)));
1606 (deltax^7*('at('diff(f(x),x,6),x = c))+42*deltax^5*('at('diff(f(x),x,4),x = c))
1607                                       +840*deltax^3*('at('diff(f(x),x,2),x = c))+5040*f(c)*deltax)
1608                                        /2520$
1610 integrate (taylor (f(x), x, 0, 1), x, a, b);
1611 ((b^2-a^2)*('at('diff(f(x),x,1),x = 0))+2*f(0)*b-2*f(0)*a)/2$
1613 /* mailing list 2015-11-08: "un-nerving behavior of numer... yikes!" */
1615 /* disable this test pending resolution of SF bug #3097 !!
1616 integrate(x*sin(%pi/2*x), x,0,1 ),    numer;
1617 0.4052847345693511;
1618  */
1620 integrate(x*sin(1.5*x), x,0,1 ),    numer;
1621 0.3961729707122222;
1623 integrate(x*cos(1.5*x), x,0,1 ),    numer;
1624 0.2519909695883491;
1626 integrate(x*(cos(2.5*x) + 1.25), x, 0, 1), numer;
1627 0.5762058791540733;
1629 integrate(x*(cos(2.5*x^2 - 1) + 1.25), x, 0, 1), numer;
1630 0.9927931942823904;
1632 integrate (sin(4*asin(x)),x, 0.5, 0.75), numer;
1633 0.09667085773175951;
1635 /* disable these next few tests, since these fail (with a floating point error)
1636  * in the absence of float-to-bigfloat promotion, which was recently reverted.
1638 /* These next 4 examples yield big messy rational expressions.
1639  * It's maybe not so great to have to squash them (with bfloat and rectform) 
1640  * but at least we get a result; these examples cause a floating-point error
1641  * in previous versions.
1642  */
1643 rectform (bfloat (ev (integrate ((x^2*(%e^(2*%i*x)+%e^-(2*%i*x))*%e^(30*%i*x-200*%i))/2,x, 1.25, 1.5), numer)));
1644 (- 6.358161510436547b-2*%i) - 2.859595163448958b-2;
1646 rectform (bfloat (ev (integrate ((x^2*(%e^(2*%i*x)+%e^-(2*%i*x))*%e^(30*%i*x-20*%i))/2,x, 1.25, 1.5), numer)));
1647 6.096077978946073b-2*%i - 3.382504333513841b-2;
1649 rectform (bfloat (ev (integrate (x^2*%e^(30*%i*x-200*%i)*cos(2*x),x, 1.25, 1.5), numer)));
1650 (- 6.35816151043802b-2*%i) - 2.859595163448362b-2;
1652 rectform (bfloat (ev (integrate (x^2*%e^(30*%i*x-20*%i)*cos(2*x),x, 1.25, 1.5), numer)));
1653 6.096077978946119b-2*%i - 3.382504333513988b-2;
1655  */
1658 /* bug #3114 */
1659 integrate(sec(x)/sqrt(tan(x)),x);
1660 'integrate(sec(x)/sqrt(tan(x)),x);
1662 /* bug #3115 */
1663 integrate((x*sqrt(x^3-4*x))/(x^2-4),x);
1664 'integrate((x*sqrt(x^3-4*x))/(x^2-4),x);
1666 /* SF bug #3144: "stackoverflow in integral" */
1668 integrate(sin(k*x)/x*erf(x^2),x,0,inf);
1669 'integrate(sin(k*x)/x*erf(x^2),x,0,inf);
1671 /* Borwein integrals; see: https://en.wikipedia.org/wiki/Borwein_integral */
1673 integrate(sin(x)/x,x,0,inf)$
1674 %pi/2 $
1676 integrate((sin(x)/x) * (sin(x/3)/(x/3)),x,0,inf)$
1677 %pi/2 $
1679 integrate((sin(x)/x) * (sin(x/3)/(x/3)) * (sin(x/5)/(x/5)),x,0,inf)$
1680 %pi/2 $
1682 integrate((sin(x)/x) * (sin(x/3)/(x/3)) * (sin(x/5)/(x/5)) * (sin(x/7)/(x/7)),x,0,inf)$
1683 %pi/2 $
1685 integrate((sin(x)/x) * (sin(x/3)/(x/3)) * (sin(x/5)/(x/5)) * (sin(x/7)/(x/7)) * (sin(x/9)/(x/9)),x,0,inf)$
1686 %pi/2 $
