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If you have a garden and a library, you have everything you need. –Cicero

1 Introduction

Researchers have been trying to learn the “correct” way of using API libraries. Those working on program
verification have tried to do this to separate correct uses from incorrect uses in order to help programmers
create more bug-free programs. Ammons et. al. have shown that it is possible to infer specifications
about interaction with APIs from looking at program traces [1]. Those working on code synthesis have
used the sequences of possible API calls as a search space in which to generate correct code interacting
with APIs. Mandelin et. al. have worked on automatically generating call sequences that interacts with
APIs to achieve the desired goals [4].

These previous approaches have not specifically addressed the property that the correct way of inter-
acting with a particular API may consist of different distinct modes of interaction. To consider a simple
example, in C++ malloc is paired with free, new is paired with free, and new[] is paired with free[].
Trying to call free[] on an object allocated with new is incorrect. The ideal program specification would
take into account different modes of interacting with the data. Similarly, knowing the likelihood of differ-
ent sequences of API calls would reduce the code synthesizer’s search space and likely make code synthesis
more effective.

The goal of our project was to determine whether we can apply machine learning techniques to
learning modes of interaction with API’s and abstract data structures. We wanted to apply machine
learning techniques to 1) see how we can map interactions with API libraries to separate clusters and
2) see if we could learn something from what these clusters look like. The main decisions we made in
our experimental setup were regarding how to extract meaningful training data from API interactions,
how to represent API information as useful feature vectors, and which classification techniques are most
appropriate. For this project, we

1. generated data from program traces of Java programs with selected Java standard libraries.

2. investigated classification using a mixture of k-Markov chains.

We discuss our experimental setup in Section 2, our implementation of k-Markov chains in Section 3, and
our results for the ArrayList library in Section 4.

2 Experimental setup

Though Java and C++ both have sufficiently “interesting” libraries and a large code base, we favored
Java over C++ because 1) Java code is more portable, since it compiles to bytecode rather than machine
code and is dynamically linked, 2) there are code copying issues involved with C++ templates, and 3)
for hisorical reasons, there is more open source Java code that uses Java standard libraries than there
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2.1 Instrumenting Java code to produce traces 2 EXPERIMENTAL SETUP

is open source C++ code that uses the STL 1. Here we describe how we implemented our profiler and
constructed traces.

2.1 Instrumenting Java code to produce traces

We constructed runtime profiles of the code we run in order to construct the method traces (rather than
adding logging code to the standard libraries) because 1) this method is more general, giving us the
freedom of being able to construct learning data from any Java jar file and 2) this method gave us the
freedom to choose our set of libraries to classify after seeing which ones were being used in the code.

We did this by writing a Java profiler that inserts logging instructions in the Java bytecode whenever
there is a call to a standard library method of interest. Because Java’s standard libraries are loaded in
the bootstrap classloader rather than in the system loader, however, this causes problems for directly
instrumenting the standard library classes. Because of this, we instrument other classes loaded in the
system classloader and, from code in those classes, log calls to standard library objects 2.

We used the Java compiler’s javaagent support for attaching a profiler to the execution of a program.
We build our profiler from the source code from the Java Interactive Profiler [2], a Java profiler written
in Java and built on top of the ASM bytecode reengineering library [5]. Our program dynamically inserts
bytecode instructions into the profiled code that then call our profiler functions that log calls to standard
library functions. We initially tracked sequences of calls to given libraries, but from analyzing preliminary
results we realized that this information is not as useful as logging calls to specific instances of classes.
To do this, we inserted bytecode instructions that inspect the runtime stack to get at the object. We take
the hash value of each object in order to distinguish calls to different instances of the same class.

2.2 Building traces

We initially downloaded an assortment of programs, many of which had interactive interfaces, but we
quickly realized that we would not be able to generate enough learning data by interacting with these
programs. We chose instead to focus on programs that 1) could take lots of inputs and therefore could
provide enough data, 2) used enough common libraries with other programs we found, and 3) did not load
libraries that cause our profiler to crash. We were also limited by the fact that the profiler introduced
significant overhead.

We generated traces on the following programs:

1. Java Weather, a library for parsing METAR fomatted weather data [3]. Our test program polled
the San Francisco weather satellite for data at half-second intervals and parsed it.

