Add translation for plog (using TRANSLATE-WITH-FLONUM-OP)
[maxima.git] / src / mdot.lisp
blobf838392e2f8d94378386346df8203365a5709e71
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;; (c) Copyright 1982 Massachusetts Institute of Technology
10 (in-package :maxima)
12 ;; Non-commutative product and exponentiation simplifier
13 ;; Written: July 1978 by CWH
15 ;; Flags to control simplification:
17 (macsyma-module mdot)
19 (defmvar $dotconstrules t
20 "Causes a non-commutative product of a constant and
21 another term to be simplified to a commutative product. Turning on this
22 flag effectively turns on DOT0SIMP, DOT0NSCSIMP, and DOT1SIMP as well.")
24 (defmvar $dot0simp t
25 "Causes a non-commutative product of zero and a scalar term to
26 be simplified to a commutative product.")
28 (defmvar $dot0nscsimp t
29 "Causes a non-commutative product of zero and a nonscalar term
30 to be simplified to a commutative product.")
32 (defmvar $dot1simp t
33 "Causes a non-commutative product of one and another term to be
34 simplified to a commutative product.")
36 (defmvar $domxnctimes nil
37 "Causes non-commutative products of matrices to be carried out.")
39 (defmvar $dotident 1 "The value to be returned by X^^0.")
41 ;; The operators "." and "^^" distribute over equations.
43 (defprop mnctimes (mequal) distribute_over)
44 (defprop mncexpt (mequal) distribute_over)
46 (defun simpnct (exp vestigial simp-flag)
47 (declare (ignore vestigial))
48 (let ((check exp)
49 (first-factor (simpcheck (cadr exp) simp-flag))
50 (remainder (if (cdddr exp)
51 (ncmuln (cddr exp) simp-flag)
52 (simpcheck (caddr exp) simp-flag))))
53 (cond ((null (cdr exp)) $dotident)
54 ((null (cddr exp)) first-factor)
56 ;; This does (. sc m) --> (f* sc m) and (. (f* sc m1) m2) --> (f* sc (. m1 m2))
57 ;; and (. m1 (f* sc m2)) --> (f* sc (. m1 m2)) where sc can be a scalar
58 ;; or constant, and m1 and m2 are non-constant, non-scalar expressions.
60 ((commutative-productp first-factor remainder)
61 (mul2 first-factor remainder))
62 ((product-with-inner-scalarp first-factor)
63 (let ((p-p (partition-product first-factor)))
64 (outer-constant (car p-p) (cdr p-p) remainder)))
65 ((product-with-inner-scalarp remainder)
66 (let ((p-p (partition-product remainder)))
67 (outer-constant (car p-p) first-factor (cdr p-p))))
69 ;; This code does distribution when flags are set and when called by
70 ;; $EXPAND. The way we recognize if we are called by $EXPAND is to look at
71 ;; the value of $EXPOP, but this is a kludge since $EXPOP has nothing to do
72 ;; with expanding (. A (f+ B C)) --> (f+ (. A B) (. A C)). I think that
73 ;; $EXPAND wants to have two flags: one which says to convert
74 ;; exponentiations to repeated products, and another which says to
75 ;; distribute products over sums.
77 ((and (mplusp first-factor) (or $dotdistrib (not (zerop $expop))))
78 (addn (mapcar #'(lambda (x) (ncmul x remainder))
79 (cdr first-factor))
80 t))
81 ((and (mplusp remainder) (or $dotdistrib (not (zerop $expop))))
82 (addn (mapcar #'(lambda (x) (ncmul first-factor x))
83 (cdr remainder))
84 t))
86 ;; This code carries out matrix operations when flags are set.
88 ((matrix-matrix-productp first-factor remainder)
89 (timex first-factor remainder))
90 ((or (scalar-matrix-productp first-factor remainder)
91 (scalar-matrix-productp remainder first-factor))
92 (simplifya (outermap1 'mnctimes first-factor remainder) t))
94 ;; (. (^^ x n) (^^ x m)) --> (^^ x (f+ n m))
96 ((and (simpnct-alike first-factor remainder) $dotexptsimp)
97 (simpnct-merge-factors first-factor remainder))
99 ;; (. (. x y) z) --> (. x y z)
101 ((and (mnctimesp first-factor) $dotassoc)
102 (ncmuln (append (cdr first-factor)
103 (if (mnctimesp remainder)
104 (cdr remainder)
105 (ncons remainder)))
108 ;; (. (^^ (. x y) m) (^^ (. x y) n) z) --> (. (^^ (. x y) m+n) z)
109 ;; (. (^^ (. x y) m) x y z) --> (. (^^ (. x y) m+1) z)
110 ;; (. x y (^^ (. x y) m) z) --> (. (^^ (. x y) m+1) z)
111 ;; (. x y x y z) --> (. (^^ (. x y) 2) z)
113 ((and (mnctimesp remainder) $dotassoc $dotexptsimp)
114 (setq exp (simpnct-merge-product first-factor (cdr remainder)))
115 (if (and (mnctimesp exp) $dotassoc)
116 (simpnct-antisym-check (cdr exp) check)
117 (eqtest exp check)))
119 ;; (. x (. y z)) --> (. x y z)
121 ((and (mnctimesp remainder) $dotassoc)
122 (simpnct-antisym-check (cons first-factor (cdr remainder)) check))
124 (t (eqtest (list '(mnctimes) first-factor remainder) check)))))
126 ;; Predicate functions for simplifying a non-commutative product to a
127 ;; commutative one. SIMPNCT-CONSTANTP actually determines if a term is a
128 ;; constant and is not a nonscalar, i.e. not declared nonscalar and not a
129 ;; constant list or matrix. The function CONSTANTP determines if its argument
130 ;; is a number or a variable declared constant.
