Add translation for plog (using TRANSLATE-WITH-FLONUM-OP)
[maxima.git] / src / outmis.lisp
blob7a3082cfec6059d651afd4a445f2fe5d075c89a8
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancements. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
9 (in-package :maxima)
11 ;; ** (c) Copyright 1982 Massachusetts Institute of Technology **
13 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
14 ;;; ;;;
15 ;;; Miscellaneous Out-of-core Files ;;;
16 ;;; ;;;
17 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
19 (macsyma-module outmis)
22 (declare-top (special $exptisolate))
24 (defmvar $exptisolate nil
25 nil
26 :properties ((evflag t)))
27 (defmvar $isolate_wrt_times nil
28 nil
29 :properties ((evflag t)))
31 (defmfun $isolate (e *xvar)
32 (iso1 e (getopr *xvar)))
34 (defun iso1 (e *xvar)
35 (cond ((specrepp e) (iso1 (specdisrep e) *xvar))
36 ((and (free e 'mplus) (or (null $isolate_wrt_times) (free e 'mtimes))) e)
37 ((freeof *xvar e) (mgen2 e))
38 ((alike1 *xvar e) *xvar)
39 ((member (caar e) '(mplus mtimes) :test #'eq) (iso2 e *xvar))
40 ((eq (caar e) 'mexpt)
41 (cond ((null (atom (cadr e))) (list (car e) (iso1 (cadr e) *xvar) (caddr e)))
42 ((or (alike1 (cadr e) *xvar) (not $exptisolate)) e)
43 (t (let ((x ($rat (caddr e) *xvar)) (u 0) (h 0))
44 (setq u (ratdisrep ($ratnumer x)) x (ratdisrep ($ratdenom x)))
45 (if (not (equal x 1))
46 (setq u ($multthru (list '(mexpt) x -1) u)))
47 (if (mplusp u)
48 (setq u ($partition u *xvar) h (cadr u) u (caddr u)))
49 (setq u (power* (cadr e) (iso1 u *xvar)))
50 (cond ((not (equal h 0))
51 (mul2* (mgen2 (power* (cadr e) h)) u))
52 (t u))))))
53 (t (cons (car e) (mapcar #'(lambda (e1) (iso1 e1 *xvar)) (cdr e))))))
55 (defun iso2 (e *xvar)
56 (prog (hasit doesnt op)
57 (setq op (ncons (caar e)))
58 (do ((i (cdr e) (cdr i))) ((null i))
59 (cond ((freeof *xvar (car i)) (setq doesnt (cons (car i) doesnt)))
60 (t (setq hasit (cons (iso1 (car i) *xvar) hasit)))))
61 (cond ((null doesnt) (go ret))
62 ((and (null (cdr doesnt)) (atom (car doesnt))) (go ret))
63 ((prog2 (setq doesnt (simplify (cons op doesnt)))
64 (and (free doesnt 'mplus)
65 (or (null $isolate_wrt_times)
66 (free doesnt 'mtimes)))))
67 (t (setq doesnt (mgen2 doesnt))))
68 (setq doesnt (ncons doesnt))
69 ret (return (simplifya (cons op (nconc hasit doesnt)) nil))))
71 (defun mgen2 (h)
72 (cond ((memsimilarl h (cdr $labels) (getlabcharn $linechar)))
73 (t (setq h (displine h)) (and $dispflag (mterpri)) h)))
75 (defun memsimilarl (item list linechar)
76 (cond ((null list) nil)
77 ((and (char= (getlabcharn (car list)) linechar)
78 (boundp (car list))
79 (memsimilar item (car list) (symbol-value (car list)))))
80 (t (memsimilarl item (cdr list) linechar))))
82 (defun memsimilar (item1 item2 item2ev)
83 (cond ((equal item2ev 0) nil)
84 ((alike1 item1 item2ev) item2)
85 (t (let ((errorsw t) r)
86 (setq r (catch 'errorsw (div item2ev item1)))
87 (and (mnump r) (not (zerop1 r)) (div item2 r))))))
89 (defmfun $pickapart (x lev)
90 (setq x (format1 x))
91 (cond ((not (fixnump lev))
92 (merror (intl:gettext "pickapart: second argument must be an integer; found: ~M") lev))
93 ((or (atom x) (and (eq (caar x) 'mminus) (atom (cadr x)))) x)
94 ((= lev 0) (mgen2 x))
95 ((and (atom (cdr x)) (cdr x)) x)
