Rename tab to datatab in numeric/interpol.mac
[maxima.git] / src / commac.lisp
blob1cf9472dba09340a13f5064d96638d07a52bb169
1 ;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; ;;;;;
4 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
5 ;;; All rights reserved ;;;;;
6 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 (in-package :maxima)
10 (defmacro defun-prop (f arg &body body)
11 (assert (listp f))
12 #+gcl (eval-when (eval) (compiler::compiler-def-hook (first f) body))
13 `(setf (get ',(first f) ',(second f)) #'(lambda ,arg ,@body)))
15 ;; Should we give this a different name?
16 (defvar *fortran-print* nil
17 "Tells EXPLODEN we are printing numbers for Fortran so include the exponent marker.")
19 (defun appears (tree var)
20 (cond ((equal tree var)
21 (throw 'appears t))
22 ((atom tree) nil)
23 (t (appears (car tree) var)
24 (appears (cdr tree) var)))
25 nil)
27 (defun appears1 (tree var)
28 (cond ((eq tree var)
29 (throw 'appears t))
30 ((atom tree) nil)
32 (appears (car tree) var)
33 (appears (cdr tree) var)))
34 nil)
36 (defun appears-in (tree var)
37 "Yields t if var appears in tree"
38 (catch 'appears
39 (if (or (symbolp var) (fixnump var))
40 (appears1 tree var)
41 (appears tree var))))
43 ;; A more portable implementation of ml-typep. I (rtoy) think it
44 ;; would probably be better to replace uses of
45 ;; ml-typep with the corresponding Common Lisp typep or type-of or
46 ;; subtypep, as appropriate.
47 (defun ml-typep (x &optional type)
48 (cond (type
49 (cl:let ((pred (get type 'ml-typep)))
50 (if pred
51 (funcall pred x)
52 (typep x type))))
54 (typecase x
55 (cl:cons 'list)
56 (cl:fixnum 'fixnum)
57 (cl:integer 'bignum)
58 (cl:float 'flonum)
59 (cl:number 'number)
60 (cl:array 'array)
61 (cl:hash-table 'hash-table)
63 (type-of x))))))
65 (defprop :extended-number extended-number-p ml-typep)
66 (defprop array arrayp ml-typep)
67 (defprop atom atom ml-typep)
69 #+(or cmu scl)
70 (eval-when (:compile-toplevel :load-toplevel :execute)
71 (shadow '(cl:compiled-function-p) (find-package :maxima))
73 #+(or cmu scl)
74 (defun compiled-function-p (x)
75 (and (functionp x) (not (symbolp x))
76 (not (eval:interpreted-function-p x))))
78 (defprop compiled-function compiled-function-p ml-typep)
79 (defprop extended-number extended-number-p ml-typep)
80 (defprop fixnum fixnump ml-typep)
81 (defprop list consp ml-typep)
82 (defprop number numberp ml-typep)
83 (defprop string stringp ml-typep)
84 (defprop symbol symbolp ml-typep)
87 (defvar *maxima-arrays* nil
88 "Trying to track down any functional arrays in maxima")
90 (defun *array (name maclisp-type &rest dimlist &aux aarray)
91 (cond ((member maclisp-type '(readtable obarray) :test #'eq)
92 (error " bad type ~S" maclisp-type)))
93 (pushnew name *maxima-arrays*) ;for tracking down old ones.
94 (setq aarray (make-array dimlist :initial-element (case maclisp-type
95 (fixnum 0)
96 (flonum 0.0)
97 (otherwise nil))))
98 (cond ((null name) aarray)
99 ((symbolp name)
100 (setf (symbol-array name) aarray)
101 name)
102 (t (error "~S is illegal first arg for *array" name))))
104 ;;; Change maclisp array referencing.
105 ;;; Idea1: Make changes in the code which will allow the code to still run in maclisp,
106 ;;;yet will allow, with the appropriate macro definitions of array,arraycall, etc,
107 ;;;to put the array into the value-cell.
108 ;;; Idea2: Make changes in the array referencing of (a dim1 dim2..) to (arraycall nil (symbol-array a) dim1..)
109 ;;;which would then allow expansion into something which is common lisp compatible, for
110 ;;;the day when (a 2 3) no longer is equivalent to (aref (symbol-function a) 2 3).
111 ;;;I. change (array a typ dim1 dim2..) to expand to (defvar a (make-array (list dim1 dim2 ...) :type typ')
112 ;;;II. change (a dim1 dim2..) to (arraycall nil (symbol-array a) dim1 dim2 ..)
