
TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG
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Summary

Engineering design tasks require frequently the solution of systems of equations, which describe
an object mathematically, along the values of the function defining components and parame-
ters. For the analytic solution of lower dimensioning problems the use of commercial computer
algebra systems such as Maxima are helpful, which are able, to manipulate extensive equations
algebraically and to solve them symbolically using their variables.

Despite their high capabilities these systems are however usually already overwhelmed, if
linear or weakly nonlinear, parameterized sets of equations are to be solved after only a subset of
their variables or be before-processed at least symbolically. In order to be able to treat such sets
of equations, typically with draft tasks in the context of this work, a universal symbolic equation
solver based on heuristic algorithms was developed and implemented in Maxima. The program
module SOLVER extends the functionality of the Maxima commands SOLVE and LINSOLVE for
the symbolic solution of algebraic equations or systems of linear equations by the ability for the
selective solution of nonlinear, parameterized systems with some degrees of freedom.

The first chapter of this work describes some areas of application of symbolic analysis meth-
ods, the respective requirements following from them to a symbolic equation solver as well as the
used heuristic algorithms for the extraction of linear equations and for the complexity valuation
of algebraic functions. The second chapter contains an overview of the structure of the Solvers
and guidance to its use. In the appendix is the source text of the module implemented in the
internal higher programming language of Maxima, SOLVER.MAC.
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Chapter 1

Heuristic algorithms for symbolic
solution of systems of equations

1.1 Introduction

1.1.1 Numerical Methods compared to Symbolic Methods

Engineering design for given specifications often requires the solution of nonlinear systems of
equations after defining component element parameters. Usually for the determination of the
wanted variables numeric optimizing procedures are used, which do not function reliably however
already for small design problems with a comparatively small number of unknowns. Above all,
the complexity order of many usual optimizing algorithms is exponentially dependent on the
number of variables, which cause problems (a problem, known as the curse of dimensionality
[MIC 94] is), then the selection of suitable initial values, the unwanted finding of locally instead of
global optima and the principle-conditioned behavior during the solution of systems of equations
with degrees of freedom, with which a uniqueness of the solution vector is not realizable.

The best procedure for the accomplishment of a design task would basically be a complete
analytic solution of the corresponding system of equations. Analytic functions, which describe
explicitly the wanted values as functions of the specification parameters, would have to be
determined only once and would be available afterwards to the arbitrarily frequent evaluation
with modified parameters, e.g. within design data bases of CAD systems. Besides analytic
dimensioning formulas clarify qualitatively functional connections between the element values
and the specifications and reveal in the relevant cases the existence of degrees of freedom. Since
there exists however no generally accepted procedures for the solution of nonlinear systems
of equations and in those special cases, in which symbolic solutions can be calculated, the
complexity of the results far exceeds by hand calculation to mastering frameworks, the analytic
handling of very low dimensioning problems plays so far a subordinated role.

With the help of modern, efficient computer algebra systems, which are able to manipulate
systems of symbolic equations algebraically, and solve using arbitrary variables, become some
of these problem categories nevertheless accessible for an analytic handling. In particular such
problems, specified above, which require the solution of linear or multivariate polynomial sys-
tems. Examples of such applications are within many fields of engineering sciences, such as the
design of analog electronic circuits, regulation-technical problems, engineering mechanics and
robotics [PFA 94].

1



CHAPTER 1. HEURISTIC ALGORITHMS 2

1.1.2 Examples of Areas of Application of Symbolic Design Methods

On the basis of the following two examples we demonstrate some areas of application of symbolic
methods. At the same time, the concrete requirements should be worked out at them, which
must be considered with respect to the development of a universal solution algorithm for symbolic
systems of equations .

Example 1.1.

The first example concerns a simple task of engineering mechanics. Given is the two rod truss
represented in figure 1.1, [BRO 88, S. 112], at which under the angle γ opposite the horizontals
the force F attacks in the point C. The rods form the angles α and β with the horizontals, the
height of the triangle stretched by the rods are denoted with c. The Cross sections A1 and A2

of the two rods are squares with the side lengths h1 and h2. The modulus of elasticity of the
material used is E.

Figure 1.1:
Loaded two rod truss (in German: ’Stabzweischlag’)

Due to the load by the force F the truss deforms in such a way, that the point of the triangle
in relation to the unloaded status around the vector (u,w)T shifts, see figure 1.2. On the
assumption that the rod lengths variations are small due to the load in relation to the original
lengths, now the cross section dimensions h1 and h2 of the rods are to be determined in such a
way, that for given F , α, β, γ, c and E there results exactly one prescribed shift (u,w)T , i.e. we
look for

(
a1
a2

)
= f(F, α, β, γ, c, E, u, w). (1.1)
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Figure 1.2:
Two rod truss elastic displacements

Solution: From the static equilibrium conditions at the point C it follows after figure 1.3∑
Fxi = 0 =⇒ F cos γ − S1 cosα− S2 cosβ = 0, (1.2)∑
Fzi = 0 =⇒ F sin γ − S1 sinα+ S2 sinβ = 0. (1.3)

Free body diagram

Figure 1.3:
Equilibrium of forces at point C

The material equations for the variations of the rod lengths are

∆l1 =
S1l1
EA1

, (1.4)

∆l2 =
S2l2
EA2

, (1.5)

whereby for the rod lengths l1 and l2 and for the cross-section areas A1 and A2 we have

l1 =
c

cosα
(1.6)

l2 =
c

cosβ
(1.7)

A1 = h21, (1.8)

A2 = h22. (1.9)
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Figure 1.4:
Displacement plan

In the displacement diagram, drawn in figure 1.4, we replaced the circular arcs, on which the
rod ends can move, by the tangents perpendicular to the original rod directions. This is possible,
because of the small geometry variations. For the side lengths of the dashed parallelogram we
have

a =
∆l2

cos(90◦ − α− β)
=

∆l2
sin(α+ β)

, (1.10)

b =
∆l1

cos(90◦ − α− β)
=

∆l1
sin(α+ β)

. (1.11)

Therefore we have for the shifts u and v

u = a sinα+ b sinβ, (1.12)

v = −a cosα+ b cosβ. (1.13)

The task is now, to solve the symbolic set of equations from the equations (1.2) through
(1.13) for the unknowns h1 and h2 explicitly, whereby all unnecessary variables, i.e. S1, S2, A1,
A2, ∆l1, ∆l2, a and b, are to be eliminated.

�

Example 1.2.

The second example originates from electro-technology and concerns the design of analog
electronic circuits. For the two-stage transistor amplifier drawn in figure 1.5 [N”UH 89], there
are circuit design equations to be determined, which describe the values of the seven resistances
R1 . . . R7 as function of the operating voltage VCC , of the small signal amplification A, of
the input resistance Zi and the output resistance Zo of the circuit for numerically determined
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operating points of the transistors: R1
...
R7

 = f(VCC , A, Zi, Zo). (1.14)

Figure 1.5:
Two-stage transistor amplifier

Figure 1.6:
Small signal equivalent circuit diagram of the amplifier with
specified transistor operating points

For this purpose, with the help of symbolic network analysis procedures [SOM 93a] as well as
symbolic approximation methods [HEN 93], at first the (highly simplified) transfer functions A,
Zi and Zo in the pass band of the amplifier are calculated as functions of the element parameters
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and the operating point values.

A =
145303681853R2

145309663773R1
(1.15)

Zi = R7 (1.16)

Zo =
1675719398828125R2 R7 + 394048139880824192R1 R2

136552890630303121408R1
(1.17)

The values of the resistances R1 . . . R7 do not only determine the small signal characteristics,
but determine the operating point of the circuit. Therefore the resistances are to be determined
in such a way, that the small signal and the operating point specifications are fulfilled at the
same time. For this reason, an extensive sparse tablet set of equations (1.18) – (1.51) is added
to the equations (1.15) – (1.17), which comes out of the small signal circuit diagram of the
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amplifier represented in figure 1.6.

IVIN + IC1 = 0 (1.18)

IR7 + IFIX2,Q1 − IC1 = 0 (1.19)

IR2 + I R1 − IFIX2,Q1 − IFIX1,Q1 = 0 (1.20)

IR6 + IFIX2,Q2 + IFIX1,Q1 = 0 (1.21)

−IR7 + IR5 + IR4 = 0 (1.22)

−IR4 − IFIX2,Q2 − IFIX1,Q2 + IC2 = 0 (1.23)

IR3 − IR2 + IFIX1,Q2 = 0 (1.24)

IVCC − IR6 − IR3 = 0 (1.25)

−VVIN + VR1 + VFIX2,Q1 + VC1 = 0 (1.26)

−VR2 + VFIX2,Q2 − VFIX1,Q2 − VFIX1,Q1 = 0 (1.27)

−VR6 + VR3 + VR2 + VFIX1,Q1 = 0 (1.28)

VR7 + VR4 − VR2 − VFIX2,Q1 − VFIX1,Q2 = 0 (1.29)

−VVIN + VR7 + VR5 + VC1 = 0 (1.30)

−VVIN + VR2 + VFIX2,Q1 + VFIX1,Q2 + VC2 + VC1 = 0 (1.31)

VVCC − VVIN + VR6 + VFIX2,Q1 − VFIX1,Q1 + VC1 = 0 (1.32)

R1 · IR1 − VR1 = 0 (1.33)

R2 · IR2 − VR2 = 0 (1.34)

R3 · IR3 − VR3 = 0 (1.35)

R4 · IR4 − VR4 = 0 (1.36)

R5 · IR5 − VR5 = 0 (1.37)

R6 · IR6 − VR6 = 0 (1.38)

R7 · IR7 − VR7 = 0 (1.39)

−IC1 = 0 (1.40)

−IC2 = 0 (1.41)

VVIN = 0 (1.42)

VVCC = V CC (1.43)

VFIX1,Q1 = 2.72 (1.44)

VFIX2,Q1 = 0.607 (1.45)

VFIX1,Q2 = 6.42 (1.46)

VFIX2,Q2 = 0.698 (1.47)

IFIX2,Q2 = 1.26 · 10−5 (1.48)

IFIX1,Q2 = 0.00401 (1.49)

IFIX2,Q1 = 5.75 · 10−7 (1.50)

IFIX1,Q1 = 1.11 · 10−4 (1.51)

For the determination of the wanted dimensioning regulations in the form (1.14) from the set of
equations (1.15) – (1.51) all branch voltages and current flows V?? and I?? are to be eliminated
and the remaining equations solved for the resistances R1 . . . R7.

�
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1.2 Limits of the Application of Conventional Equation Solvers

If an attempt is undertaken to use the standard routines of well-known commercial computer al-
gebra systems like Macsyma [MAC 94] or Mathematica [WOL 91] for the solution of the systems
of equations from the two examples from above, then in the case of use of Maxima/Macsyma in
the example 1.1 we get usually the following typeof result, like here:

(COM1) Solve(

[

F*cos(gamma) - S1*cos(alpha) - S2*cos(beta) = 0,

F*sin(gamma) - S1*sin(alpha) + S2*sin(beta) = 0,

Delta_l1 = l1*S1/(E*A1),

Delta_l2 = l2*S2/(E*A2),

l1 = c/cos(alpha),

l2 = c/cos(beta),

a = Delta_l2/sin(alpha+beta),

b = Delta_l1/sin(alpha+beta),

u = a*sin(alpha) + b*sin(beta),

w = -a*cos(alpha) + b*cos(beta),

A1 = h1^2,

A2 = h2^2

],

[h1, h2]

);

(D1) [ ]

(COM1) Solve(

[

F*cos(gamma) - S1*cos(alpha) - S2*cos(beta) = 0,

F*sin(gamma) - S1*sin(alpha) + S2*sin(beta) = 0,

Delta_l1 = l1*S1/(E*A1),

Delta_l2 = l2*S2/(E*A2),

l1 = c/cos(alpha),

l2 = c/cos(beta),

a = Delta_l2/sin(alpha+beta),

b = Delta_l1/sin(alpha+beta),

u = a*sin(alpha) + b*sin(beta),

w = -a*cos(alpha) + b*cos(beta),

A1 = h1^2,

A2 = h2^2

],

[h1, h2]

);

(D1) []
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This behavior of the computer algebra systems is explained with the fact, that the systems
of equations to be solved for the interesting variables h1 and h2 are regarded as over-determined,
because the equation solvers cannot be given additional information about (after possibility) the
to be eliminated variables (S1, S2, A1, A2, ∆l1, ∆l2, a, b) resp. the parameters of the system
(F , α, β, γ, c, E, u, w), which should not be eliminated under any circumstances.

A possible way out for the equation solvers consists in letting them determine also solutions
for the not interesting variables. However, this is not always feasible and usually very inefficient,
because in some cases much computing time is necessary for the calculation of variables, which
have no impact on the looked for unknowns. Even at all, no solution is found, if there is no
analytic solution for only one not interesting variable. The latter applies for example to the
following system of equations, if only the solutions for x and y are looked for:

x+ y = 1 (1.52)

2x− y = 5 (1.53)

yz + sin z = 1. (1.54)

From the two linear equations (1.52) and (1.53) the solutions x = 2 and y = −1 are determined
directly, not in the contradiction with the remaining nonlinear equation (1.54). Maxima does
not detects this circumstance and gives back only error messages – in the first attempt (COM3)
due to the apparent over-determinacy of the system, in the second attempt (COM4) due to the
analytically not solvable third equation:

(COM2) Eq : [x + y = 1, 2*x - y = 5, y*z + sin(z) = 1]$

(COM3) Solve( Eq, [x, y] );

Inconsistent equations: (3)

(COM4) Solve( Eq, [x, y, z] );

ALGSYS cannot solve - system too complicated.

(COM2) Eq : [x + y = 1, 2*x - y = 5, y*z + sin(z) = 1]$

(COM3) Solve( Eq, [x, y] );

Inconsistent equations: (3)

(COM4) Solve( Eq, [x, y, z] );

ALGSYS cannot solve - system too complicated.

1.3 Requirements to an Universal Symbolic Equation Solver

For the symbolic solution of the system of equations, it is necessary that the Solve function
in none of the two above cases aborts prematurely. In the first case, after a consistency check
with equation (1.54), the solutions x and y should be returned. In the latter case it is to be
desired, that beside the analytically calculated solutions, the remaining equations, for which no
such solutions could be found, should be returned additionally in implicit form – so that these
could be solved with numerical methods. An adequate response to the command COM4 would
then be e.g. an output of the form

[x = 2, y = −1, −z + sin z = 1] .
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The functions for the solution of sets of equations, provided by Maxima, are not modifiable
without access to the system core in the way that they show the required behavior. The aim of
this report is therefore a conceptualization and implementation of a universal symbolic equation
solver, which is based on Maxima standard routines, which is able to solve sets of equations of
the type stated in the examples after any subset of all variables. Or at least by elimination of not
necessary variables as much as possible to do a large symbolic preprocessing of the equations, so
that numeric optimizing procedures do have only be applied to a small, analytically not solvable
nonlinear core of the system.

Apart from this general objective, detailed requirements can be derived for the developed
program from some well-known facts and a series of observations, which came from the examples
1.1 and 1.2 as well as the system of equations (1.52) – (1.54):

1. Usually only the solution for some few variables is asked for, all other unknowns are to be
eliminated.

2. The sets of equations which are to be solved can be one times or more times parameterized.

3. It is not guaranteed by any means, that the parameters are independent from each other,
i.e. it is possible that a system of equations has only a solution, if certain arithmetic forced
conditions between some parameters are kept.

4. The systems of equations contain often simple, direct assignments of the form xi = const.,
see equations (1.6) and (1.7) or (1.42) – (1.51).

5. A substantial proportion of the equations to be solved, is linear with respect to a not
directly evident subset of all variables, see equations (1.18) – (1.32)which are linear with
respect to all V?? and I??.

6. The systems can contain degrees of freedom.

7. There exists no generally valid solution procedures for nonlinear equations and systems of
equations.

8. Nonlinear equations can be unsolvable (contradictory), or have unique or multiple solutions
with finite or infinite solution varieties.

9. Not always, all members of the multiple solution set are consistent with the remaining
equations.

10. For many nonlinear equations there exists no analytic solutions, see equation (1.54).

From these statements the following requirements results corresponding to the points above:

1. The program should solve systems of equations only so far, as it is absolutely necessary
for the determination of the individual variables. Calculated solutions are to be checked
for possible contradictions with respect to the remaining equations.

2. Looked for variables and parameters must to be processed separately from each other.
Under any circumstances, parameters may not be eliminated – in contrast to not interesting
variables.
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3. If dependencies between parameters are detected, then the program run must continue
under consideration and storage of the appropriate force conditions, if desired by the user.

4. Direct assignments should be looked for and executed directly at the beginning of the
program run, in order to reduce the scope of the remaining system of equations as far as
possible and with little effort.

5. Because there exists efficient, closed solution procedures for linear equations, it is advisable
to search the system of equations repeatedly for linear blocks, to solve these and put the
results into the remaining equations, until no more linear parts of equations are present.

6. Degrees of freedom are to be expressed automatically in variables selected by the program.

7. The solution of nonlinear equations must be controlled with the help of heuristic evaluation
strategies.

8. In case of multiple solutions with finite varieties, each individual solution path is separately
recursively to be pursued.

9. Multiple solutions, which are inconsistent with the remaining equations, must be detected
and the corresponding solution path rejected.

10. As was already required at the beginning of the section, equations not analytically solvable
should not lead to the abort of the program. Instead the system of equations should be
brought on triangle form is as far as possible and the remaining, not solvable equations
returned along with the partial solutions determined up to then.

1.4 Extraction and Solution of Linear Equations

With design tasks, the equations which are to be solved, are mostly nonlinear, but the cor-
responding systems frequently contains large sections of linear blocks. Since linear systems of
equations can be solved simultaneously very efficiently with the help of the Gauss-Elimination,
it is advisable to process first the linear proportion of the system separately before the solu-
tion of the nonlinear equations. Even if a complete analytic solution of the entire nonlinear
system for all searched variables cannot be achieved, it is nevertheless meaningful to reduce by
elimination of the linear variables and equations the system to an only small, not any longer
analytically solvable core. The numeric solution of that core is substantially less complex, than
an optimization of the complete system.

Under point 5 we required an iterative solution of linear subsystems of the entire set of
equations. This is a non trivial task, because neither the concerned equations nor the subset
of variables, for which these equations are linear are known from the beginning. Therefore a
search strategy must be found, which extracts the linear equation blocks and variable blocks
(for efficiency reasons as large ones as possible) from a given nonlinear system of equations.
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1.4.1 Intuitive Methodologies for the Search of Linear Equations

For the clarification of the task the following nonlinear system of equations is considered, which
is to be solved after the variables x, y and z.

x+ 2y − z = 6 (1.55)

2x+ yz − z2 = −1 (1.56)

3x− y + 2z2 = 3 (1.57)

At first sight only the equation (1.55) is linear, regarding all three variables. Using a simple
search algorithm, which finds only such completely linear equations, in this case maximal one
variable can be eliminated from the two remaining equations after a solution of (1.55) e.g. after
x.

A more exact view of the equations reveals however a better alternative. After canceling
of equation (1.56) and shifting the terms dependent on z on the right hand sides of equations
(1.55) and (1.57), we get two linear equations with the variables x and y:

x+ 2y = 6 + z, (1.58)

3x− y = 3− 2z2. (1.59)

Their simultaneous inversion leads to solutions parameterized in z

x = −1

7

(
4z2 − z − 12

)
, (1.60)

y =
1

7

(
2z2 + 3z + 15

)
, (1.61)

after their inserting into (1.56) only one nonlinear equation remains, which is to be solved :

2z3 − 12z2 + 17z + 31 = 0. (1.62)

In view of the fact that with the second version in only one iteration two unknowns could be
determined at the same time, this latter method is to be preferred in contrast to the search for
completely linear equations – despite the additional expenditure w.r.t. the algebraic transfor-
mation. This applies in particular if a system of equations does not contain any equations, in
which all variables involved occurs in purely linear form. The procedure used for the extraction
of linear subsystems should therefore connect both demonstrated operations for the removal of
nonlinear pieces of equations:

1. canceling of individual nonlinear equations

2. shifting variables occurring in nonlinear terms to the right hand sides of the equations

By a balanced combination of these two operations it can be achieved that the resulting linear
subsystems have maximal size and often are – at least approximately – square.
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1.4.2 A Heuristic Algorithm for the Search of Linear Equations

For a computer implementation such a search for blocks of linear equations, executed intuitively
by humans, must be systematized and formulated algorithmically. Since the term linear piece of
a system of equations does not define the desired result in unique way, which is evident on the
basis the different solution procedures, a heuristic strategy was developed for the imitation of
the intuitive methodology. This strategy is demonstrated now for the comparison of the results
at the already regarded system(1.55) – (1.57).