96 (t (cons (car x) (mapcar #'(lambda (y) ($pickapart y (1- lev))) (cdr x))))))
98 (defmfun $reveal (e lev)
99 (setq e (format1 e))
100 (if (and (fixnump lev) (plusp lev))
101 (reveal e 1 lev)
102 (merror (intl:gettext "reveal: second argument must be a positive integer; found: ~M") lev)))
104 (defun simple (x)
105 (or (atom x) (member (caar x) '(rat bigfloat) :test #'eq)))
107 (defun reveal (e nn lev)
108 (cond ((simple e) e)
109 ((= nn lev)
110 (cond ((eq (caar e) 'mplus) (cons '(|$Sum| simp) (ncons (length (cdr e)))))
111 ((eq (caar e) 'mtimes) (cons '(|$Product| simp) (ncons (length (cdr e)))))
112 ((eq (caar e) 'mexpt) '|$Expt|)
113 ((eq (caar e) 'mquotient) '|$Quotient|)
114 ((eq (caar e) 'mminus) '|$Negterm|)
115 ((eq (caar e) 'mlist)
116 (cons '(|$List| simp) (ncons (length (cdr e)))))
117 (t (getop (mop e)))))
118 (t (let ((u (cond ((member 'simp (cdar e) :test #'eq) (car e))
119 (t (cons (caar e) (cons 'simp (cdar e))))))
120 (v (mapcar #'(lambda (x) (reveal (format1 x) (1+ nn) lev))
121 (margs e))))
122 (cond ((eq (caar e) 'mqapply) (cons u (cons (cadr e) v)))
123 ((eq (caar e) 'mplus) (cons u (nreverse v)))
124 (t (cons u v)))))))
126 (defmspec $properties (x)
127 (setq x (getopr (fexprcheck x)))
128 (unless (or (symbolp x) (stringp x))
129 (merror
130 (intl:gettext "properties: argument must be a symbol or a string.")))
131 (let ((u (properties x)) (v (or (safe-get x 'noun) (safe-get x 'verb))))
132 (if v (nconc u (cdr (properties v))) u)))
134 (defun properties (x)
135 (if (stringp x)
136 ; AT THIS POINT WE MIGHT WANT TO TRY TO TEST ALL CHARS IN STRING ...
137 (if (and (> (length x) 0) (member (char x 0) *alphabet*))
138 '((mlist) $alphabetic)
139 '((mlist)))
140 (do ((y (symbol-plist x) (cddr y))
141 (l (cons '(mlist simp) (and (boundp x)
142 (if (optionp x) (ncons "system value")
143 (ncons '$value)))))
144 (prop))
145 ((null y)
146 (if (member x (cdr $features) :test #'eq) (nconc l (ncons '$feature)))
147 (if (member x (cdr $contexts) :test #'eq) (nconc l (ncons '$context)))
148 (if (member x (cdr $activecontexts) :test #'eq)
149 (nconc l (ncons '$activecontext)))
150 (cond ((null (symbol-plist x))
151 (if (fboundp x) (nconc l (list "system function")))))
154 ;; TOP-LEVEL PROPERTIES
155 (cond ((setq prop
156 (assoc (car y)
157 `((bindtest . $bindtest)
158 (sp2 . $deftaylor)
159 (sp2subs . $deftaylor)
160 (assign . "assign property")
161 (nonarray . $nonarray)
162 (grad . $gradef)
163 (integral . $integral)
164 (distribute_over . "distributes over bags")
165 (simplim%function . "limit function")
166 (conjugate-function . "conjugate function")
167 (commutes-with-conjugate . "mirror symmetry")
168 (risplit-function . "complex characteristic")
169 (noun . $noun)
170 (evfun . $evfun)
171 (evflag . $evflag)
172 (op . $operator)) :test #'eq))
173 (nconc l (ncons (cdr prop))))
174 ((setq prop (member (car y) opers :test #'eq))
175 (nconc l (list (car prop))))
176 ((and (eq (car y) 'operators) (not (or (eq (cadr y) 'simpargs1) (eq (cadr y) nil))))
177 (nconc l (list '$rule)))
178 ((and (member (car y) '(fexpr fsubr mfexpr*s mfexpr*) :test #'eq)
179 (nconc l (ncons "special evaluation form"))
180 nil))
181 ((and (or (get (car y) 'mfexpr*) (fboundp x))
182 ;; Do not add more than one entry to the list.