113 ;;;III define
114 ;;(defmacro symbol-array (ar)
115 ;; `(symbol-function ,ar))
116 ;;(defmacro arraycall (ignore ar &rest dims)
117 ;; `(aref ,ar ,@ dims))
118 ;;;IV. change array setting to use (setf (arraycall nil ar dim1.. ) val)
119 ;;;which will generate the correct setting code on the lispm and will
120 ;;;still work in maclisp.
122 (defmacro maxima-error (datum &rest args)
123 `(cerror "without any special action" ,datum ,@args))
125 (defmacro show (&rest l)
126 (loop for v in l
127 collecting `(format t "~%The value of ~A is ~A" ',v ,v) into tem
128 finally (return `(progn ,@ tem))))
130 (defmacro defquote (fn (aa . oth) &body rest &aux help ans)
131 (setq help (intern (format nil "~a-~a" fn '#:aux)))
132 (cond ((eq aa '&rest)
133 (setq ans
134 (list
135 `(defmacro ,fn (&rest ,(car oth))
136 `(,',help ',,(car oth)))
137 `(defun ,help (,(car oth)) ,@rest))))
138 (t (when (member '&rest oth)
139 (error "at present &rest may only occur as first item in a defquote argument"))
140 (setq ans
141 (list
142 `(defmacro ,fn (,aa . other)
143 (setq other (loop for v in other collecting (list 'quote v)))
144 (check-arg other (eql (length other) ,(length oth))
145 ,(format nil "wrong number of args to ~a" fn))
146 `(,',help ',,aa ,@ other))
147 `(defun ,help (,aa ,@ oth) ,@rest)))))
148 `(progn ,@ans))
151 ;;the resulting function will translate to defvar and will behave
152 ;;correctly for the evaluator.
154 ;;(defun gg fexpr (ll)
155 ;; body)
156 ;;(defquote gg (&rest ll)
157 ;; body)
159 ;;(DEFQUOTE GG ( &rest C)
160 ;; (list (car c) (second c) ))
161 ;;the big advantage of using the following over defmspec is that it
162 ;;seems to translate more easily, since it is a fn.
163 ;;New functions which wanted quoted arguments should be defined using
164 ;;defquote
167 (defun onep (x) (eql 1 x))
169 (defun extended-number-p (x)
170 (member (type-of x) '(bignum rational float )))
172 (defvar *scan-string-buffer* nil)
174 (defun macsyma-read-string (a-string &aux answer)
175 (cond ((not (or (search "$" a-string :test #'char-equal)
176 (search ";" a-string :test #'char-equal)))
177 (vector-push-extend #\$ a-string)))
178 (with-input-from-string (stream a-string)
179 (setq answer (third (mread stream)))
180 answer))
182 (defvar *sharp-read-buffer*
183 (make-array 140 :element-type ' #.(array-element-type "a") :fill-pointer 0 :adjustable t))
185 (defun $-read-aux (arg stream &aux (meval-flag t) (*mread-prompt* ""))
186 (declare (special *mread-prompt*)
187 (ignore arg))
188 (setf (fill-pointer *sharp-read-buffer*) 0)
189 (cond ((eql #\$ (peek-char t stream))
190 (tyi stream)
191 (setq meval-flag nil)))
192 (with-output-to-string (st *sharp-read-buffer*)
193 (let (char)
194 (loop while (not (eql char #\$))
196 (setq char (tyi stream))
197 (write-char char st))))
198 (if meval-flag
199 (list 'meval* (list 'quote (macsyma-read-string *sharp-read-buffer*)))
200 (list 'quote (macsyma-read-string *sharp-read-buffer*))))
202 (defun x$-cl-macro-read (stream sub-char arg)
203 (declare (ignore arg))
204 ($-read-aux sub-char stream))
206 (set-dispatch-macro-character #\# #\$ #'x$-cl-macro-read)
208 (defvar *macsyma-readtable*)
210 (defun find-lisp-readtable-for-macsyma ()
211 (cond ((and (boundp '*macsyma-readtable*)
212 (readtablep *macsyma-readtable*))
213 *macsyma-readtable*)
214 (t (setq *macsyma-readtable* (copy-readtable nil))
215 (set-dispatch-macro-character #\# #\$ 'x$-cl-macro-read *macsyma-readtable*)
216 *macsyma-readtable*)))
218 (defun set-readtable-for-macsyma ()
219 (setq *readtable* (find-lisp-readtable-for-macsyma)))
221 (defmfun $mkey (variable)
222 "($mkey '$demo)==>:demo"
223 (intern (string-left-trim "$" (string variable)) 'keyword))
225 (defmacro arg (x)
226 `(narg1 ,x narg-rest-argument))
228 (defun narg1 (x l &aux tem)
229 (cond ((null x) (length l))
230 (t (setq tem (nthcdr (1- x) l))
231 (cond ((null tem) (error "arg ~A beyond range ~A " x (length l)))
232 (t (car tem))))))
234 (defmacro listify (x)
235 `(listify1 ,x narg-rest-argument))
237 (defmacro setarg (i val)
238 `(setarg1 ,i ,val narg-rest-argument))
240 (defun setarg1 (i val l)
241 (setf (nth (1- i) l) val)
242 val)
244 (defun listify1 (n narg-rest-argument)
245 (cond ((minusp n) (copy-list (last narg-rest-argument (- n))) )
246 ((zerop n) nil)
247 (t (subseq narg-rest-argument 0 n))))
249 ;; This has been replaced by src/defmfun-check.lisp. I'm leaving this
250 ;; here for now until we finish up fixing everything like using defun
251 ;; for internal functions and updating user-exposed functions to use
252 ;; defmfun instead of defun.
