Reported by Erik van der Kouwe <vdkouwe at cs.vu.nl>:
[minix.git] / kernel / proc.c
blobf3fcfc48ab452d0d41a481b4a877f3a341f0a838
1 /* This file contains essentially all of the process and message handling.
2 * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
3 * There is one entry point from the outside:
5 * sys_call: a system call, i.e., the kernel is trapped with an INT
7 * As well as several entry points used from the interrupt and task level:
9 * lock_notify: notify a process of a system event
10 * lock_send: send a message to a process
11 * lock_enqueue: put a process on one of the scheduling queues
12 * lock_dequeue: remove a process from the scheduling queues
14 * Changes:
15 * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
16 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
17 * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
18 * May 24, 2005 new notification system call (Jorrit N. Herder)
19 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
21 * The code here is critical to make everything work and is important for the
22 * overall performance of the system. A large fraction of the code deals with
23 * list manipulation. To make this both easy to understand and fast to execute
24 * pointer pointers are used throughout the code. Pointer pointers prevent
25 * exceptions for the head or tail of a linked list.
27 * node_t *queue, *new_node; // assume these as global variables
28 * node_t **xpp = &queue; // get pointer pointer to head of queue
29 * while (*xpp != NULL) // find last pointer of the linked list
30 * xpp = &(*xpp)->next; // get pointer to next pointer
31 * *xpp = new_node; // now replace the end (the NULL pointer)
32 * new_node->next = NULL; // and mark the new end of the list
34 * For example, when adding a new node to the end of the list, one normally
35 * makes an exception for an empty list and looks up the end of the list for
36 * nonempty lists. As shown above, this is not required with pointer pointers.
39 #include <minix/com.h>
40 #include <minix/callnr.h>
41 #include <minix/endpoint.h>
42 #include "debug.h"
43 #include "kernel.h"
44 #include "proc.h"
45 #include <stddef.h>
46 #include <signal.h>
47 #include <minix/portio.h>
49 /* Scheduling and message passing functions. The functions are available to
50 * other parts of the kernel through lock_...(). The lock temporarily disables
51 * interrupts to prevent race conditions.
53 FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst_e,
54 message *m_ptr, unsigned flags));
55 FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
56 message *m_ptr, unsigned flags));
57 FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst));
58 FORWARD _PROTOTYPE( int mini_senda, (struct proc *caller_ptr,
59 asynmsg_t *table, size_t size));
60 FORWARD _PROTOTYPE( int deadlock, (int function,
61 register struct proc *caller, int src_dst));
62 FORWARD _PROTOTYPE( int try_async, (struct proc *caller_ptr));
63 FORWARD _PROTOTYPE( int try_one, (struct proc *src_ptr, struct proc *dst_ptr));
64 FORWARD _PROTOTYPE( void enqueue, (struct proc *rp));
65 FORWARD _PROTOTYPE( void dequeue, (struct proc *rp));
66 FORWARD _PROTOTYPE( void sched, (struct proc *rp, int *queue, int *front));
67 FORWARD _PROTOTYPE( void pick_proc, (void));
69 #define BuildMess(m_ptr, src, dst_ptr) \
70 (m_ptr)->m_source = proc_addr(src)->p_endpoint; \
71 (m_ptr)->m_type = NOTIFY_FROM(src); \
72 (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
73 switch (src) { \
74 case HARDWARE: \
75 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
76 priv(dst_ptr)->s_int_pending = 0; \
77 break; \
78 case SYSTEM: \
79 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
80 priv(dst_ptr)->s_sig_pending = 0; \
81 break; \
84 #define CopyMess(s,sp,sm,dp,dm) \
85 cp_mess(proc_addr(s)->p_endpoint, \
86 (sp)->p_memmap[D].mem_phys, \
87 (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
89 /*===========================================================================*
90 * sys_call *
91 *===========================================================================*/
92 PUBLIC int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
93 int call_nr; /* system call number and flags */
94 int src_dst_e; /* src to receive from or dst to send to */
95 message *m_ptr; /* pointer to message in the caller's space */
96 long bit_map; /* notification event set or flags */
98 /* System calls are done by trapping to the kernel with an INT instruction.
99 * The trap is caught and sys_call() is called to send or receive a message
100 * (or both). The caller is always given by 'proc_ptr'.
102 register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */
103 int mask_entry; /* bit to check in send mask */
104 int group_size; /* used for deadlock check */
105 int result; /* the system call's result */
106 int src_dst_p; /* Process slot number */
107 vir_clicks vlo, vhi; /* virtual clicks containing message to send */
109 #if 1
110 if (RTS_ISSET(caller_ptr, SLOT_FREE))
112 kprintf("called by the dead?!?\n");
113 return EINVAL;
115 #endif
117 /* Check destination. SENDA is special because its argument is a table and
118 * not a single destination. RECEIVE is the only call that accepts ANY (in
119 * addition to a real endpoint). The other calls (SEND, SENDNB, SENDREC,
120 * and NOTIFY) require an endpoint to corresponds to a process. In addition,
121 * it is necessary to check whether a process is allow to send to a given
122 * destination. For SENDREC we check s_ipc_sendrec, and for SEND, SENDNB,
123 * and NOTIFY we check s_ipc_to.