183 (not (member '$transfun l))
184 (not (member '$rule l))
185 (not (member "system function" l :test #'equal)))
186 (nconc l
187 (list (cond ((get x 'translated) '$transfun)
188 ((mgetl x '($rule ruleof)) '$rule)
189 (t "system function")))))
190 ((and (eq (car y) 'autoload)
191 (not (member "system function" l :test #'equal)))
192 (nconc l (ncons (if (member x (cdr $props) :test #'eq)
193 "user autoload function"
194 "system function"))))
195 ((and (eq (car y) 'reversealias)
196 (member (car y) (cdr $aliases) :test #'eq))
197 (nconc l (ncons '$alias)))
198 ((eq (car y) 'data)
199 (nconc l (cons "database info" (cdr ($facts x)))))
200 ((eq (car y) 'mprops)
201 ;; PROPS PROPERTIES
202 (do ((y
203 (cdadr y)
204 (cddr y)))
205 ((null y))
206 (cond ((setq prop (assoc (car y)
207 `((mexpr . $function)
208 (mmacro . $macro)
209 (hashar . "hashed array")
210 (aexpr . "array function")
211 (atvalues . $atvalue)
212 ($atomgrad . $atomgrad)
213 ($numer . $numer)
214 (depends . $dependency)
215 ($nonscalar . $nonscalar)
216 ($scalar . $scalar)
217 (matchdeclare . $matchdeclare)
218 (mode . $modedeclare)) :test #'eq))
219 (nconc l (list (cdr prop))))
220 ((eq (car y) 'array)
221 (nconc l
222 (list (cond ((get x 'array) "complete array")
223 (t "declared array")))))
224 ((and (eq (car y) '$props) (cdadr y))
225 (nconc l
226 (do ((y (cdadr y) (cddr y))
227 (l (list '(mlist) "user properties")))
228 ((null y) (list l))
229 (nconc l (list (car y)))))))))))))
231 (defmspec $propvars (x)
232 (setq x (fexprcheck x))
233 (do ((iteml (cdr $props) (cdr iteml)) (propvars (ncons '(mlist))))
234 ((null iteml) propvars)
235 (and (among x (meval (list '($properties) (car iteml))))
236 (nconc propvars (ncons (car iteml))))))
238 (defmspec $printprops (r) (setq r (cdr r))
239 (if (null (cdr r)) (merror (intl:gettext "printprops: requires two arguments.")))
240 (let ((s (cadr r)))
241 (setq r (car r))
242 (setq r (cond ((atom r)
243 (cond ((eq r '$all)
244 (cond ((eq s '$gradef) (mapcar 'caar (cdr $gradefs)))
245 (t (cdr (meval (list '($propvars) s))))))
246 (t (ncons r))))
247 (t (cdr r))))
248 (cond ((eq s '$atvalue) (dispatvalues r))
249 ((eq s '$atomgrad) (dispatomgrads r))
250 ((eq s '$gradef) (dispgradefs r))
251 ((eq s '$matchdeclare) (dispmatchdeclares r))
252 (t (merror (intl:gettext "printprops: unknown property ~:M") s)))))
254 (defun dispatvalues (l)
255 (do ((l l (cdr l)))
256 ((null l))
257 (do ((ll (mget (car l) 'atvalues) (cdr ll)))
258 ((null ll))
259 (mtell-open "~M~%"
260 (list '(mlabel) nil
261 (list '(mequal)
262 (atdecode (car l) (caar ll) (cadar ll)) (caddar ll))))))
263 '$done)
265 (defun atdecode (fun dl vl)
266 (setq vl (copy-list vl))
267 (atvarschk vl)
268 (let ((eqs nil) (nvarl nil))
269 (cond ((not (member nil (mapcar #'(lambda (x) (signp e x)) dl) :test #'eq))
270 (do ((vl vl (cdr vl)) (varl atvars (cdr varl)))
271 ((null vl))
272 (and (eq (car vl) munbound) (rplaca vl (car varl))))
273 (cons (list fun) vl))
274 (t (setq fun (cons (list fun)
275 (do ((n (length vl) (1- n))
276 (varl atvars (cdr varl))