253 #+nil
254 (defmacro defmfun (function &body rest &aux .n.)
255 (cond ((and (car rest) (symbolp (car rest)))
256 ;;old maclisp narg syntax
257 (setq .n. (car rest))
258 (setf (car rest)
259 `(&rest narg-rest-argument &aux (, .n. (length narg-rest-argument))))))
260 `(progn
261 ;; I (rtoy) think we can consider all defmfun's as translated functions.
262 (defprop ,function t translated)
263 (defun ,function . ,rest)))
265 ;;sample usage
266 ;;(defun foo a (show a )(show (listify a)) (show (arg 3)))
268 (defmacro defun-maclisp (function &body body &aux .n.)
269 (when (typep body '(cons symbol))
270 ;;old maclisp narg syntax
271 (setq .n. (car body))
272 (setf body
273 (cons `(&rest narg-rest-argument &aux (, .n. (length narg-rest-argument)))
274 (cdr body))))
275 `(progn
276 ;; I (rtoy) think we can consider all defmfun's as translated functions.
277 (defprop ,function t translated)
278 (defun ,function . ,body)))
280 (defun exploden (symb)
281 (let* (string)
282 (cond ((symbolp symb)
283 (setq string (print-invert-case symb)))
284 ((floatp symb)
285 (setq string (exploden-format-float symb)))
286 ((integerp symb)
287 ;; When obase > 10, prepend leading zero to
288 ;; ensure that output is readable as a number.
289 (let ((leading-digit (if (> *print-base* 10) #\0)))
290 (setq string (format nil "~A" symb))
291 (setq string (coerce string 'list))
292 (if (and leading-digit (not (digit-char-p (car string) 10.)))
293 (setq string (cons leading-digit string)))
294 (return-from exploden string)))
295 (t (setq string (format nil "~A" symb))))
296 (assert (stringp string))
297 (coerce string 'list)))
299 (defvar *exploden-strip-float-zeros* t) ;; NIL => allow trailing zeros
301 (defun exploden-format-float (symb)
302 (if (or (= $fpprintprec 0) (> $fpprintprec 16.))
303 (exploden-format-float-readably-except-special-values symb)
304 (exploden-format-float-pretty symb)))
306 ;; Return a readable string, EXCEPT for not-a-number and infinity, if present;
307 ;; for those, return a probably-nonreadable string.
308 ;; This avoids an error from SBCL about trying to readably print those values.
310 (defun exploden-format-float-readably-except-special-values (x)
311 (if (or (float-inf-p x) (float-nan-p x))
312 (format nil "~a" x)
313 (let ((*print-readably* t))
314 (let ((s (prin1-to-string x)))
315 ;; Skip the fix up unless we know it's needed for the Lisp implementation.
316 #+(or clisp abcl) (fix-up-exponent-in-place s)
317 #+ecl (insert-zero-before-exponent s)
318 #-(or clisp abcl ecl) s))))
320 ;; (1) If string looks like "n.nnnD0" or "n.nnnd0", return just "n.nnn".
321 ;; (2) Otherwise, replace #\D or #\d (if present) with #\E or #\e, respectively.
322 ;; (3) Otherwise, return S unchanged.
324 (defun fix-up-exponent-in-place (s)
325 (let ((n (length s)) i)
326 (if (> n 2)
327 (cond
328 ((and (or (eql (aref s (- n 2)) #\D) (eql (aref s (- n 2)) #\d)) (eql (aref s (- n 1)) #\0))
329 (subseq s 0 (- n 2)))
330 ((setq i (position #\D s))
331 (setf (aref s i) #\E)
333 ((setq i (position #\d s))
334 (setf (aref s i) #\e)
336 (t s))
337 s)))
339 ;; Replace "nnnn.Ennn" or "nnn.ennn" with "nnn.0Ennn" or nnn.0ennn", respectively.