For the system of equations, at first a table is set up, whose lines are assigned to the equations
and the columns corresponds to the variables. The entry at the position (i, j) of the table contains
for the equation i the coefficient1 of the linear term, i.e. the first power of the variable xj . If as
for z in equation (1.57), no term in first power is existent or if this term occurs as argument in
non–polynomial functions (e.g. sinx or

√
x), then the corresponding position is marked with a

cross (×).
x y z

Eq. 1) 1 2 −1
Eq. 2) 2 z y
Eq. 3) 3 −1 ×

An equal large evaluation matrix is assigned to this table, whose entries are equal to zero ’0’,
if the corresponding entry in the coefficient table is a constant, and equal unity ’1’, if the
corresponding linear coefficient contains a searched variable or is not existent (×). Moreover
the row and column totals become noted at the edges of this matrix, as well as under the sigma
signs on the top right and on the left down respectively the row total of the column totals (

∑
C)

and the column total of the row totals (
∑
R).

x y z
∑
C

0 1 2 3

1) 0 0 0 0
2) 2 0 1 1
3) 1 0 0 1∑
R 3

(1.63)

Obviously the ’1’ entries of the evaluation matrix correspond to the non-wanted non-linear parts
of the system of equations. A linear piece in the system of equations and the corresponding vari-
ables are found, if with a sequence of operations specified at the end of section 1.4.1, all ones
’1’ were eliminated. Transferred to manipulations to the evaluation matrix the 1st operation
corresponds to deleting the row belonging to to a certain equation. The 2nd operation is equiva-
lent to deleting the column, which is associated to some variable. The linear subsystem consists
afterwards of those equations and variables, whose rows and columns were not removed from
the matrix.

The reduction of the evaluation matrix (1.63) to a zero matrix can take place in exactly
three different ways:

1. canceling of the rows 2) and 3),

2. canceling of the columns y and z,

1Maxima has the instruction ratcoeff to determine the coefficients of rational terms.
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3. canceling of row 2) and column z.

The requirement for maximal size and preferably square shape of the linear equation blocks is
directly portable to the wanted properties of the zero matrix. In this sense, the latter of the
three options is optimal, because it results in optimum solution i.e. to the system (1.58) –
(1.59), already detected in the previous section. However, the other two possibilities lead to the
under-determined equation (1.55) or to an over-determined 3× 1-system in x.

The search for an optimal sequence of row and column cancellations is a complex combina-
torial problem. In order to avoid the associated expenditure, a heuristic, local decision criterion
becomes handy for the determination of the row or column, which should be removed in the
respective step, i.e. a Greedy strategy [FOU 92], which is: That row or column is to be deleted,
which contains the most ones ’1’, i.e. that with the largest row or column total. This criterion
still does not supplies a clear decision,

• if two or more rows have the same (largest) row total,,

• or two or more columns have the same (largest) column total,

• or if the totals of the highest evaluated row and the highest evaluated column are identical.

In the first two cases any row or column of the candidates can be selected, usually – for the
sake of simplicity– the first one, which is found with maximal evaluation from the concerned
rows or columns.

The third case occurs in the example above. In the evaluation matrix (1.63) both row 3)
and the column z have the maximal sum total 2. At the start, from both possibilities we select
arbitrarily the cancellation of the row, so that in the next step the following evaluation matrix
results:

x y z
∑
C

0 0 1 1

1) 0 0 0 0
3) 1 0 0 1∑
R 1

(1.64)

Once again, the maximal row total equal to the maximal column total. Now, the decision could
take place according to the random principle, but thereby the requirement for a square shape
of the linear subsystems would not sufficiently respected. Therefore it is preferable either to
delete rows and columns with same evaluation alternately or favor the decision, which brings
the dimension relation n/m of the n ×m– evaluation matrix with n 6= m more near at unity
’1’. According to both criteria deleting of the column z proves more favorable than cancelling
of row 3).

x y
∑
C

0 0 0

1) 0 0 0
3) 0 0 0∑
R 0

(1.65)

The cancellation of column z causes the removal of the last unity ’1’ in the evaluation matrix.
This expresses itself in disappearing of

∑
S and

∑
Z, by which the end of the algorithm is

marked. From the result matrix (1.65) now can be read off, that the the example system of
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equations (1.55) and (1.57) are linear concerning the variables x and y. The finally necessary
transformations of the linear equations for the creation of the simultaneous form (1.58) – (1.59)
are no problem for a computer algebra system: Maxima uses the instruction linsolve for the
simultaneous solution of linear equations, which are then automatically executed.

1.4.3 Solution of the Linear Equations

If the linear pieces of the systems of equations, which are extracted using the described algorithm,
are unique solvable or under-determined, then their subsequent treatment is unproblematic.
In the case of over-determined systems inevitable occur inconsistencies, which require a more
detailed handling. E.g. from a larger system of equations in the variables x, y, z and w, the
following over-determined linear subsystem (1.66) – (1.68) in x and y be taken.

x− y = z2 + z (1.66)

x+ y = w2 + 1 (1.67)

x− y = z + w (1.68)

After the forward elimination we have the following systen of equations, which is inconsistent in
the sense of linear algebra and therefore no solution exists:

x− y = z2 + z (1.69)

2y = w2 − z2 − z + 1 (1.70)

0 = w − z2 (1.71)

In the regarded case however, z and w are the variable of the system of equations to be solved.
The linear subsystem from above has solutions, if and only if these two variables fulfill the
equation (1.71). This condition is therefore only regarded as a further equation of the remaining
system, from which x and y were eliminated.

As consequence it results, that with the occurrence of apparent inconsistencies following the
eliminations process, the right sides of the consistency conditions thereupon must be checked
generally, whether they contain looked-for-variables of the entire system. If this is the case,
then the corresponding conditions are again added to the initial system of equations after the
solution of the linear equations. If this does not applies, i.e. does not occur not fulfillable
obligation conditions between numeric values or parameters, then the set of equations has indeed
no solution, and the solution process must be aborted.

1.5 Evaluation Strategies for the Solution of Nonlinear
Equations

Apart from a few special cases there are closed solution procedures for general nonlinear systems
of equations. This does not exclude however, that for many nonlinear systems analytic solutions
or at least partial solutions can be calculated, but usually their determination is not as efficient
as by Gauss-Elimination in the case of linear equations.



CHAPTER 1. HEURISTIC ALGORITHMS 16

1.5.1 Substitution Method for Nonlinear Systems of Equations

An elementary solution procedure, which can be applied to any systems of equations, is the
well-known substitution method:

1. Select an equation (most simple as possible) from the system and solve it after a variable
xj . Abort, if all equations are solved, or no further equation is analytically solvable.

2. Insert the result into the remaining equations, in order to eliminate xj from the system.

3. Check the system, reduced by one equation and one variable, for consistency and continue
with step 1.

For a demonstration of this method, the nonlinear system of equations (1.72) – (1.76) is regarded,
which is to be solved after the variables a, b, c and d.

ab+ 2c = 0 (1.72)

c2 + d− 4 = 0 (1.73)√
b+ d− 2 = 0 (1.74)

tan
( π

2a

)
− 1 = 0 (1.75)

b Arcosh c − iπ = 0 (1.76)

Already directly at the beginning of the application of the substitution method the question
arises, which concrete characteristics distinguish an equation as ”as simple” as possible. From
general experience and know-how, among other things the following evaluation criteria can be
derived, which need not apply necessarily at the same time and also be differently weighted
depending on the application.

”Simple” Equations . . .

1. contain only fewof the wanted variables,

2. contain a wanted variable at exactly one position, so that the unknown itself can relatively
easily be isolated,

3. have only small depths of the operation hierarchy concerning one or several variables, i.e.
the formula complexity is small,

4. contain no transcendental or other functions, which cannot be inverted without difficulty.

On the basis of these criteria, now the simplest equation of the example system is to be
determined. Regarding the first two points, this could be the equation (1.75), because it contains
only the variable a and this occurs at exactly one position. On the other hand, the evaluation
does not precipitate very favorably due to the criteria 3 and 4. Regarding the points 2, 3 and
4, the solution of the equation (1.73) after the variable d appears as the best selection, because
all other equations contain either more variables or more only difficult resolvable functions.

As relevant criterion, at first the combination of the points 1 and 2 may be considered, so
that one starts with the solution of the equation (1.75) for the variable a. If only the principal
value of the arctan function is considered, it follows:

a = 2. (1.77)
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Substituted into the remaining four equations the system is now

2b+ 2c = 0, (1.78)

c2 + d− 4 = 0, (1.79)√
b+ d − 2 = 0, (1.80)

b Arcosh c − iπ = 0. (1.81)

Because no inconsistencies arise, we continue with the selection of the next simplest equation.
The valuation criteria speak now immediately2 for the solution of the equation (1.79) for d:

d = 4− c2. (1.82)

It follows

2b+ 2c = 0, (1.83)√
b+ 4− c2 − 2 = 0, (1.84)

b Arcosh c − iπ = 0. (1.85)

Concerning all criteria, now equation (1.83) is the most favorable candidate, so that with the
solution

b = −c (1.86)

still two equations with the unknown c remain.√
4− c− c2 − 2 = 0, (1.87)

−c Arcosh c − iπ = 0. (1.88)

Equation (1.88) is analytically not solvable, therefore independently of the evaluation, it is
equation (1.87) which must supply the missing solution for c. In this case, a multiple solution
results for the first time:

[c = 0, c = −1] . (1.89)

Now the importance of the consistency check shows up, which was not relevant so far. From the
two solutions only the second, c = −1, fulfills equation (1.88). The other solution leads to the
contradictory predicate

− iπ = 0 (1.90)

and must therefore be rejected. After the back substitution the consistent solutions are

[a = 2, b = 1, c = −1, d = 3] . (1.91)

1.5.2 Heuristic Methods for the Complexity Evaluation of Algebraic Terms

If the evaluation of algebraic equations regarding their ”simplicity” and the corresponding so-
lution of a nonlinear system of equations, based on it by a computer algebra system should be
made automatically, then the criteria formulated linguistically in the paragraph 1.5.1, must be
transformed into algorithms, which supply numeric complexity evaluations for the controlling of
the solution processes. The magnitude of an evaluation number b should be a measure of how

2Humans would probably consider the first equation to be ’simpler’, but the beforehand necessary division of
the equation by the factor 2 is an additionally expenditure to be considered.
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difficult it is to solve an equation i after a variable xj analytically. The larger b is, the more
complex seems3 the task.

If the evaluation for each equation is made w.r.t each variable, then a solution sequence for
the equations can be generated by means of an sorting on the basis of the magnitudes of the
evaluation numbers b. The solution sequence is then representable by an sorted list of the form

[ (i1, j1, b1), (i2, j2, b2), . . . ] ,

whereby for the evaluation numbers we have bk ≤ bl for k < l. As for the equations solver this
list implies the following statements: first try to solve equation i1 for variable xj1 , since this
appears simplest. If this does not succeed, then try instead the solution from equation i2 for xj2 ,
etc.. If the solution attempt is successful, then insert the solution into the remaining equations
and begin from the start with the construction of a new list for a new solution sequence.

The transformation of the first criterion into an algorithm does not represent a serious
challenge, because the number of variables contained in an equation is already a numeric value.
The implementation using an in a computer algebra system is also no problem. In Maxima the
following short instruction suffices

Length( ListOfVars( Equation[i] ) )

to determine the number of the unknowns in the i equation.

This number is however only of use as secondary criterion in connection with other eval-
uations, because only an order of rank of the equations is supplied, not however by pairs of
equation/variables.

For reasons that will become clear later, the consideration of the criterion 2 is deferred for
the moment and we continue with the points 3 and 4. These two criteria were separately listed,
but they can be interconnected very easily by a single procedure. The heuristic evaluation algo-
rithm, which is described in in the following section about the implementation of the symbolic
equation solver, uses the internal representation of algebraic terms in computer algebra systems
for the complexity calculation. Composite algebraic functions are administered in hierarchically
organized lists of operators and operands in prefix notation, which can be mapped directly into
a tree structure. The nodes of such a tree contain the operators, the operands are in the leafs.
For example the figure 1.7 shows the representation of the left sides of the equations (1.75) and
(1.87) as trees of operations.

An evaluation of the formula complexity regarding the depth of the operation hierarchy, i.e.
the degree of the nesting of a term, is now readable at the tree structures. E.g. the complexity
can be determined by counting the branches of a tree, which must be stepped starting from the
root of the operation tree, in order to arrive at the instances of the regarded variables. In the
case of the term in figure 1.7a) the complexity value b w.r.t. the variable a is equal to the length
of the fat drawn path, i.e. b = 4. In order to achieve all instances of the variable c from the root
of the tree in figure 1.7b), all in all seven branches must be crossed, therefore the complexity is
b = 7.

This method for the calculation of the complexity is easy expandable in a way, that also the
criterion 4 is taken into account, which gives the evaluation of a term regarding the operators

3 Here the formulation seems is selected, because the evaluation is made on the basis of heuristic criteria,
which cannot guarantee optimal decisions.
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Figure 1.7:
Tree representation of algebraic expressions

contained in it. Instead of the simple counting of the branches of the tree, an additionally
weighting must take place, which assigns to each operator an typical ”difficulty factor”, by
which the evaluation of its operands are to be multiplied. The magnitude of this difficulty factor
should reflect, how complex the formation of the inverse function for the computer algebra
system is, i.e. the solution of the function for its operands, see [TRI 91].

At the beginning each leaf of the tree receives the weighting 1, if it contains that variable,
for which the evaluation is to be calculated. Otherwise the leafs get the weighting 0. During
the evaluation of the operators the operator ”+” serves as reference for the weighting 1, because
it is to be inverted most easily. In contrast, the reversal of the operators ”∗” and ”tan” are
considered arbitrarily as four or ten times as difficulty, accordingly the weightings are set. The
following table shows a selection of some operators and their assigned weightings.

operator + − ∗ / ∧ tan Arcosh

weighting 1 1 4 4 10 10 12

The calculation of the complexity value takes place bottom-up via repeated addition of the
branch weights at the operator nodes, multiplication of this sum with the operator weight and
transfer of the resulting value onto the superordinate branch, until the tree root is reached.
For the demonstration of this procedure the operatior tree in figure 1.8a) is considered. In the
squares drawn beside the nodes, the operator weights are marked. The numbers at the branches
show the total weight of the subordinated partial tree. Since the complexity of the term is to
be evaluated w.r.t. the variable a, only the leaf with the symbol a gets the weight 1, all other
leafs are evaluated with value 0. At the multiplication nodes above the variables, the branch
weights add themselves to the sum 0 + 1 = 1, which in accordance with the evaluation of the
operator ”∗” are multiplied with the factor 4 and then passed on to right operand branch of
the ”/” operator. There also takes place a multiplication with 4, so that the intermediate result
now equals to 16. Subsequently, in the process of the calculation the factors 10 and 1 for the
”tan”- and ”+” operators are added. The final result, b = 160, is at the root of the tree. For the
operator tree in figure 1.8b) similar calculations result in a complexity value of b = 110 w.r.t.
the variable c.



CHAPTER 1. HEURISTIC ALGORITHMS 20

Figure 1.8:
Valuation of operators

Now, we can take up the temporarily deferred criterion 2. In order to determine those
equations of a system, which contain one or more variables at exactly one position, it is sufficient
to set all operator weights in the calculation formula for the term complexity to ’1’ and to store
all pairs of equation/variables, for which under these conditions the complexity evaluation is
b = 1. This method is justified by the fact, that the search aims at exactly those equations, in
whose tree representation particular variable symbols occur in only one leaf. That means, in
these cases there is only one path from the root of the tree to the symbol in question. With a
weighting of ’1’ for all operators the complexity evaluation corresponds exactly to the number
of paths to the instances of a variable.

This procedure can be verified easily on the basis of examples. If all operator weights are set
equal ’1’, then for the terms in figure 1.8a) and b) we get complexities of b = 1 for the variable
a and b = 2 for the variable c. This corresponds with the fact, that the variable a is contained
in exactly one leaf of the tree, while the symbol c is to be found at two positions.

1.5.3 Order of the Sequence of Solution

By different combining and weighting of the discussed evaluation procedures, different strategies
arise for the order of solution steps. The strategy named MinVarPathsFirst, which is imple-
mented in the program developed in this work, represents a combination of the criterion 2 and
the complexity evaluation by means of operator weighting. Highest priority in the solution step
order, receive those equations, which contain wanted variables at exactly one position, whereby
within this group one sorts according to smallest weight of the operator trees. All remaining
pairs of equation/variables are likewise placed to the end of the solution sequence, according to
smallest tree weight. Therefore in the case of the two terms in figure 1.8, at first it would be
tried to solve the equation with the tan- function for the variable a, although a higher evaluation
was calculated for a than for the accompanying term w.r.t. the variable c.



Chapter 2

The Solver

2.1 The Structure of the Solver

The requirements, in particular the points 4, 5 and 7, set up in chapter 1.3 and schematically
represented the structuring of the equations solvers in figure 2.1 suggests to lay down this
into five largely independent main modules, see [TRI 91]. Built up on this structure and the
heuristic algorithms described in the preceding chapter, the Macsyma program packet SOLVER

was developed for the functionality extension of the Macsyma functions SOLVE and LINSOLVE.

The tasks of the module Solver Preprocessor are general, checking the command syntax
and semantics, the construction of internal data structures, and the execution of an introduc-
tory consistency check. The check determines whether the set of equations directly contains
contradictory statements like number = number or constraint conditions between parameters .

The Immediate Assignment Solver searches the system of equations for direct assignments
of the form var = const. or const. = var before the call of the Linear Solvers and executes these
immediately, so that the cost of computation for the following program module is kept as small
as possible.

The Linear Solver is a pre and post processor for the Maxima function LINSOLVE for the
simultaneous solution of linear systems of equations. The module extracts pieces of linear equa-
tions according to the heuristic algorithm described in paragraph 1.4.2 and solves the equations
by calling LINSOLVE. The resulting solutions are inserted into the remaining equations before
leaving the Linear Solvers.

The Valuation Solver is the core module of the Solvers. Its tasks are the use of valuation
strategies for the generation of the solution sequences and the solution of the nonlinear equations
with the help of the Maxima build-in function SOLVE. In the case of multiple solutions the
Valuation Solver checks each individual solution for consistency with the remaining system
of equations. Inconsistent solutions are rejected, while valid solutions are inserted into the
remaining system of equations and the corresponding solution paths are tracked separately
through recursive calls of the Valuation Solvers.

All steps necessary for the editing of the solutions for output to the user are taken over
by the Solver Postprocessor. These are the expansion of the hierarchically organized solution
list supplied by the Valuation Solver, the back substitution of the symbolic solutions as well as
picking out, evaluating and outputting the variables and composite terms asked for by the user.

21
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Figure 2.1:

Structure of the Solvers
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2.2 The Modules of Solvers

2.2.1 The Solver Preprocessor

Figure 2.2:
Flow diagram of the Solver Preprocessor

Beside the examination of the command syntax and semantic as well as the construction
of the internal equations, variables and parameter lists, the Solver Preprocessor executes a
consistency check of the equations, whose flow diagram is represented in figure 2.3. Aim of
the consistency check is it to detect from the beginning, whether the system of equations is
unsolvable due to direct contradictions. Such contradictions can occur in form of pure number
equations, e.g. 0 = 1, or in addition, in the form of constrained conditions between symbols
declared as parameters.

In order to uncover direct contradictions, the routine for the consistency check searches after
equations in the system of equations, which consist exclusively of numbers or numbers with
parameters, but does not contain variables. If a contradictory number equation is found, then
the Solver Preprocessor aborts immediately. If such an equation is consistently, as for example
0 = 0, it is removed from the system of equations, since it does not influence the solubility and
solution of the system and therefore is redundant.