277 (l nil (cons (car varl) l)))
278 ((zerop n) (nreverse l)))))
279 (do ((vl vl (cdr vl)) (varl atvars (cdr varl)))
280 ((null vl))
281 (and (not (eq (car vl) munbound))
282 (setq eqs (cons (list '(mequal) (car varl) (car vl)) eqs))))
283 (setq eqs (cons '(mlist) (nreverse eqs)))
284 (do ((varl atvars (cdr varl)) (dl dl (cdr dl)))
285 ((null dl) (setq nvarl (nreverse nvarl)))
286 (and (not (zerop (car dl)))
287 (setq nvarl (cons (car dl) (cons (car varl) nvarl)))))
288 (list '(%at) (cons '(%derivative) (cons fun nvarl)) eqs)))))
290 (defun dispatomgrads (l)
291 (do ((i l (cdr i)))
292 ((null i))
293 (do ((j (mget (car i) '$atomgrad) (cdr j)))
294 ((null j))
295 (mtell-open "~M~%"
296 (list '(mlabel) nil
297 (list '(mequal)
298 (list '(%derivative) (car i) (caar j) 1) (cdar j))))))
299 '$done)
301 (defun dispgradefs (l)
302 (do ((i l (cdr i)))
303 ((null i))
304 (setq l (get (car i) 'grad))
305 (do ((j (car l) (cdr j))
306 (k (cdr l) (cdr k))
307 (thing (cons (ncons (car i)) (car l))))
308 ((or (null k) (null j)))
309 (mtell-open "~M~%"
310 (list '(mlabel)
311 nil (list '(mequal) (list '(%derivative) thing (car j) 1.) (car k))))))
312 '$done)
314 (defun dispmatchdeclares (l)
315 (do ((i l (cdr i))
316 (ret))
317 ((null i) (cons '(mlist) (reverse ret)))
318 (setq l (car (mget (car i) 'matchdeclare)))
319 (setq ret (cons (append (cond ((atom l) (ncons (ncons l))) ((eq (caar l) 'lambda) (list '(mqapply) l)) (t l))
320 (ncons (car i)))
321 ret))))
323 (declare-top (special *roots *failures))
325 (defmfun $changevar (expr trans nvar ovar)
326 (let ($ratfac)
327 (cond ((or (atom expr) (eq (caar expr) 'rat) (eq (caar expr) 'mrat))
328 expr)
329 ((atom trans)
330 (merror (intl:gettext "changevar: second argument must not be an atom; found: ~M") trans))
331 ((null (atom nvar))
332 (merror (intl:gettext "changevar: third argument must be an atom; found: ~M") nvar))
333 ((null (atom ovar))
334 (merror (intl:gettext "changevar: fourth argument must be an atom; found: ~M") ovar)))
335 (changevar expr trans nvar ovar)))
337 (defun solvable (l var &optional (errswitch nil))
338 (let (*roots *failures)
339 (solve l var 1)
340 (cond (*roots
341 ;; We arbitrarily pick the first root. Should we be more careful?
342 ($rhs (car *roots)))
343 (errswitch (merror (intl:gettext "changevar: failed to solve for ~M in ~M") var l))
344 (t nil))))
346 (defun changevar (expr trans nvar ovar)
347 (cond ((atom expr) expr)
348 ((or (not (member (caar expr) '(%integrate %sum %product) :test #'eq))
349 (not (alike1 (caddr expr) ovar)))
350 (recur-apply (lambda (e) (changevar e trans nvar ovar)) expr))
352 ;; TRANS is the expression that relates old var and new var
353 ;; and is of the form f(ovar, nvar) = 0. Using TRANS, try to
354 ;; solve for ovar so that ovar = tfun(nvar), if possible.
355 (let* ((tfun (solvable (setq trans (meqhk trans)) ovar))
356 (deriv
357 ;; Compute diff(tfun, nvar) = dovar/dnvar if tfun is
358 ;; available. Otherwise, use implicit
359 ;; differentiation.
360 (if tfun
361 (sdiff tfun nvar)
362 (neg (div (sdiff trans nvar) ;IMPLICIT DIFF.