132 (defun commutative-productp (first-factor remainder)
133 (or (simpnct-sc-or-const-p first-factor)
134 (simpnct-sc-or-const-p remainder)
135 (simpnct-onep first-factor)
136 (simpnct-onep remainder)
137 (zero-productp first-factor remainder)
138 (zero-productp remainder first-factor)))
140 (defun simpnct-sc-or-const-p (term)
141 (or (simpnct-constantp term) (simpnct-assumescalarp term)))
143 (defun simpnct-constantp (term)
144 (and $dotconstrules
145 (or (mnump term)
146 (and ($constantp term) (not ($nonscalarp term))))))
148 (defun simpnct-assumescalarp (term)
149 (and $dotscrules (scalar-or-constant-p term (eq $assumescalar '$all))))
151 (defun simpnct-onep (term) (and $dot1simp (onep1 term)))
153 (defun zero-productp (one-term other-term)
154 (and (zerop1 one-term)
155 $dot0simp
156 (or $dot0nscsimp (not ($nonscalarp other-term)))))
158 ;; This function takes a form and determines if it is a product
159 ;; containing a constant or a declared scalar. Note that in the
160 ;; next three functions, the word "scalar" is used to refer to a constant
161 ;; or a declared scalar. This is a bad way of doing things since we have
162 ;; to cdr down an expression twice: once to determine if a scalar is there
163 ;; and once again to pull it out.
165 (defun product-with-inner-scalarp (product)
166 (and (mtimesp product)
167 (or $dotconstrules $dotscrules)
168 (do ((factor-list (cdr product) (cdr factor-list)))
169 ((null factor-list) nil)
170 (if (simpnct-sc-or-const-p (car factor-list))
171 (return t)))))
173 ;; This function takes a commutative product and separates it into a scalar
174 ;; part and a non-scalar part.
176 (defun partition-product (product)
177 (do ((factor-list (cdr product) (cdr factor-list))
178 (scalar-list nil)
179 (nonscalar-list nil))
180 ((null factor-list) (cons (nreverse scalar-list)
181 (muln (nreverse nonscalar-list) t)))
182 (if (simpnct-sc-or-const-p (car factor-list))
183 (push (car factor-list) scalar-list)
184 (push (car factor-list) nonscalar-list))))
186 ;; This function takes a list of constants and scalars, and two nonscalar
187 ;; expressions and forms a non-commutative product of the nonscalar
188 ;; expressions, and a commutative product of the constants and scalars and
189 ;; the non-commutative product.
191 (defun outer-constant (constant nonscalar1 nonscalar2)
192 (muln (nconc constant (ncons (ncmul nonscalar1 nonscalar2))) t))
194 (defun simpnct-base (term) (if (mncexptp term) (cadr term) term))
196 (defun simpnct-power (term) (if (mncexptp term) (caddr term) 1))
198 (defun simpnct-alike (term1 term2)
199 (alike1 (simpnct-base term1) (simpnct-base term2)))
201 (defun simpnct-merge-factors (term1 term2)
202 (ncpower (simpnct-base term1)
203 (add2 (simpnct-power term1) (simpnct-power term2))))
205 (defun matrix-matrix-productp (term1 term2)
206 (and (or $doallmxops $domxmxops $domxnctimes)
207 (mxorlistp1 term1)
208 (mxorlistp1 term2)))
210 (defun scalar-matrix-productp (term1 term2)
211 (and (or $doallmxops $doscmxops)
212 (mxorlistp1 term1)
213 (scalar-or-constant-p term2 (eq $assumescalar '$all))))
216 (defun simpncexpt (exp vestigial simp-flag)
217 (declare (ignore vestigial))
218 (let ((factor (simpcheck (cadr exp) simp-flag))
219 (power (simpcheck (caddr exp) simp-flag))
220 (check exp))
221 (twoargcheck exp)
222 (cond ((zerop1 power)
223 (if (zerop1 factor)
224 (if (not errorsw)
225 (merror (intl:gettext "noncommutative exponent: ~M is undefined.")