340 ;; (Decimal immediately before exponent without intervening digits is
341 ;; explicitly allowed by CLHS; see Section 2.3.1, "Numbers as Tokens".)
343 (defun insert-zero-before-exponent (s)
344 (let ((n (length s)) (i (position #\. s)))
345 (if (and i (< i (1- n)))
346 (let ((c (aref s (1+ i))))
347 (if (or (eql c #\E) (eql c #\e))
348 (concatenate 'string (subseq s 0 (1+ i)) "0" (subseq s (1+ i) n))
350 s)))
352 (defun exploden-format-float-pretty (symb)
353 (let ((a (abs symb)) string)
354 ;; When printing out something for Fortran, we want to be
355 ;; sure to print the exponent marker so that Fortran
356 ;; knows what kind of number it is. It turns out that
357 ;; Fortran's exponent markers are the same as Lisp's so
358 ;; we just need to make sure the exponent marker is
359 ;; printed.
360 (if *fortran-print*
361 (setq string (cond
362 ;; Strings for non-finite numbers as specified for input in Fortran 2003 spec;
363 ;; they apparently did not exist in earlier versions.
364 ((float-nan-p symb) "NAN")
365 ((float-inf-p symb) (if (< symb 0) "-INF" "INF"))
366 (t (format nil "~e" symb))))
367 (multiple-value-bind (form digits)
368 (cond
369 ((zerop a)
370 (values "~,vf" 1))
371 ((<= 0.001 a 1e7)
372 (let*
373 ((integer-log10 (floor (/ (log a) #.(log 10.0))))
374 (scale (1+ integer-log10)))
375 (if (< scale $fpprintprec)
376 (values "~,vf" (- $fpprintprec scale))
377 (values "~,ve" (1- $fpprintprec)))))
378 ((or (float-inf-p symb) (float-nan-p symb))
379 (return-from exploden-format-float-pretty (format nil "~a" symb)))
381 (values "~,ve" (1- $fpprintprec))))
383 ;; Call FORMAT using format string chosen above.
384 (setq string (format nil form digits a))
386 ;; EXPLODEN is often called after NFORMAT, so it doesn't
387 ;; usually see a negative argument. I can't guarantee
388 ;; a non-negative argument, so handle negative here.
389 (if (< symb 0)
390 (setq string (concatenate 'string "-" string)))))
392 (if *exploden-strip-float-zeros*
393 (or (strip-float-zeros string) string)
394 string)))
396 (defun trailing-zeros-regex-f-0 (s)
397 (pregexp:pregexp-match-positions '#.(pregexp:pregexp "^(.*\\.[0-9]*[1-9])00*$")
399 (defun trailing-zeros-regex-f-1 (s)
400 (pregexp:pregexp-match-positions '#.(pregexp::pregexp "^(.*\\.0)00*$")
402 (defun trailing-zeros-regex-e-0 (s)
403 (pregexp:pregexp-match-positions '#.(pregexp:pregexp "^(.*\\.[0-9]*[1-9])00*([^0-9][+-][0-9]*)$")
405 (defun trailing-zeros-regex-e-1 (s)
406 (pregexp:pregexp-match-positions '#.(pregexp:pregexp "^(.*\\.0)00*([^0-9][+-][0-9]*)$")
409 ;; Return S with trailing zero digits stripped off, or NIL if there are none.
410 (defun strip-float-zeros (s)
411 (let (matches)
412 (cond
413 ((setq matches (or (trailing-zeros-regex-f-0 s) (trailing-zeros-regex-f-1 s)))
414 (let
415 ((group1 (elt matches 1)))
416 (subseq s (car group1) (cdr group1))))
417 ((setq matches (or (trailing-zeros-regex-e-0 s) (trailing-zeros-regex-e-1 s)))
418 (let*
419 ((group1 (elt matches 1))
420 (s1 (subseq s (car group1) (cdr group1)))
421 (group2 (elt matches 2))
422 (s2 (subseq s (car group2) (cdr group2))))
423 (concatenate 'string s1 s2)))
424 (t nil))))
426 (defun explodec (symb) ;is called for symbols and numbers
427 (loop for v in (coerce (print-invert-case symb) 'list)
428 collect (intern (string v))))
430 ;;; If the 'string is all the same case, invert the case. Otherwise,
431 ;;; do nothing.