2. Lucene, a library for searching webpages. We acquired a base of 100 websites and ran each resulting
page through the Lucene index builder.

3. Mallet, a machine learning language toolkit for processing webpages. We ran code to import data
from a set of webpages, train with it, and evaluate the results.

We constructed about 100 profiles that contained object-level information for Java Weather and Lucene
and took a few traces from Mallet for importing data, training a model, and evaluating the model. We
focused on the ArrayList library because it was the most extensively used in these programs. While it
would have been nicer to have a more systematic way of generating our data, this gave us a good amount
of diverse data to work with. Also, while this would cause our model to generalize poorly to new data
from other programs, it still allows for the training of clusters and the priors in our mixture model can
help account for the non-uniformly selected data.

1Many open source software in C++ uses its own version of abstract data structure libraries because 1) the libraries were
not standardized across compilers and 2) people have efficiency issues with using the STL.

2Because of these unforeseen issues involving Java’s idiosyncracies, this process required far more work than initially
anticipated. We did, however, emerge victorious: we can now construct a profile of any Java JAR executable file.
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3 CLASSIFICATION MODEL

3 Classification Model

3.1 k-Markov chains model

Consider the standard Markov model defined by

p(x1, . . . , xm) = t(x1)
m∏

i=2

t(xi|xi−1)

where t(x1) is the probability that x1 is the initial state and t(xi|xi−1) are the transition probabilities.
Similar to Gaussian Mixture Models, we can take a mixture of k Markov chains. A simple extension

of the basic mixture model to allow variable length sequences gives the final model we used:

p(x1, . . . , xm) =
k∑

z=1

q(z)

(
tz(x1)t(END|xm)

m∏
i=2

tz(xi|xi−1)

)

3.2 Model Choice

We chose this model because it fits our goals of clustering different patterns of sequential interaction. We
chose to use k-Markov chains for the following reasons:

1. Mixture models are a natural way to uncover clusters in an unsupervised fashion by examining the
component models of the mixture.

2. The temporal relationship between method calls are more interesting and informative than, say,
the counts of certain method calls. Markov chains capture this in a simple way by assuming that
the system only cares about the previous state. While program interaction is not solely determined
by the previous function call (in fact, there may be add/remove sequence that have context-free
structures), we reasoned that choosing a simpler model would make learning easier while still yielding
insight into API interaction3.

We considered using hidden Markov models (HMMs) as well, but it was not clear to us what the hidden
states would be. Also, the learning problem would have been considerably more difficult if we chose to
use a mixture of HMMs, as we would need to estimate both the clusters the points were chosen from as
well as the hidden states in EM.

3.3 Maximum Likelihood Estimation

Similar to our derivation of the EM algorithm for other models, we first take a look at maximum likelihood
estimation in the case where we observe exactly the underlying Markov Chain that our observations were
drawn from. In this case, simlar to GMMs, the maximum likelihood estimates for the parameters in our
model are simple. Suppose that we have n training sequence and define δ(z, i) to be 1 iff sample i was
drawn from chain z. The maximum likelihood estimates for our parameters will be:

n(z) =
n∑

i=1

δ(z, i), q∗(z) =
n(z)
n

t∗z(x) =
∑n

i=1 δ(z, i)[[xi1 == x]]∑n
i=1 δ(z, i)

, t∗z(xu|xv) =

∑n
i=1 δ(z, i)

∑|xi|−1
j=1 [[xij == xv ∧ xi,j+1 == xu]]∑n

i=1 δ(z, i)
∑|xi|

j=1[[xij == xv]]

t∗z(END|xv) =

∑n
i=1 δ(z, i)[[xi|xi| == xv]]∑n

i=1 δ(z, i)
∑|xi|

j=1[[xij == xv]]

3We also considered using other classification methods (k-means clustering, SVMs) and capturing the temporal nature of
our data by selecting pairs of function calls as features, but Markov chains capture this in a more straightforward way
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4 RESULTS

k training log likelihood test log likelihood number of parameters BIC score for training data
2 -12090 -1295 143 -12673
4 -10112 -1078 287 -11284
6 -9268 -991 431 -11028
8 -9214 -989 575 -11562
10 -9207 -988 719 -12143

Table 1: Cross-validation results.

