1 /* $NetBSD: mdreloc.c,v 1.48 2014/08/25 20:40:52 joerg Exp $ */
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #include <sys/cdefs.h>
34 __RCSID("$NetBSD: mdreloc.c,v 1.48 2014/08/25 20:40:52 joerg Exp $");
48 * The following table holds for each relocation type:
49 * - the width in bits of the memory location the relocation
50 * applies to (not currently used)
51 * - the number of bits the relocation value must be shifted to the
52 * right (i.e. discard least significant bits) to fit into
53 * the appropriate field in the instruction word.
54 * - flags indicating whether
55 * * the relocation involves a symbol
56 * * the relocation is relative to the current position
57 * * the relocation is for a GOT entry
58 * * the relocation is relative to the load address
61 #define _RF_S 0x80000000 /* Resolve symbol */
62 #define _RF_A 0x40000000 /* Use addend */
63 #define _RF_P 0x20000000 /* Location relative */
64 #define _RF_G 0x10000000 /* GOT offset */
65 #define _RF_B 0x08000000 /* Load address relative */
66 #define _RF_U 0x04000000 /* Unaligned */
67 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
68 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
69 static const int reloc_target_flags
[R_TYPE(TLS_TPOFF64
)+1] = {
71 _RF_S
|_RF_A
| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
72 _RF_S
|_RF_A
| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
73 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
74 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
75 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
76 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
77 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
78 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
79 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(10), /* HI22 */
80 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 22 */
81 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 13 */
82 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* LO10 */
83 _RF_G
| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
84 _RF_G
| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
85 _RF_G
| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
86 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(0), /* PC10 */
87 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(10), /* PC22 */
88 _RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
89 _RF_SZ(32) | _RF_RS(0), /* COPY */
90 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* GLOB_DAT */
91 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
92 _RF_A
| _RF_B
| _RF_SZ(32) | _RF_RS(0), /* RELATIVE */
93 _RF_S
|_RF_A
| _RF_U
| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
95 /* TLS and 64 bit relocs not listed here... */
98 #ifdef RTLD_DEBUG_RELOC
99 static const char *reloc_names
[] = {
100 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
101 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
102 "22", "13", "LO10", "GOT10", "GOT13",
103 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
104 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32",
106 /* not used with 32bit userland, besides a few of the TLS ones */
108 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
109 "10", "11", "64", "OLO10", "HH22",
110 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
111 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
112 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
113 "L44", "REGISTER", "UA64", "UA16",
114 "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
115 "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
116 "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
117 "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
118 "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
119 "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
123 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
124 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
125 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
126 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
127 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
128 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
129 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
130 #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
132 static const int reloc_target_bitmask
[] = {
133 #define _BM(x) (~(-(1ULL << (x))))
135 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
136 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
137 _BM(30), _BM(22), /* WDISP30, WDISP22 */
138 _BM(22), _BM(22), /* HI22, _22 */
139 _BM(13), _BM(10), /* RELOC_13, _LO10 */
140 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
141 _BM(10), _BM(22), /* _PC10, _PC22 */
142 _BM(30), 0, /* _WPLT30, _COPY */
143 -1, -1, -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
147 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
149 void _rtld_bind_start(void);
150 void _rtld_relocate_nonplt_self(Elf_Dyn
*, Elf_Addr
);
151 caddr_t
_rtld_bind(const Obj_Entry
*, Elf_Word
);
152 static inline int _rtld_relocate_plt_object(const Obj_Entry
*,
153 const Elf_Rela
*, Elf_Addr
*);
156 _rtld_setup_pltgot(const Obj_Entry
*obj
)
159 * PLTGOT is the PLT on the sparc.
160 * The first entry holds the call the dynamic linker.
161 * We construct a `call' sequence that transfers
162 * to `_rtld_bind_start()'.
163 * The second entry holds the object identification.
164 * Note: each PLT entry is three words long.