1688 integrate((sin(x)/x) * (sin(x/3)/(x/3)) * (sin(x/5)/(x/5)) * (sin(x/7)/(x/7)) * (sin(x/9)/(x/9))
1689                      * (sin(x/11)/(x/11)),x,0,inf)$
1690 %pi/2 $
1692 integrate((sin(x)/x) * (sin(x/3)/(x/3)) * (sin(x/5)/(x/5)) * (sin(x/7)/(x/7)) * (sin(x/9)/(x/9))
1693                      * (sin(x/11)/(x/11)) * (sin(x/13)/(x/13)),x,0,inf)$
1694 %pi/2 $
1696 integrate((sin(x)/x) * (sin(x/3)/(x/3)) * (sin(x/5)/(x/5)) * (sin(x/7)/(x/7)) * (sin(x/9)/(x/9))
1697                      * (sin(x/11)/(x/11)) * (sin(x/13)/(x/13)) * (sin(x/15)/(x/15)),x,0,inf)$
1698 467807924713440738696537864469*%pi/935615849440640907310521750000 $
1700 /* Bug #2314: Two different results for an integral */
1702 (assume (0 < x, x < 1, 0 < y, y < 1), 0)$
1705 integrate (integrate (sqrt (4*x^2 - y^2), x, y, 1), y, 0, 1)$
1706 (2*sqrt(3)*%pi+9)/(2*3^(5/2))$
1708 integrate (integrate (sqrt (4*x^2 - y^2), y, 0, x), x, 0, 1)$
1709 (2*%pi+3^(3/2))/18$
1711 (forget (0 < x, x < 1, 0 < y, y < 1), 0)$
1714 /* Bug #2295: Failure to evaluate definite integral */
1716 integrate (1 / (sqrt (x) * (1 + sqrt (x))^2), x, 1, 4)$
1717 1/3$
1719 /* SF bug #3274: "quotient by zero" error in integrate */
1721 (expr_tau: (%e^-(t/tau3)*(%e^(t/tau3+t/tau1)-%e^t*tau3))
1722       /((tau1*%e^(t/tau1)+%e^(t/tau1))
1723        *%e^(t/tau2)*tau3+%e^(t/tau2+t/tau1)),
1724  I_tau : integrate(expr_tau, t));
1725 -(%e^((-t/tau2)-t/tau1)*(tau1*tau2*tau3^2*%e^(t-t/tau3)
1726                         +%e^(t/tau1)
1727                          *(tau1*(tau2^2*(tau3-1)-tau2*tau3)
1728                           -tau2^2*tau3)))
1729  /(tau1^2*(tau2*(tau3^2-tau3)-tau3^2)
1730   +tau1*((-tau3^2)-tau3-tau2)+tau2*((-tau3^2)-tau3))$
1732 is(equal(diff(I_tau, t), expr_tau));
1733 true;
1735 (expr_c : subst([tau1=c1, tau2=c2, tau3=c3], expr_tau),
1736  I_c : integrate (expr_c, t));
1737 (-(c1*c2*c3^2*%e^((-t/c3)-t/c2-t/c1+t))
1738  /(c1^2*(c2*(c3^2-c3)-c3^2)+c1*((-c3^2)-c3-c2)+c2*((-c3^2)-c3)))
1739  -(c2*c3*%e^-(t/c2))/(c1*c3^2+c3^2+c3)$
1741 is(equal(diff(I_c, t), expr_c));
1742 true;
1744 constantp (ratsimp (subst([c1=tau1, c2=tau2, c3=tau3], I_c) - I_tau));
1745 true;
1747 /* following was incorrect (returned 0) at some point in recent past
1748  * ensure that it stays correct
1749  * from sage-support 2017-02-22
1750  */
1752 errcatch (integrate(x/(1+x^2),x,0,inf));
1755 /* Bug #3368: integrate('limit(...),...) internal error */
1757 /* Original test cases from bug report: */
1759 integrate('limit(x,x,0),x);
1760 x*'limit(x,x,0);
1762 integrate('limit(x,x,y),x);
1763 x*'limit(x,x,y);
1765 integrate('limit(x,x,x),x);
1766 'integrate('limit(x,x,x),x);
1768 /* Some more: */
1770 integrate('at(x,x=1), x);
1771 x*'at(x,x=1);
1773 integrate('sum(x,x,1,1), x);
1774 x*'sum(x,x,1,1);
1776 integrate('product(x,x,1,1), x);
1777 x*'product(x,x,1,1);
1779 /* SF bug #3712: "Symbolic integration may fail when called with numerical constants in function and/or limits." */
1781 /* original problem from bug report */