363 (sdiff trans ovar)))))
364 (sum-product-p (member (caar expr) '(%sum %product) :test #'eq)))
366 #+nil
367 (progn
368 (mformat t "tfun = ~M~%" tfun)
369 (mformat t "deriv = ~M~%" deriv))
371 ;; For sums and products, we want deriv to be +/-1 because
372 ;; I think that means that integers will map into integers
373 ;; (roughly), so that we don't need to express the
374 ;; summation index or limits in some special way to account
375 ;; for it.
376 (when (and (member (caar expr) '(%sum %product) :test #'eq)
377 (not (or (equal deriv 1)
378 (equal deriv -1))))
379 (merror (intl:gettext "changevar: illegal change in summation or product")))
381 (let ((nfun ($radcan ;NIL IF KERNSUBST FAILS
382 (if tfun
383 (mul (maxima-substitute tfun ovar (cadr expr))
384 ;; Don't multiply by deriv
385 ;; for sums/products because
386 ;; reversing the order of
387 ;; limits doesn't change the
388 ;; sign of the result.
389 (if sum-product-p 1 deriv))
390 (kernsubst ($ratsimp (mul (cadr expr)
391 deriv))
392 trans ovar)))))
393 (cond
394 (nfun
395 ;; nfun is basically the result of substituting ovar
396 ;; with tfun in the integrand (summand).
397 (cond
398 ((cdddr expr)
399 ;; Handle definite integral, summation, or product.
400 ;; invfun expresses nvar in terms of ovar so that
401 ;; we can compute the new lower and upper limits of
402 ;; the integral (sum).
403 (let* ((invfun (solvable trans nvar t))
404 (lo-limit ($limit invfun ovar (cadddr expr) '$plus))
405 (hi-limit ($limit invfun
406 ovar
407 (car (cddddr expr))
408 '$minus)))
409 ;; If this is a sum or product and deriv = -1, we
410 ;; want to reverse the low and high limits.
411 (when (and sum-product-p (equal deriv -1))
412 (rotatef lo-limit hi-limit))
414 ;; Construct the new result.
415 (list (ncons (caar expr))
416 nfun
417 nvar
418 lo-limit
419 hi-limit)))
421 ;; Indefinite integral
422 (list '(%integrate) nfun nvar))))
423 (t expr)))))))
425 (defun kernsubst (expr form ovar)
426 (let (varlist genvar nvarlist)
427 (newvar expr)
428 (setq nvarlist (mapcar #'(lambda (x) (if (freeof ovar x) x
429 (solvable form x)))
430 varlist))
431 (if (member nil nvarlist :test #'eq) nil
432 (prog2 (setq expr (ratrep* expr)
433 varlist nvarlist)
434 (rdis (cdr expr))))))
436 (declare-top (special facfun))
438 (defmfun $factorsum (e)
439 (factorsum0 e '$factor))
441 (defmfun $gfactorsum (e)
442 (factorsum0 e '$gfactor))
444 (defun factorsum0 (e facfun)
445 (cond ((mplusp (setq e (funcall facfun e)))
446 (factorsum1 (cdr e)))
447 (t (factorsum2 e))))
449 (defun factorsum1 (e)
450 (prog (f lv llv lex cl lt c)
451 loop (setq f (car e))
452 (setq lv (cdr ($showratvars f)))
453 (cond ((null lv) (setq cl (cons f cl)) (go skip)))
454 (do ((q llv (cdr q)) (r lex (cdr r)))
455 ((null q))
456 (cond ((intersect (car q) lv)
457 (rplaca q (union* (car q) lv))
458 (rplaca r (cons f (car r)))
459 (return (setq lv nil)))))
460 (or lv (go skip))
461 (setq llv (cons lv llv) lex (cons (ncons f) lex))
462 skip (and (setq e (cdr e)) (go loop))
463 (or cl (go skip2))
464 (do ((q llv (cdr q)) (r lex (cdr r)))
465 ((null q))
466 (cond ((and (null (cdar q)) (cdar r))
467 (rplaca r (nconc cl (car r)))
468 (return (setq cl nil)))))
469 skip2 (setq llv nil lv nil)
470 (do ((r lex (cdr r)))