The handling of parameters with constrain conditions is somewhat more complex. Assumed,
the symbols A and B were defined as parameters of a system of equations, which contains the
equation

A+B = 1 (2.1)

From this condition follows, that A and B are not independent parameters and therefore
the system of equations is not solvable for any combinations of their values. Since conditioned
inconsistencies of this type cannot be excluded with many technical problem settings, it is
not meaningful to abort the solution process in such cases unless the parameterized equation
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Figure 2.3:
Flow diagram of the routine for the consistency check

contradicts other constraints in the system of equations. The decision, whether a parameter
constraint is to be regarded as admissible, is delegated therefore by the consistency check to the
user. In the case of the equation (2.1) the system asks in the following way for the validity of
the condition:

Is B + A - 1 positive, negative, or zero?

Becomes the question answered with p; or n; (positive resp. negative), then the Solver
aborts. If the response reads z; (zero), then the consistency check stores the constained con-
dition in a global list named SolverAssumptions, which can be inspected after the Solver run.
Subsequently, the consistency check removes the redundant equation from the system.

2.2.2 The Immediate Assignment Solver

The task of the Immediate Assignment Solvers is to search the system of equations for direct
assignments of the form var = const. and to use such equations directly for the elimination of
the corresponding variables. With systems of equations, set up mechanically, as for instance in
the example 1.2, the cost of computation in Linear Solver for the extraction and solution of the
linear equations can be often reduced considerably by such a preprocessing of the equations.

At first, the Immediate Assignment Solvers filters out all direct assignments var = const.
and const. = var from the system in a loop and stores them in the form var = const. in the
solution list, if a solution for var is not yet entered. Subsequently, the system of equations is
analyzed by means of the solution list and checked again for consistency.
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Figure 2.4:
Flow diagram of the Immediate Assignment Solver
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2.2.3 The Linear Solver

The process of the Linear Solvers starts, as described in paragraph 1.4.2, with the construction of
the complete coefficient matrix of the symbolic system of equations. Using this coefficient matrix,
the valuation matrix is created, which serves for the extraction of parts of linear equations. As
long as the valuation matrix contains still ’1’ elements, i.e.

∑
C 6= 0 und

∑
R 6= 0, the described

heuristic evaluation strategy is applied, which decides, which nonlinear equation is removed or
which in a nonlinear sense occurring variable is transferred to right hand side of the equation.

If the valuation matrix was reduced to a zero-matrix, then a list of the remaining (linear)
equations and a list of the linear variables are created, which can be transferred as function
parameters to the Maxima instruction LINSOLVE, which serves for the solution of a linear system
of equations. For efficiency, before the call of LINSOLVE however, still another special feature
is considered, which was not mentioned during the description of the extraction algorithm.
Occasionally it can occur, that simultaneously with the deleting of a nonlinear equation the
only instance of a linear variable xj is removed from the entire valuation matrix, without that
it was noticed directly. Likewise equations can develop, which are no longer nonlinear w.r.t
as linear detected variables, but do not contain these variables any more, i.e. the associated
coefficients are directly zero. Therefore, all linear variables of the linear subsystem are again
checked, whether they are still contained in the linear equations, an The Linear Solver would
also be able to solve the system of equations without these additional measures, but frequently
unnecessary cost of computation can be saved by it.

In section 1.4.3, it was demonstrated, that while solving of over-determined linear systems
of equations, inconsistencies can occur, which does not necessarily imply the insolubility of the
system of equations. If such contradictory equations are detected, e.g. the right side of equation
(1.71)1, they are submitted a consistency checking, as at the beginning the entire system of
equations. If the contradictory equations prove as true inconsistencies, then the total system
does not have a solution, and the Linear Solver aborts with an appropriate error message. If the
contradictory equations contain still looked-for variables, then they are removed from the system
of equations and added as new constrained conditions to the remaining system. Thereupon
LINSOLVE is again called with the linear independent part of the equations (inconsistencies can
not occur any longer with the second run).

If the linear equations were successfully solved, then the solutions are inserted into the
remaining system of equations and the list of the looked-for variables is updated. That is, all
variables, for which a solution was found by the Linear Solver, are removed from the list, while
new variables, which are contained in these solutions, are added to the list.

1That access to the contradictory equations from the outside is not possible using the standard LINSOLVE

command. Therefore a particularly modified version of the instruction on Lisp level was necessary, which was
made available by Jeffrey P. Golden, Macsyma, Inc. (the USA), on a kindly request.
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Figure 2.5:
Flow diagram of the Linear Solver
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2.2.4 The Valuation Solver

The Valuation Solver first checks, whether equations and variables still are available, which can
be solved. If this is the case, then for the remaining equations two valuation matrices are set
up, which serve as basis for the solution sequence order. Both matrices have the dimensions
n × m, whereby n is the number of the equations and m the number of variables, looked for
at the moment. The first matrix, the path matrix of variables, contains for each equation the
number of paths for this variable (see section 1.5.2)) w.r.t each variable. The second matrix is
the valuation matrix. Their entries are calculated by the heuristic operator tree valuations of
each equation w.r.t. each variable.

To these two matrices one applies afterwards – depending on whether an internal or user-
defined is desired – an valuation strategy, which arranges the pairs of equation/variables in such
a way, that the first items in this list are the most promising candidates for a following solution
attempt by means of the SOLVE command.

As long as not all proposals for solutions in the list were tried and no correct solution for one
of the suggestions was calculated, on the basis the determined solution order the next equation
from the equation list is selected and tried to solve. If this does not succeed, one or more user-
defined transformation functions (if available) for the transformation of the equation are applied
and in each case a solution attemptsare made. If these are also without result, the next proposal
for a solution is tried.

If none of the equations is solvable after any variable any more, then the Valuation Solver
returns the unresolved equations in implicit form additionally to all solutions found up to this
point, so that these may be treated later with a numeric procedure. With a successful solution
attempt all single solutions (nonlinear equations may have multiple solutions) are checked sepa-
rately for consistency with the remaining equations. Those solutions, which lead to contradictory
predicates, are rejected and with them the corresponding solution path.

If after the consistency check no solution remains, then the system of equations is incon-
sistent, and the Valuation Solver aborts. If exactly one solution remains, then this solution
is appended to the solution list and substituted into the remaining equations. Finally the list
of the wanted variables is updated, whilst the variable just calculated is removed from it and
new variables, possibly contained in the solution, are added. These can be variables, which are
not given as parameters and also not indicated as looked-for. The main solution loop of the
Valuation Solvers begins then again from the start.

With consistent multiple solutions all solution paths must be pursued separately. Fot that
the Valuation Solver calls itself recursively with the remaining equations and variables for each
individual solution and stores the outputted results in a hierarchically structured solution list.
Their expansion is task of the Solver Postprocessors described in the next section.
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Figure 2.6:
Flow diagram of the Valuation Solver (part 1)
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Figure 2.7:
Flow diagram of the Valuation Solver (part 2)
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2.2.5 The Solver Postprocessor

Figure 2.8:
Flow diagram of the Solver Postprocessor

The Valuation Solver supplies in the case of multiple solutions of nonlinear equations a
hierarchically structured list of results (because of the recursive pursuit of the solution paths)
as function value, therefore the Solver Postprocessor must dissolve the list hierarchy at the
beginning, so that the back substitution can be executed.

If not all equations within a solution path could be solved symbolically, then the result list
contains the list of the remaining, unresolved nonlinear equations additionally to the variables,
for which a solution was found. These will provisionally removed from the equation list and
buffered, in order to be added later to the final result.

Depending upon the desire of the user, the back substitution of the system of equations takes
place afterwards, which is present up to this point still in upper triangle form. For that, the
solution list is evaluated iterative with itself, until no modification of the results is to be seen
any more. Even, if the back substitution is not required by the user2, it is nevertheless executed,
but only so far as necessary, in order to eliminate all not specified command line variables from
the solutions. If e.g. a system of equations in the variables x, y, z and w is to be solved only
after the variables x and y and the solution process gives the triangle form

x = f1(y, z, w) (2.2)

y = f2(z, w) (2.3)

w = f3(z) (2.4)

z = const., (2.5)

2This requires to set the option variable SolverBacksubst to FALSE (see section 2.4)
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so the complete back substitution leads to the result

x = const. (2.6)

y = const. (2.7)

With switched off complete back substitution, the following two equations are given back

x = g(y) (2.8)

y = const. (2.9)

which does not contain the internal variables z und w any longer, but are further coupled by
the variable y among themselves.

After termination of the back substitution and the evaluation of the composite terms in the
variable list of the command line using the solutions, the at first filtered unresolved equations
are again appended to the solution list. The finished solution list is then given to the user as
function value.

2.3 Application of Solver

2.3.1 Command syntax

The call of Solver from the Maxima command line use the syntax

Solver( list_of_equations, list_of_variables, list_of_parameters )

or, if the system of equations, which is to be solved, does not contain any parameters, also with

Solver( list_of_equations, list_of_variables )

The list of equations is a list of Maxima objects, for which EquationP equals TRUE. The system
of equations (1.55) – (1.57) is thus formulated in the following way:

(COM5) Equations :

[

x + 2*y - z = 6,

2*x + y*z - z^2 = -1,

3*x - y + 2*z^2 = 3

]$

The unknown variables are told to the Solver likewise in form of a list, e.g. as

[x, y, z]

for the above-mentioned systen of equations. Beside purely atomic variable symbols (SymbolP)
the variable list may contain also composite terms in the looked-for unknowns. If for the system
of equations the variables x, y and z are not explicitly searched, but rather x and the value
sin(πyz), then the variable list reads

[x, sin(%pi*y*z)] .

The parameter list must contain exclusively atomic symbols, thus only objects with SymbolP

equals TRUE. Composite terms are here neither admissible nor meaningfully.
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2.3.2 Special Features of the Syntax of Equations

At this point we refer to some differences of the command syntax in comparison with the
admissible invocations of the Maxima build-in SOLVE function. The latter may also get the
equations in Expression form, i.e. as expressions EquationP = FALSE, which are implicitly
understood as equations of the form Expression = 0:

[

x + 2*y - z - 6, ← not admissable
2*x + y*z - z^2 + 1,

3*x - y + 2*z^2 - 3

]$

This form of representation of the equation is used internally, e.g. by the Valuation Solver, but
is not permitted as call of the Solver in the command line. Furthermore, the SOLVE function
permits omitting the brackets around the arguments, if only one equation and/or only one
variable is to be transferred. This is also not admissible with the use of Solver.

2.3.3 Example Calls of Solver

Example 2.1.

For the input of the system of equations COM5 a correct call of the Solver is the instruction
in the command line COM7. The specification of the calculated solutions is done in form of a list
of solution lists, see output line D7.

(COM6) MsgLevel : ’DETAIL$ /* see section 2.4 */

(COM7) Solver( Equations, [x, y, z] );

Output of Solver Preprocessors:
The variables to be solved for are [X, Y, Z]

Checking for inconsistencies...

... none found.

Output of Immediate Assignment Solvers:
Searching for immediate assignments.

No immediate assignments found.

Output of Linear Solvers:
Searching for linear equations...

...with respect to: [X, Y, Z]

Found 2 linear equations in 2 variables.

The variables to be solved for are [X, Y]

2

The equations are [- Z + 2 Y + X - 6, 2 Z - Y + 3 X - 3]

Solving linear equations.

2 2
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4 Z - Z - 12 2 Z + 3 Z + 15

The solutions are [X = - -------------, Y = ---------------]

7 7

Searching for linear equations...

...with respect to: [Z]

No linear equations found.

Output of Valuation Solvers:
Checking for remaining equations.

1 equation(s) and 1 variable(s) left.

The variables to be solved for are [Z]

Trying to solve equation 1 for Z

Here a complexity valuation Is not needed,
because there is only one equation and one variable left.
Valuation: (irrelevant)

3 2

The equation is 2 Z - 12 Z + 17 Z + 31 = 0

Checking if equation was solved correctly.

SQRT(13) %I - 7 SQRT(13) %I + 7

The solutions are [Z = - ---------------, Z = ---------------, Z = - 1]

2 2

Solution is correct.

Individual consistency check w.r.t. multiple solutions:
The solution is not unique. Tracing paths separately.

Solution 1 for Z

Checking for inconsistencies...

... none found.

Solution 2 for Z

Checking for inconsistencies...

... none found.

Solution 3 for Z

Checking for inconsistencies...

... none found.

SQRT(13) %I - 7 SQRT(13) %I + 7

Consistent solutions for Z : [Z = - ---------------, Z = ---------------,

2 2

Z = - 1]

Recursive pursuit of all three solution paths:
Checking for remaining equations.

All variables solved for. No equations left.

Checking for remaining equations.

All variables solved for. No equations left.

Checking for remaining equations.

All variables solved for. No equations left.
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Output of Solver Postprocessors:
Postprocessing results.

27 SQRT(13) %I - 41 17 SQRT(13) %I - 87

(D7) [[X = -------------------, Y = - -------------------,

14 14

SQRT(13) %I - 7 27 SQRT(13) %I + 41 17 SQRT(13) %I + 87

Z = - ---------------], [X = - -------------------, Y = -------------------,

2 14 14

SQRT(13) %I + 7

Z = ---------------], [X = 1, Y = 2, Z = - 1]]

2

For an better overview, here is the result again in TEX-output:[
x =

27
√

13 i− 41

14
, y = −17

√
13 i− 87

14
, z = −

√
13 i− 7

2

]
(2.10)

[
x = −27

√
13 i+ 41

14
, y =

17
√

13 i+ 87

14
, z =

√
13 i+ 7

2

]
(2.11)

[x = 1, y = 2, z = −1] (2.12)

�

Example 2.2.

As second example, the following system of equations parameterized in a and b

3ax+ y2 = 1 (2.13)

bx− y = −1 (2.14)

is to be solved for the variables x and y as well as the composite term x/y . Since the system of
equations does not contain any direct assignments and in this case a repeated search for linear
equations is not meaningful, the Immediate Assignment Solver and the repetition loop of the
Linear Solvers are switched off with the instruction COM8:

(COM8) SolverImmedAssign : SolverRepeatLinear : FALSE$

(COM9) ParEq : [ 3*a*x + y^2 = 1, b*x - y = -1 ]$

(COM10) Solver( ParEq, [x, y, x/y], [a, b] );

X

The variables to be solved for are [X, -, Y]

Y
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The parameters are [A, B]

Checking for inconsistencies...

... none found.

Trying to solve for [X, Y]

X

in order to solve for the expression -

Y

Searching for linear equations...

...with respect to: [X, Y]

Found 1 linear equations in 2 variables.

The variables to be solved for are [X, Y]

The equations are [- Y + B X + 1]

Solving linear equations.

The solutions are [Y = B X + 1]

Checking for remaining equations.

1 equation(s) and 1 variable(s) left.

The variables to be solved for are [X]

Trying to solve equation 1 for X

Valuation: (irrelevant)

2 2

The equation is B X + (2 B + 3 A) X = 0

Checking if equation was solved correctly.

2 B + 3 A

The solutions are [X = - ---------, X = 0]

2

B

Solution is correct.

The solution is not unique. Tracing paths separately.

Solution 1 for X

Checking for inconsistencies...

... none found.

Solution 2 for X

Checking for inconsistencies...

... none found.

2 B + 3 A

Consistent solutions for X : [X = - ---------, X = 0]

2

B

Checking for remaining equations.

All variables solved for. No equations left.

Checking for remaining equations.

All variables solved for. No equations left.

Postprocessing results.

2 B + 3 A B + 3 A X 2 B + 3 A X

(D10) [[X = - ---------, Y = - -------, - = ----------], [X = 0, Y = 1, - = 0]]

2 B Y 2 Y
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B B + 3 A B

�

2.4 The Options of Solver

Using the Maxima command line (Macsyma toplevel) or a program file, the behavior of the
Solver can be influenced by the individual setting of a set of option variables, which are listed and
described in the following. Behind the names of the option variables, the standard assignments
(values/symbols) are given in angle parentheses, which are set automatically on the first start
of the module SOLVER.

MsgLevel <SHORT> (message level) controls the scope of the displayed messages during the
program run. The assignments OFF, SHORT and DETAIL are admissible.
Becomes MsgLevel : OFF, then all program outputs are completely suppressed. In the
case of SHORT only status informations are returned whilst the program is running. The
keyword DETAIL causes additionally the output of all of the Solver modules intermediate
results and also of messages of the decisions made due to the heuristics.

SolverImmedAssign <TRUE> switches the Immediate Assignment Solver on (TRUE) resp. off
(FALSE). If the module is switched on, then before the call of Linear Solvers the sys-
tem of equations is searched for direct allocations of the form var = const. or const. = var,
which can be inserted immediately into the remaining equations.

SolverRepeatImmed <TRUE> determines whether the Immediate Assignment Solver is called
repeatedly (TRUE), until no more direct assignments are found, or whether only one call
takes place (FALSE).

SolverSubstPowers <FALSE> (substitute powers) controls the handling of variables, which oc-
cur in powers pk of integer multiples pk = kp0, k ∈ IN , of a basic power p0 ∈ IN \ {1}. If
the system of equations contains e.g. the variable x exclusively in the powers x2, x4, x6,
. . . , e.g. p0 = 2, then by SolverSubstPowers:TRUE the term xp0 = x2 is substituted with
the new variable symbol X2, that therfore only occurs in the powers X2, X22, X23, . . . .
In this way the degree of the equations which are to be solved is reduced as well as the
solution variety. However, if necessary, a rework of the solutions are necessary.

SolverInconsParams <ASK> (inconsistent parameter handling) influence the behavior of the
routine for the consistency check. Admissible parameters are ASK, BREAK and IGNORE. If
during the consistency check a dependency between the parameters is discovered, then
with SolverInconsParams : ASK the users is asked for the validity of the appropriate
constrained condition. With a positive response, this is stored for later evalutaion in the
list SolverAssumptions. If the dependency is not admissible or if the option variable is
set with BREAK, then the solution process is aborted. If the parameter is set to IGNORE,
then the consistency check is caused to accept basically all constrained conditions between
parameters as valid as long as these do not contradict directly already made conditions.

SolverLinear <TRUE> switches the Linear Solver on (TRUE) resp. off (FALSE). Switching off is
recommended if the system of equations, which is to be solved, does not contain linear
equations or their number is very small in relation to the number of nonlinear equations.
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In these cases much computing time can be saved through bypass the Linear Solvers, since
the algorithm to search for linear equations is quite complex.

SolverRepeatLinear <TRUE> cause repeated calls of Linear Solvers. If the variable is set to
FALSE, then Linear Solver is executed only once.

SolverFindAllLinearVars <TRUE> decides whether Linear Solver that looks for maximal large
pieces of linear equations regarding all available variables (TRUE), or whether only subsys-
tems in the variables are to be extracted, which are immediately looked for during the
solution process (FALSE). The setting of the variables plays especially a role, if under-
determined systems of equations are to be solved.
Here SolverFindAllLinearVars : FALSE should to be set, because otherwise no solu-
tions for the originally interesting variables could possibly be found due to the too small
number of equations. With FALSE it is guaranteed that at first after these variables is
solved and the degrees of freedom are expressed in the other unknowns.

SolverValuationStrategy <MinVarPathsFirst> contains the name of the function, which is
generate a solution order from the variable path matrix and the valuation matrix (see
section 2.7). The call of the function within the Valuation Solvers is done with: des
Valuation Solvers mit:

SolveOrder : Apply(

SolverValuationStrategy, [ VarPathMatrix, ValuationMatrix ]

)

As function value a list of the form

[ [i1, j1, b1], [i2, j2, b2], ... ]

is expected, which was described in section 1.5.2.
To observe here is the option variable SolverMaxLenValOrder.

SolverDefaultValuation <10> determines the valuation factor for operators, which were not
explicitly assigned such a factor with the SetProp instruction (see section 2.6).

SolverMaxLenValOrder <5> (maximum length of valuation order) determines the maximal length
of the solution order. If the last proposal for solution in the list does not lead to suc-
cess, then the Valuation Solver aborts the solution process, even if not all pairs of equa-
tion/variables were tried.

SolverTransforms <[]>+ contains a list of the names of functions, which can be applied after
a unsuccessful solution attempt to the corresponding equation, in order to increase the
solution chances with a renewed attempt. Thereby the functions are executed in the order
of their occurring in the list. After each function call the next solution attempt takes place
directly. If this fails, then the next transformation in the list is applied, as long as the
equation could be solved or no further transformation is available. Since the possibilities for
manipulations with the transformations are quite extensive, a more accurate specification
of their definition and application is in section 2.5.
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SolverPostprocess <TRUE> switches the Solver Postprocessor on (TRUE) resp. off (FALSE). If
switched to status off, the hierarchical result list of the Solver is returned without rework,
e.g. without expansion, back substitution and extraction of the variables requested by the
user. This control variable serves primarily for Debug purposes.