166 #define SAVE 0x9de3bfa0 /* i.e. `save %sp,-96,%sp' */
167 #define CALL 0x40000000
168 #define NOP 0x01000000
169 obj
->pltgot
[0] = SAVE
;
170 obj
->pltgot
[1] = CALL
|
171 ((Elf_Addr
) &_rtld_bind_start
- (Elf_Addr
) &obj
->pltgot
[1]) >> 2;
172 obj
->pltgot
[2] = NOP
;
173 obj
->pltgot
[3] = (Elf_Addr
) obj
;
177 _rtld_relocate_nonplt_self(Elf_Dyn
*dynp
, Elf_Addr relocbase
)
179 const Elf_Rela
*rela
= 0, *relalim
;
183 for (; dynp
->d_tag
!= DT_NULL
; dynp
++) {
184 switch (dynp
->d_tag
) {
186 rela
= (const Elf_Rela
*)(relocbase
+ dynp
->d_un
.d_ptr
);
189 relasz
= dynp
->d_un
.d_val
;
193 relalim
= (const Elf_Rela
*)((const uint8_t *)rela
+ relasz
);
194 for (; rela
< relalim
; rela
++) {
195 where
= (Elf_Addr
*)(relocbase
+ rela
->r_offset
);
196 *where
+= (Elf_Addr
)(relocbase
+ rela
->r_addend
);
201 _rtld_relocate_nonplt_objects(Obj_Entry
*obj
)
203 const Elf_Rela
*rela
;
205 for (rela
= obj
->rela
; rela
< obj
->relalim
; rela
++) {
207 Elf_Word type
, value
, mask
;
208 const Elf_Sym
*def
= NULL
;
209 const Obj_Entry
*defobj
= NULL
;
210 unsigned long symnum
;
212 where
= (Elf_Addr
*) (obj
->relocbase
+ rela
->r_offset
);
213 symnum
= ELF_R_SYM(rela
->r_info
);
215 type
= ELF_R_TYPE(rela
->r_info
);
216 if (type
== R_TYPE(NONE
))
219 /* We do JMP_SLOTs in _rtld_bind() below */
220 if (type
== R_TYPE(JMP_SLOT
))
223 /* COPY relocs are also handled elsewhere */
224 if (type
== R_TYPE(COPY
))
228 * We use the fact that relocation types are an `enum'
229 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
231 if (type
> R_TYPE(TLS_TPOFF64
))
234 value
= rela
->r_addend
;
237 * Handle TLS relocations here, they are different.
239 if (RELOC_TLS(type
)) {
241 case R_TYPE(TLS_DTPMOD32
):
242 def
= _rtld_find_symdef(symnum
, obj
,
247 *where
= (Elf_Addr
)defobj
->tlsindex
;
249 rdbg(("TLS_DTPMOD32 %s in %s --> %p",
251 obj
->symtab
[symnum
].st_name
,
252 obj
->path
, (void *)*where
));
256 case R_TYPE(TLS_DTPOFF32
):
257 def
= _rtld_find_symdef(symnum
, obj
,
262 *where
= (Elf_Addr
)(def
->st_value
265 rdbg(("TLS_DTPOFF32 %s in %s --> %p",
267 obj
->symtab
[symnum
].st_name
,
268 obj
->path
, (void *)*where
));
272 case R_TYPE(TLS_TPOFF32
):
273 def
= _rtld_find_symdef(symnum
, obj
,
278 if (!defobj
->tls_done
&&
279 _rtld_tls_offset_allocate(obj
))
282 *where
= (Elf_Addr
)(def
->st_value
-
286 rdbg(("TLS_TPOFF32 %s in %s --> %p",
288 obj
->symtab
[symnum
].st_name
,
289 obj
->path
, (void *)*where
));
297 * If it is no TLS relocation (handled above), we can not
298 * deal with it if it is beyound R_SPARC_6.
300 if (type
> R_TYPE(6))
304 * Handle relative relocs here, as an optimization.
306 if (type
== R_TYPE(RELATIVE
)) {
307 *where
+= (Elf_Addr
)(obj
->relocbase
+ value
);
308 rdbg(("RELATIVE in %s --> %p", obj
->path
,
313 if (RELOC_RESOLVE_SYMBOL(type
)) {
315 /* Find the symbol */
316 def
= _rtld_find_symdef(symnum
, obj
, &defobj
, false);
320 /* Add in the symbol's absolute address */
321 value
+= (Elf_Word
)(defobj
->relocbase
+ def
->st_value
);
324 if (RELOC_PC_RELATIVE(type
)) {
325 value
-= (Elf_Word
)where
;
328 if (RELOC_BASE_RELATIVE(type
)) {
330 * Note that even though sparcs use `Elf_rela'
331 * exclusively we still need the implicit memory addend
332 * in relocations referring to GOT entries.
333 * Undoubtedly, someone f*cked this up in the distant
334 * past, and now we're stuck with it in the name of
335 * compatibility for all eternity..
