Add some basic letsimp tests based on bug #3950
[maxima.git] / share / lapack / blas / fortran / dspr.f
blob3da6889c90dbe1d904fa36cd4d9272e16a520f67
1 SUBROUTINE DSPR ( UPLO, N, ALPHA, X, INCX, AP )
2 * .. Scalar Arguments ..
3 DOUBLE PRECISION ALPHA
4 INTEGER INCX, N
5 CHARACTER*1 UPLO
6 * .. Array Arguments ..
7 DOUBLE PRECISION AP( * ), X( * )
8 * ..
10 * Purpose
11 * =======
13 * DSPR performs the symmetric rank 1 operation
15 * A := alpha*x*x' + A,
17 * where alpha is a real scalar, x is an n element vector and A is an
18 * n by n symmetric matrix, supplied in packed form.
20 * Parameters
21 * ==========
23 * UPLO - CHARACTER*1.
24 * On entry, UPLO specifies whether the upper or lower
25 * triangular part of the matrix A is supplied in the packed
26 * array AP as follows:
28 * UPLO = 'U' or 'u' The upper triangular part of A is
29 * supplied in AP.
31 * UPLO = 'L' or 'l' The lower triangular part of A is
32 * supplied in AP.
34 * Unchanged on exit.
36 * N - INTEGER.
37 * On entry, N specifies the order of the matrix A.
38 * N must be at least zero.
39 * Unchanged on exit.
41 * ALPHA - DOUBLE PRECISION.
42 * On entry, ALPHA specifies the scalar alpha.
43 * Unchanged on exit.
45 * X - DOUBLE PRECISION array of dimension at least
46 * ( 1 + ( n - 1 )*abs( INCX ) ).
47 * Before entry, the incremented array X must contain the n
48 * element vector x.
49 * Unchanged on exit.
51 * INCX - INTEGER.
52 * On entry, INCX specifies the increment for the elements of
53 * X. INCX must not be zero.
54 * Unchanged on exit.
56 * AP - DOUBLE PRECISION array of DIMENSION at least
57 * ( ( n*( n + 1 ) )/2 ).
58 * Before entry with UPLO = 'U' or 'u', the array AP must
59 * contain the upper triangular part of the symmetric matrix
60 * packed sequentially, column by column, so that AP( 1 )
61 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
62 * and a( 2, 2 ) respectively, and so on. On exit, the array
63 * AP is overwritten by the upper triangular part of the
64 * updated matrix.
65 * Before entry with UPLO = 'L' or 'l', the array AP must
66 * contain the lower triangular part of the symmetric matrix
67 * packed sequentially, column by column, so that AP( 1 )
68 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
69 * and a( 3, 1 ) respectively, and so on. On exit, the array
70 * AP is overwritten by the lower triangular part of the
71 * updated matrix.
74 * Level 2 Blas routine.
76 * -- Written on 22-October-1986.
77 * Jack Dongarra, Argonne National Lab.
78 * Jeremy Du Croz, Nag Central Office.
79 * Sven Hammarling, Nag Central Office.
80 * Richard Hanson, Sandia National Labs.
83 * .. Parameters ..
84 DOUBLE PRECISION ZERO
85 PARAMETER ( ZERO = 0.0D+0 )
86 * .. Local Scalars ..
87 DOUBLE PRECISION TEMP
88 INTEGER I, INFO, IX, J, JX, K, KK, KX
89 * .. External Functions ..
90 LOGICAL LSAME
91 EXTERNAL LSAME
92 * .. External Subroutines ..
93 EXTERNAL XERBLA
94 * ..
95 * .. Executable Statements ..
97 * Test the input parameters.
99 INFO = 0
100 IF ( .NOT.LSAME( UPLO, 'U' ).AND.
101 $ .NOT.LSAME( UPLO, 'L' ) )THEN
102 INFO = 1
103 ELSE IF( N.LT.0 )THEN
104 INFO = 2
105 ELSE IF( INCX.EQ.0 )THEN
106 INFO = 5
107 END IF
108 IF( INFO.NE.0 )THEN
109 CALL XERBLA( 'DSPR ', INFO )
110 RETURN
111 END IF
113 * Quick return if possible.
115 IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
116 $ RETURN
118 * Set the start point in X if the increment is not unity.
120 IF( INCX.LE.0 )THEN
121 KX = 1 - ( N - 1 )*INCX
122 ELSE IF( INCX.NE.1 )THEN
123 KX = 1
124 END IF
126 * Start the operations. In this version the elements of the array AP
127 * are accessed sequentially with one pass through AP.
129 KK = 1
130 IF( LSAME( UPLO, 'U' ) )THEN
132 * Form A when upper triangle is stored in AP.
134 IF( INCX.EQ.1 )THEN
135 DO 20, J = 1, N
136 IF( X( J ).NE.ZERO )THEN
137 TEMP = ALPHA*X( J )
138 K = KK
139 DO 10, I = 1, J
140 AP( K ) = AP( K ) + X( I )*TEMP
141 K = K + 1
142 10 CONTINUE
143 END IF
144 KK = KK + J
145 20 CONTINUE
146 ELSE
147 JX = KX
148 DO 40, J = 1, N
149 IF( X( JX ).NE.ZERO )THEN
150 TEMP = ALPHA*X( JX )
151 IX = KX
152 DO 30, K = KK, KK + J - 1
153 AP( K ) = AP( K ) + X( IX )*TEMP
154 IX = IX + INCX
155 30 CONTINUE
156 END IF
157 JX = JX + INCX
158 KK = KK + J
159 40 CONTINUE
160 END IF
161 ELSE
163 * Form A when lower triangle is stored in AP.
165 IF( INCX.EQ.1 )THEN
166 DO 60, J = 1, N
167 IF( X( J ).NE.ZERO )THEN
168 TEMP = ALPHA*X( J )
169 K = KK
170 DO 50, I = J, N
171 AP( K ) = AP( K ) + X( I )*TEMP
172 K = K + 1
173 50 CONTINUE
174 END IF
175 KK = KK + N - J + 1
176 60 CONTINUE
177 ELSE
178 JX = KX
179 DO 80, J = 1, N
180 IF( X( JX ).NE.ZERO )THEN
181 TEMP = ALPHA*X( JX )
182 IX = JX
183 DO 70, K = KK, KK + N - J
184 AP( K ) = AP( K ) + X( IX )*TEMP
185 IX = IX + INCX
186 70 CONTINUE
187 END IF
188 JX = JX + INCX
189 KK = KK + N - J + 1
190 80 CONTINUE
191 END IF
192 END IF
194 RETURN
196 * End of DSPR .