SolverBacksubst <TRUE> (backsubstitution) determines whether the Solver Postprocessor is to
execute a back substitution of the system of equations brought on triangle form (TRUE)
or not (FALSE). If the calculated symbolic solutions are very extensive, then it is often
meaningful to execute no complete back substitution, but to output some of the looked-for
variables as functions of other calculated unknowns.

SolverDispAllSols <FALSE> (display all solutions) instructs the Solver, if set to TRUE, to out-
put all found solutions at the termination of the solution process and not only for the
variables indicated by the user.

SolverRatSimpSols <TRUE> (perform rational simplifications on solutions) instructs the Solver
Postprocessor to simplify the results with the instruction FullRatSimp before the output.

SolverDumpToFile <FALSE> (TRUE) instructs the Valuation Solver, to write all found solutions
(after each successful solution attempt) as well as the remaining equations and variables
into a Maxima batch file, whose name is saved in the option variable SolverDumpFile.
This option is intended for extensive problems, where Maxima is inclined to system crashes
because of acute lack of main and swap memory. Within a crash, at least a part of the
results can be saved by the storage of the intermediate results.

SolverDumpFile <"SOLVER.DMP"> contains the name of the file, into which the intermediate
results are to be written.

2.5 Definition and Integration of User Specific Transformation
Routines

Often the Valuation Solver encounters equations during the solution process, which it is not able
to solve, although already some simple rearrangements or simplifications could help, in order to
receive the desired result. E.g. the SOLVE function is not able to solve the equation

x+ sin2 x+ cos2 x = 1 (2.15)

correctly for x, since it does not know that the square terms of sine and cosine can be
combined easyly into ’1’.

In order to be able to execute rearrangements or simplifications of the equations depending
upon the application case, the dynamic integration of user-defined transformation functions is
bulid in the Solver, which are applied to unresolved equations if necessary. The Valuation Solver
transfers to these functions among other things the equation and the variable, after which the
equation is to be solve. The transformation function has now the task to transform the equation
and return it as its function value again to the Solver, so that a renewed solution attempt can
begin.

The call of a transformation function from the Solver works in the following way:
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Transform : CopyList( SolverTransforms ),
...

SOLVER LOOP
...

Trans : Pop( Transform ),

TransEq : Apply( Trans, [ Equation, Variable, Solution ] )
...

LOOP END

Thereby the additionally transferred parameter Solution contains the result of the failed
solution attempt, on the basis of which possibly helpful conclusions can be drawn. The following
instruction shows an example of the definition of a simple, user specific transformation routine,
which tries to make an equation solvable by simplifying of trigonometric functions:

TransformTrig( Equation, Variable, Solution ) :=

TrigSimp( Equation )$

For the integration of the function their name had to be inserted into the
global list SolverTransforms:

SolverTransforms : [ ’TransformTrig ]$

Also the application of a transformation routine may be unsuccessful, therefore it exists
the possibility to remember the Solver the failure of the simplifying attempt by return of an
empty list ([]) as function value. In this way it is prevented that a further call of the SOLVE

function with the same equation takes place. Instead the Solver tries directly, to execute the
next transformation in the list, if available,. For an alternative to the rearranging of the equation
and an afterward solution by the internal Solver, a transformation routine is also allowed, to
determine the solutions of the transferred equation itself and return them in the form

[ Variable = Solution_1, Variable = Solution_2, ... ]

A possible area of application for such functions would be the application of numeric proce-
dures for the solution of nonlinear equations, which contain only one variable and no parameters.
Or the equation can be manipulated by hand, whilst the transformation routine calls a Maxima-
Break. The method for the definition and integration of transformation functions with success
return, wil be demonstrated in the following completely worked example. To solve is the system
of equations (2.16) – (2.18) for the variables x, y and z. This task is quite simple in principle,
but nevertheless it causes substantial difficulties to the Solver.

z − sinx = 0 (2.16)

y + z2 + cosx2 = 5 (2.17)

y + x = 1 (2.18)

At first, the system of equations is input as an equation list as well as the variables:
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(COM11) TrigEq :

[

z - sin(x) = 0,

y + z^2 + cos(x)^2 = 5,

y + x = 1

]$

(COM12) Var : [x, y, z]$

The first solution attempt is to be executed without transformation functions:

(COM13) SolverTransforms : []$

(COM14) Solver( TrigEq, Var );

The variables to be solved for are [X, Y, Z]

Checking for inconsistencies...

... none found.

Searching for linear equations...

...with respect to: [X, Y, Z]

Found 2 linear equations in 2 variables.

The variables to be solved for are [Y, Z]

The equations are [Z - SIN(X), Y + X - 1]

Solving linear equations.

The solutions are [Y = 1 - X, Z = SIN(X)]

Checking for remaining equations.

1 equation(s) and 1 variable(s) left.

The variables to be solved for are [X]

Trying to solve equation 1 for X

Valuation: (irrelevant)

2 2

The equation is SIN (X) + COS (X) - X - 4 = 0

Checking if equation was solved correctly.

2 2

The solutions are [X = SIN (X) + COS (X) - 4]

Solution is not correct.

Cannot solve equation. Giving up.

Postprocessing results.

Cannot determine an explicit solution for X

2 2

(D14) [[Y = 1 - X, Z = SIN(X), [SIN (X) + COS (X) - X - 4]]]

In this case the Solver is not able to solve the equation with the squared sine and cosine
terms for the variable x and therefore returns the unresolved equation in implicit form as last
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item of the solution list. To simplifyf the equations two transformation functions are now to be
defined and merged in. The first transformation serves for the simplification of logarithm terms,
the second for the simplification of terms, which contain trigonometric functions. Both functions
check whether their application was successful and returns an empty list, if the transformation
did not cause any modification of the equation.

(COM15) TransformLog( Equation, Variable, Solution ) := BLOCK(

[ Eq ],

Eq : LogContract( Equation ),

IF Eq = Equation THEN

RETURN( [] )

ELSE

RETURN( Eq )

)$

(COM16) TransformTrig( Equation, Variable, Solution ) := BLOCK(

[ Eq ],

Eq : TrigSimp( Equation ),

IF Eq = Equation THEN

RETURN( [] )

ELSE

RETURN( Eq )

)$

The transformation function TransformLog may be applied basically as first, therefore the
integration of the routines takes place in the following order:

(COM17) SolverTransforms : [ ’TransformLog, ’TransformTrig ]$

Now a new run of Solver may be started.

(COM18) Solver( TrigEq, Var );

The variables to be solved for are [X, Y, Z]

Checking for inconsistencies...

... none found.

Searching for linear equations...

...with respect to: [X, Y, Z]

Found 2 linear equations in 2 variables.

The variables to be solved for are [Y, Z]

The equations are [Z - SIN(X), Y + X - 1]

Solving linear equations.

The solutions are [Y = 1 - X, Z = SIN(X)]

Checking for remaining equations.

1 equation(s) and 1 variable(s) left.

The variables to be solved for are [X]
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Trying to solve equation 1 for X

Valuation: (irrelevant)

The equation is SIN (X) + COS (X) - X - 4 = 0

Checking if equation was solved correctly.

2 2

The solutions are [X = SIN (X) + COS (X) - 4]

Solution is not correct.

Here the Solver recognize as in the preceded case that it cannot solve the equation and
applies the first transformation in the list to it.

Applying transformation TRANSFORMLOG

Transformation failed.

Since the equation does not contain logarithmic functions, the simplifying attempt is not
successful. Therefore the second transformation routine is tried.

Applying transformation TRANSFORMTRIG

The transformation yields - X - 3 = 0

Retrying with transformed equation.

Checking if equation was solved correctly.

The solutions are [X = - 3]

Solution is correct.

Solution 1 for X

Checking for inconsistencies...

... none found.

Consistent solutions for X : [X = - 3]

Checking for remaining equations.

All variables solved for. No equations left.

Postprocessing results.

(D18) [[X = - 3, Y = 4, Z = - SIN(3)]]

The transformation function TransformTrig succeeds to simplfy the equation, so that the
Solver is now able, to determine the correct solution for the variable x.

2.6 Modification of the Operator Valuations

To give the user of the Solver the possibility for an individual intervention of the heuristic
complexity valuation of algebraic terms, the valuations of the arithmetic operators are stored
as Macsyma Properties under the keyword Valuation, and not as immutable constants. The
definition of a valuation factor takes place with the instruction

SetProp( Operator, ’Valuation, Valuation factor )$

The standard mappings of the valuation factors are pre-defined in the Solver:
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SetProp( ’sin, ’Valuation, 10 )$

SetProp( ’cos, ’Valuation, 10 )$

SetProp( ’tan, ’Valuation, 10 )$

SetProp( ’asin, ’Valuation, 12 )$

SetProp( ’acos, ’Valuation, 12 )$

SetProp( ’atan, ’Valuation, 12 )$

SetProp( ’sinh, ’Valuation, 12 )$

SetProp( ’cosh, ’Valuation, 12 )$

SetProp( ’tanh, ’Valuation, 12 )$

SetProp( ’asinh, ’Valuation, 12 )$

SetProp( ’acosh, ’Valuation, 12 )$

SetProp( ’atanh, ’Valuation, 12 )$

SetProp( "+", ’Valuation, 1 )$

SetProp( "-", ’Valuation, 1 )$

SetProp( "*", ’Valuation, 4 )$

SetProp( "/", ’Valuation, 4 )$

SetProp( "^", ’Valuation, 10 )$

SetProp( ’exp, ’Valuation, 10 )$

SetProp( ’log, ’Valuation, 10 )$

SetProp( ’sqrt, ’Valuation, 10 )$

E.g. if the valuation of the tanh–operator should be modified on 20, then this can be done
at any time by

SetProp( ’tanh, ’Valuation, 20 )$

A quality factor can queried with the Get command:

Get( Operator, ’Valuation );

Example: The valuation of “∗”– operator is determined through:

(COM19) Get( "*", ’Valuation );

(D19) 4

If the result of the query has the value FALSE, then this means that no valuation factor for
the operator concerned was defined.

2.7 Definition and Integration of
User Specific Valuation Strategies

By means of a reassignment of the procedure variable SolverValuationStrategy the Valuation
Solver is caused to use a user-defined valuation strategy to the determination of the solution
order instead of the internal function. The function are given by their call two valuation matrices,
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SolveOrder : Apply(

SolverValuationStrategy, [ VarPathMatrix, ValuationMatrix ]

)

which are the variable path matrix and the complexity valuation matrix, whose row dimension
equal the number of the equations and their column dimension equals the number of variables
which are be determined.

The entry at the position (i, j) of the variable path matrix corresponds to the number of paths
to the instances of the variable xj in equation i (see section 1.5.2). The complexity evaluation
matrix contains at the position (i, j) the complexity valuation of the equation i w.r.t. the variable
xj . Thus, for the system of equations (1.55) – (1.57) the path matrix reads


x y z

(1.55) 1 1 1
(1.56) 1 1 2
(1.57) 1 1 1


and the valuation matrix using the standard operator valuation factors are determined to


x y z

(1.55) 1 4 1
(1.56) 4 4 14
(1.57) 4 1 40


From these matrices the valuation strategy must generate a solution order (see section 1.5.2))
in the form

[ [i1, j1, b1], [i2, j2, b2], ... ]

The maximal length of the list should not be larger than the value of the option variable
SolverMaxLenValOrder.

The basic structure of an valuation strategy is given by the following pseudocode:

MyValuationStrategy( PathMat, ValMat ) := BLOCK(

generate a solution order from the valuation strategies
limit the length of the list to SolverMaxLenValOrder elements

RETURN( the solution order )

)$

To insert the function afterwards, the procedure variable SolverValuationStrategy is to assign
with the function name:

SolverValuationStrategy : ’MyValuationStrategy$
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Appendix A

Examples

A.1 Truss Design

For the demonstration of the efficiency of the Solver finally the examples stated in the intro-
duction 1.1 and 1.2 are solved. In the following the complete display of the outputs of the two
program runs are reported. We use the following lexicon:

LEXICON: German English

Stabzweischlags two-bar truss
Zweischlag two-bar

Stababmessungen bar dimensions
Zweischlagparameter two-bar parameters

(COM1) Zweischlag :

[

F*cos(gamma) - S1*cos(alpha) - S2*cos(beta) = 0,

F*sin(gamma) - S1*sin(alpha) + S2*sin(beta) = 0,

Delta_l1 = l1*S1/(E*A1),

Delta_l2 = l2*S2/(E*A2),

l1 = c/cos(alpha),

l2 = c/cos(beta),

a = Delta_l2/sin(alpha+beta),

b = Delta_l1/sin(alpha+beta),

u = a*sin(alpha) + b*sin(beta),

w = -a*cos(alpha) + b*cos(beta),

A1 = h1^2,

A2 = h2^2

]$

(COM2) Stababmessungen : [h1, h2]$

(COM3) Zweischlagparameter : [alpha, beta, gamma, F, c, E, u, w]$

(COM4) SolverRepeatImmed : SolverRepeatLinear : FALSE$

47
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(COM5) MsgLevel : ’DETAIL$

(COM6) Solver( Zweischlag, Stababmessungen, Zweischlagparameter );

The variables to be solved for are [H1, H2]

The parameters are [ALPHA, BETA, C, E, F, U, W, GAMMA]

Checking for inconsistencies...

... none found.

Searching for immediate assignments.

C

Assigning L1 = ----------

COS(ALPHA)

C

Assigning L2 = ---------

COS(BETA)

Checking for inconsistencies...

... none found.

Searching for linear equations...

...with respect to: [H1, H2, A, A1, A2, B, DELTA_L1, DELTA_L2, S1, S2]

Found 7 linear equations in 7 variables.

The variables to be solved for are [A, A1, B, DELTA_L1, DELTA_L2, S1, S2]

The equations are [F COS(GAMMA) - COS(BETA) S2 - COS(ALPHA) S1,

F SIN(GAMMA) + SIN(BETA) S2 - SIN(ALPHA) S1,

A SIN(BETA + ALPHA) - DELTA_L2, B SIN(BETA + ALPHA) - DELTA_L1,

2

U - B SIN(BETA) - A SIN(ALPHA), W - B COS(BETA) + A COS(ALPHA), A1 - H1 ]

Solving linear equations.

COS(BETA) U - SIN(BETA) W

The solutions are [A = -------------------------------------------,

COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)

2 SIN(ALPHA) W + COS(ALPHA) U

A1 = H1 , B = -------------------------------------------,

COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)

DELTA_L1 = (SIN(ALPHA) SIN(BETA + ALPHA) W

+ COS(ALPHA) SIN(BETA + ALPHA) U)/(COS(ALPHA) SIN(BETA)

+ SIN(ALPHA) COS(BETA)), DELTA_L2 =

COS(BETA) SIN(BETA + ALPHA) U - SIN(BETA) SIN(BETA + ALPHA) W

-------------------------------------------------------------,

COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)
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COS(BETA) F SIN(GAMMA) + SIN(BETA) F COS(GAMMA)

S1 = -----------------------------------------------,

COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)

SIN(ALPHA) F COS(GAMMA) - COS(ALPHA) F SIN(GAMMA)

S2 = -------------------------------------------------]

COS(ALPHA) SIN(BETA) + SIN(ALPHA) COS(BETA)

Checking for inconsistencies...

... none found.

Checking for remaining equations.

3 equation(s) and 2 variable(s) left.

The variables to be solved for are [H1, H2]

Applying valuation strategy.

Trying to solve equation 3 for H2

Valuation: 10

2

The equation is A2 - H2 = 0

Checking if equation was solved correctly.

The solutions are [H2 = - SQRT(A2), H2 = SQRT(A2)]

Solution is correct.

The solution is not unique. Tracing paths separately.

Solution 1 for H2

Checking for inconsistencies...

... none found.

Solution 2 for H2

Checking for inconsistencies...

... none found.

Consistent solutions for H2 : [H2 = - SQRT(A2), H2 = SQRT(A2)]

Checking for remaining equations.

2 equation(s) and 2 variable(s) left.

The variables to be solved for are [A2, H1]

Applying valuation strategy.

Trying to solve equation 2 for A2

Valuation: 8

The equation is COS(ALPHA) C F SIN(GAMMA) - SIN(ALPHA) C F COS(GAMMA)

- A2 COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W

2

+ A2 COS (BETA) SIN(BETA + ALPHA) E U = 0

Checking if equation was solved correctly.

The solutions are [A2 = (COS(ALPHA) C F SIN(GAMMA)

- SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W

2

- COS (BETA) SIN(BETA + ALPHA) E U)]

Solution is correct.
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Solution 1 for A2

Checking for inconsistencies...

... none found.

Consistent solutions for A2 : [A2 = (COS(ALPHA) C F SIN(GAMMA)

- SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W

2

- COS (BETA) SIN(BETA + ALPHA) E U)]

Checking for remaining equations.

1 equation(s) and 1 variable(s) left.

The variables to be solved for are [H1]

Trying to solve equation 1 for H1

Valuation: (irrelevant)

The equation is - COS(BETA) C F SIN(GAMMA) - SIN(BETA) C F COS(GAMMA)

2

+ COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E H1 W

2 2

+ COS (ALPHA) SIN(BETA + ALPHA) E H1 U = 0

Checking if equation was solved correctly.

The solutions are [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),

H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)

2

E W + COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U))]

Solution is correct.

The solution is not unique. Tracing paths separately.

Solution 1 for H1

Checking for inconsistencies...

... none found.
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Solution 2 for H1

Checking for inconsistencies...

... none found.

Consistent solutions for H1 : [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),

H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)

2

E W + COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U))]

Checking for remaining equations.

All variables solved for. No equations left.

Checking for remaining equations.

All variables solved for. No equations left.

Checking for remaining equations.

2 equation(s) and 2 variable(s) left.

The variables to be solved for are [A2, H1]

Applying valuation strategy.

Trying to solve equation 2 for A2

Valuation: 8

The equation is COS(ALPHA) C F SIN(GAMMA) - SIN(ALPHA) C F COS(GAMMA)

- A2 COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W

2

+ A2 COS (BETA) SIN(BETA + ALPHA) E U = 0

Checking if equation was solved correctly.

The solutions are [A2 = (COS(ALPHA) C F SIN(GAMMA)

- SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W

2

- COS (BETA) SIN(BETA + ALPHA) E U)]

Solution is correct.
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Solution 1 for A2

Checking for inconsistencies...

... none found.

Consistent solutions for A2 : [A2 = (COS(ALPHA) C F SIN(GAMMA)

- SIN(ALPHA) C F COS(GAMMA))/(COS(BETA) SIN(BETA) SIN(BETA + ALPHA) E W

2

- COS (BETA) SIN(BETA + ALPHA) E U)]

Checking for remaining equations.

1 equation(s) and 1 variable(s) left.

The variables to be solved for are [H1]

Trying to solve equation 1 for H1

Valuation: (irrelevant)

The equation is - COS(BETA) C F SIN(GAMMA) - SIN(BETA) C F COS(GAMMA)

2

+ COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E H1 W

2 2

+ COS (ALPHA) SIN(BETA + ALPHA) E H1 U = 0

Checking if equation was solved correctly.

The solutions are [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),

H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)

2

E W + COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U))]

Solution is correct.

The solution is not unique. Tracing paths separately.

Solution 1 for H1

Checking for inconsistencies...

... none found.
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Solution 2 for H1

Checking for inconsistencies...

... none found.

Consistent solutions for H1 : [H1 = - SQRT(COS(BETA) C F SIN(GAMMA)

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),

H1 = SQRT(COS(BETA) C F SIN(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA)

2

E W + COS (ALPHA) SIN(BETA + ALPHA) E U)

+ SIN(BETA) C F COS(GAMMA)/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U))]

Checking for remaining equations.

All variables solved for. No equations left.

Checking for remaining equations.

All variables solved for. No equations left.

Postprocessing results.