1783 (E1:200,
1784  nu:0.33,
1785  rho1:7850,
1786  Pi:ev(%pi,numer),
1787  ah:5,
1788  e0:0.25,
1789  h:1/ah,
1790  em:1-sqrt(1-e0),
1791  aa:Pi*z/(2*h)+Pi/(4), 
1792  Ez:E1*(1-e0*(cos(aa))),
1793  rhoz:rho1*(1-em*(cos(aa))),
1794  Q11:Ez,
1795  /* this call to integrate is okay in bug report */
1796  A11:ev(integrate(Q11,z,-h/2,h/2),numer));
1797 33.63380227632413;
1799 /* this one triggers the bug in the bug report */
1800 B11:ev(integrate(Q11*z,z,-h/2,h/2),numer);
1801 0.1739496967711204;
1803 /* double check numerical results */
1805 is (abs (first (quad_qags (Q11,z,-h/2,h/2, 'epsabs = 1e-8)) - 33.63380227632413) < 1e-8);
1806 true;
1808 /* for display_all = true, need nondefault value of linel. */
1809 block([linel : 107], is (abs (first (quad_qags (Q11*z,z,-h/2,h/2, 'epsabs = 1e-8)) - 0.1739496967711204) < 1e-8));
1810 true;
1812 /* additional cases for #3712 */
1814 /* try integral w/ symbolic constants;
1815  * some gyrations here to verify symbolic result
1816  */
1817 (kill(values),
1818  Q:a*(b-c*cos(d*z+e)),
1819  IQz_indefinite: integrate(Q*z, z),
1820  ratsimp (diff (IQz_indefinite, z) - Q*z));
1823 (IQz_defint: integrate(Q*z,z,-f,f),
1824  IQz_defint_via_indefinite: ev (IQz_indefinite, z = f) - ev (IQz_indefinite, z = -f),
1825  ratsimp (IQz_defint - IQz_defint_via_indefinite));
1828 (L1:[a=200, b=1, c=0.25, d=7.853981633974483, e=0.7853981633974483,f=1/10],
1829  subst (L1, IQz_defint));
1830 0.1739496967711208;
1832 /* verify integrate doesn't take a long time with more digits */
1835 integrate(z*(1-cos(7.85*z)),z,0,1) => 0 seconds
1836 integrate(z*(1-cos(7.8539*z)),z,0,1) => 3.2 seconds
1837 integrate(z*(1-cos(7.85398*z)),z,0,1) => 77 seconds
1838  */
1840 (time_in_secs (f, e) ::= buildq ([f, e], (timer (f), e, block ([i: timer_info (f)], untimer (f), i[2, 4]/verbify(sec)))),
1841  is (time_in_secs (integrate, integrate(z*(1-cos(7.85*z)),z,0,1)) < 1));
1842 true;
1844 is (time_in_secs (integrate, integrate(z*(1-cos(7.8539*z)),z,0,1)) < 1);
1845 true;
1847 is (time_in_secs (integrate, integrate(z*(1-cos(7.85398*z)),z,0,1)) < 1);
1848 true;
1850 /* factor_max_degree now controls loops in ROOTFAC -- verify result not changed */
1852 block ([factor_max_degree: 1000], integrate(z*(1-cos(7.8*z)),z,0,1));
1853 25/1521-(390*sin(39/5)+50*cos(39/5)-1521)/3042$
1855 block ([factor_max_degree: 10], integrate(z*(1-cos(7.8*z)),z,0,1));
1856 25/1521-(390*sin(39/5)+50*cos(39/5)-1521)/3042$
1859 B11:'integrate(Q11*z,z,-h/2,h/2)$
1860 B11r: scanmap('ratsimp,B11)$
1861 ev(B11r,nouns) => result in 0.16 seconds
1862  */
1864 (B11:'integrate(Q11*z,z,-h/2,h/2),
1865  B11r: scanmap('ratsimp,B11),
1866  is (time_in_secs (integrate, ev(B11r,nouns)) < 1));
1867 true;
1869 (foo: integrate(z*cos(7.853981633974483*z + 0.7853981633974483),z),
1870  bar: subst (a = 7.853981633974483, integrate(z*cos(a*z + a/10), z)),
1871  is (lmax (makelist (ev (foo - bar, numer), z, [0, 1, 2, 3, 4, 5])) < 1e-12));
1872 true;