471 ((null r))
472 (cond ((cdar r)
473 (setq llv
474 (cons (factorsum2 (funcall facfun (cons '(mplus) (car r))))
475 llv)))
476 ((or (not (mtimesp (setq f (caar r))))
477 (not (mnump (setq c (cadr f)))))
478 (setq llv (cons f llv)))
479 (t (do ((q lt (cdr q)) (s lv (cdr s)))
480 ((null q))
481 (cond ((alike1 (car s) c)
482 (rplaca q (cons (dcon f) (car q)))
483 (return (setq f nil)))))
484 (and f
485 (setq lv (cons c lv)
486 lt (cons (ncons (dcon f)) lt))))))
487 (setq lex
488 (mapcar #'(lambda (s q)
489 (simptimes (list '(mtimes) s
490 (cond ((cdr q)
491 (cons '(mplus) q))
492 (t (car q))))
493 1 nil))
494 lv lt))
495 (return (simplus (cons '(mplus) (nconc cl lex llv)) 1 nil))))
497 (defun dcon (mt)
498 (cond ((cdddr mt) (cons (car mt) (cddr mt))) (t (caddr mt))))
500 (defun factorsum2 (e)
501 (cond ((not (mtimesp e)) e)
502 (t (cons '(mtimes)
503 (mapcar #'(lambda (f)
504 (cond ((mplusp f)
505 (factorsum1 (cdr f)))
506 (t f)))
507 (cdr e))))))
509 (declare-top (special $combineflag))
511 (defmvar $combineflag t)
513 (defmfun $combine (e)
514 (cond ((or (atom e) (eq (caar e) 'rat)) e)
515 ((eq (caar e) 'mplus) (combine (cdr e)))
516 (t (recur-apply #'$combine e))))
518 (defun combine (e)
519 (prog (term r ld sw nnu d ln xl)
520 again(setq term (car e) e (cdr e))
521 (when (or (not (or (ratnump term) (mtimesp term) (mexptp term)))
522 (equal (setq d ($denom term)) 1))
523 (setq r (cons term r))
524 (go end))
525 (setq nnu ($num term))
526 (and $combineflag (integerp d) (setq xl (cons term xl)) (go end))
527 (do ((q ld (cdr q)) (p ln (cdr p)))
528 ((null q))
529 (cond ((alike1 (car q) d)
530 (rplaca p (cons nnu (car p)))
531 (return (setq sw t)))))
532 (and sw (go skip))
533 (setq ld (cons d ld) ln (cons (ncons nnu) ln))
534 skip (setq sw nil)
535 end (and e (go again))
536 (and xl (setq xl (cond ((cdr xl) ($xthru (addn xl t)))
537 (t (car xl)))))
538 (mapc
539 #'(lambda (nu de)
540 (setq r (cons (mul2 (addn nu nil) (power* de -1)) r)))
541 ln ld)
542 (return (addn (if xl (cons xl r) r) nil))))
544 (defmfun $factorout (e &rest vl)
545 (prog (el fl cl l f x)
546 (when (null vl)
547 (merror (intl:gettext "factorout: at least two arguments required.")))
548 (unless (mplusp e)
549 (return e))
550 (or (null vl) (mplusp e) (return e))
551 (setq e (cdr e))
552 loop (setq f (car e) e (cdr e))
553 (unless (mtimesp f)
554 (setq f (list '(mtimes) 1 f)))
555 (setq fl nil cl nil)
556 (do ((i (cdr f) (cdr i)))
557 ((null i))
558 (if (and (not (numberp (car i)))
559 (apply '$freeof (append vl (ncons (car i)))))
560 (setq fl (cons (car i) fl))
561 (setq cl (cons (car i) cl))))
562 (when (null fl)
563 (push f el)
564 (go end))
565 (setq fl (if (cdr fl)
566 (simptimes (cons '(mtimes) fl) 1 nil)
567 (car fl)))
568 (setq cl (cond ((null cl) 1)
569 ((cdr cl) (simptimes (cons '(mtimes) cl) 1 t))
570 (t (car cl))))
571 (setq x t)
572 (do ((i l (cdr i)))
573 ((null i))
574 (when (alike1 (caar i) fl)
575 (rplacd (car i) (cons cl (cdar i)))
576 (setq i nil x nil)))
577 (when x
578 (push (list fl cl) l))
579 end (when e (go loop))
580 (do ((i l (cdr i)))
581 ((null i))
582 (push (simptimes (list '(mtimes) (caar i)
583 ($factorsum (simplus (cons '(mplus) (cdar i)) 1 nil))) 1 nil) el))
584 (return (addn el nil))))