125 if (call_nr == SENDA)
127 /* No destination argument */
129 else if (src_dst_e == ANY)
131 if (call_nr != RECEIVE)
133 #if DEBUG_ENABLE_IPC_WARNINGS
134 kprintf("sys_call: trap %d by %d with bad endpoint %d\n",
135 call_nr, proc_nr(caller_ptr), src_dst_e);
136 #endif
137 return EINVAL;
139 src_dst_p = src_dst_e;
141 else
143 /* Require a valid source and/or destination process. */
144 if(!isokendpt(src_dst_e, &src_dst_p)) {
145 if (src_dst_e == 0) panic("sys_call: no PM", NO_NUM);
146 #if DEBUG_ENABLE_IPC_WARNINGS
147 kprintf("sys_call: trap %d by %d with bad endpoint %d\n",
148 call_nr, proc_nr(caller_ptr), src_dst_e);
149 #endif
150 return EDEADSRCDST;
153 /* If the call is to send to a process, i.e., for SEND, SENDNB,
154 * SENDREC or NOTIFY, verify that the caller is allowed to send to
155 * the given destination.
157 if (call_nr == SENDREC)
159 if (! get_sys_bit(priv(caller_ptr)->s_ipc_sendrec,
160 nr_to_id(src_dst_p))) {
161 #if DEBUG_ENABLE_IPC_WARNINGS
162 kprintf(
163 "sys_call: ipc sendrec mask denied trap %d from %d to %d\n",
164 call_nr, proc_nr(caller_ptr), src_dst_p);
165 #endif
166 return(ECALLDENIED); /* call denied by ipc mask */
169 else if (call_nr == SEND || call_nr == SENDNB || call_nr == NOTIFY)
171 if (! get_sys_bit(priv(caller_ptr)->s_ipc_to,
172 nr_to_id(src_dst_p))) {
173 #if DEBUG_ENABLE_IPC_WARNINGS
174 kprintf(
175 "sys_call: ipc mask denied trap %d from %d to %d\n",
176 call_nr, proc_nr(caller_ptr), src_dst_p);
177 #endif
178 return(ECALLDENIED); /* call denied by ipc mask */
183 /* Only allow non-negative call_nr values less than 32 */
184 if (call_nr < 0 || call_nr >= 32)
186 #if DEBUG_ENABLE_IPC_WARNINGS
187 kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
188 call_nr, proc_nr(caller_ptr), src_dst_p);
189 #endif
190 return(ETRAPDENIED); /* trap denied by mask or kernel */
193 /* Check if the process has privileges for the requested call. Calls to the
194 * kernel may only be SENDREC, because tasks always reply and may not block
195 * if the caller doesn't do receive().
197 if (!(priv(caller_ptr)->s_trap_mask & (1 << call_nr))) {
198 #if DEBUG_ENABLE_IPC_WARNINGS
199 kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
200 call_nr, proc_nr(caller_ptr), src_dst_p);
201 #endif
202 return(ETRAPDENIED); /* trap denied by mask or kernel */
205 #if 0
206 if ((iskerneln(src_dst_p) && _function != SENDREC
207 && _function != RECEIVE)) {
208 #if DEBUG_ENABLE_IPC_WARNINGS
209 kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
210 function, proc_nr(caller_ptr), src_dst);
211 #endif
212 return(ETRAPDENIED); /* trap denied by mask or kernel */
214 #endif
216 /* If the call involves a message buffer, i.e., for SEND, SENDNB, SENDREC,
217 * or RECEIVE, check the message pointer. This check allows a message to be
218 * anywhere in data or stack or gap. It will have to be made more elaborate
219 * for machines which don't have the gap mapped.
221 if (call_nr == SEND || call_nr == SENDNB || call_nr == SENDREC ||
222 call_nr == RECEIVE) {
223 vlo = (vir_bytes) m_ptr >> CLICK_SHIFT;
224 vhi = ((vir_bytes) m_ptr + MESS_SIZE - 1) >> CLICK_SHIFT;
225 if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi ||
226 vhi >= caller_ptr->p_memmap[S].mem_vir +
227 caller_ptr->p_memmap[S].mem_len) {
228 #if DEBUG_ENABLE_IPC_WARNINGS
229 kprintf(
230 "sys_call: invalid message pointer, trap %d, caller %d\n",
231 call_nr, proc_nr(caller_ptr));
232 #endif
233 return(EFAULT); /* invalid message pointer */
237 /* Check for a possible deadlock for blocking SEND(REC) and RECEIVE. */
238 if (call_nr == SEND || call_nr == SENDREC || call_nr == RECEIVE) {
239 if (group_size = deadlock(call_nr, caller_ptr, src_dst_p)) {
240 #if DEBUG_ENABLE_IPC_WARNINGS
241 kprintf("sys_call: trap %d from %d to %d deadlocked, group size %d\n",
242 call_nr, proc_nr(caller_ptr), src_dst_p, group_size);
243 #endif
244 return(ELOCKED);
248 /* Now check if the call is known and try to perform the request. The only
249 * system calls that exist in MINIX are sending and receiving messages.