(D6) [[H1 = - SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),

H2 = - SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))

2

/(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)

E W))], [H1 = SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),
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H2 = - SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))

2

/(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)

E W))], [H1 = - SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),

H2 = SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))

2

/(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)

E W))], [H1 = SQRT((COS(BETA) C F SIN(GAMMA) + SIN(BETA) C F COS(GAMMA))

/(COS(ALPHA) SIN(ALPHA) SIN(BETA + ALPHA) E W

2

+ COS (ALPHA) SIN(BETA + ALPHA) E U)),

H2 = SQRT((SIN(ALPHA) C F COS(GAMMA) - COS(ALPHA) C F SIN(GAMMA))

2

/(COS (BETA) SIN(BETA + ALPHA) E U - COS(BETA) SIN(BETA) SIN(BETA + ALPHA)

E W))]]

For the system of equations, which describe the ’Truss’ the Solver gives four distinct analyt-
ical solutions, which are different only in their signs. Due to the physical boundary condition,
that the lengths h1 and h2 cannot have negative values, only the last solutionis meaningful

h1 =

√
cosβ cF sin γ + sinβ cF cos γ

cosα sinα sin (β + α) E w + cos2 α sin (β + α) E u
(A.1)

h2 =

√
sinα cF cos γ − cosα cF sin γ

cos2 β sin (β + α) E u− cosβ sinβ sin (β + α) E w
(A.2)
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A.2 Transistor Amplifier Design

We use the following

LEXICON: German English

Verstaerker amplifier
Widerstaende resistances

Designparameter design parameter

(COM7) Verstaerker :

[

-V_V1+V_R1+V_OC_1+V_FIX2_Q1 = 0,-V_V1+V_R2+V_OC_1+V_I1+V_FIX2_Q1 = 0,

-V_V1+V_OC_1+V_I1+V_FIX2_Q2+V_FIX2_Q1-V_FIX1_Q2-V_FIX1_Q1 = 0,

V_V1-V_R6+V_R3-V_OC_1-V_I1-V_FIX2_Q1+V_FIX1_Q1 = 0,

-V_V1+V_R7+V_R4+V_OC_1+V_I1-V_FIX1_Q2 = 0,-V_V1+V_R7+V_R5+V_OC_1 = 0,

V_OC_2-V_I1+V_FIX1_Q2 = 0,V_V_CC-V_V1+V_R6+V_OC_1+V_FIX2_Q1-V_FIX1_Q1 = 0,

I_V1+I_OC_1 = 0,I_R7-I_OC_1+I_FIX2_Q1 = 0,I_R2+I_R1-I_FIX2_Q1-I_FIX1_Q1 = 0,

I_R6+I_FIX2_Q2+I_FIX1_Q1 = 0,-I_R7+I_R5+I_R4 = 0,

-I_R4+I_OC_2-I_FIX2_Q2-I_FIX1_Q2 = 0,I_R3-I_R2+I_I1+I_FIX1_Q2 = 0,

I_V_CC-I_R6-I_R3 = 0,V_V1 = 0,I_I1 = 0,I_OC_1 = 0,V_FIX1_Q1 = 2.72,

V_FIX2_Q1 = 0.607,I_R1*R1-V_R1 = 0,I_R7*R7-V_R7 = 0,I_R2*R2-V_R2 = 0,

I_R6*R6-V_R6 = 0,V_FIX1_Q2 = 6.42,V_FIX2_Q2 = 0.698,I_R3*R3-V_R3 = 0,

I_R4*R4-V_R4 = 0,I_R5*R5-V_R5 = 0,I_OC_2 = 0,V_V_CC = VCC,

I_FIX1_Q1 = 1.11e-4,I_FIX2_Q1 = 5.75001e-7,I_FIX1_Q2 = 0.00401,

I_FIX2_Q2 = 1.26e-5,

A = 145303681853*R2/(145309663773*R1),

ZIN = R7,

ZOUT = (1675719398828125*R2*R7+394048139880824192*R1*R2)

/(136552890630303121408*R1)

]$

(COM8) Widerstaende : [R1, R2, R3, R4, R5, R6, R7]$

(COM9) Designparameter : [VCC, A, ZIN, ZOUT]$

(COM10) SolverRepeatImmed : SolverRepeatLinear : TRUE$

(COM11) Solver( Verstaerker, Widerstaende, Designparameter );

The variables to be solved for are [R1, R2, R3, R4, R5, R6, R7]

The parameters are [A, VCC, ZIN, ZOUT]

Checking for inconsistencies...

... none found.

Searching for immediate assignments.

Assigning V_V1 = 0

Assigning I_I1 = 0

Assigning I_OC_1 = 0

68

Assigning V_FIX1_Q1 = --
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25

607

Assigning V_FIX2_Q1 = ----

1000

321

Assigning V_FIX1_Q2 = ---

50

349

Assigning V_FIX2_Q2 = ---

500

Assigning I_OC_2 = 0

Assigning V_V_CC = VCC

111

Assigning I_FIX1_Q1 = -------

1000000

5

Assigning I_FIX2_Q1 = -------

8695637

401

Assigning I_FIX1_Q2 = ------

100000

25

Assigning I_FIX2_Q2 = -------

1984127

Assigning R7 = ZIN

Checking for inconsistencies...

... none found.

Searching for immediate assignments.

Assigning I_V1 = 0

Checking for inconsistencies...

... none found.

Searching for immediate assignments.

No immediate assignments found.

Searching for linear equations...

...with respect to: [R1, R2, R3, R4, R5, R6, I_R1, I_R2, I_R3, I_R4,

I_R5, I_R6, I_R7, I_V_CC, V_I1, V_OC_1, V_OC_2, V_R1, V_R2, V_R3, V_R4,

V_R5, V_R6, V_R7]

Found 18 linear equations in 18 variables.

The variables to be solved for are [I_R1, I_R2, I_R3, I_R4, I_R5, I_R6,

I_R7, I_V_CC, V_I1, V_OC_1, V_OC_2, V_R1, V_R2, V_R3, V_R4, V_R5, V_R6,

V_R7]

The equations are [1000 V_R1 + 1000 V_OC_1 + 607,

1000 V_R2 + 1000 V_OC_1 + 1000 V_I1 + 607, 200 V_OC_1 + 200 V_I1 - 1567,
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- 1000 V_R6 + 1000 V_R3 - 1000 V_OC_1 - 1000 V_I1 + 2113,

50 V_R7 + 50 V_R4 + 50 V_OC_1 + 50 V_I1 - 321, V_R7 + V_R5 + V_OC_1,

50 V_OC_2 - 50 V_I1 + 321, 1000 V_R6 + 1000 V_OC_1 + 1000 VCC - 2113,

8695637 I_R7 + 5, 8695637000000 I_R2 + 8695637000000 I_R1 - 970215707,

1984127000000 I_R6 + 245238097, - I_R7 + I_R5 + I_R4,

- 198412700000 I_R4 - 798134927, 100000 I_R3 - 100000 I_R2 + 401,

I_V_CC - I_R6 - I_R3, I_R7 ZIN - V_R7]

Solving linear equations.

8695637000000 I_R3 + 33899288663

The solutions are [I_R1 = - --------------------------------,

8695637000000

100000 I_R3 + 401 798134927

I_R2 = -----------------, I_R4 = - ------------,

100000 198412700000

6939299538713499 245238097 5

I_R5 = -------------------, I_R6 = - -------------, I_R7 = - -------,

1725324815389900000 1984127000000 8695637

1984127000000 I_R3 - 245238097 200 V_OC_1 - 1567

I_V_CC = ------------------------------, V_I1 = - -----------------,

1984127000000 200

200 V_OC_1 - 283 1000 V_OC_1 + 607 4221

V_OC_2 = - ----------------, V_R1 = - -----------------, V_R2 = - ----,

200 1000 500

200 V_OC_1 + 200 VCC - 1567 1000 ZIN - 2460865271

V_R3 = - ---------------------------, V_R4 = ---------------------,

200 1739127400

8695637 V_OC_1 - 5 ZIN 1000 V_OC_1 + 1000 VCC - 2113

V_R5 = - ----------------------, V_R6 = - -----------------------------,

8695637 1000

5 ZIN

V_R7 = - -------]

8695637

Checking for inconsistencies...

... none found.
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Searching for linear equations...

...with respect to: [I_R3, R1, R2, R3, R4, R5, R6, V_OC_1]

Found 6 linear equations in 5 variables.

The variables to be solved for are [R2, R4, R5, R6, V_OC_1]

The equations are [8695637000000 V_OC_1 - 8695637000000 I_R3 R1

- 33899288663 R1 + 5278251659000, 1984127000000 V_OC_1 + 1984127000000 VCC

- 245238097 R6 - 4192460351000, 200 V_OC_1 + 200 VCC + 200 I_R3 R3

- 1567, - 992063500000 ZIN - 6940291602213499 R4 + 2441334613776708500,

- 992063500000 ZIN + 1725324815389900000 V_OC_1 + 6939299538713499 R5,

145309663773 A R1 - 145303681853 R2]

Solving linear equations.

Checking for inconsistencies...

... none found.

145309663773 A R1

The solutions are [R2 = -----------------,

145303681853

992063500000 ZIN - 2441334613776708500

R4 = - --------------------------------------,

6940291602213499

R5 = - (- 9920635000000 ZIN + (17253248153899000000 I_R3

+ 67260493917052201) R1 - 10472721629416693000)/69392995387134990,

R6 = (17253248153899000000 VCC + (17253248153899000000 I_R3

+ 67260493917052201) R1 - 46928834978605280000)/2132501470082789,

(8695637000000 I_R3 + 33899288663) R1 - 5278251659000

V_OC_1 = -----------------------------------------------------]

8695637000000

Checking for inconsistencies...

... none found.

Searching for linear equations...

...with respect to: [I_R3, R1, R3]

No linear equations found.

Checking for remaining equations.

3 equation(s) and 3 variable(s) left.

The variables to be solved for are [I_R3, R1, R3]

Applying valuation strategy.

Trying to solve equation 1 for I_R3

Valuation: 4
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The equation is 14530966377300000 A I_R3 R1 + 58269175172973 A R1

+ 122665368220302600 = 0

Checking if equation was solved correctly.

6474352796997 A R1 + 13629485357811400

The solutions are [I_R3 = - --------------------------------------]

1614551819700000 A R1

Solution is correct.

Solution 1 for I_R3

Checking for inconsistencies...

... none found.

Consistent solutions for I_R3 : [I_R3 =

6474352796997 A R1 + 13629485357811400

- --------------------------------------]

1614551819700000 A R1

Checking for remaining equations.

2 equation(s) and 2 variable(s) left.

The variables to be solved for are [R1, R3]

Applying valuation strategy.

Trying to solve equation 1 for R3

Valuation: 20

The equation is - R1 (- 16062755182397110876073408478539448677201569671148#

116383372395290156600000000 A VCC + 64411648281412414613054367998943189195#

578294381303946697323305113527966000 A R3 + 135601779249796410015811714375#

830025732935651163832398508429761039502017200000 A + 135596196971410595846#

324806740533400875556129557784494104259093864172929200000) - 1355961969714#

10595846324806740533400875556129557784494104259093864172929200000 R3 - 179#

2201925592952751292050414582157181324535016813917972727234536207382600 A

2

R1 = 0

Checking if equation was solved correctly.

The solutions are [R3 = (140395565418006489000000 A R1 VCC

2

- 15664635352383720279 A R1 + (- 1185219363258810780138000 A

- 1185170571683430488618000) R1)/(562986217326206020890 A R1

+ 1185170571683430488618000)]

Solution is correct.
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Solution 1 for R3

Checking for inconsistencies...

... none found.

Consistent solutions for R3 : [R3 = (140395565418006489000000 A R1 VCC

2

- 15664635352383720279 A R1 + (- 1185219363258810780138000 A

- 1185170571683430488618000) R1)/(562986217326206020890 A R1

+ 1185170571683430488618000)]

Checking for remaining equations.

1 equation(s) and 1 variable(s) left.

The variables to be solved for are [R1]

Trying to solve equation 1 for R1

Valuation: (irrelevant)

The equation is R1 (19841637776253069394020865409024 ZOUT

- 243498222421608533966015625 A ZIN)

2

- 57259002716458635629644396416 A R1 = 0

Checking if equation was solved correctly.

The solutions are [R1 =

19841637776253069394020865409024 ZOUT - 243498222421608533966015625 A ZIN

-------------------------------------------------------------------------,

57259002716458635629644396416 A

R1 = 0]

Solution is correct.

The solution is not unique. Tracing paths separately.

Solution 1 for R1

Checking for inconsistencies...

... none found.

Solution 2 for R1

Checking for inconsistencies...

... none found.

Consistent solutions for R1 : [R1 =

19841637776253069394020865409024 ZOUT - 243498222421608533966015625 A ZIN

-------------------------------------------------------------------------,

57259002716458635629644396416 A

R1 = 0]

Checking for remaining equations.

All variables solved for. No equations left.

Checking for remaining equations.
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All variables solved for. No equations left.

Postprocessing results.

(D11) [[R1 = - (243498222421608533966015625 A ZIN

- 19841637776253069394020865409024 ZOUT)

/(57259002716458635629644396416 A), R2 =

1493854125285941926171875 A ZIN - 121727839118116990147367272448 ZOUT

- ---------------------------------------------------------------------,

351267764122759016747201152

R3 = (334763184724568105702258732451550460395708593115792893559436793085952

2

ZOUT + VCC

2

(106256457337115768692100530787195899963103895496024350000000000000 A ZIN

- 8658388208766832396126274743883820688291739892383476917089599488000000 A

ZOUT) + A

(73094113258409599088098011387867214250558868171501312134070398877696000

ZOUT + ZIN

(- 8216483067762383568115091483320660991714242249851965644800000000 ZOUT

- 896980085605567678321894471091892803815897329518698154700000000000))

+ 73091104214643137701992515955008538217110816411520639295650692857856000

2

ZOUT + A (50416680420198682402077210492446131565566605185394287109375

2

ZIN - 897017012839931319298712680905507787488523085777437562700000000000

ZIN))/(A

(- 34720136717154997908466361722974120960049876968457742437529293946880

ZOUT

- 210926324831111746833250971831897544037167089192987941918299029504000)



APPENDIX A. EXAMPLES 62

2

+ 426088393921834232455323128456655558852046620939057643500000000 A

992063500000 ZIN - 2441334613776708500

ZIN), R4 = - --------------------------------------,

6940291602213499

R5 = (38195771383195691504052086845016246794667687936 ZOUT

+ A (99303995957664108704965549227744192421875 ZIN

+ 599657596227485533261336202180916694139772288000)

+ 8339540409811836894068029655629814665587863808000)

/(3973373711375163964000922192169533030064195840 A),

R6 = (- 38195771383195691504052086845016246794667687936 ZOUT

+ A (468741670456330507974731687410699967578125 ZIN

- 2687098289520198765190831087202789799110676480000)

+ 987903782911837781320158487942202132025984000000 A VCC

- 8339540409811836894068029655629814665587863808000)

/(122104907468322449250303944919525361454884224 A), R7 = ZIN],

992063500000 ZIN - 2441334613776708500

[R1 = 0, R2 = 0, R3 = 0, R4 = - --------------------------------------,

6940291602213499

992063500000 ZIN + 1047272162941669300

R5 = --------------------------------------,

6939299538713499

1984127000000 VCC - 5396825440000

R6 = ---------------------------------, R7 = ZIN]]

245238097

Here we have more than one solution of the system ,too, but only first one is physically mean-
ingful result.
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Program listings

B.1 SOLVER.MAC

/******************************************************************************/

/* */

/* SOLVER - THE NEXT GENERATION */

/* */

/* Copyright (C) 2000 : Eckhard Hennig, Ralf Sommer */

/* This library is free software; you can redistribute it and/or modify it */

/* under the terms of the GNU Library General Public License as published */

/* by the Free Software Foundation; either version 2 of the License, or (at */

/* your option) any later version. */

/* */

/* This library is distributed in the hope that it will be useful, but */

/* WITHOUT any WARRANTY; without even the implied warranty of */

/* MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE. See the GNU */

/* Library General Public License for more details. */

/* */

/* You should have received a copy of the GNU Library General Public */

/* License along with this library; if not, write to the Free Software */

/* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */

/******************************************************************************/

/* Credits: This program is based on many ideas from Henning Trispel’s work */

/* on the EASY-Solver in 1991. */

/* */

/******************************************************************************/

/* Author(s) : Eckhard Hennig, Ralf Sommer */

/* Project start: 19.01.1994 */

/* Completed : 16.07.1994 */

/* last change : 29.06.1995 */

/* Time : 09:26 */

/******************************************************************************/

/* Changes : ||||| ||||| ||||| ||| */

/******************************************************************************/

/* Modified by : Dan Stanger dan.stanger@ieee.org to work under maxima */

63
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/******************************************************************************/

load( "solver/linsolve.mac" )$

load( "solver/slvrtbox.mac" )$

load( "solver/slvrmsgs.mac" )$

load( "solver/misc.mac" )$

put( ’SOLVER, 1, ’Version )$

SetVersion(

/* KEY = */ ’SOLVER,

’MODULE = "SOLVER",

’DESCRIPTION = "Symbolic solver for parametric systems of equations.",

’AUTHORS = "Eckhard Hennig, Ralf Sommer",

’DATE = "19.01.1994",

’LASTCHANGE = "29.06.1995",

’TIME = "09:26",

’PLAN = "Add a-priori transforms"

)$

/******************************************************************************/

/* last change: 29.06.1995 */

/* Time : 09:26 */

/* By : Eckhard Hennig */

/* Description: Option variable Solver_Valuate_All_Nonlin_Vars added. */

/* Bug in ValuationSolver removed: rhs variables of solutions */

/* were not added to the list of variables. */

/******************************************************************************/

/* last change: 28.05.1995 */

/* Time : 11:59 */

/* By : Eckhard Hennig */

/* Description: Solver break test added. */

/******************************************************************************/

/* last change: 18.05.1995 */

/* Time : 16:10 */

/* By : Eckhard Hennig */

/* Description: Name conflict with AI keyword PARAMS removed. */

/******************************************************************************/

/* last change: 30.01.1995 */

/* Time : 21.42 */

/* By : Eckhard Hennig */

/* Description: Removal of map( ’num, ... ) has revealed some side effects on */

/* the list of equations in ValuationSolver. Bug repaired by */

/* inserting two additional copylist calls. */

/* Arguments to both load commands above now written in lower- */

/* case letters to avoid problems with UNIX versions. */

/******************************************************************************/

/* last change: 24.01.1995 */
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/* Time : 16.33 */

/* By : Eckhard Hennig */

/* Description: mapping ’num to expressions caused some invalid solutions, */

/* therefore removed. Version property added. */

/******************************************************************************/

/* last change: 19.01.1995 */

/* Time : 13.04 */

/* By : Eckhard Hennig, Ralf Sommer */

/* Description: Bug in ImmediateAssignments corrected, Function AppendImmed */

/* removed. */

/******************************************************************************/

/* last change: 19.01.1995 */

/* Time : 11.28 */

/* By : Eckhard Hennig, Ralf Sommer */

/* Description: SLVRTBOX and SLVRMSGS now autoloading. */

/******************************************************************************/

/* last change: 17.01.1995 */

/* Time : 20.15 */

/* By : Eckhard Hennig, Ralf Sommer */

/* Description: Option variables modified (underscores inserted according to */

/* R. Petti’s suggestions) */

/* Function SetValuation added. */

/******************************************************************************/

/* last change: 25.10.1994 */

/* Time : 12.46 */

/* By : Eckhard Hennig */

/* Description: errorMsg renamed to ErrMsg. */

/******************************************************************************/

/* last change: 12.09.1994 */

/* Time : 11.50 */

/* By : Eckhard Hennig */

/* Description: errcatch wrapped around final fullratsimp. */

/******************************************************************************/

/* last change: 05.09.1994 */

/* Time : 15.59 */

/* By : Eckhard Hennig */

/* Description: mode_identity’s inserted. */

/******************************************************************************/

/* last change: 05.09.1994 */

/* Time : 15.21 */

/* By : Eckhard Hennig */

/* Description: Number of linear equations is now correctly displayed. */

/* Bug in DumpToFile corrected. */

/* Numbers of solution sets are now printed by the postprocessor.*/

/******************************************************************************/

/* last change: 30.08.1994 */

/* Time : 13.45 */

/* By : Eckhard Hennig */
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/* Description: Single inconsistent solution paths are no longer returned. */