226 (list '(mncexpt) factor power))
227 (throw 'errorsw t)))
228 (if (mxorlistp1 factor) (identitymx factor) $dotident))
229 ((onep1 power) factor)
230 ((and (simpnct-sc-or-const-p factor)
231 (simpnct-sc-or-const-p power)) (power factor power))
232 ((and (zerop1 factor) $dot0simp) factor)
233 ((and (onep1 factor) $dot1simp) factor)
234 ((and (or $doallmxops $domxmxops)
235 (mxorlistp1 factor)
236 (fixnump power))
237 (let (($scalarmatrixp (or ($listp factor) $scalarmatrixp)))
238 (simplify (powerx factor power))))
240 ;; This does (A+B)^^2 --> A^^2 + A.B + B.A + B^^2
241 ;; and (A.B)^^2 --> A.B.A.B
243 ((and (or (mplusp factor) (not $dotexptsimp))
244 (fixnump power)
245 (not (> power $expop))
246 (plusp power))
247 (ncmul factor (ncpower factor (1- power))))
249 ;; This does the same thing as above for (A+B)^^(-2)
250 ;; and (A.B)^^(-2). Here the "-" operator does the trick
251 ;; for us.
253 ((and (or (mplusp factor) (not $dotexptsimp))
254 (fixnump power)
255 (not (> (- power) $expon))
256 (< power -1))
257 (let (($expop $expon))
258 (ncpower (ncpower factor (- power)) -1)))
260 ((product-with-inner-scalarp factor)
261 (let ((p-p (partition-product factor)))
262 (mul2 (power (muln (car p-p) t) power)
263 (ncpower (cdr p-p) power))))
264 ((and $dotassoc (mncexptp factor))
265 (ncpower (cadr factor) (mul2 (caddr factor) power)))
266 (t (eqtest (list '(mncexpt) factor power) check)))))
269 (defun simpnct-invert (exp)
270 (cond ((mnctimesp exp)
271 (ncmuln (nreverse (mapcar #'simpnct-invert (cdr exp))) t))
272 ((and (mncexptp exp) (integerp (caddr exp)))
273 (ncpower (cadr exp) (- (caddr exp))))
274 (t (list '(mncexpt simp) exp -1))))
276 (defun identitymx (x)
277 (if (and ($listp (cadr x)) (= (length (cdr x)) (length (cdadr x))))
278 (simplifya (cons (car x) (cdr ($ident (length (cdr x))))) t)
279 $dotident))
281 ;; This function incorporates the hairy search which enables such
282 ;; simplifications as (. a b a b) --> (^^ (. a b) 2). It assumes
283 ;; that FIRST-FACTOR is not a dot product and that REMAINDER is.
284 ;; For the product (. a b c d e), three basic types of comparisons
285 ;; are done:
287 ;; 1) a <---> b first-factor <---> inner-product
288 ;; a <---> (. b c)
289 ;; a <---> (. b c d)
290 ;; a <---> (. b c d e) (this case handled in SIMPNCT)
292 ;; 2) (. a b) <---> c outer-product <---> (car rest)
293 ;; (. a b c) <---> d
294 ;; (. a b c d) <---> e
296 ;; 3) (. a b) <---> (. c d) outer-product <---> (firstn rest)
298 ;; Note that INNER-PRODUCT and OUTER-PRODUCT share list structure which
299 ;; is clobbered as new terms are added.
301 (defun simpnct-merge-product (first-factor remainder)
302 (let ((half-product-length (ash (1+ (length remainder)) -1))
303 (inner-product (car remainder))
304 (outer-product (list '(mnctimes) first-factor (car remainder))))
305 (do ((merge-length 2 (1+ merge-length))
306 (rest (cdr remainder) (cdr rest)))
307 ((null rest) outer-product)
308 (cond ((simpnct-alike first-factor inner-product)
309 (return
310 (ncmuln
311 (cons (simpnct-merge-factors first-factor inner-product)
312 rest)
313 t)))
314 ((simpnct-alike outer-product (car rest))
315 (return
316 (ncmuln
317 (cons (simpnct-merge-factors outer-product (car rest))
318 (cdr rest))
319 t)))
320 ((and (not (> merge-length half-product-length))
321 (alike1 outer-product
322 (cons '(mnctimes)
323 (subseq rest 0 merge-length))))
324 (return
325 (ncmuln (cons (ncpower outer-product 2)
326 (nthcdr merge-length rest))
327 t)))
328 ((= merge-length 2)
329 (setq inner-product
330 (cons '(mnctimes) (cddr outer-product)))))
331 (rplacd (last inner-product) (ncons (car rest))))))
333 (defun simpnct-antisym-check (l check)
334 (cond ((and (get 'mnctimes '$antisymmetric) (cddr l))
335 (multiple-value-bind (l antisym-sign) (bbsort1 l)
336 (cond ((equal l 0) 0)
337 ((prog1 (null antisym-sign)
338 (setq l (eqtest (cons '(mnctimes) l) check)))
340 (t (neg l)))))
341 (t (eqtest (cons '(mnctimes) l) check))))