250 * - SENDREC: combines SEND and RECEIVE in a single system call
251 * - SEND: sender blocks until its message has been delivered
252 * - RECEIVE: receiver blocks until an acceptable message has arrived
253 * - NOTIFY: asynchronous call; deliver notification or mark pending
254 * - SENDNB: nonblocking send
255 * - SENDA: list of asynchronous send requests
257 switch(call_nr) {
258 case SENDREC:
259 /* A flag is set so that notifications cannot interrupt SENDREC. */
260 caller_ptr->p_misc_flags |= REPLY_PENDING;
261 /* fall through */
262 case SEND:
263 result = mini_send(caller_ptr, src_dst_e, m_ptr, 0 /*flags*/);
264 if (call_nr == SEND || result != OK)
265 break; /* done, or SEND failed */
266 /* fall through for SENDREC */
267 case RECEIVE:
268 if (call_nr == RECEIVE)
269 caller_ptr->p_misc_flags &= ~REPLY_PENDING;
270 result = mini_receive(caller_ptr, src_dst_e, m_ptr, 0 /*flags*/);
271 break;
272 case NOTIFY:
273 result = mini_notify(caller_ptr, src_dst_p);
274 break;
275 case SENDNB:
276 result = mini_send(caller_ptr, src_dst_e, m_ptr, NON_BLOCKING);
277 break;
278 case SENDA:
279 result = mini_senda(caller_ptr, (asynmsg_t *)m_ptr, (size_t)src_dst_e);
280 break;
281 default:
282 result = EBADCALL; /* illegal system call */
285 /* Now, return the result of the system call to the caller. */
286 return(result);
289 /*===========================================================================*
290 * deadlock *
291 *===========================================================================*/
292 PRIVATE int deadlock(function, cp, src_dst)
293 int function; /* trap number */
294 register struct proc *cp; /* pointer to caller */
295 int src_dst; /* src or dst process */
297 /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
298 * a cyclic dependency of blocking send and receive calls. The only cyclic
299 * depency that is not fatal is if the caller and target directly SEND(REC)
300 * and RECEIVE to each other. If a deadlock is found, the group size is
301 * returned. Otherwise zero is returned.
303 register struct proc *xp; /* process pointer */
304 int group_size = 1; /* start with only caller */
305 int trap_flags;
307 while (src_dst != ANY) { /* check while process nr */
308 int src_dst_e;
309 xp = proc_addr(src_dst); /* follow chain of processes */
310 group_size ++; /* extra process in group */
312 /* Check whether the last process in the chain has a dependency. If it
313 * has not, the cycle cannot be closed and we are done.
315 if (RTS_ISSET(xp, RECEIVING)) { /* xp has dependency */
316 if(xp->p_getfrom_e == ANY) src_dst = ANY;
317 else okendpt(xp->p_getfrom_e, &src_dst);
318 } else if (RTS_ISSET(xp, SENDING)) { /* xp has dependency */
319 okendpt(xp->p_sendto_e, &src_dst);
320 } else {
321 return(0); /* not a deadlock */
324 /* Now check if there is a cyclic dependency. For group sizes of two,
325 * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
326 * or other combinations indicate a deadlock.
328 if (src_dst == proc_nr(cp)) { /* possible deadlock */
329 if (group_size == 2) { /* caller and src_dst */
330 /* The function number is magically converted to flags. */
331 if ((xp->p_rts_flags ^ (function << 2)) & SENDING) {
332 return(0); /* not a deadlock */
335 return(group_size); /* deadlock found */
338 return(0); /* not a deadlock */
342 /*===========================================================================*
343 * mini_send *
344 *===========================================================================*/
345 PRIVATE int mini_send(caller_ptr, dst_e, m_ptr, flags)
346 register struct proc *caller_ptr; /* who is trying to send a message? */
347 int dst_e; /* to whom is message being sent? */
348 message *m_ptr; /* pointer to message buffer */
349 unsigned flags; /* system call flags */
351 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
352 * for this message, copy the message to it and unblock 'dst'. If 'dst' is
353 * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
355 register struct proc *dst_ptr;
356 register struct proc **xpp;
357 int dst_p;
359 dst_p = _ENDPOINT_P(dst_e);
360 dst_ptr = proc_addr(dst_p);
362 if (RTS_ISSET(dst_ptr, NO_ENDPOINT)) return EDSTDIED;
364 /* Check if 'dst' is blocked waiting for this message. The destination's
365 * SENDING flag may be set when its SENDREC call blocked while sending.
367 if ( (RTS_ISSET(dst_ptr, RECEIVING) && !RTS_ISSET(dst_ptr, SENDING)) &&
368 (dst_ptr->p_getfrom_e == ANY
369 || dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
370 /* Destination is indeed waiting for this message. */
371 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
372 dst_ptr->p_messbuf);
373 RTS_UNSET(dst_ptr, RECEIVING);
374 } else if ( ! (flags & NON_BLOCKING)) {
375 /* Destination is not waiting. Block and dequeue caller. */
376 caller_ptr->p_messbuf = m_ptr;
377 RTS_SET(caller_ptr, SENDING);
378 caller_ptr->p_sendto_e = dst_e;
380 /* Process is now blocked. Put in on the destination's queue. */
381 xpp = &dst_ptr->p_caller_q; /* find end of list */
382 while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;
383 *xpp = caller_ptr; /* add caller to end */
384 caller_ptr->p_q_link = NIL_PROC; /* mark new end of list */
385 } else {
386 return(ENOTREADY);
388 return(OK);
391 /*===========================================================================*
392 * mini_receive *
393 *===========================================================================*/
394 PRIVATE int mini_receive(caller_ptr, src_e, m_ptr, flags)
395 register struct proc *caller_ptr; /* process trying to get message */
396 int src_e; /* which message source is wanted */
397 message *m_ptr; /* pointer to message buffer */
398 unsigned flags; /* system call flags */
400 /* A process or task wants to get a message. If a message is already queued,
401 * acquire it and deblock the sender. If no message from the desired source
402 * is available block the caller, unless the flags don't allow blocking.