/******************************************************************************/

/* last change: 29.08.1994 */

/* Time : 17.16 */

/* By : Eckhard Hennig */

/* Description: Slight modification of Immediate Assignment Solver. */

/* Valuation property for sqrt added. */

/* New option variable SolverDefaultValuation. */

/* Change in Valuation. Now making use of the above option var. */

/******************************************************************************/

/* last change: 26.08.1994 */

/* Time : 15.29 */

/* By : Eckhard Hennig */

/* Description: Bug in Linear Solver removed. */

/******************************************************************************/

/* last change: 25.08.1994 */

/* Time : 12.41 */

/* By : Eckhard Hennig */

/* Description: New option variable SolverRatSimpSols. */

/* Linear Solver now calls the consistency check. */

/* Capabilities of the transforms in ValuationSolver strongly */

/* enhanced. */

/******************************************************************************/

/* last change: 24.08.1994 */

/* Time : 23.14 */

/* By : Eckhard Hennig */

/* Description: Bug fixed in postprocessor: compound expressions are now cor- */

/* rectly evaluated. */

/* Linear Solver now checks for remaining equations & variables, */

/* and removes those "linear" eqs and vars which do not really */

/* belong to the "true" linear subsystem. */

/******************************************************************************/

/* last change: 11.08.1994 */

/* Time : 19.09 */

/* By : Eckhard Hennig */

/* Description: Variable SolverDelEq2VarPref replaced by function variable */

/* SolverDelEq. Heuristic algorithm for linear equation */

/* extraction improved. */

/******************************************************************************/

/* last change: 19.07.1994 */

/* Time : 18.01 */

/* By : Eckhard Hennig */

/* Description: Bug in post processor corrected. */

/******************************************************************************/

/******************************************************************************/

/* Global variables for Solver */
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/******************************************************************************/

/******************************************************************************/

/* If Solver_Immed_Assign is true then the Solver searches the equations */

/* for immediate assignments of the form variable = constant and immediately */

/* inserts these constraints into the remaining equations. */

/******************************************************************************/

define_variable( Solver_Immed_Assign, true, boolean )$

/******************************************************************************/

/* Solver_Repeat_Immed controls whether the search for immediate assignments */

/* is performed repeatedly until no more of them are found. */

/******************************************************************************/

define_variable( Solver_Repeat_Immed, true, boolean )$

/******************************************************************************/

/* Solver_Subst_Powers controls whether the Solver substitutes powers of a */

/* variable by new symbols in one of the following cases: */

/* 1. var^n appears raised to exactly one power n */

/* 2. for all var^m in the equations : m=n*k , k integer */

/******************************************************************************/

define_variable( Solver_Subst_Powers, false, boolean )$

/******************************************************************************/

/* Solver_Incons_Params controls whether the Solver terminates when a non- */

/* trivial equation containing only parameters is encountered. for example, */

/* if A and B are defined as parameters and the solution process yields */

/* A = B^2 then the Solver stops if Solver_Incons_Params is = ’BREAK. If set */

/* to ’ASK the Solver asks whether A - B^2 is zero and continues if it is. */

/* If set to ’IGNORE the Solver quietly assumes that the expression is zero */

/* if it does not directly contradict with any of the assumptions made before.*/

/******************************************************************************/

define_variable( Solver_Incons_Params, ’ASK, any_check )$

put(

’Solver_Incons_Params,

lambda( [ x ],

if not member( x, [ ’ASK, ’BREAK, ’IGNORE ] ) then

ErrorHandler("InvIncPar", x, ’Fatal )

),

’value_check
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)$

/******************************************************************************/

/* Solver_Linear controls whether the Solver tries to find and solve blocks */

/* of linear equations before submitting the remaining equations to the */

/* heuristic valuation solver. This is useful if the equations to be solved */

/* are known to contain a large linear part. */

/******************************************************************************/

define_variable( Solver_Linear, true, boolean )$

/******************************************************************************/

/* If Solver_Repeat_Linear is true then the LinearSolver will be called */

/* repeatedly until no more linear equations are found. If false then */

/* LinearSolver will be called only once. */

/******************************************************************************/

define_variable( Solver_Repeat_Linear, true, boolean )$

/******************************************************************************/

/* If Solver_Find_All_Linear_Vars is true then LinearSolver will try to find */

/* linear equations with respect to all available variables and solve these */

/* equations simultaneously. If false then LinearSolver will only search for */

/* linear equations with respect to the variables passed over in the function */

/* call. */

/******************************************************************************/

define_variable( Solver_Find_All_Linear_Vars, true, boolean )$

/******************************************************************************/

/* Solver_Assumptions contains constraints on the parameters which should be */

/* checked by the user after the termination of Solver. These constraints */

/* result from the parameter consistency check the behavior of which is */

/* controlled by the setting of the option variable Solver_Incons_Params. */

/* Any numerical solution of the equations obtained by assigning numerical */

/* values to symbolic parameters should be checked for consistency with all */

/* expressions in Solver_Assumptions. */

/******************************************************************************/

define_variable( Solver_Assumptions, [], list )$

/******************************************************************************/

/* Solver_Del_Eq holds the name of a function which controls the behavior of */
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/* the heuristic search algorithm which extract linear equations from the */

/* entire system of equations. */

/******************************************************************************/

define_variable( Solver_Del_Eq, ’MakeSquareLinearBlocks, any )$

/******************************************************************************/

/* If Solver_Valuate_All_Nonlin_Vars is true then the ValuationSolver will */

/* valuate the equations w.r.t. all remaining variables and not only w.r.t */

/* variables which are being searched for at the current step. */

/******************************************************************************/

define_variable( Solver_Valuate_All_Nonlin_Vars, false, boolean )$

/******************************************************************************/

/* Solver_Valuation_Strategy holds the name of the equation valuation */

/* strategy called by the valuation solver to determine the order by which */

/* the equations are to be solved. */

/******************************************************************************/

define_variable( Solver_Valuation_Strategy, ’MinVarPathsFirst, any_check )$

put(

’Solver_Valuation_Strategy,

lambda(

[ x ],

if not FunctionP( x ) then

ErrorHandler( "UndefStrat", x, ’Fatal )

),

’value_check

)$

/******************************************************************************/

/* Solver_Default_Valuation contains the default valuation for arithmetic */

/* operators. Whenever an operator is encountered for which no valuation has */

/* been defined by SetProp( <operator>, ’Valuation, <valuation> ) this value */

/* is taken for the formula complexity calculations. */

/******************************************************************************/

define_variable( Solver_Default_Valuation, 10, fixnum )$

/******************************************************************************/

/* Solver_Max_Len_Val_Order limits the length of the list of candidates for */

/* the solve calls in ValuationSolver. A low value will usually increase the */
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/* efficiency of the valuation solver since, in general, the first or second */

/* attempt to solve an equation (hopefully) succeeds. */

/******************************************************************************/

define_variable( Solver_Max_Len_Val_Order, 5, fixnum )$

/******************************************************************************/

/* Solver_Transforms is a list containing the names of functions which can be */

/* applied to an equation after a failed solve call. These functions must */

/* take three arguments: the equation to be transformed, the variable to be */

/* solved for, and a list of (probably implicit) solutions the Solver has */

/* already found for the equation. */

/******************************************************************************/

define_variable( Solver_Transforms, [], list )$

/******************************************************************************/

/* If Solver_Postprocess is set to false no postprocessing of the results will*/

/* be done. Instead, the solutions are displayed in the internal hierarchical */

/* list format. Useful for debugging purposes. */

/******************************************************************************/

define_variable( Solver_Postprocess, true, boolean )$

/******************************************************************************/

/* Solver_Backsubst controls the output format of Solver. If Solver_Backsubst */

/* is true then the result will be displayed with fully evaluated right-hand */

/* sides for each variable. If the option variable is set to false then the */

/* right-hand sides of the solutions may still contain references to some */

/* of the other variables which have been solved for. */

/******************************************************************************/

define_variable( Solver_Backsubst, true, boolean )$

/******************************************************************************/

/* With Solver_Disp_All_Sols set to true all solutions will be displayed */

/* including those for the variables which have been solved for in the */

/* solution process but have not been explicitly asked for. */

/******************************************************************************/

define_variable( Solver_Disp_All_Sols, false, boolean )$

/******************************************************************************/
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/* If Solver_RatSimp_Sols is true then the Solver Postprocessor will */

/* fullratsimp the solutions before returning them. */

/******************************************************************************/

define_variable( Solver_RatSimp_Sols, true, boolean )$

/******************************************************************************/

/* If Solver_Dump_To_File is true then the ValuationSolver writes the */

/* solutions and yet unsolved equations to a file after each iteration. This */

/* might help if the Solver crashes. */

/******************************************************************************/

define_variable( Solver_Dump_To_File, false, boolean )$

/******************************************************************************/

/* Solver_Dump_File contains the name of the file to which the dump is */

/* written. */

/******************************************************************************/

define_variable( Solver_Dump_File, "SOLVER.DMP", any )$

/******************************************************************************/

/* Solver_Break_Test holds the name of a function which is called immediately */

/* before attempting to solve an equation. This function then decides whether */

/* Solver should try to solve the equation or whether it should stop, e.g. */

/* because the problem has become too complex. The arguments passed to the */

/* Solver_Break_Test are 1. the equation, 2. the variable, 3. the valuation. */

/* The Solver stops if the Solver_Break_Test returns true, it continues if */

/* the return value is false. */

/******************************************************************************/

define_variable( Solver_Break_Test, ’SolverJustDoIt, any )$

/******************************************************************************/

/* Solver, main program */

/******************************************************************************/

Solver( Equations, [ SolverParams ] ) := (

mode_declare(

[ Equations, SolverParams ], list

),

block(
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[

Variables, /* List of variables to be solved for */

UserVars, /* List of variables specified by user */

Parameters, /* List of symbols to be used as parameters */

Expressions, /* List of compound expressions to be solved for */

PowerSubst, /* List of substituted symbols for powers */

Solutions, /* List of solutions found by Solver */

RemainingEqs, /* List of remaining equations */

/* Assumptions made in linear solver should be local */

Solver_Assumptions : [],

Active

],

mode_declare(

[

Variables, UserVars, Parameters, Expressions, PowerSubst,

Solutions

], list,

Active, boolean

),

/* No assumptions to start with */ErrorHandlerSolver_Assumptions : [],

/* Initialize list of solutions */

Solutions : [],

/* Do all necessary preprocessing */

map(

lambda([x,y],x::y),

[

’Equations, ’SolverParams, ’Variables, ’Parameters,

’Expressions, ’PowerSubst, ’UserVars

],

SetupSolver( Equations, SolverParams )

),

if MsgLevel = ’DEBUG then

display(

Equations, SolverParams, Variables, Parameters, Expressions,

PowerSubst, UserVars, Solutions

),

block(

[],
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/* Search for and apply immediate assignments */

Active : Solver_Immed_Assign,

while Active do (

map(

lambda([x,y],x::y),

[ ’Active, ’Solutions, ’Equations, ’Variables ],

ImmediateAssignments( Solutions, Equations, Variables, Parameters )

),

Active : Active and Solver_Repeat_Immed,

if MsgLevel = ’DEBUG then

display(

Equations, SolverParams, Variables, Parameters, Expressions,

PowerSubst, UserVars, Solutions

)

),

if Empty( Equations ) or Empty( Variables ) then

return( false ),

Equations : map(

lambda(

[ Eq ],

fullratsimp( lhs( Eq ) - rhs( Eq ) )

),

Equations

),

/* Find and solve linear equations */

Active : Solver_Linear,

while Active do (

map(

lambda([x,y],x::y),

[ ’Active, ’Solutions, ’Equations, ’Variables ],

LinearSolver( Solutions, Equations, Variables, Parameters )

),

Active : Active and Solver_Repeat_Linear,

if MsgLevel = ’DEBUG then

display(

Equations, SolverParams, Variables, Parameters, Expressions,

PowerSubst, UserVars, Solutions

)
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),

if Empty( Equations ) or Empty( Variables ) then

return( false ),

if Solver_Valuate_All_Nonlin_Vars then

Variables : Union(

SetDifference( listofvars( Equations ), Parameters ),

Variables

),

/* apply valuation strategies to solve the nonlinear equations. */

map(

lambda([x,y],x::y),

[ ’Active, ’Solutions, ’Equations, ’Variables ],

ValuationSolver( Solutions, Equations, Variables, Parameters )

)

), /* END block */

/* Return the solutions and the unsolved equations */

if Solver_Postprocess then

return( PostProcess( Solutions, UserVars, Expressions, PowerSubst ) )

else

return( Solutions )

)

)$

/******************************************************************************/

/* TerminateSolver terminates the Solver. */

/******************************************************************************/

TerminateSolver() := error( ErrMsg["SolvrTerm"] )$

/******************************************************************************/

/* SetupSolver preprocesses the equations and optional parameters before */

/* submitting them to the Solver. The equations are checked if they are */

/* really equations, and all equations of the form NUMBER = NUMBER or */

/* f( PARAMETERS ) = g( PARAMETERS ) are checked for consistency and then */

/* dropped. */

/******************************************************************************/

SetupSolver( Equations, SolverParams ) := (
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mode_declare(

[ Equations, SolverParams ], list

),

block(

[

i, AllVars, Var, SubstSym, Power,

Variables, Parameters, Expressions,

PowerSubst, UserVars

],

mode_declare(

i, fixnum,

[

AllVars, Power, Variables, Parameters, Expressions,

PowerSubst, UserVars

], list,

[ Var, SubstSym ], any

),

Expressions : [],

PowerSubst : [],

Parameters : [],

/* Make sure that Equations is a list. Abort if it is not. */

if not listp( Equations ) then

ErrorHandler( "EqsNotLst", Equations, ’Fatal ),

/* delete all entries from Equations which are not equations */

Equations : sublist( Equations, ’EquationP ),

/* Convert all floating-point numbers to rational numbers. If this was */

/* not done then rounding errors could fool the consistency check. */

Equations : map( ’rat, Equations ),

/* Process the optional arguments to Solver */

if not Empty( SolverParams ) then (

Variables : SolverParams[1],
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/* Make sure that Variables is a list. Abort if it is not. */

if not listp( Variables ) then

ErrorHandler( "VarNotLst", Variables, ’Fatal ),

/* delete multiple occurrences of identical symbols */

Variables : Setify( Variables ),

PrintMsg( ’DETAIL, SolverMsg["VarsAre"], Variables ),

if length( SolverParams ) > 1 then (

Parameters : SolverParams[2],

/* Make sure that Parameters is a list. Abort if it is not. */

if not listp( Parameters ) then

ErrorHandler( "ParNotLst", Parameters, ’Fatal ),

/* delete multiple occurrences of identical symbols */

Parameters : Setify( Parameters ),

PrintMsg( ’DETAIL, SolverMsg["ParsAre"], Parameters )

)

),

/* Check if Variables and Parameters are disjoint sets of symbols */

if not DisjointP( Variables, Parameters ) then

ErrorHandler(

"VarParConfl", Intersection( Variables, Parameters ), ’Fatal

),

/* Make a list of all variables to be solved for. This list may contain */

/* more symbols than Variables when either no SolverParams have been */

/* given or when the user has specified only a subset of all existing */

/* symbols. */

AllVars : SetDifference( listofvars( Equations ), Parameters ),

/* solve for all available variables if Variables is empty. */

if Empty( Variables ) then
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Variables : AllVars,

/* Check all those equations which contain only equations of the form */

/* NUMBER = NUMBER or which contain only parameters and none of the */

/* variables of interest for consistency. Remove consistent equations */

/* and store the assumptions made in the list Solver_Assumptions. */

Equations : ParamConsistency( Equations, Parameters ),

/* Abort if no equations are left after the above step. */

if Empty( Equations ) or Empty( Variables ) then (

PrintMsg( ’SHORT, SolverMsg["NoEqOrVar"] ),

return( [ [], SolverParams, Variables, Parameters, [], [], [] ] )

),

/* If there are compound expressions to be solved for then the solver */

/* tries to solve for the variables contained in them first. */

/* Subsequently the expressions are rebuilt from the solutions of */

/* these variables and the parameters. */

for i thru length( Variables ) do

/* Search the variable list for non-atomic expressions. */

if not atom( Var : Variables[i] ) then (

/* append expression to the expression list */

Expressions : endcons( Var, Expressions ),

/* Insert the variables in the expression into the list of variables */

/* but keep the parameters out. */

Variables[i] : SetDifference( listofvars( Var ), Parameters ),

PrintMsg( ’SHORT, SolverMsg["TrySolve4"], Variables[i] ),

PrintMsg( ’SHORT, SolverMsg["Solve4Exp"], Var )

),

/* Make a list of all the variables the user actually wants to know */

UserVars : sublist( Variables, ’atom ),

/* Flatten the list of variables and make it a set. */

Variables : Setify( Flatten( Variables ) ),

/* If Solver_Subst_Powers is true then substitute powers by new symbols */
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if Solver_Subst_Powers then (

PrintMsg( ’SHORT, SolverMsg["SubstPwrs"] ),

for Var in AllVars do (

/* get all powers of Var in Equations. Convert negative powers to */

/* positive ones. */

Power : Setify( abs( ListOfPowers( Equations, Var ) ) ),

/* If there is more than one power of Var then substitute each */

/* var^m only if all m are integer multiples of the lowest */

/* power > 0. The check is done by examining the modulus of all */

/* powers with respect to the lowest power. */

if

not member( ’false, map( ’integerp, Power ) )

and

Power[1] # 1

then

if ( length( Power ) = 1 ) or

block(

[ Modulus : Power[1] ],

not member(

’false,

map( ’ZeroP, totaldisrep( rat( rest( Power ) ) ) )

)

)

then (

/* Make a new symbol for var^power */

SubstSym : concat( Var, "^", Power[1] ),

/* Store a reference to the original term in an assoc list */

PowerSubst : endcons( SubstSym = Var^Power[1], PowerSubst ),

/* Substitute the new symbol for the original term */

Equations : ratsubst( SubstSym, Var^Power[1], Equations ),

Variables : subst( SubstSym, Var, Variables ),

/* Notify user */

PrintMsg( ’DETAIL, SolverMsg["subst"], Var^Power )

)

) /* END for Var in AllVars */
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), /* END if Solver_Subst_Powers */

return(

[

Equations, SolverParams, Variables, Parameters, Expressions,

PowerSubst, UserVars

]

)

)

)$

/******************************************************************************/

/* ParamConsistency checks equations of the form NUMBER = NUMBER and equa- */

/* tions which contain only parameters for consistency. If the system cannot */

/* determine whether a parametric expression is zero then the user is optio- */

/* nally asked to supply the required information. The assumptions made are */

/* stored in the list Solver_Assumptions. */

/******************************************************************************/

ParamConsistency( Eqs, Pars, [ Action ] ) := (

mode_declare(

[ Eqs, Pars ], list,

Action, any

),

block(

[ Eq, lhsminusrhs, i, consistent ],

mode_declare(

[ Eq, lhsminusrhs ], any,

i, fixnum,

consistent, boolean

),

PrintMsg( ’SHORT, SolverMsg["ConsChk"] ),

if Empty( Action ) then

Action : ’BREAK

else

Action : Action[1],

consistent : true,

for i thru length( Eqs ) do (
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Eq : Eqs[i],

/* Does the equation contain only numbers or parameters? */

if Empty(

SetDifference( listofvars( Eq ), Pars )

)

then (

/* If so, check for consistency */

lhsminusrhs : expand( lhs( Eq ) - rhs( Eq ) ),

/* Test if difference of both rhs’s is zero */

if lhsminusrhs # 0 then

if SolverAssumeZero( lhsminusrhs ) then

PrintMsg( ’SHORT, SolverMsg["Assum"], lhsminusrhs = 0 )

else

if Action = ’BREAK then (

/* Abort if difference is non-zero */

PrintMsg( ’SHORT, SolverMsg["Incons"], lhs( Eq ) = rhs( Eq ) ),

TerminateSolver()

)

else

return( consistent : false ),

/* Kill the now redundant equation */

if Action = ’BREAK then

Eqs[i] : []

) /* END if Empty */

), /* END for i */

if consistent then

PrintMsg( ’SHORT, SolverMsg["NoneFnd"] ),

if Action = ’BREAK then

return( delete( [], Eqs ) )

else

return( consistent )

)