1874 /* bug reported to mailing list 2021-02-18: "Maxima asking for the sign of 'und'" */
1876 kill (a, b, c, d, u, v, w, x, y, z);
1877 done;
1879 integrate(cos(x),x,0,inf);
1880 'integrate(cos(x),x,0,inf);
1882 integrate(sin(u) + cos(u), u, 0, inf);
1883 'integrate(sin(u) + cos(u), u, 0, inf);
1885 integrate (a*sin(y)+b*cos(y), y, minf, 1);
1886 'integrate (a*sin(y)+b*cos(y), y, minf, 1);
1888 integrate ((a*sin(z)+b*cos(z))^3, z, minf, 1);
1889 'integrate ((a*sin(z)+b*cos(z))^3, z, minf, 1);
1891 integrate (a*sin(5*w)+b*cos(7*w), w, minf, 1);
1892 'integrate (a*sin(5*w)+b*cos(7*w), w, minf, 1);
1894 /* SF bug #3718: "incorrect trigonometric definite integral" */
1896 (kill(e, e1, e2, e3, t, I),
1897  e:(tan(x)^2+1)^2/(16*tan(x)^4+12*tan(x)^2+1),
1898  [e1, e2, e3]: args (expand (e)),
1899  assume (t > acos(3/5)/2),
1900  0);
1903 /* RISCHINT seems to be returning a discontinuous antiderivative
1904  * (a separate problem from #3718).
1905  * First just verify it's not zero (the previous, incorrect result).
1906  */
1908 is ((I: integrate (e, x, 0, t)) # 0);
1909 true;
1911 /* Now try some random intervals and see if the antiderivative
1912  * matches a numerical calculation on at least one such interval.
1914  * Trying this repeated yields 14 failures (apparently hit a discontinuity)
1915  * and 39 successess (apparently missed).
1916  * If I am reading the tea leaves correctly, that suggests
1917  * the mean number of tries to the first success is 1/(39/(39 + 14)) = 53/39 = 1.36
1918  * and p(number of tries > 10) = (1 - 39/(39 + 14))^10 = (14/53)^10 = 1.65 x 10^-6 = 1/605000.
1919  * So at least for this problem, 10 tries seems enough.
1920  */
1922 block ([t1, t2, I_defint_numerical, I_defint_FTC],
1923   for k thru 10 
1924     do (t1: random(5.0),
1925         t2: t1 + random(0.5),
1926         I_defint_numerical: first (quad_qags (e, x, t1, t2)),
1927         I_defint_FTC: float (ev (I, t = t2) - ev (I, t = t1)),
1928         if abs (I_defint_numerical - I_defint_FTC) < 1e-4
1929           then (printf (true, "re: #3718, apparently valid antiderivative on (~f, ~f)~%", t1, t2),
1930                 return(true))
1931           else printf (true, "re: #3718, can't confirm antiderivative on (~f, ~f), keep trying.~%", t1, t2)));
1932 true;
1934 /* Bug #4018: defint(foo,,0,inf) lisp error when denom(foo) contains %i */
1936 defint(1/((x+%i/2)*(x+1)),x,0,inf);
1937 ((2*%i+4)*log(2)+(1-2*%i)*%pi)/5;
1939 defint(1/((x+%i)*(x/2+1)),x,0,inf);
1940 ((2*%i+4)*log(2)+(1-2*%i)*%pi)/5;
1942 defint(1/((x+%i/2)*(x-%i)),x,minf,inf);
1943 (4*%pi)/3;
1945 block ([g_poles: subst(phi=%pi/3, exp(%i * [phi, -phi, %pi-phi, %pi+phi]))],
1946   defint(1/apply("*", makelist(w - pole, pole, g_poles)), w, 0, inf));
1947 %pi/(2*sqrt(3));
1949 /* SF bug #3810: "integrate error \"not of type FIXNUM\" for integrand with floats in it"
1950  * The following 20 cases are derived from the example shown in the bug report;
1951  * I wasn't able to find a smaller set.