404 register struct proc **xpp;
405 register struct notification **ntf_q_pp;
406 message m;
407 int bit_nr;
408 sys_map_t *map;
409 bitchunk_t *chunk;
410 int i, r, src_id, src_proc_nr, src_p;
412 if(src_e == ANY) src_p = ANY;
413 else
415 okendpt(src_e, &src_p);
416 if (RTS_ISSET(proc_addr(src_p), NO_ENDPOINT)) return ESRCDIED;
420 /* Check to see if a message from desired source is already available.
421 * The caller's SENDING flag may be set if SENDREC couldn't send. If it is
422 * set, the process should be blocked.
424 if (!RTS_ISSET(caller_ptr, SENDING)) {
426 /* Check if there are pending notifications, except for SENDREC. */
427 if (! (caller_ptr->p_misc_flags & REPLY_PENDING)) {
429 map = &priv(caller_ptr)->s_notify_pending;
430 for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
432 /* Find a pending notification from the requested source. */
433 if (! *chunk) continue; /* no bits in chunk */
434 for (i=0; ! (*chunk & (1<<i)); ++i) {} /* look up the bit */
435 src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
436 if (src_id >= NR_SYS_PROCS) break; /* out of range */
437 src_proc_nr = id_to_nr(src_id); /* get source proc */
438 #if DEBUG_ENABLE_IPC_WARNINGS
439 if(src_proc_nr == NONE) {
440 kprintf("mini_receive: sending notify from NONE\n");
442 #endif
443 if (src_e!=ANY && src_p != src_proc_nr) continue;/* source not ok */
444 *chunk &= ~(1 << i); /* no longer pending */
446 /* Found a suitable source, deliver the notification message. */
447 BuildMess(&m, src_proc_nr, caller_ptr); /* assemble message */
448 CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
449 return(OK); /* report success */
453 /* Check caller queue. Use pointer pointers to keep code simple. */
454 xpp = &caller_ptr->p_caller_q;
455 while (*xpp != NIL_PROC) {
456 if (src_e == ANY || src_p == proc_nr(*xpp)) {
457 #if 1
458 if (RTS_ISSET(*xpp, SLOT_FREE))
460 kprintf("listening to the dead?!?\n");
461 return EINVAL;
463 #endif
465 /* Found acceptable message. Copy it and update status. */
466 CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
467 RTS_UNSET(*xpp, SENDING);
468 *xpp = (*xpp)->p_q_link; /* remove from queue */
469 return(OK); /* report success */
471 xpp = &(*xpp)->p_q_link; /* proceed to next */
474 if (caller_ptr->p_misc_flags & MF_ASYNMSG)
476 if (src_e != ANY)
478 #if 0
479 kprintf("mini_receive: should try async from %d\n", src_e);
480 #endif
481 r= EAGAIN;
483 else
485 caller_ptr->p_messbuf = m_ptr;
486 r= try_async(caller_ptr);
488 if (r == OK)
489 return OK; /* Got a message */
493 /* No suitable message is available or the caller couldn't send in SENDREC.
494 * Block the process trying to receive, unless the flags tell otherwise.
496 if ( ! (flags & NON_BLOCKING)) {
497 caller_ptr->p_getfrom_e = src_e;
498 caller_ptr->p_messbuf = m_ptr;
499 RTS_SET(caller_ptr, RECEIVING);
500 return(OK);
501 } else {
502 return(ENOTREADY);
506 /*===========================================================================*
507 * mini_notify *
508 *===========================================================================*/
509 PRIVATE int mini_notify(caller_ptr, dst)
510 register struct proc *caller_ptr; /* sender of the notification */
511 int dst; /* which process to notify */
513 register struct proc *dst_ptr = proc_addr(dst);
514 int src_id; /* source id for late delivery */
515 message m; /* the notification message */
517 /* Check to see if target is blocked waiting for this message. A process
518 * can be both sending and receiving during a SENDREC system call.
520 if ( (RTS_ISSET(dst_ptr, RECEIVING) && !RTS_ISSET(dst_ptr, SENDING)) &&
521 ! (dst_ptr->p_misc_flags & REPLY_PENDING) &&
522 (dst_ptr->p_getfrom_e == ANY ||
523 dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
525 /* Destination is indeed waiting for a message. Assemble a notification
526 * message and deliver it. Copy from pseudo-source HARDWARE, since the
527 * message is in the kernel's address space.
529 BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
530 CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m,
531 dst_ptr, dst_ptr->p_messbuf);
532 RTS_UNSET(dst_ptr, RECEIVING);
533 return(OK);
536 /* Destination is not ready to receive the notification. Add it to the
537 * bit map with pending notifications. Note the indirectness: the system id
538 * instead of the process number is used in the pending bit map.