)$

/******************************************************************************/

/* SolverAssumeZero checks whether Expression is (assumed to be) equal to */

/* zero. If it isn’t, the function returns false or asks the user for his */

/* decision. New assumptions are appended to the list Solver_Assumptions. */
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/******************************************************************************/

SolverAssumeZero( Expression ) := (

mode_declare(

Expression, any

),

block(

[ AssumptionExists, i ],

mode_declare(

i, fixnum,

AssumptionExists, boolean

),

/* Return false immediately if Expression is a number # 0 or if */

/* Solver_Incons_Params is set to ’BREAK. */

if

Empty( listofvars( Expression ) )

or ( Solver_Incons_Params = ’BREAK )

then

return( false ),

/* Do a simple check to find out whether assumption already exists: */

/* Zero is substituted for Expression in the stored assumption. If the */

/* result is zero then the assumption already exists. */

AssumptionExists : false,

for i thru length( Solver_Assumptions ) while not AssumptionExists do

if

fullratsimp(

ratsubst( 0, Expression, lhs( Solver_Assumptions[i] ) )

) = 0

then

AssumptionExists : true,

/* If the expression is not yet assumed to be equal to zero, ask the user */

/* to decide whether it is. */

if not AssumptionExists then

if

( Solver_Incons_Params = ’ASK )

and

( AskZeroNonzero( Expression ) # ’zero )
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then

return( false )

else

/* If difference is equal to zero or assumed to be so then store */

/* the constraint in the global list Solver_Assumptions. So the user*/

/* has access to all assumptions made during the solution process */

/* and can check any numerical solutions for consistency with the */

/* assumptions. */

Solver_Assumptions : endcons( Expression = 0, Solver_Assumptions )

else

PrintMsg( ’DETAIL, SolverMsg["AssmFnd"], Expression = 0 ),

return( true )

)

)$

AskZeroNonzero( Expression ) :=

if equal( x, 0 ) = true then ’zero

else block(

[s : ’pnz],

while s#’zero and s#’nonzero do (

s : read( "Is", Expression, "zero or nonzero?" )

),

s

)$

/******************************************************************************/

/* ListOfPowers returns the list of powers # 0 of a variable in a set of */

/* equations. */

/******************************************************************************/

ListOfPowers( Eqs, Var ) := (

mode_declare(

Eqs, list,

Var, any

),

delete(

0,

apply(

’Union,

map(

lambda(

[ Eq ],

Powers( expand( lhs( Eq ) - rhs( Eq ) ), Var )

),
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Eqs

)

)

)

)$

/******************************************************************************/

/* ImmediateAssignments directly applies all immediate assignments of the */

/* form var = rhs... before the actual Solver is called. */

/******************************************************************************/

ImmediateAssignments( Solutions, RemainingEqs, Variables, Parameters ) := (

mode_declare(

[ Solutions, RemainingEqs, Variables, Parameters ], list

),

block(

[ i, Vars, AssignmentMade, Left, Right ],

mode_declare(

i, fixnum,

Vars, list,

AssignmentMade, boolean,

[ Left, Right ], any

),

PrintMsg( ’SHORT, SolverMsg["SrchImmed"] ),

AssignmentMade : false,

for i thru length( RemainingEqs ) do block(

[],

Left : lhs( RemainingEqs[i] ),

Right : rhs( RemainingEqs[i] ),

/* Scan the equations for simple assignments of the form X = Expr or */

/* Expr = X and apply this assignment only if X is not a parameter and */

/* if Expr contains only numbers or parameters. */

/* Remark: Equations containing only parameters have already been remo- */

/* ved from the equation list in SetupSolver. */

if symbolp( Left ) then (

Vars : listofvars( Right ),
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/* Check if lhs is an isolated variable and make sure that there are */

/* only parameters on the right-hand side. */

if freeof( Left, Right )

and Empty( SetDifference( Vars, Parameters ) )

then (

if assoc( Left, Solutions ) = false then (

PrintMsg(

’DETAIL,

SolverMsg["Assign"], totaldisrep( Left = Right )

),

if member( Left, map( lhs, Solutions ) ) then (

if assoc( Left, Solutions ) # Right then (

PrintMsg( ’SHORT, SolverMsg["Incons"], Left = Right ),

TerminateSolver()

)

)

else

Solutions : endcons( Left = Right, Solutions ),

RemainingEqs[i] : [],

AssignmentMade : true

),

/* This return prevents Macsyma from entering the next if statement */

/* which must only be executed when the current outer if statement */

/* has not been entered. */

return( ’DONE )

)

),

if symbolp( Right ) then (

Vars : listofvars( Left ),

if freeof( Right, Left )

and Empty( SetDifference( Vars, Parameters ) )

then (

if assoc( Right, Solutions ) = false then (

PrintMsg(

’DETAIL,

SolverMsg["Assign"], totaldisrep( Right = Left )

),
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if member( Right, map( lhs, Solutions ) ) then (

if assoc( Right, Solutions ) # Left then (

PrintMsg( ’SHORT, SolverMsg["Incons"], Left = Right ),

TerminateSolver()

)

)

else

Solutions : endcons( Right = Left, Solutions ),

RemainingEqs[i] : [],

AssignmentMade : true

)

)

)

), /* END for i thru length */

if AssignmentMade then (

/* delete the used equations from the list */

RemainingEqs : delete( [], RemainingEqs ),

if not Empty( RemainingEqs ) then (

/* Remove all the variables from the working list which have been */

/* determined by an immediate assignment. */

Variables : SetDifference( Variables, map( ’lhs, Solutions ) ),

/* Evaluate the remaining equations with the constraints */

RemainingEqs : ev( RemainingEqs, Solutions ),

/* Do a parameter consistency check */

RemainingEqs : ParamConsistency( RemainingEqs, Parameters )

)

else

PrintMsg( ’SHORT, SolverMsg["NoEqTerm"] )

)

else

PrintMsg( ’SHORT, SolverMsg["NoImmed"] ),

/* END if AssignmentMade */

return( [ AssignmentMade, Solutions, RemainingEqs, Variables ] )

)

)$
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/******************************************************************************/

/* LinearSolver extracts blocks of linear equations from an arbitrary system */

/* of equations by a heuristic searching strategy and solves the linear block */

/* if there is one. */

/******************************************************************************/

LinearSolver( Solutions, Equations, Variables, Parameters ) := (

mode_declare(

[ Solutions, Equations, Variables, Parameters ], list

),

block(

[

CoeffMatrix, ValuationMatrix, ActiveVars,

LinEqNos, LinVarNos, NewVars, LinSolVars,

LinearEqs, LinearVars, LinearSolutions,

i, j, me, mv, NumVars, NumEqs,

MaxValVar, MaxValEq,

EqValuation, VarValuation,

rhsExpressions,

linsolvewarn : false,

linsolve_params : false,

Solve_Inconsistent_Error : false,

EqWasLast : false

],

mode_declare(

[ CoeffMatrix, ValuationMatrix ], any,

[

LinEqNos, LinVarNos, ActiveVars, LinearEqs, LinearVars, LinSolVars,

EqValuation, VarValuation, LinearSolutions, NewVars, rhsExpressions

], list,

[ i, j, me, mv, NumVars, NumEqs, MaxValVar, MaxValEq ], fixnum

),

if Empty( Equations ) then (

if Empty( Variables ) then

PrintMsg( ’SHORT, SolverMsg["AllSolved"] )

else

PrintMsg( ’SHORT, SolverMsg["NoEqLeft"], Variables ),

return( [ false, Solutions, Equations, Variables ] )
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)

else if Empty( Variables ) then (

PrintMsg( ’SHORT, SolverMsg["EqLeft"] ),

return( [ false, Solutions, Equations, Variables ] )

),

PrintMsg( ’SHORT, SolverMsg["SrchLinEq"] ),

/* Make a list of all remaining variables */

NewVars : listofvars( Equations ),

if Solver_Find_All_Linear_Vars then (

/* The following rather weird commands put the variables into the order */

/* [ variables to be currently solved for, other variables ]. If the */

/* current variables are linear variables then it is more likely that */

/* they will have explicit solutions if they are located in the left */

/* half of the system of equations. Otherwise the will more likely be */

/* used as parameters of the null space (if there is one). */

ActiveVars : append(

Intersection( Variables, NewVars ),

SetDifference( NewVars, append( Variables, Parameters ) )

),

LinearEqs : Equations,

Equations : []

)

else (

ActiveVars : Intersection( Variables, NewVars ),

LinearEqs : [],

for i thru length( Equations ) do

if

not Empty( Intersection( listofvars( Equations[i] ), ActiveVars ) )

then (

LinearEqs : endcons( Equations[i], LinearEqs ),

Equations[i] : []

),

Equations : delete( [], Equations )

),

PrintMsg( ’SHORT, SolverMsg["wrt"], ActiveVars ),

/* Set up the complete coefficient matrix w.r.t. all variables */

CoeffMatrix : ComplCoeffMatrix( LinearEqs, ActiveVars ),

/* The valuation matrix contains a 1 at each Position where a variable */

/* appears in a nonlinear form, and 0’s otherwise. */
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ValuationMatrix : matrixmap(

lambda(

[ x ],

if x = ’false then

1

else

0

),

CoeffMatrix

),

/* EqValuation contains the number of nonlinear variables for each eq. */

EqValuation : map(

lambda( [ Row ], apply( "+", Row ) ),

ListMatrix( ValuationMatrix )

),

/* VarValuation contains for all vars the number of equations in which */

/* var[i] appears in a nonlinear form. */

VarValuation : map(

lambda( [ Row ], apply( "+", Row ) ),

ListMatrix( transpose( ValuationMatrix ) )

),

LinEqNos : makelist( i, i, 1, NumEqs : length( EqValuation ) ),

LinVarNos : makelist( i, i, 1, NumVars : length( VarValuation ) ),

/* Remove nonlinear equations and/or variables until only a linear */

/* block remains, i.e. for all i, j VarValuation[i] = 0 and */

/* EqValuation[j] = 0. */

while

( apply( "+", VarValuation ) # 0 )

and

( apply( "+", EqValuation ) # 0 )

do (

/* Determine maximum equation valuation and number of corresponding */

/* equation. */

me : 0,

MaxValEq : -1,

for i thru NumEqs do

if EqValuation[i] > MaxValEq then (

me : i,

MaxValEq : mode_identity( fixnum, EqValuation[i] )

),
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/* Determine maximum variable valuation and number of corresponding */

/* variable. */

mv : 0,

MaxValVar : -1,

for j thru NumVars do

if VarValuation[j] > MaxValVar then (

mv : j,

MaxValVar : mode_identity( fixnum, VarValuation[j] )

),

if apply( Solver_Del_Eq, [ MaxValEq, MaxValVar ] ) then (

i : me,

for j thru NumVars do (

VarValuation[j] : VarValuation[j] - ValuationMatrix[i, j],

ValuationMatrix[i, j] : 0

),

/* Mark equation as deleted */

EqValuation[i] : 0,

LinEqNos[i] : 0

)

else (

j : mv,

for i thru NumEqs do (

EqValuation[i] : EqValuation[i] - ValuationMatrix[i, j],

ValuationMatrix[i, j] : 0

),

/* Mark variable as deleted */

VarValuation[j] : 0,

LinVarNos[j] : 0

)

), /* END while */

/* Make list of linear equations */

LinEqNos : delete( 0, LinEqNos ),

/* Make list of linear variables */

LinVarNos : delete( 0, LinVarNos ),

if Empty( LinEqNos ) or Empty( LinVarNos ) then (

PrintMsg( ’SHORT, SolverMsg["NoLinEqs"] ),
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return( [ false, Solutions, append( LinearEqs, Equations ), Variables ] )

),

/* Extract linear equations. append all nonlinear equations to Equations */

/* again. */

for i thru length( LinearEqs ) do

if not member( i, LinEqNos ) then (

Equations : endcons( LinearEqs[i], Equations ),

LinearEqs[i] : []

),

LinearEqs : delete( [], LinearEqs ),

/* Extract linear variables. Since the extraction of linear equations may */

/* also have removed linear variables (the coefficients are now 0) it is */

/* necessary to intersect the set of the linear variables with the set of */

/* those variables which actually appear in the linear equations. */

LinearVars : Intersection(

map( lambda( [ i ], ActiveVars[i] ), LinVarNos ),

listofvars( LinearEqs )

),

/* By analogy, the same applies to the linear equations. Thus, keep only */

/* those equations which still contain any of the linear variables. */

for i thru length( LinearEqs ) do

if DisjointP( listofvars( LinearEqs[i] ), LinearVars ) then (

Equations : endcons( LinearEqs[i], Equations ),

LinearEqs[i] : []

),

LinearEqs : delete( [], LinearEqs ),

/* Return if no linear equations are left */

if Empty( LinearVars ) or Empty( LinearEqs ) then (

PrintMsg( ’SHORT, SolverMsg["NoLinEqs"] ),

return( [ false, Solutions, append( LinearEqs, Equations ), Variables ] )

),

PrintMsg(

’SHORT,

SolverMsg["Found"], length( LinearEqs ), SolverMsg["LinEqs"],

length( LinearVars ), SolverMsg["LinVars"]

),

PrintMsg( ’SHORT, SolverMsg["VarsAre"], LinearVars ),
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PrintMsg( ’DETAIL, SolverMsg["EqsAre"], LinearEqs ),

PrintMsg( ’SHORT, SolverMsg["SolvLinEq"] ),

rhsExpressions : [],

Solve_Inconsistent_Eqn_Nos : [ 0 ],

while not Empty( Solve_Inconsistent_Eqn_Nos ) do (

/* solve the linear equations */

LinearSolutions : LinsolveM( LinearEqs , LinearVars ),

/* Check for "inconsistent" equations. */

if not Empty( Solve_Inconsistent_Eqn_Nos ) then (

PrintMsg( ’DEBUG, SolverMsg["Incons"], Solve_Inconsistent_Eqn_Nos ),

/* Remove "inconsistent" equations */

for i in Solve_Inconsistent_Eqn_Nos do

LinearEqs[i] : [],

LinearEqs : delete( [], LinearEqs ),

/* append rhs = 0 to Solver_Assumptions if rhs contains only */

/* parameters. */

rhsExpressions : ParamConsistency(

Solve_Inconsistent_Terms, Parameters

)

)

),

/* append rhs’s which have led to "inconsistencies" but still */

/* contain variables to the list of equations. */

Equations : append( Equations, rhsExpressions ),

PrintMsg( ’DETAIL, SolverMsg["Solutions"], LinearSolutions ),

/* Insert the solutions from linsolve into the remaining equations */

Equations : ParamConsistency(

fullratsimp( ev( Equations, LinearSolutions ) ),

Parameters

),

/* append the linear solutions to the list of solutions */

Solutions : append( Solutions, LinearSolutions ),

/* append all variables to the working list which appear on the rhs’s of */
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/* the linear solutions. delete all variables which have been solved for. */

/* Linear variables for which a solution has been obtained. */

LinSolVars : map( ’lhs, LinearSolutions ),

/* Linear variables which are free parameters of the null space. */

LinearVars : SetDifference( LinearVars, LinSolVars ),

/* append all those variables which are parameters of the null space of */

/* the linear equations and which do not appear in the remaining */

/* equations to the list of parameters. */

for Var in LinearVars do

if freeof( Var, Equations ) then (

PrintMsg( ’SHORT, SolverMsg["FreeVar2Par"], Var ),

Parameters : endcons( Var, Parameters ),

Variables : delete( Var, Variables )

),

NewVars : SetDifference(

listofvars( map( ’rhs, LinearSolutions ) ),

Parameters

),

Variables : Union(

SetDifference( Variables, LinSolVars ),

NewVars

),

return( [ true, Solutions, Equations, Variables ] )

)

)$

/******************************************************************************/

/* The following strategies decide whether the linear solver should delete a */

/* nonlinear equation or a nonlinear variable from the system while searching */

/* for linear subblocks of equations. */

/******************************************************************************/

define_variable( EqWasLast, false, boolean )$

MakeSquareLinearBlocks( ValEq, ValVar ) := (

mode_declare(

[ ValEq, ValVar ], fixnum

),
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if ValEq = ValVar then

EqWasLast : not EqWasLast

else

if ValEq > ValVar then

EqWasLast : true

else

EqWasLast : false

)$

DelEqBeforeVar( ValEq, ValVar ) := (

mode_declare(

[ ValEq, ValVar ], fixnum

),

if ValEq >= ValVar then

true

else

false

)$

/******************************************************************************/

/* ComplCoeffMatrix returns a matrix whose row size is equal to the number of */

/* equations and whose column size is equal to the number of variables. The */

/* entry at Position [i,j] is RatCoeff( equation[i], variable[j] ) if */

/* equation[i] is linear w.r.t. variable[j] and ’false if equation[i] is */

/* nonlinear w.r.t. variable[j]. */

/******************************************************************************/

ComplCoeffMatrix( Eqs, ActiveVars ) := (

mode_declare(

[ Eqs, ActiveVars ], list

),

block(

apply(

’matrix,

/* for each equation do */

map(

lambda(
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[ Eq ],

/* for each variable do */

map(

lambda(

[ Var ],

block(

[ rc ],

rc : LinCoeff( Eq, Var ),

/* Return the RatCoeff only if it contains none of the active */

/* variables or if the equation doesn’t contain var at all. */

if

( ( rc # 0 ) and DisjointP( listofvars( rc ), ActiveVars ) )

or

freeof( Var, Eq )

then

rc

else

false

)

),

ActiveVars

) /* END lambda( [ Var ] ) */

), /* END lambda( [ Eq ] ) */

/* map target: Transform all equations into homogeneous form. */

map(

lambda(

[ Eq ],

fullratsimp( expand( lhs( Eq ) - rhs( Eq ) ) )

),

Eqs

)

) /* END map( lambda( [ Eq ] ) ) */

) /* END apply */

)

)$
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/******************************************************************************/

/* LinCoeff returns the linear coefficient of Var within Eq if Var appears */

/* raised to the first power only. */

/******************************************************************************/

LinCoeff( Eq, Var ) := (

mode_declare(

[ Eq, Var ], any

),

block(

[ BCoeff ],

mode_declare(

BCoeff, list

),

if ListOfPowers( [ Eq ], Var ) = [ 1 ] then (

BCoeff : bothcoeff( Eq, Var ),

if freeof( Var, second( BCoeff ) ) then

return( first( BCoeff ) )

),

return( 0 )

)

)$

/******************************************************************************/

/* ValuationSolver */

/******************************************************************************/

ValuationSolver( Solutions, Equations, Variables, Parameters ) := (

mode_declare(

[ Solutions, Equations, Variables, Parameters ], list

),

block(

[

VarPaths, ValMatrix, Eq, Var, Trans, TempEq, TransEq,

SolveOrder, SolveInfo, Transform, Solution, SolCheck,

Status, Solved, Failed, UniqueSol, TryToSolve, CheckSol,

i, k

],
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mode_declare(

[ VarPaths, ValMatrix, Eq, Var, Trans, TempEq, TransEq ], any,

[ SolveOrder, SolveInfo, Transform, Solution, SolCheck ], list,

[ Status, Solved, Failed, UniqueSol, TryToSolve, CheckSol ], boolean,

[ i, k ], fixnum

),

UniqueSol : true,

LOOP,

PrintMsg( ’SHORT, SolverMsg["Chk4RemEq"] ),

if Empty( Equations ) then (

if Empty( Variables ) then

PrintMsg( ’SHORT, SolverMsg["AllSolved"] )

else

PrintMsg( ’SHORT, SolverMsg["NoEqLeft"], Variables ),

Status : false

)

else if Empty( Variables ) then (

PrintMsg( ’SHORT, SolverMsg["EqLeft"] ),

Status : false

)

else (

PrintMsg(

’SHORT,

length( Equations ), SolverMsg["Eqs"],

length( Variables ), SolverMsg["Vars"]

),

PrintMsg( ’DETAIL, SolverMsg["VarsAre"], Variables ),

PrintMsg( ’DEBUG, SolverMsg["EqsAre"], Equations ),

/* Dump solutions and remaining equations to file if requested. */

if Solver_Dump_To_File then

DumpToFile( Solutions, Equations, Variables ),

if ( length( Variables ) = 1 ) and ( length( Equations ) = 1 ) then

SolveOrder : [ [ 1, 1, "(irrelevant)" ] ]

else (

PrintMsg( ’SHORT, SolverMsg["ValStrat"] ),
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/* Set up the valuation matrices. */