432 #-(or scl allegro)
433 (defun maybe-invert-string-case (string)
434 (let ((all-upper t)
435 (all-lower t)
436 (length (length string)))
437 (dotimes (i length)
438 (let ((ch (char string i)))
439 (when (both-case-p ch)
440 (if (upper-case-p ch)
441 (setq all-lower nil)
442 (setq all-upper nil)))))
443 (cond (all-upper
444 (string-downcase string))
445 (all-lower
446 (string-upcase string))
448 string))))
450 #+(or scl allegro)
451 (defun maybe-invert-string-case (string)
452 (cond (#+scl (eq ext:*case-mode* :lower)
453 #+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
454 string)
456 (let ((all-upper t)
457 (all-lower t)
458 (length (length string)))
459 (dotimes (i length)
460 (let ((ch (aref string i)))
461 (when (both-case-p ch)
462 (if (upper-case-p ch)
463 (setq all-lower nil)
464 (setq all-upper nil)))))
465 (cond (all-upper
466 (string-downcase string))
467 (all-lower
468 (string-upcase string))
470 string))))))
472 (defun intern-invert-case (string)
473 ;; Like read-from-string with readtable-case :invert
474 ;; Supply package argument in case this function is called
475 ;; from outside the :maxima package.
476 (intern (maybe-invert-string-case string) :maxima))
479 #-(or scl allegro)
480 (let ((local-table (copy-readtable nil)))
481 (setf (readtable-case local-table) :invert)
482 (defun print-invert-case (sym)
483 (let ((*readtable* local-table)
484 (*print-case* :upcase))
485 (princ-to-string sym))))
487 #+(or scl allegro)
488 (let ((local-table (copy-readtable nil)))
489 (unless #+scl (eq ext:*case-mode* :lower)
490 #+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
491 (setf (readtable-case local-table) :invert))
492 (defun print-invert-case (sym)
493 (cond (#+scl (eq ext:*case-mode* :lower)
494 #+allegro (eq excl:*current-case-mode* :case-sensitive-lower)
495 (let ((*readtable* local-table)
496 (*print-case* :downcase))
497 (princ-to-string sym)))
499 (let ((*readtable* local-table)
500 (*print-case* :upcase))
501 (princ-to-string sym))))))
503 (defun implode (list)
504 (declare (optimize (speed 3)))
505 (intern-invert-case (map 'string #'(lambda (v)
506 (etypecase v
507 (character v)
508 (symbol (char (symbol-name v) 0))
509 (integer (code-char v))))
510 list)))
512 ;; Note: symb can also be a number, not just a symbol.
513 (defun explode (symb)
514 (declare (optimize (speed 3)))
515 (map 'list #'(lambda (v) (intern (string v))) (format nil "~s" symb)))
517 ;;; return the first character of the name of a symbol or a string or char
518 (defun get-first-char (symb)
519 (declare (optimize (speed 3)))
520 (char (string symb) 0))
522 (defun getchar (symb i)
523 (let ((str (string symb)))
524 (if (<= 1 i (length str))
525 (intern (string (char str (1- i))))
526 nil)))
528 (defun ascii (n)
529 (intern (string n)))
531 (defun maknam (lis)
532 (loop for v in lis
533 when (symbolp v)
534 collecting (char (symbol-name v) 0) into tem
535 else
536 when (characterp v)
537 collecting v into tem
538 else do (maxima-error "bad entry")
539 finally
540 (return (make-symbol (maybe-invert-string-case (coerce tem 'string))))))
542 ;;for those window labels etc. that are wrong type.
543 ;; is not only called for symbols, but also on numbers
544 (defun flatc (sym)
545 (length (explodec sym)))
547 (defun flatsize (sym &aux (*print-circle* t))
548 (length (exploden sym)))
550 (defmacro safe-zerop (x)
551 (if (symbolp x)
552 `(and (numberp ,x) (zerop ,x))
553 `(let ((.x. ,x))
554 (and (numberp .x.) (zerop .x.)))))
556 (defmacro signp (sym x)
557 (cond ((atom x)
558 (let ((test
559 (case sym
560 (e `(zerop ,x))
561 (l `(< ,x 0))
562 (le `(<= ,x 0))
563 (g `(> ,x 0))
564 (ge `(>= ,x 0))
565 (n `(not (zerop ,x))))))
566 `(and (numberp ,x) ,test)))
567 (t `(let ((.x. ,x))
568 (signp ,sym .x.)))))
570 (defvar *prompt-on-read-hang* nil)
571 (defvar *read-hang-prompt* "")
573 (defun tyi-raw (&optional (stream *standard-input*) eof-option)
574 (let ((ch (read-char-no-hang stream nil eof-option)))
575 (if ch
577 (progn
578 (when (and *prompt-on-read-hang* *read-hang-prompt*)
579 (princ *read-hang-prompt*)
580 (finish-output *standard-output*))
581 (read-char stream nil eof-option)))))
583 (defun tyi (&optional (stream *standard-input*) eof-option)
584 (let ((ch (tyi-raw stream eof-option)))
585 (if (eql ch eof-option)
587 (backslash-check ch stream eof-option))))
589 ; The sequences of characters
590 ; <anything-except-backslash>
591 ; (<backslash> <newline> | <backslash> <return> | <backslash> <return> <newline>)+
592 ; <anything>
593 ; are reduced to <anything-except-backslash> <anything> .