Note that since we have variable length sequences, we sum to |xi| in the denominator rather than |xi|−1.
Now that we have the estimates for the case where we know which Markov Chain each sequence was
generated from, we can extend this to the case where we have a probability distribution over the Markov
Chains that could have generated the sequence. We can keep all of our estimates the same, except that we
need to change the way the δ(z, i) are computed. Rather than being strictly 0 or 1, δ(z, i) now represents
a normalized probability that example i was generated from the zth Markov Chain. We compute δ(z, i)
(assume that xi has m observations and the probabilities are drawn from the previous parameters) with

δ(z, i) =
q(z)tz(xi1)tz(END|xim)

∏m
j=2 t(xij |xi,j−1)∑

z q(z)tz(xi1)tz(END|xim)
∏m

j=2 tz(xij |xi,j−1)
.

We implemented EM for this model in MATLAB without using any existing libraries or code.

4 Results

We first describe numerical tests that show how well the model fits the data. We then provide some
detailed analysis and insights learned from examining the ArrayList clusters.

4.1 The number of underlying Markov Chains

To investigate the problem of determining how many underlying mixtures to choose, we split our data
into 90% training and 10% test. (Performing n-fold cross-validation would have been better if time had
permitted). We then ran our learning algorithm for different values of k, noting the training likelihood
and test likelihood. Because the EM algorithm is sensitive to initialization, we chose models with the best
training likelihood over 5 random initial starting points. We also included the BIC score to compare it with
test set performance. For the BIC score, the dimension of a mixture of k components has k−1 parameters
for the prior and if n is the number of possible states, n−1 parameters for the initial probabilities and n2

parameters for the transition probabilities (since we have an end state, this is n2 rather than n(n − 1).)
We show our results in Table 1.

The data shows that k = 6 is the first k value to yield a close to maximal test log likelihood. The
BIC score agrees that this is the best choice for number of underlying clusters. One observation of note
is that we do not seem to have an over-training problem in terms of the classical increase in test error.
One possible explanation for this phenomena is that our training set was much larger than our test set,
though it is possible that we would start seeing more over-training for even larger values of k.

4.2 Relationship between programs and clusters

If clusters map traces back to their original programs, then this suggests different programs have different
patterns of interactions; if not, then this suggests there may be some common patterns of interaction.

To examine this, we determined the best cluster for each training sample (by taking the cluster with
the highest p(z|x)) and grouped these mappings by program. The data (Table 2) shows that that there
was a single dominant cluster composed of samples from every program. It appears that the identity of the
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4.3 Call sequence analysis 4 RESULTS

program best cluster number in best cluster % in best cluster prior of best cluster
mallet-import 2 29 0.66 0.43
mallet-train 2 23 0.79 0.43

jweather 2 2203 0.80 0.43
mallet-evaluate 2 23 0.79 0.43

lucene-index 2 232 0.34 0.43
program best cluster number in best cluster % in best cluster prior of best cluster

mallet-import 5 28 0.64 0.47
mallet-train 5 23 0.79 0.47

jweather 5 2212 0.81 0.47
mallet-evaluate 5 23 0.79 0.47

lucene-index 5 342 0.50 0.47

Table 2: Best Clusters for k = 4, 6, respectively.

Cluster 1 (291) Cluster 2 (3231)
get->get(77.0%) size->get(27.4%)
size->toArray(6.6%) get->get(14.6%)
toArray->size(5.6%) get->size(14.5%)
add->add(3.5%) get->remove(8.5%)
size->size(1.1%) size->add(7.7%)

Cluster 1 (685) Cluster 2 (208) Cluster 3 (2629)
size->get(30.4%) size->toArray(40.0%) get->get(91.5%)
get->size(18.1%) toArray->size(34.1%) get->clear(1.1%)
size->size(14.1%) add->add(17.3%) size->add(1.4%)
get->remove(10.7%) toArray->add(5.8%) clear->get(1.1%)
size->add(9.2%) add->size(2.9%) size->get(1.1%)

Figure 1: Most frequently occuring call sequences for k = 2, 3.

program was not a strong determinant of the type of trace or interaction, and rather, there was a single
dominant way of interacting with the API that was consistent across programs. This held true across
different choices of k, hinting that adding more mixture components would simply refine our performance
on the rarer edge cases.