337 * In any case, the implicit and explicit should be
338 * mutually exclusive. We provide a check for that
343 if (value
!= 0 && *where
!= 0) {
344 xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
345 "addend=0x%x, base %p\n",
346 obj
->path
, where
, *where
,
347 rela
->r_addend
, obj
->relocbase
);
350 value
+= (Elf_Word
)(obj
->relocbase
+ *where
);
353 mask
= RELOC_VALUE_BITMASK(type
);
354 value
>>= RELOC_VALUE_RIGHTSHIFT(type
);
357 if (RELOC_UNALIGNED(type
)) {
358 /* Handle unaligned relocations. */
360 char *ptr
= (char *)where
;
361 int i
, size
= RELOC_TARGET_SIZE(type
)/8;
363 /* Read it in one byte at a time. */
364 for (i
=0; i
<size
; i
++)
365 tmp
= (tmp
<< 8) | ptr
[i
];
370 /* Write it back out. */
371 for (i
=0; i
<size
; i
++)
372 ptr
[i
] = ((tmp
>> (8*i
)) & 0xff);
373 #ifdef RTLD_DEBUG_RELOC
374 value
= (Elf_Word
)tmp
;
380 #ifdef RTLD_DEBUG_RELOC
381 value
= (Elf_Word
)*where
;
384 #ifdef RTLD_DEBUG_RELOC
385 if (RELOC_RESOLVE_SYMBOL(type
)) {
386 rdbg(("%s %s in %s --> %p in %s", reloc_names
[type
],
387 obj
->strtab
+ obj
->symtab
[symnum
].st_name
,
388 obj
->path
, (void *)value
, defobj
->path
));
390 rdbg(("%s in %s --> %p", reloc_names
[type
],
391 obj
->path
, (void *)value
));
399 _rtld_relocate_plt_lazy(const Obj_Entry
*obj
)
405 _rtld_bind(const Obj_Entry
*obj
, Elf_Word reloff
)
407 const Elf_Rela
*rela
= (const Elf_Rela
*)((const uint8_t *)obj
->pltrela
+ reloff
);
411 value
= 0; /* XXX gcc */
413 _rtld_shared_enter();
414 err
= _rtld_relocate_plt_object(obj
, rela
, &value
);
419 return (caddr_t
)value
;
423 _rtld_relocate_plt_objects(const Obj_Entry
*obj
)
425 const Elf_Rela
*rela
= obj
->pltrela
;
427 for (; rela
< obj
->pltrelalim
; rela
++)
428 if (_rtld_relocate_plt_object(obj
, rela
, NULL
) < 0)
435 _rtld_relocate_plt_object(const Obj_Entry
*obj
, const Elf_Rela
*rela
, Elf_Addr
*tp
)
438 const Obj_Entry
*defobj
;
439 Elf_Word
*where
= (Elf_Addr
*)(obj
->relocbase
+ rela
->r_offset
);
441 unsigned long info
= rela
->r_info
;
443 assert(ELF_R_TYPE(info
) == R_TYPE(JMP_SLOT
));
445 def
= _rtld_find_plt_symdef(ELF_R_SYM(info
), obj
, &defobj
, tp
!= NULL
);
446 if (__predict_false(def
== NULL
))
448 if (__predict_false(def
== &_rtld_sym_zero
))
451 if (ELF_ST_TYPE(def
->st_info
) == STT_GNU_IFUNC
) {
454 value
= _rtld_resolve_ifunc(defobj
, def
);
456 value
= (Elf_Addr
)(defobj
->relocbase
+ def
->st_value
);
458 rdbg(("bind now/fixup in %s --> new=%p",
459 defobj
->strtab
+ def
->st_name
, (void *)value
));
462 * At the PLT entry pointed at by `where', we now construct
463 * a direct transfer to the now fully resolved function
464 * address. The resulting code in the jump slot is:
466 * sethi %hi(roffset), %g1
467 * sethi %hi(addr), %g1
470 * We write the third instruction first, since that leaves the
471 * previous `b,a' at the second word in place. Hence the whole
472 * PLT slot can be atomically change to the new sequence by
473 * writing the `sethi' instruction at word 2.
475 #define SETHI 0x03000000
476 #define JMP 0x81c06000
477 #define NOP 0x01000000
478 where
[2] = JMP
| (value
& 0x000003ff);
479 where
[1] = SETHI
| ((value
>> 10) & 0x003fffff);
480 __asm
volatile("iflush %0+8" : : "r" (where
));
481 __asm
volatile("iflush %0+4" : : "r" (where
));