594 ; Note that this has no effect on <backslash> <anything-but-newline-or-return> .
596 (let ((previous-tyi #\a))
597 (defun backslash-check (ch stream eof-option)
598 (if (eql previous-tyi #\\ )
599 (progn (setq previous-tyi #\a) ch)
600 (setq previous-tyi
601 (if (eql ch #\\ )
602 (let ((next-char (peek-char nil stream nil eof-option)))
603 (if (or (eql next-char #\newline) (eql next-char #\return))
604 (eat-continuations ch stream eof-option)
605 ch))
606 ch))))
607 ; We have just read <backslash> and we know the next character is <newline> or <return>.
608 ; Eat line continuations until we come to something which doesn't match, or we reach eof.
609 (defun eat-continuations (ch stream eof-option)
610 (setq ch (tyi-raw stream eof-option))
611 (do () ((not (or (eql ch #\newline) (eql ch #\return))))
612 (let ((next-char (peek-char nil stream nil eof-option)))
613 (if (and (eql ch #\return) (eql next-char #\newline))
614 (tyi-raw stream eof-option)))
615 (setq ch (tyi-raw stream eof-option))
616 (let ((next-char (peek-char nil stream nil eof-option)))
617 (if (and (eql ch #\\ ) (or (eql next-char #\return) (eql next-char #\newline)))
618 (setq ch (tyi-raw stream eof-option))
619 (return-from eat-continuations ch))))
620 ch))
622 (defmfun $timedate (&optional (time (get-universal-time)) tz)
623 (cond
624 ((and (consp tz) (eq (caar tz) 'rat))
625 (setq tz (/ (second tz) (third tz))))
626 ((floatp tz)
627 (setq tz (rationalize tz))))
628 (if tz (setq tz (/ (round tz 1/60) 60)))
629 (let*
630 ((time-integer (mfuncall '$floor time))
631 (time-fraction (sub time time-integer))
632 (time-millis (mfuncall '$round (mul 1000 time-fraction))))
633 (when (= time-millis 1000)
634 (setq time-integer (1+ time-integer))
635 (setq time-millis 0))
636 (multiple-value-bind
637 (second minute hour date month year day-of-week dst-p tz)
638 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
639 ;; so work around null TZ here.
640 (if tz (decode-universal-time time-integer (- tz))
641 (decode-universal-time time-integer))
642 (declare (ignore day-of-week))
643 ;; DECODE-UNIVERSAL-TIME might return a timezone offset
644 ;; which is a multiple of 1/3600 but not 1/60.
645 ;; We need a multiple of 1/60 because our formatted
646 ;; timezone offset has only minutes and seconds.
647 (if (/= (mod tz 1/60) 0)
648 ($timedate time-integer (/ (round (- tz) 1/60) 60))
649 (let ((tz-offset (if dst-p (- 1 tz) (- tz))))
650 (multiple-value-bind
651 (tz-hours tz-hour-fraction)
652 (truncate tz-offset)
653 (let
654 ((tz-sign (if (<= 0 tz-offset) #\+ #\-)))
655 (if (= time-millis 0)
656 (format nil "~4,'0d-~2,'0d-~2,'0d ~2,'0d:~2,'0d:~2,'0d~a~2,'0d:~2,'0d"
657 year month date hour minute second tz-sign (abs tz-hours) (floor (* 60 (abs tz-hour-fraction))))
658 (format nil "~4,'0d-~2,'0d-~2,'0d ~2,'0d:~2,'0d:~2,'0d.~3,'0d~a~2,'0d:~2,'0d"
659 year month date hour minute second time-millis tz-sign (abs tz-hours) (floor (* 60 (abs tz-hour-fraction))))))))))))
661 ;; Parse date/time strings in these formats (and only these):
663 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?([+-]hh:mm)?
664 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?([+-]hhmm)?
665 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?([+-]hh)?
666 ;; YYYY-MM-DD([ T]hh:mm:ss)?([,.]n+)?[Z]?
668 ;; where (...)? indicates an optional group (occurs zero or one times)
669 ;; ...+ indicates one or more instances of ...,
670 ;; and [...] indicates literal character alternatives.
672 ;; Trailing unparsed stuff causes the parser to fail (return NIL).