540 src_id = priv(caller_ptr)->s_id;
541 set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
542 return(OK);
546 /*===========================================================================*
547 * mini_senda *
548 *===========================================================================*/
549 PRIVATE int mini_senda(caller_ptr, table, size)
550 struct proc *caller_ptr;
551 asynmsg_t *table;
552 size_t size;
554 int i, dst_p, done, do_notify;
555 unsigned flags;
556 phys_bytes tab_phys;
557 struct proc *dst_ptr;
558 struct priv *privp;
559 message *m_ptr;
560 asynmsg_t tabent;
562 privp= priv(caller_ptr);
563 if (!(privp->s_flags & SYS_PROC))
565 kprintf(
566 "mini_senda: warning caller has no privilege structure\n");
567 return EPERM;
570 /* Clear table */
571 privp->s_asyntab= -1;
572 privp->s_asynsize= 0;
574 if (size == 0)
576 /* Nothing to do, just return */
577 return OK;
580 /* Limit size to something reasonable. An arbitrary choice is 16
581 * times the number of process table entries.
583 if (size > 16*(NR_TASKS + NR_PROCS))
584 return EDOM;
586 /* Map table */
587 tab_phys= umap_local(caller_ptr, D, (vir_bytes)table,
588 size*sizeof(table[0]));
589 if (tab_phys == 0)
591 kprintf("mini_senda: got bad table pointer/size\n");
592 return EFAULT;
595 /* Scan the table */
596 do_notify= FALSE;
597 done= TRUE;
598 for (i= 0; i<size; i++)
600 /* Read status word */
601 phys_copy(tab_phys + i*sizeof(table[0]) +
602 offsetof(struct asynmsg, flags),
603 vir2phys(&tabent.flags), sizeof(tabent.flags));
604 flags= tabent.flags;
606 /* Skip empty entries */
607 if (flags == 0)
608 continue;
610 /* Check for reserved bits in the flags field */
611 if (flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY) ||
612 !(flags & AMF_VALID))
614 return EINVAL;
617 /* Skip entry is AMF_DONE is already set */
618 if (flags & AMF_DONE)
619 continue;
621 /* Get destination */
622 phys_copy(tab_phys + i*sizeof(table[0]) +
623 offsetof(struct asynmsg, dst),
624 vir2phys(&tabent.dst), sizeof(tabent.dst));
626 if (!isokendpt(tabent.dst, &dst_p))
628 /* Bad destination, report the error */
629 tabent.result= EDEADSRCDST;
630 phys_copy(vir2phys(&tabent.result),
631 tab_phys + i*sizeof(table[0]) +
632 offsetof(struct asynmsg, result),
633 sizeof(tabent.result));
634 tabent.flags= flags | AMF_DONE;
635 phys_copy(vir2phys(&tabent.flags),
636 tab_phys + i*sizeof(table[0]) +
637 offsetof(struct asynmsg, flags),
638 sizeof(tabent.flags));
640 if (flags & AMF_NOTIFY)
641 do_notify= 1;
642 continue;
645 #if 0
646 kprintf("mini_senda: entry[%d]: flags 0x%x dst %d/%d\n",
647 i, tabent.flags, tabent.dst, dst_p);
648 #endif
650 dst_ptr = proc_addr(dst_p);
652 /* NO_ENDPOINT should be removed */
653 if (dst_ptr->p_rts_flags & NO_ENDPOINT)
655 tabent.result= EDSTDIED;
656 phys_copy(vir2phys(&tabent.result),
657 tab_phys + i*sizeof(table[0]) +
658 offsetof(struct asynmsg, result),
659 sizeof(tabent.result));
660 tabent.flags= flags | AMF_DONE;
661 phys_copy(vir2phys(&tabent.flags),
662 tab_phys + i*sizeof(table[0]) +
663 offsetof(struct asynmsg, flags),
664 sizeof(tabent.flags));
666 if (flags & AMF_NOTIFY)
667 do_notify= TRUE;
668 continue;
671 /* Check if 'dst' is blocked waiting for this message. The
672 * destination's SENDING flag may be set when its SENDREC call
673 * blocked while sending.
675 if ( (dst_ptr->p_rts_flags & (RECEIVING | SENDING)) ==
676 RECEIVING &&
677 (dst_ptr->p_getfrom_e == ANY ||
678 dst_ptr->p_getfrom_e == caller_ptr->p_endpoint))
680 /* Destination is indeed waiting for this message. */
681 m_ptr= &table[i].msg; /* Note: pointer in the
682 * caller's address space.