1952  * For the record, I've only observed the bug, in which there's
1953  * a Lisp error about some huge integer which doesn't fit into a fixnum, 
1954  * with SBCL.
1955  */
1956 (if not ?fboundp ('read_matrix) then load (numericalio),
1957  construct_float (i) := ?construct\-float\-64\-from\-integer (i), 
1958  ratprint:false,
1959  ratfac:true,
1960  algebraic:true,
1961  factor_max_degree_print_warning:false,
1962 0); 
1965 (integrate (x^4*((construct_float(13832102834422948280)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(4659109193942506099)*sqrt(x)*%e^(construct_float(13852053825502851604)*x))^2,x,0,inf),
1966 integrate (x^4*((construct_float(4603705080989522416)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(13876663004335033608)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(4680418835321724124)*x^(5/2)*%e^(construct_float(13850392950977358476)*x))^2,x,0,inf),
1967 integrate (x^4*((construct_float(13822985546564103824)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(4650040524666783766)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(13898864330314251671)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(4689176719312114346)*x^(9/2)*%e^(construct_float(13849077382790281914)*x))^2,x,0,inf),
1968 integrate (x^4*((construct_float(13815380123310259942)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(4642544339172547822)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(13892017095959042546)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(4682273596335467143)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(13906083594305576361)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(4676345781606752784)*x^(17/2)*%e^(construct_float(13845850997455375733)*x))^2,x,0,inf),
1969 integrate (x^4*((construct_float(4588287034702523055)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(13862081432535911133)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(4665543650886122250)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(13901162363127812545)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(4680543130755504491)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(13894925586695210887)*x^(17/2)*%e^(construct_float(13845850997455375733)*x)+construct_float(4656829810530318229)*x^(21/2)*%e^(construct_float(13844543403286028560)*x))^2,x,0,inf),
1970 integrate (x^4*((construct_float(13807950446123059420)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(4634715679194593503)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(13884770780167979999)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(4674631855308846949)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(13899442112350166625)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(4669380157924531903)*x^(17/2)*%e^(construct_float(13845850997455375733)*x)+construct_float(13875646849200254557)*x^(21/2)*%e^(construct_float(13844543403286028560)*x)+construct_float(4628334369197177667)*x^(25/2)*%e^(construct_float(13842950077923898657)*x))^2,x,0,inf),
1971 integrate (x^4*((construct_float(4580499919285849890)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(13853982548367093798)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(4657378199720877552)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(13893812467321528715)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(4672405349716730081)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(13888488673177254699)*x^(17/2)*%e^(construct_float(13845850997455375733)*x)+construct_float(4649144676243844169)*x^(21/2)*%e^(construct_float(13844543403286028560)*x)+construct_float(13847692918362499544)*x^(25/2)*%e^(construct_float(13842950077923898657)*x)+construct_float(4591940524810724167)*x^(29/2)*%e^(construct_float(13841309276406812944)*x))^2,x,0,inf),
1972 integrate (x^4*((construct_float(13799730948534155654)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(4626522136374979242)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(13876608944864255440)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(4666332164086245695)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(13891692449046899557)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(4661352201463965459)*x^(17/2)*%e^(construct_float(13845850997455375733)*x)+construct_float(13868358252270079858)*x^(21/2)*%e^(construct_float(13844543403286028560)*x)+construct_float(4621086115000026761)*x^(25/2)*%e^(construct_float(13842950077923898657)*x)+construct_float(13811978465200383126)*x^(29/2)*%e^(construct_float(13841309276406812944)*x)+construct_float(4547901422001664002)*x^(33/2)*%e^(construct_float(13840009607922498019)*x))^2,x,0,inf),