674 ;; Originally, these functions all looked like
676 ;; (defun match-date-yyyy-mm-dd (s)
677 ;; (pregexp:pregexp-match-positions
678 ;; '#.(pregexp:pregexp "^([0-9][0-9][0-9][0-9])-([0-9][0-9])-([0-9][0-9])")
679 ;; s))
681 ;; However, sbcl produces incorrect results for this. For example,
683 ;; (match-date-yyyy-mm-dd "1900-01-01 16:00:00-08:00")
685 ;; returns ((0 . 10) (0 . 4) (8 . 10) NIL). But the correct answer is
686 ;; ((0 . 10) (0 . 4) (5 . 7) (8 . 10)).
688 ;; But if you replace the '#.(pregexp:pregexp ...) with
689 ;; (pregexp:pregexp ...), sbcl works. But then we end up compiling
690 ;; the the regexp on every call. So we use a closure so the regexp is
691 ;; compiled only once.
692 (let ((pat (pregexp:pregexp "^([0-9][0-9][0-9][0-9])-([0-9][0-9])-([0-9][0-9])")))
693 (defun match-date-yyyy-mm-dd (s)
694 (pregexp:pregexp-match-positions
696 s)))
698 (let ((pat (pregexp:pregexp "^[ T]([0-9][0-9]):([0-9][0-9]):([0-9][0-9])")))
699 (defun match-time-hh-mm-ss (s)
700 (pregexp:pregexp-match-positions
702 s)))
704 (let ((pat (pregexp:pregexp "^[,.]([0-9][0-9]*)")))
705 (defun match-fraction-nnn (s)
706 (pregexp:pregexp-match-positions
708 s)))
711 (let ((pat (pregexp:pregexp "^([+-])([0-9][0-9]):([0-9][0-9])$")))
712 (defun match-tz-hh-mm (s)
713 (pregexp:pregexp-match-positions
715 s)))
717 (let ((pat (pregexp:pregexp "^([+-])([0-9][0-9])([0-9][0-9])$")))
718 (defun match-tz-hhmm (s)
719 (pregexp:pregexp-match-positions
721 s)))
723 (let ((pat (pregexp:pregexp "^([+-])([0-9][0-9])$")))
724 (defun match-tz-hh (s)
725 (pregexp:pregexp-match-positions
727 s)))
729 (let ((pat (pregexp:pregexp "^Z$")))
730 (defun match-tz-Z (s)
731 (pregexp:pregexp-match-positions
733 s)))
735 (defmfun $parse_timedate (s)
736 (setq s (string-trim '(#\Space #\Tab #\Newline #\Return) s))
737 (let (matches
738 year month day
739 (hours 0) (minutes 0) (seconds 0)
740 (seconds-fraction 0) seconds-fraction-numerator tz)
741 (if (setq matches (match-date-yyyy-mm-dd s))
742 (progn
743 (multiple-value-setq (year month day)
744 (pregexp-extract-groups-integers matches s))
745 (setq s (subseq s (cdr (elt matches 0)))))
746 (return-from $parse_timedate nil))
747 (when (setq matches (match-time-hh-mm-ss s))
748 (multiple-value-setq (hours minutes seconds)
749 (pregexp-extract-groups-integers matches s))
750 (setq s (subseq s (cdr (elt matches 0)))))
751 (when (setq matches (match-fraction-nnn s))
752 (multiple-value-setq (seconds-fraction-numerator)
753 (pregexp-extract-groups-integers matches s))
754 (let ((group1 (elt matches 1)))
755 (setq seconds-fraction (div seconds-fraction-numerator (expt 10 (- (cdr group1) (car group1))))))
756 (setq s (subseq s (cdr (elt matches 0)))))
757 (cond
758 ((setq matches (match-tz-hh-mm s))
759 (multiple-value-bind (tz-sign tz-hours tz-minutes)
760 (pregexp-extract-groups-integers matches s)
761 (setq tz (* tz-sign (+ tz-hours (/ tz-minutes 60))))))
762 ((setq matches (match-tz-hhmm s))
763 (multiple-value-bind (tz-sign tz-hours tz-minutes)
764 (pregexp-extract-groups-integers matches s)
765 (setq tz (* tz-sign (+ tz-hours (/ tz-minutes 60))))))
766 ((setq matches (match-tz-hh s))
767 (multiple-value-bind (tz-sign tz-hours)
768 (pregexp-extract-groups-integers matches s)
769 (setq tz (* tz-sign tz-hours))))
770 ((setq matches (match-tz-Z s))
771 (setq tz 0))
773 (if (> (length s) 0)
774 (return-from $parse_timedate nil))))
776 (encode-time-with-all-parts year month day hours minutes seconds seconds-fraction (if tz (- tz)))))
778 (defun pregexp-extract-groups-integers (matches s)
779 (values-list (mapcar #'parse-integer-or-sign
780 (mapcar #'(lambda (ab)
781 (subseq s (car ab) (cdr ab)))
782 (rest matches)))))
784 (defun parse-integer-or-sign (s)
785 (cond
786 ((string= s "+") 1)
787 ((string= s "-") -1)
788 (t (parse-integer s))))
790 ; Clisp (2.49) / Windows does have a problem with dates before 1970-01-01,
791 ; therefore add 400 years in that case and subtract 12622780800
792 ; (= parse_timedate("2300-01-01Z") (Lisp starts with 1900-01-01) in timezone
793 ; GMT) afterwards.