684 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
685 dst_ptr->p_messbuf);
687 if ((dst_ptr->p_rts_flags &= ~RECEIVING) == 0)
688 enqueue(dst_ptr);
690 tabent.result= OK;
691 phys_copy(vir2phys(&tabent.result),
692 tab_phys + i*sizeof(table[0]) +
693 offsetof(struct asynmsg, result),
694 sizeof(tabent.result));
695 tabent.flags= flags | AMF_DONE;
696 phys_copy(vir2phys(&tabent.flags),
697 tab_phys + i*sizeof(table[0]) +
698 offsetof(struct asynmsg, flags),
699 sizeof(tabent.flags));
701 if (flags & AMF_NOTIFY)
702 do_notify= 1;
703 continue;
705 else
707 /* Should inform receiver that something is pending */
708 dst_ptr->p_misc_flags |= MF_ASYNMSG;
709 done= FALSE;
710 continue;
713 if (do_notify)
714 kprintf("mini_senda: should notifiy caller\n");
715 if (!done)
717 privp->s_asyntab= (vir_bytes)table;
718 privp->s_asynsize= size;
720 return OK;
724 /*===========================================================================*
725 * try_async *
726 *===========================================================================*/
727 PRIVATE int try_async(caller_ptr)
728 struct proc *caller_ptr;
730 int r;
731 struct priv *privp;
732 struct proc *src_ptr;
734 /* Try all privilege structures */
735 for (privp = BEG_PRIV_ADDR; privp < END_PRIV_ADDR; ++privp)
737 if (privp->s_proc_nr == NONE || privp->s_id == USER_PRIV_ID)
738 continue;
739 if (privp->s_asynsize == 0)
740 continue;
741 #if 0
742 kprintf("try_async: found asyntable for proc %d\n",
743 privp->s_proc_nr);
744 #endif
745 src_ptr= proc_addr(privp->s_proc_nr);
746 r= try_one(src_ptr, caller_ptr);
747 if (r == OK)
748 return r;
751 /* Nothing found, clear MF_ASYNMSG */
752 caller_ptr->p_misc_flags &= ~MF_ASYNMSG;
754 return ESRCH;
758 /*===========================================================================*
759 * try_one *
760 *===========================================================================*/
761 PRIVATE int try_one(src_ptr, dst_ptr)
762 struct proc *src_ptr;
763 struct proc *dst_ptr;
765 int i, do_notify, done;
766 unsigned flags;
767 size_t size;
768 endpoint_t dst_e;
769 phys_bytes tab_phys;
770 asynmsg_t *table_ptr;
771 message *m_ptr;
772 struct priv *privp;
773 asynmsg_t tabent;
775 privp= priv(src_ptr);
776 size= privp->s_asynsize;
778 dst_e= dst_ptr->p_endpoint;
780 /* Map table */
781 tab_phys= umap_local(src_ptr, D, privp->s_asyntab,
782 size*sizeof(tabent));
783 if (tab_phys == 0)
785 kprintf("try_one: got bad table pointer/size\n");
786 privp->s_asynsize= 0;
787 return EFAULT;
790 /* Scan the table */
791 do_notify= FALSE;
792 done= TRUE;
793 for (i= 0; i<size; i++)
795 /* Read status word */
796 phys_copy(tab_phys + i*sizeof(tabent) +
797 offsetof(struct asynmsg, flags),
798 vir2phys(&tabent.flags), sizeof(tabent.flags));
799 flags= tabent.flags;
801 /* Skip empty entries */
802 if (flags == 0)
804 continue;
807 /* Check for reserved bits in the flags field */
808 if (flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY) ||
809 !(flags & AMF_VALID))
811 kprintf("try_one: bad bits in table\n");
812 privp->s_asynsize= 0;
813 return EINVAL;
816 /* Skip entry is AMF_DONE is already set */
817 if (flags & AMF_DONE)
819 continue;
822 /* Clear done. We are done when all entries are either empty
823 * or done at the start of the call.
825 done= FALSE;
827 /* Get destination */
828 phys_copy(tab_phys + i*sizeof(tabent) +
829 offsetof(struct asynmsg, dst),
830 vir2phys(&tabent.dst), sizeof(tabent.dst));
832 if (tabent.dst != dst_e)
834 kprintf("try_one: wrong dst %d, looking for %d\n",
835 tabent.dst, dst_e);
836 continue;
839 #if 0
840 kprintf("try_one: entry[%d]: flags 0x%x dst %d\n",
841 i, tabent.flags, tabent.dst);
842 #endif
844 /* Deliver message */
845 table_ptr= (asynmsg_t *)privp->s_asyntab;
846 m_ptr= &table_ptr[i].msg; /* Note: pointer in the
847 * caller's address space.
849 CopyMess(src_ptr->p_nr, src_ptr, m_ptr, dst_ptr,
850 dst_ptr->p_messbuf);
852 tabent.result= OK;
853 phys_copy(vir2phys(&tabent.result),
854 tab_phys + i*sizeof(tabent) +
855 offsetof(struct asynmsg, result),
856 sizeof(tabent.result));
857 tabent.flags= flags | AMF_DONE;
858 phys_copy(vir2phys(&tabent.flags),
859 tab_phys + i*sizeof(tabent) +
860 offsetof(struct asynmsg, flags),
861 sizeof(tabent.flags));
863 if (flags & AMF_NOTIFY)
865 kprintf("try_one: should notify caller\n");
867 return OK;
869 if (done)
870 privp->s_asynsize= 0;
871 return EAGAIN;
874 /*===========================================================================*
875 * lock_notify *
876 *===========================================================================*/
877 PUBLIC int lock_notify(src_e, dst_e)
878 int src_e; /* (endpoint) sender of the notification */
879 int dst_e; /* (endpoint) who is to be notified */
881 /* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
882 * is explicitely given to prevent confusion where the call comes from. MINIX
883 * kernel is not reentrant, which means to interrupts are disabled after
884 * the first kernel entry (hardware interrupt, trap, or exception). Locking
885 * is done by temporarily disabling interrupts.
887 int result, src, dst;
889 if(!isokendpt(src_e, &src) || !isokendpt(dst_e, &dst))
890 return EDEADSRCDST;
892 /* Exception or interrupt occurred, thus already locked. */
893 if (k_reenter >= 0) {
894 result = mini_notify(proc_addr(src), dst);
897 /* Call from task level, locking is required. */
898 else {
899 lock(0, "notify");
900 result = mini_notify(proc_addr(src), dst);
901 unlock(0);
903 return(result);
906 /*===========================================================================*
907 * enqueue *
908 *===========================================================================*/
909 PRIVATE void enqueue(rp)
910 register struct proc *rp; /* this process is now runnable */
912 /* Add 'rp' to one of the queues of runnable processes. This function is
913 * responsible for inserting a process into one of the scheduling queues.