1973 integrate (x^4*((construct_float(4572184908458273386)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(13845758088780195921)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(4649087273240521486)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(13885518154380124499)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(4664285118797405184)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(13880505870680953441)*x^(17/2)*%e^(construct_float(13845850997455375733)*x)+construct_float(4640946536814966454)*x^(21/2)*%e^(construct_float(13844543403286028560)*x)+construct_float(13840303268528715398)*x^(25/2)*%e^(construct_float(13842950077923898657)*x)+construct_float(4584986699114512377)*x^(29/2)*%e^(construct_float(13841309276406812944)*x)+construct_float(13768183034564966614)*x^(33/2)*%e^(construct_float(13840009607922498019)*x)+construct_float(4495887554581308620)*x^(37/2)*%e^(construct_float(13838398642593989805)*x))^2,x,0,inf),
1974 integrate (x^4*((construct_float(13791339657508427891)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(4618203091029411652)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(13868259498832129124)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(4657923725573991758)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(13883544990328347659)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(4652887676647289995)*x^(17/2)*%e^(construct_float(13845850997455375733)*x)+construct_float(13860171559518208449)*x^(21/2)*%e^(construct_float(13844543403286028560)*x)+construct_float(4612726215435183695)*x^(25/2)*%e^(construct_float(13842950077923898657)*x)+construct_float(13804177960580528374)*x^(29/2)*%e^(construct_float(13841309276406812944)*x)+construct_float(4540904542485620193)*x^(33/2)*%e^(construct_float(13840009607922498019)*x)+construct_float(13716623792620785711)*x^(37/2)*%e^(construct_float(13838398642593989805)*x)+construct_float(4436689235760666063)*x^(41/2)*%e^(construct_float(13836767786422585277)*x))^2,x,0,inf),
1975 integrate (x^4*((construct_float(4563694232363278599)*%e^(construct_float(13853611547558191654)*x))/x^(3/2)+construct_float(13837329261576760585)*sqrt(x)*%e^(construct_float(13852053825502851604)*x)+construct_float(4640628279602305787)*x^(5/2)*%e^(construct_float(13850392950977358476)*x)+construct_float(13877017855321991145)*x^(9/2)*%e^(construct_float(13849077382790281914)*x)+construct_float(4655984262259314301)*x^(13/2)*%e^(construct_float(13847501804967206881)*x)+construct_float(13871961325783836989)*x^(17/2)*%e^(construct_float(13845850997455375733)*x)+construct_float(4632579512185702728)*x^(21/2)*%e^(construct_float(13844543403286028560)*x)+construct_float(13831820979204054045)*x^(25/2)*%e^(construct_float(13842950077923898657)*x)+construct_float(4576528486454867609)*x^(29/2)*%e^(construct_float(13841309276406812944)*x)+construct_float(13760093515846203489)*x^(33/2)*%e^(construct_float(13840009607922498019)*x)+construct_float(4489545647912134320)*x^(37/2)*%e^(construct_float(13838398642593989805)*x)+construct_float(13657416847333971758)*x^(41/2)*%e^(construct_float(13836767786422585277)*x)+construct_float(4369908098040789962)*x^(45/2)*%e^(construct_float(13835475995583563131)*x))^2,x,0,inf),
1976 integrate (x^4*(construct_float(13874334652917149491)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(4676446327894293873)*x^(5/2)*%e^(construct_float(13850206842258521600)*x))^2,x,0,inf),
1977 integrate (x^4*(construct_float(4647407053860680595)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(13897605418546479799)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(4685350810584663793)*x^(9/2)*%e^(construct_float(13848929967253417878)*x))^2,x,0,inf),
1978 integrate (x^4*(construct_float(13867011523143065883)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(4670847344307255816)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(13906833880713031021)*x^(9/2)*%e^(construct_float(13848929967253417878)*x)+construct_float(4683948219867094378)*x^(13/2)*%e^(construct_float(13847268271141981213)*x))^2,x,0,inf),