VarPaths : OccurrenceMatrix( Equations, Variables ),

ValMatrix : ValuationMatrix( Equations, Variables ),

/* Determine an order by which the equations should be solved. */

SolveOrder : apply( Solver_Valuation_Strategy, [ VarPaths, ValMatrix ] )

),

Solved : false,

unless Solved or Empty( SolveOrder ) do (

SolveInfo : Pop( SolveOrder ),

if listp(SolveInfo[1]) then SolveInfo : first(SolveInfo),

k : mode_identity( fixnum, first( SolveInfo ) ),

Eq : part( Equations, k ),

Var : Variables[ second( SolveInfo ) ],

PrintMsg(

’SHORT,

SolverMsg["TrySolveEq"], k, SolverMsg["ForVar"], Var

),

PrintMsg( ’SHORT, SolverMsg["Valuation"], third( SolveInfo ) ),

PrintMsg( ’DETAIL, SolverMsg["EqIs"], Eq = 0 ),

TryToSolve : true,

CheckSol : true,

Transform : copylist( Solver_Transforms ),

/* Do the solver break test to check whether it is worth */

/* attempting to solve the equation at all. */

Failed : apply( Solver_Break_Test, [Eq, Var, third( SolveInfo )] ),

unless Solved or Failed do (

/* Try to solve the selected equation */

if TryToSolve then

Solution : solve( Eq, Var ),

/* Check if the equation was solved correctly */

if CheckSol then (

PrintMsg( ’SHORT, SolverMsg["CheckSol"] ),

SolCheck : SolutionOK( Solution, Var ),

PrintMsg( ’DETAIL, SolverMsg["Solutions"], Solution )

)

else
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SolCheck : [ false ],

/* All solutions OK? */

if member( true, SolCheck ) then (

PrintMsg( ’SHORT, SolverMsg["SolOK"] ),

Solved : true

)

/* If not, apply transformations */

else (

if CheckSol then

PrintMsg( ’SHORT, SolverMsg["SolNotOK"] ),

/* Give up if no transformations are left */

if Empty( Transform ) then (

PrintMsg( ’SHORT, SolverMsg["GiveUp"] ),

Failed : true

)

else (

/* Retrieve one transformation function */

Trans : Pop( Transform ),

PrintMsg( ’SHORT, SolverMsg["AppTrans"], Trans ),

/* and apply it to the equation, the variable, and the solution */

TransEq : apply( Trans, [ Eq, Var, Solution ] ),

/* The transformation should return an equation as its function */

/* value. However, if no reasonable transformation of the */

/* equation was possible then the SOLVE function should not be */

/* tried again. Hence, to signal a failure, the transformation */

/* must return an empty list, which will instruct the Solver to */

/* try the next transformation instead. In addition, the */

/* transformation may itself take care of solving the equation. */

/* It must then return a list of solutions: */

/* [ var = solution_1, var = solution_2, ... ] */

/* Did the transformation fail? */

if TransEq = [] then (

PrintMsg( ’SHORT, SolverMsg["TransFail"] ),

/* Instruct the Solver to try the next transformation */

TryToSolve : false,

CheckSol : false

)

/* Did it solve the equation by itself? */

else if listp( TransEq ) then (
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PrintMsg( ’SHORT, SolverMsg["TransSolv"] ),

Solution : TransEq,

/* Instruct the Solver not to call SOLVE again */

TryToSolve : false,

CheckSol : true

)

/* Transformation thinks it has succeeded, so try again */

else (

Eq : TransEq,

PrintMsg( ’DETAIL, SolverMsg["ResTrans"], Eq = 0 ),

PrintMsg( ’SHORT, SolverMsg["RetryTrans"] ),

TryToSolve : true,

CheckSol : true

)

) /* END if Empty( Transform ) else */

) /* if member( true, SolCheck ) else */

) /* END unless Solved or Failed */

), /* END unless Solved or Empty( SolveOrder ) */

if Solved then (

if length( Solution ) > 1 then

PrintMsg( ’SHORT, SolverMsg["NotUnique"] ),

if member( false, SolCheck ) then

PrintMsg( ’SHORT, SolverMsg["SolsLost"] ),

/* Remove solved equation from list of equations. Store it in TempEq */

/* so it can be appended to Equations again if the consistency check */

/* fails. */

TempEq : part( Equations, k ),

Equations : delete( [], Set_Element( Equations, k, [] ) ),

/* Check solutions for consistency with remaining equations. */

for i thru length( Solution ) do (

if part( SolCheck, i ) then (

PrintMsg(

’DETAIL, SolverMsg["Solution"], i, SolverMsg["ForVar"], Var

),
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if not ParamConsistency(

fullratsimp( ev( Equations, part( Solution, i ) ) ),

Parameters,

’CONTINUE

) then (

PrintMsg( ’SHORT, SolverMsg["Contradict"], part( Solution, i ) ),

Set_Element( Solution, i, ’INCONSISTENT_PATH )

)

)

else (

PrintMsg( ’DETAIL, SolverMsg["Dropped"], part( Solution, i ) ),

Set_Element( Solution, i, [] )

)

),

/* delete all implicit or empty solutions */

Solution : delete( [], Solution ),

if Empty( Solution ) then (

PrintMsg( ’SHORT, SolverMsg["NoValidSol"], Var ),

Equations : endcons( TempEq, Equations ),

Solved : false

)

/* Check if there are any consistent solutions */

else if not member(

true,

map(

lambda(

[x],

if x = ’INCONSISTENT_PATH then

false

else

true

),

Solution

)

)

then (

PrintMsg( ’SHORT, SolverMsg["NoConsSol"], Var ),

Solutions : endcons( ’INCONSISTENT_PATH, Solutions ),

Solved : false

)
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/* append consistent solutions to the solution list */

else (

PrintMsg( ’DETAIL, SolverMsg["ConsSol"], Var, ":", Solution ),

Variables : delete( Var, Variables ),

/* If the solution is unique or if there’s only one consistent */

/* solution then ... */

if length( Solution ) = 1 then (

/* ... store it, insert it into the remaining equations, and */

/* add its rhs variables to the list of unknowns. */

Solutions : append( Solutions, Solution ),

Equations : copylist(

fullratsimp( ev( Equations, Solution ) )

),

Variables : Union(

Variables,

SetDifference(

listofvars( rhs( first( Solution ) ) ),

Parameters

)

)

)

else /* length( Solution ) > 1, call ValuationSolver recursively */

block(

[ MultipleSolutions, RSolutions, RVars, REqs, Sol, Stat ],

mode_declare(

[ MultipleSolutions, RSolutions, RVars, REqs ], list,

Sol, any,

Stat, boolean

),

MultipleSolutions : [],

for Sol in Solution do (

map(

lambda([x,y], x::y),

[ ’Stat, ’RSolutions, ’REqs, ’RVars ],

ValuationSolver(

[ Sol ],

copylist( fullratsimp( ev( Equations, Sol ) ) ),

Union(

Variables,
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SetDifference( listofvars( rhs( Sol ) ), Parameters )

),

Parameters

)

),

MultipleSolutions : endcons( RSolutions, MultipleSolutions )

), /* END for Sol */

Solutions : endcons( MultipleSolutions, Solutions ),

UniqueSol : false

) /* END block */

) /* END if Empty( Solution ) */

)

else (

/* append remaining equations to the solutions if no further */

/* solutions could be determined. */

for e in Equations do (

if is( equal( e, 0 ) ) # ’unknown then (

PrintMsg( SHORT, "Inconsistent equation", e = 0),

TerminateSolver()

)

),

Solutions : endcons( [ Equations ], Solutions )

), /* END if Solved */

Status : Solved

),

if Status and UniqueSol then

go( LOOP )

else

return( [ Status, Solutions, Equations, Variables ] )

)

)$

/******************************************************************************/

/* SolutionOK checks whether the result of a call to the solve function is */

/* indeed a solution of the form var = expression_free_of_var. */
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/******************************************************************************/

SolutionOK( Solution, Var ) := (

mode_declare(

[ Solution, Var ], any

),

if listp( Solution ) then

/* List of solutions must not be empty. */

if Empty( Solution ) then

[ false ]

else

/* Check if the lhs of each solution is equal to var and make sure */

/* that var does not appear on the rhs’s. */

map(

lambda(

[ Sol ],

( lhs( Sol ) = Var ) and freeof( Var, rhs( Sol ) )

),

Solution

)

else

[ false ]

)$

/******************************************************************************/

/* ValuationMatrix generates a matrix of valuations with respect to each */

/* equation and each variable. */

/******************************************************************************/

ValuationMatrix( Equations, Variables ) := (

mode_declare(

[ Equations, Variables ], list

),

genmatrix(

lambda( [ i, j ], Valuation( Equations[i], Variables[j] ) ),

length( Equations ), length( Variables )

)

)$
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/******************************************************************************/

/* Operator valuation factors for expression valuation. */

/******************************************************************************/

SetProp( ’sin, ’Valuation, 10 )$

SetProp( ’cos, ’Valuation, 10 )$

SetProp( ’tan, ’Valuation, 10 )$

SetProp( ’asin, ’Valuation, 12 )$

SetProp( ’acos, ’Valuation, 12 )$

SetProp( ’atan, ’Valuation, 12 )$

SetProp( ’sinh, ’Valuation, 12 )$

SetProp( ’cosh, ’Valuation, 12 )$

SetProp( ’tanh, ’Valuation, 12 )$

SetProp( ’asinh, ’Valuation, 12 )$

SetProp( ’acosh, ’Valuation, 12 )$

SetProp( ’atanh, ’Valuation, 12 )$

SetProp( "+", ’Valuation, 1 )$

SetProp( "-", ’Valuation, 1 )$

SetProp( "*", ’Valuation, 4 )$

SetProp( "/", ’Valuation, 4 )$

SetProp( "^", ’Valuation, 10 )$

SetProp( ’sqrt, ’Valuation, 10 )$

SetProp( ’exp, ’Valuation, 10 )$

SetProp( ’log, ’Valuation, 10 )$

/******************************************************************************/

/* With SetValuation, the operator valuation factors can be redefined. */

/******************************************************************************/

SetValuation( Operator, Valuation ) :=

SetProp( Operator, ’Valuation, Valuation )$

/******************************************************************************/

/* Valuation measures the complexity of an expression with respect to Var by */

/* weighting the operator tree representation of Expr. */

/******************************************************************************/

Valuation( Expr, Var ) := (

mode_declare(

[ Expr, Var ], any

),
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block(

[ OpFactor ],

mode_declare(

OpFactor, fixnum

),

/* Return zero if Expr does not contain Var. */

if freeof( Var, Expr ) then

return( 0 )

else

/* Return 1 if Expr is an atom, i.e. Expr = Var. */

if atom( Expr ) then

return( 1 )

/* If Expr is an algebraic expression then retrieve the valuation */

/* factor associated with the operator of Expr and recursively apply */

/* the valuation function to each subexpression of Expr. */

else (

if (

OpFactor : mode_identity( fixnum, get( op( Expr ), ’Valuation ) )

) = false

then

OpFactor : Solver_Default_Valuation,

return(

OpFactor * apply(

"+",

map(

lambda( [ SubExpr ], Valuation( SubExpr, Var ) ),

substpart( "[", Expr, 0 )

)

)

)

) /* END if atom */

)

)$

/******************************************************************************/

/* OccurrenceMatrix sets up a matrix in which the number of occurrences of */

/* each variable in each equation is counted. */

/******************************************************************************/
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OccurrenceMatrix( Equations, Variables ) := (

mode_declare(

[ Equations, Variables ], list

),

genmatrix(

lambda( [ i, j ], Occurences( Equations[i], Variables[j] ) ),

length( Equations ), length( Variables )

)

)$

/******************************************************************************/

/* Occurences counts the number of occurences of Var in Expr, i.e. the number */

/* of paths to distinct occurrences of the atom Var in the internal tree */

/* representation of Expr. */

/******************************************************************************/

Occurences( Expr, Var ) := (

mode_declare(

[ Expr, Var ], any

),

if atom( Expr ) then

if Expr = Var then

1

else

0

else

apply(

"+",

map(

lambda( [ SubExpr], Occurences( SubExpr, Var ) ),

substpart( "[", Expr, 0)

)

)

)$

/******************************************************************************/

/* MinVarPathsFirst tries to find variables which can be easily isolated. */

/* These are variables which appear only once in an entire expression tree */

/* (= 1 in OccurrenceMatrix). */
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/******************************************************************************/

MinVarPathsFirst( OccMat, ValMat ) := (

mode_declare(

[ OccMat, ValMat ], any

),

block(

[

SolveOrder, SolveOrder1, SumVarPaths,

i, j, v, ne, nv

],

mode_declare(

[ SolverOrder, SolveOrder1, SumVarPaths ], list,

[ i, j, v, ne, nv, Function( RowSize, ColSize, Position ) ], fixnum

),

SolveOrder : [],

ne : RowSize( OccMat ),

nv : ColSize( OccMat ),

SumVarPaths : map(

lambda( [ Row ], apply( "+", Row ) ),

ListMatrix( OccMat )

),

/* Search for equations which contain only one variable in one path. */

for i thru length( SumVarPaths ) do

if SumVarPaths[i] = 1 then (

SolveOrder : endcons(

[ i, j : Position( 1, OccMat[i] ), ValMat[i, j] ],

SolveOrder

),

/* Mark eq/var Position as used. */

OccMat[i, j] : 0,

ValMat[i, j] : 0

),

/* Sort SolveOrder by least valuation. */

if not Empty( SolveOrder ) then

SolveOrder : SortSolveOrder( SolveOrder ),

/* Find all variables with only one path in the expression tree. */

SolveOrder1 : [],
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for i thru ne do

for j thru nv do

if OccMat[i, j] = 1 then (

SolveOrder1 : endcons( [ i, j, ValMat[i, j] ], SolveOrder1 ),

OccMat[i, j] : 0,

ValMat[i, j] : 0

),

/* Sort variables by least valuation. */

if not Empty( SolveOrder1 ) then

SolveOrder : append(

SolveOrder,

SortSolveOrder( SolveOrder1 )

),

/* append additional candidates if necessary. */

if length( SolveOrder ) < Solver_Max_Len_Val_Order then (

SolveOrder1 : [],

for i thru ne do

for j thru nv do

if ( v : mode_identity( fixnum, ValMat[i, j] ) ) # 0 then

SolveOrder1 : endcons( [ i, j, v ], SolveOrder1 ),

SolveOrder : append(

SolveOrder,

SortSolveOrder( SolveOrder1 )

),

/* Return only as many candidates as given by Solver_Max_Len_Val_Order */

if ( i : length( SolveOrder ) ) > Solver_Max_Len_Val_Order then

SolveOrder : rest(

SolveOrder, Solver_Max_Len_Val_Order - i

)

),

return( SolveOrder )

)

)$

/******************************************************************************/

/* PostProcess does all the postprocessing needed to display the results. */

/* This includes expansion of the solution list hierarchies, backsubsitution, */

/* and extraction of the variables which the user explicitly asked for. */

/******************************************************************************/

PostProcess( Solutions, UserVars, Expressions, PowerSubst ) := (
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mode_declare(

[ Solutions, UserVars, Expressions, PowerSubst ], list

),

block(

[

SolSet, UsrSolSet, UserSolutions, UnsolvedEqs, InternalSols,

Var, TempVar, EvalVar,

i

],

mode_declare(

[ SolSet, UsrSolSet, UserSolutions, UnsolvedEqs, InternalSols ], list,

[ Var, TempVar, EvalVar ], any,

i, fixnum

),

PrintMsg( ’SHORT, SolverMsg["PostPr"] ),

/* first of all, Flatten the solution list hierarchy and drop all */

/* inconsistent solution paths. */

Solutions : sublist(

ExpandSolutionHierarchy( Solutions ),

lambda( [Set], last( Set ) # ’INCONSISTENT_PATH )

),

/* Return an empty list if no consistent solution paths are left. */

if Empty( Solutions ) then

return( [] ),

/* Do the backsubstitutions. */

if not Empty( Solutions ) then (

UserSolutions : [],

i : 0,

for SolSet in Solutions do (

i : i + 1,

PrintMsg( ’SHORT, SolverMsg["SolSet"], i ),

UsrSolSet : [],

/* Extract the unsolved equations */

UnsolvedEqs : sublist( SolSet, lambda( [x], not EquationP( x ) ) ),
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/* and the solutions. */

SolSet : sublist( SolSet, ’EquationP ),

/* If no complete backsubstitution is requested then variables on the */

/* right-hand sides of the solutions will only be substituted if they */

/* do not belong to the variables specified in the command line. */

if not Solver_Backsubst then

InternalSols : sublist(

SolSet,

lambda( [x], not member( lhs( x ), UserVars ) )

),

/* Evaluate all variables and expressions with the solutions. */

for Var in append( UserVars, Expressions ) do (

EvalVar : if member( Var, map(lhs, SolSet) ) or not atom( Var ) then

/* There may be errors when indeterminate expressions are */

/* encountered. */

errcatch(

if Solver_Backsubst then

ev( Var, SolSet, infeval )

else (

TempVar : ev( Var, SolSet ),

ev( TempVar, InternalSols, infeval )

)

)

else

[],

if EvalVar # [] then

UsrSolSet : endcons( Var = EvalVar[1], UsrSolSet )

else

PrintMsg( ’SHORT, SolverMsg["NoSol"], Var )

),

/* append the unsolved equations. */

if not Empty( UnsolvedEqs ) then

UsrSolSet : endcons( UnsolvedEqs, UsrSolSet ),

if Solver_RatSimp_Sols then

UsrSolSet : errcatch( fullratsimp( UsrSolSet ) )

else

UsrSolSet : [UsrSolSet],
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if UsrSolSet = [] then

PrintMsg( ’SHORT, SolverMsg["SolSetDrp"] )

else

UserSolutions : endcons( UsrSolSet[1], UserSolutions )

), /* END for SolSet */

if Solver_Dump_To_File then

DumpToFile( UserSolutions, [], [] )

), /* END if not Empty( Solutions ) */

return( UserSolutions )

) /* END block */

)$

/******************************************************************************/

/* ExpandSolutionHierarchy transforms the hierarchically structured list of */

/* solutions into a list of flat lists of solutions. */

/******************************************************************************/

ExpandSolutionHierarchy( Solutions ) := (

mode_declare(

Solutions, list

),

block(

[ FlatSolutions ],

mode_declare(

FlatSolutions, list

),

if length( Solutions ) = 0 then return ( [] )

/* listp = true indicates an additional recursion level */

else if listp( last( Solutions ) ) then (

FlatSolutions : rest( Solutions, -1 ),

return(

map(

lambda( [ x ], append( FlatSolutions, x ) ),
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apply(

’append,

map( ’ExpandSolutionHierarchy, last( Solutions ) )

)

)

)

)

else

return( [ Solutions ] )

)

)$

/******************************************************************************/

/* DumpToFile dumps the current set of solutions, equations and variables to */

/* the file <Solver_Dump_File>. */

/******************************************************************************/

DumpToFile( Sols, Eqs, Vars ) := (

mode_declare(

[ Sols, Eqs, Vars ], list

),

block(

[ Solutions, Equations, Variables ],

PrintMsg( ’SHORT, SolverMsg["Dump"], Solver_Dump_File ),

apply(

’StringOut,

[

Solver_Dump_File,

’Solutions = Sols,

’Equations = Eqs,

’Variables = Vars

]

)

)

)$

tma():=trace(

TerminateSolver,

SetupSolver,
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ParamConsistency,

SolverAssumeZero,

ListOfPowers,

ImmediateAssignments,

LinearSolver,

MakeSquareLinearBlocks,

DelEqBeforeVar,

ComplCoeffMatrix,

LinCoeff,

ValuationSolver,

SolutionOK,

ValuationMatrix,

SetValuation,

Valuation,

OccurrenceMatrix,

Occurences,

MinVarPathsFirst,

PostProcess,

ExpandSolutionHierarchy,

DumpToFile)$



Estragon Sometimes I wonder if it wouldn’t be better to
diverge.

Wladimir You wouldn’t get far.

Estragon That would really be a shame . . . Not true, Didi,
That would be a real shame? . . . If you think about the
beauty of the path . . . And about the goodness of the
companions. . . Isn’t that right, Didi?
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