914 * The mechanism is implemented here. The actual scheduling policy is
915 * defined in sched() and pick_proc().
917 int q; /* scheduling queue to use */
918 int front; /* add to front or back */
920 #if DEBUG_SCHED_CHECK
921 check_runqueues("enqueue1");
922 if (rp->p_ready) kprintf("enqueue() already ready process\n");
923 #endif
925 /* Determine where to insert to process. */
926 sched(rp, &q, &front);
928 /* Now add the process to the queue. */
929 if (rdy_head[q] == NIL_PROC) { /* add to empty queue */
930 rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
931 rp->p_nextready = NIL_PROC; /* mark new end */
933 else if (front) { /* add to head of queue */
934 rp->p_nextready = rdy_head[q]; /* chain head of queue */
935 rdy_head[q] = rp; /* set new queue head */
937 else { /* add to tail of queue */
938 rdy_tail[q]->p_nextready = rp; /* chain tail of queue */
939 rdy_tail[q] = rp; /* set new queue tail */
940 rp->p_nextready = NIL_PROC; /* mark new end */
943 /* Now select the next process to run, if there isn't a current
944 * process yet or current process isn't ready any more, or
945 * it's PREEMPTIBLE.
947 if(!proc_ptr || proc_ptr->p_rts_flags ||
948 (priv(proc_ptr)->s_flags & PREEMPTIBLE)) {
949 pick_proc();
952 #if DEBUG_SCHED_CHECK
953 rp->p_ready = 1;
954 check_runqueues("enqueue2");
955 #endif
958 /*===========================================================================*
959 * dequeue *
960 *===========================================================================*/
961 PRIVATE void dequeue(rp)
962 register struct proc *rp; /* this process is no longer runnable */
964 /* A process must be removed from the scheduling queues, for example, because
965 * it has blocked. If the currently active process is removed, a new process
966 * is picked to run by calling pick_proc().
968 register int q = rp->p_priority; /* queue to use */
969 register struct proc **xpp; /* iterate over queue */
970 register struct proc *prev_xp;
972 /* Side-effect for kernel: check if the task's stack still is ok? */
973 if (iskernelp(rp)) {
974 if (*priv(rp)->s_stack_guard != STACK_GUARD)
975 panic("stack overrun by task", proc_nr(rp));
978 #if DEBUG_SCHED_CHECK
979 check_runqueues("dequeue1");
980 if (! rp->p_ready) kprintf("dequeue() already unready process\n");
981 #endif
983 /* Now make sure that the process is not in its ready queue. Remove the
984 * process if it is found. A process can be made unready even if it is not
985 * running by being sent a signal that kills it.
987 prev_xp = NIL_PROC;
988 for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
990 if (*xpp == rp) { /* found process to remove */
991 *xpp = (*xpp)->p_nextready; /* replace with next chain */
992 if (rp == rdy_tail[q]) /* queue tail removed */
993 rdy_tail[q] = prev_xp; /* set new tail */
994 if (rp == proc_ptr || rp == next_ptr) /* active process removed */
995 pick_proc(); /* pick new process to run */
996 break;
998 prev_xp = *xpp; /* save previous in chain */
1001 #if DEBUG_SCHED_CHECK
1002 rp->p_ready = 0;
1003 check_runqueues("dequeue2");
1004 #endif
1007 /*===========================================================================*
1008 * sched *
1009 *===========================================================================*/
1010 PRIVATE void sched(rp, queue, front)
1011 register struct proc *rp; /* process to be scheduled */
1012 int *queue; /* return: queue to use */
1013 int *front; /* return: front or back */
1015 /* This function determines the scheduling policy. It is called whenever a
1016 * process must be added to one of the scheduling queues to decide where to
1017 * insert it. As a side-effect the process' priority may be updated.
1019 int time_left = (rp->p_ticks_left > 0); /* quantum fully consumed */
1021 /* Check whether the process has time left. Otherwise give a new quantum
1022 * and lower the process' priority, unless the process already is in the
1023 * lowest queue.
1025 if (! time_left) { /* quantum consumed ? */
1026 rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
1027 if (rp->p_priority < (IDLE_Q-1)) {
1028 rp->p_priority += 1; /* lower priority */
1032 /* If there is time left, the process is added to the front of its queue,
1033 * so that it can immediately run. The queue to use simply is always the
1034 * process' current priority.
1036 *queue = rp->p_priority;
1037 *front = time_left;
1040 /*===========================================================================*
1041 * pick_proc *
1042 *===========================================================================*/
1043 PRIVATE void pick_proc()
1045 /* Decide who to run now. A new process is selected by setting 'next_ptr'.
1046 * When a billable process is selected, record it in 'bill_ptr', so that the
1047 * clock task can tell who to bill for system time.
1049 register struct proc *rp; /* process to run */
1050 int q; /* iterate over queues */
1052 /* Check each of the scheduling queues for ready processes. The number of
1053 * queues is defined in proc.h, and priorities are set in the task table.
1054 * The lowest queue contains IDLE, which is always ready.