794 ; see discussion on mailing list circa 2015-04-21: "parse_timedate error"
796 ; Nota bene that this approach is correct only if the daylight saving time flag
797 ; is the same for the given date and date + 400 years. That is true for
798 ; dates before 1970-01-01 and after 2038-01-18, for Clisp at least,
799 ; which ignores daylight saving time for all dates in those ranges,
800 ; effectively making them all standard time.
802 #+(and clisp win32)
803 (defun encode-time-with-all-parts (year month day hours minutes seconds-integer seconds-fraction tz)
804 ;; Experimenting with Clisp 2.49 for Windows seems to show that the bug
805 ;; is triggered when local time zone is east of UTC, for times before
806 ;; 1970-01-01 00:00:00 UTC + the number of hours of the time zone.
807 ;; So apply the bug workaround to all times < 1970-01-02.
808 (if (or (< year 1970) (and (= year 1970) (= day 1)))
809 (sub (encode-time-with-all-parts (add year 400) month day hours minutes seconds-integer seconds-fraction tz) 12622780800)
810 (add seconds-fraction
811 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
812 ;; so work around null TZ here.
813 (if tz
814 (encode-universal-time seconds-integer minutes hours day month year tz)
815 (encode-universal-time seconds-integer minutes hours day month year)))))
817 #-(and clisp win32)
818 (defun encode-time-with-all-parts (year month day hours minutes seconds-integer seconds-fraction tz)
819 (add seconds-fraction
820 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
821 ;; so work around null TZ here.
822 (if tz
823 (encode-universal-time seconds-integer minutes hours day month year tz)
824 (encode-universal-time seconds-integer minutes hours day month year))))
826 (defmfun $encode_time (year month day hours minutes seconds &optional tz-offset)
827 (when tz-offset
828 (setq tz-offset (sub 0 tz-offset))
829 (cond
830 ((and (consp tz-offset) (eq (caar tz-offset) 'rat))
831 (setq tz-offset (/ (second tz-offset) (third tz-offset))))
832 ((floatp tz-offset)
833 (setq tz-offset (rationalize tz-offset))))
834 (setq tz-offset (/ (round tz-offset 1/3600) 3600)))
835 (let*
836 ((seconds-integer (mfuncall '$floor seconds))
837 (seconds-fraction (sub seconds seconds-integer)))
838 (encode-time-with-all-parts year month day hours minutes seconds-integer seconds-fraction tz-offset)))
840 (defmfun $decode_time (seconds &optional tz)
841 (cond
842 ((and (consp tz) (eq (caar tz) 'rat))
843 (setq tz (/ (second tz) (third tz))))
844 ((floatp tz)
845 (setq tz (rationalize tz))))
846 (if tz (setq tz (/ (round tz 1/3600) 3600)))
847 (let*
848 ((seconds-integer (mfuncall '$floor seconds))
849 (seconds-fraction (sub seconds seconds-integer)))
850 (multiple-value-bind
851 (seconds minutes hours day month year day-of-week dst-p tz)
852 ;; Some Lisps allow TZ to be null but CLHS doesn't explicitly allow it,
853 ;; so work around null TZ here.
854 (if tz (decode-universal-time seconds-integer (- tz))
855 (decode-universal-time seconds-integer))
856 (declare (ignore day-of-week))
857 ;; HMM, CAN DECODE-UNIVERSAL-TIME RETURN TZ = NIL ??
858 (let ((tz-offset (if dst-p (- 1 tz) (- tz))))
859 (list '(mlist) year month day hours minutes (add seconds seconds-fraction) ($ratsimp tz-offset))))))
861 ;;Some systems make everything functionp including macros:
862 (defun functionp (x)
863 (cond ((symbolp x)
864 (and (not (macro-function x))
865 (fboundp x) t))
866 ((cl:functionp x))))
868 ;; These symbols are shadowed because we use them also as special
869 ;; variables.
870 (deff break #'cl:break)
871 (deff gcd #'cl:gcd)