1979 integrate (x^4*(construct_float(4639781555154818310)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(13890485364949001659)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(4680103856627696714)*x^(9/2)*%e^(construct_float(13848929967253417878)*x)+construct_float(13904723712727785251)*x^(13/2)*%e^(construct_float(13847268271141981213)*x)+construct_float(4672513506043682445)*x^(17/2)*%e^(construct_float(13845666016792262747)*x))^2,x,0,inf),
1980 integrate (x^4*(construct_float(13859309570165497800)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(4663344075634158250)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(13899734443221025783)*x^(9/2)*%e^(construct_float(13848929967253417878)*x)+construct_float(4678356998751580204)*x^(13/2)*%e^(construct_float(13847268271141981213)*x)+construct_float(13893686855614096759)*x^(17/2)*%e^(construct_float(13845666016792262747)*x)+construct_float(4652770339619897509)*x^(21/2)*%e^(construct_float(13844396881274955196)*x))^2,x,0,inf),
1981 integrate (x^4*(construct_float(4632067885786510673)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(13882897799064936059)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(4672535462110635372)*x^(9/2)*%e^(construct_float(13848929967253417878)*x)+construct_float(13898168598415961189)*x^(13/2)*%e^(construct_float(13847268271141981213)*x)+construct_float(4666779889548038673)*x^(17/2)*%e^(construct_float(13845666016792262747)*x)+construct_float(13873168701933081002)*x^(21/2)*%e^(construct_float(13844396881274955196)*x)+construct_float(4624476436427395444)*x^(25/2)*%e^(construct_float(13842717959610906452)*x))^2,x,0,inf),
1982 integrate (x^4*(construct_float(13851526180082158044)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(4655653753038828547)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(13892002975252393992)*x^(9/2)*%e^(construct_float(13848929967253417878)*x)+construct_float(4670725636947176122)*x^(13/2)*%e^(construct_float(13847268271141981213)*x)+construct_float(13886231423995319732)*x^(17/2)*%e^(construct_float(13845666016792262747)*x)+construct_float(4646523490691061153)*x^(21/2)*%e^(construct_float(13844396881274955196)*x)+construct_float(13844865077416599720)*x^(25/2)*%e^(construct_float(13842717959610906452)*x)+construct_float(4587941619969479187)*x^(29/2)*%e^(construct_float(13841125416961970319)*x))^2,x,0,inf),
1983 integrate (x^4*(construct_float(4624194709066097849)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(13875102515253259746)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(4664672840878753682)*x^(9/2)*%e^(construct_float(13848929967253417878)*x)+construct_float(13889968737336596784)*x^(13/2)*%e^(construct_float(13847268271141981213)*x)+construct_float(4658852307357948608)*x^(17/2)*%e^(construct_float(13845666016792262747)*x)+construct_float(13866104190951107225)*x^(21/2)*%e^(construct_float(13844396881274955196)*x)+construct_float(4617836750785529516)*x^(25/2)*%e^(construct_float(13842717959610906452)*x)+construct_float(13808553348881729110)*x^(29/2)*%e^(construct_float(13841125416961970319)*x)+construct_float(4543770050112687942)*x^(33/2)*%e^(construct_float(13839863974021311716)*x))^2,x,0,inf),
1984 integrate (x^4*(construct_float(13843560353427925598)*sqrt(x)*%e^(construct_float(13851818867533264930)*x)+construct_float(4647735622713936005)*x^(5/2)*%e^(construct_float(13850206842258521600)*x)+construct_float(13884036655858068600)*x^(9/2)*%e^(construct_float(13848929967253417878)*x)+construct_float(4662430308450520543)*x^(13/2)*%e^(construct_float(13847268271141981213)*x)+construct_float(13878145371141373487)*x^(17/2)*%e^(construct_float(13845666016792262747)*x)+construct_float(4638760849903044964)*x^(21/2)*%e^(construct_float(13844396881274955196)*x)+construct_float(13837200460116180214)*x^(25/2)*%e^(construct_float(13842717959610906452)*x)+construct_float(4581361216757031604)*x^(29/2)*%e^(construct_float(13841125416961970319)*x)+construct_float(13764215660170911913)*x^(33/2)*%e^(construct_float(13839863974021311716)*x)+construct_float(4491442966451646454)*x^(37/2)*%e^(construct_float(13838167931213425198)*x))^2,x,0,inf),
1988 (reset(), 0);