1056 for (q=0; q < NR_SCHED_QUEUES; q++) {
1057 if ( (rp = rdy_head[q]) != NIL_PROC) {
1058 next_ptr = rp; /* run process 'rp' next */
1059 if (priv(rp)->s_flags & BILLABLE)
1060 bill_ptr = rp; /* bill for system time */
1061 return;
1064 panic("no ready process", NO_NUM);
1067 /*===========================================================================*
1068 * balance_queues *
1069 *===========================================================================*/
1070 #define Q_BALANCE_TICKS 100
1071 PUBLIC void balance_queues(tp)
1072 timer_t *tp; /* watchdog timer pointer */
1074 /* Check entire process table and give all process a higher priority. This
1075 * effectively means giving a new quantum. If a process already is at its
1076 * maximum priority, its quantum will be renewed.
1078 static timer_t queue_timer; /* timer structure to use */
1079 register struct proc* rp; /* process table pointer */
1080 clock_t next_period; /* time of next period */
1081 int ticks_added = 0; /* total time added */
1083 for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
1084 if (! isemptyp(rp)) { /* check slot use */
1085 lock(5,"balance_queues");
1086 if (rp->p_priority > rp->p_max_priority) { /* update priority? */
1087 if (rp->p_rts_flags == 0) dequeue(rp); /* take off queue */
1088 ticks_added += rp->p_quantum_size; /* do accounting */
1089 rp->p_priority -= 1; /* raise priority */
1090 if (rp->p_rts_flags == 0) enqueue(rp); /* put on queue */
1092 else {
1093 ticks_added += rp->p_quantum_size - rp->p_ticks_left;
1094 rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
1096 unlock(5);
1099 #if DEBUG
1100 kprintf("ticks_added: %d\n", ticks_added);
1101 #endif
1103 /* Now schedule a new watchdog timer to balance the queues again. The
1104 * period depends on the total amount of quantum ticks added.
1106 next_period = MAX(Q_BALANCE_TICKS, ticks_added); /* calculate next */
1107 set_timer(&queue_timer, get_uptime() + next_period, balance_queues);
1110 /*===========================================================================*
1111 * lock_send *
1112 *===========================================================================*/
1113 PUBLIC int lock_send(dst_e, m_ptr)
1114 int dst_e; /* to whom is message being sent? */
1115 message *m_ptr; /* pointer to message buffer */
1117 /* Safe gateway to mini_send() for tasks. */
1118 int result;
1119 lock(2, "send");
1120 result = mini_send(proc_ptr, dst_e, m_ptr, NON_BLOCKING);
1121 unlock(2);
1122 return(result);
1125 /*===========================================================================*
1126 * lock_enqueue *
1127 *===========================================================================*/
1128 PUBLIC void lock_enqueue(rp)
1129 struct proc *rp; /* this process is now runnable */
1131 /* Safe gateway to enqueue() for tasks. */
1132 lock(3, "enqueue");
1133 enqueue(rp);
1134 unlock(3);
1137 /*===========================================================================*
1138 * lock_dequeue *
1139 *===========================================================================*/
1140 PUBLIC void lock_dequeue(rp)
1141 struct proc *rp; /* this process is no longer runnable */
1143 /* Safe gateway to dequeue() for tasks. */
1144 if (k_reenter >= 0) {
1145 /* We're in an exception or interrupt, so don't lock (and ...
1146 * don't unlock).
1148 dequeue(rp);
1149 } else {
1150 lock(4, "dequeue");
1151 dequeue(rp);
1152 unlock(4);
1156 /*===========================================================================*
1157 * isokendpt_f *
1158 *===========================================================================*/
1159 #if DEBUG_ENABLE_IPC_WARNINGS
1160 PUBLIC int isokendpt_f(file, line, e, p, fatalflag)
1161 char *file;
1162 int line;
1163 #else
1164 PUBLIC int isokendpt_f(e, p, fatalflag)
1165 #endif
1166 endpoint_t e;
1167 int *p, fatalflag;
1169 int ok = 0;
1170 /* Convert an endpoint number into a process number.
1171 * Return nonzero if the process is alive with the corresponding
1172 * generation number, zero otherwise.
1174 * This function is called with file and line number by the
1175 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
1176 * otherwise without. This allows us to print the where the
1177 * conversion was attempted, making the errors verbose without
1178 * adding code for that at every call.
1180 * If fatalflag is nonzero, we must panic if the conversion doesn't
1181 * succeed.
1183 *p = _ENDPOINT_P(e);
1184 if(!isokprocn(*p)) {
1185 #if DEBUG_ENABLE_IPC_WARNINGS
1186 kprintf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
1187 file, line, e, *p);
1188 #endif
1189 } else if(isemptyn(*p)) {
1190 #if DEBUG_ENABLE_IPC_WARNINGS
1191 kprintf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file, line, e, *p);
1192 #endif
1193 } else if(proc_addr(*p)->p_endpoint != e) {
1194 #if DEBUG_ENABLE_IPC_WARNINGS
1195 kprintf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file, line,
1196 e, *p, proc_addr(*p)->p_endpoint,
1197 _ENDPOINT_G(e), _ENDPOINT_G(proc_addr(*p)->p_endpoint));
1198 #endif
1199 } else ok = 1;
1200 if(!ok && fatalflag) {
1201 panic("invalid endpoint ", e);
1203 return ok;