4.3 Call sequence analysis

We profiled how the code interacted with ArrayList library methods add, get, remove, size, clear,
toArray, iterator, and clone. There were the functions that appeared in the libraries we profiled; there
are other functions such as addAll that did not appear. We clustered a total of 3522 sequences. The
most frequently occurring sequences are very short sequences ([add], [size, add], [size, get, remove]).

Figure 1 shows the top transitions for different sequences. Looking at the k = 2 case, we end up with
clusters that have the following methods with high frequency, from most frequent to least frequent:

1. get, size, toArray, add, clone, clear

2. add, get, size, remove, clone, clear, iterator

For k = 3 we get the following most frequent calls (from most to least):

1. size, get, add, remove, iterator, clone

2. toArray, size, add, get

3. get, add, size, clear, clone, toArray (relatively much fewer)

From these clusters we can infer that get, add, and size are a part of all modes of interacting with the
library. The clusters for k = 3 suggest that if we were to categorize uses into three modes, we would have
1) creating ArrayList objects for the purpose of turning them into an array, 2) building an ArrayList
and iterating over the elements, and 3) using only random access methods like get and add. These usage
patterns also suggest copying (clone) and emptying (clear) are not typically used when creating an
ArrayList for the purpose of turning it into an array.
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5 CONCLUSION

For k = 6 we get similar results, with iterator and toArray contuiting to be separated, one cluster
of just size and get, and other clusters combining the usual functionalities. We may also be able to
separate read-only cases from read-write cases. Though we performed this inference by examining our
data, we could potentially automate this process by looking at calls not common across clusters and how
they are used, perhaps with more processed data (e.g., with multiple equivalent calls compressed into
one).

In observing the initial and transition probabilities we noted that Markov mixture chains will not
cluster sequences separately if they use disjoint states. Unlike GMMs which have a single mean, for
Markov chains, a single chain can actually contain multiple (semantic) clusters if the clusters have disjoint
states. For instance, for one chain we learned for k = 3, the initial probabilities are mostly spread between
get (0.50 initial probability) and add (0.41 initial probability). Examining the transition probabilities,
we see that (get -> end: 0.98), (size -> toArray: 1.0), (toArray -> size: 0.85). This suggests that
the generated sequence will look very different depending on the initial state. If get is chosen, then we
are very likely to terminate immediately. If size is chosen, then we will likely bounce between size
and toArray. Because the initial state probabilities are more or less a coin flip between get and size,
this one cluster actually captures two distinct interactions. Because of this, it is possible that our chains
cluster together things that should be apart, and we need some sort of post-processing to really extract
the exact modes of interaction. (For instance, we could break constituent chains into separate chains with
deterministic start states if initial probabilities are split equally.)

Though we had hoped it would not matter, the length of the sequence seems to correspond to its
classification. For k = 2, 4, 5, the largest cluster is associated with the shortest average sequence length
and the smallest cluster is associated with the longest average length. (We could have tried to account
for this in our learning algorithm, but we had not thought it would have a significant effect.)

5 Conclusion

We have explored applying machine learning techniques to the problem of clustering interactions with
APIs and discovered that it may be possible to cluster library interactions.

For classification, we developed the k-Markov chain model based on the GMM mixture model and
variable length HMM model developed in class. We implemented 1) a Java profiler for extracting object-
level Java method traces from any Java JAR executable and 2) MATLAB routines for learning and
classifying with a k Markov chains mixture model. We constructed method traces for learning from Java
programs we found online. In learning, we explored the problem of determining the number of underlying
mixtures by running cross-validation for different values of k and examining the BIC score. We used
cross-validation and the BIC score to confirm our expectations that, after a certain point, increasing k
does not yield better results.

Through examining cluster contents and parameters of the Markov chains, we determined that one
could automatically learn a set of common ways of interacting with libraries. Individual programs did
not appear to have idiosyncratic ways of interacting with the libraries we examined; this is consistent
with our expectation that there is some fixed number of modes of interaction. Our model assigned most
traces to a single cluster, indicating that there may be a dominant mode of interaction. It seems that for
the ArrayList library, using Markov chains provides sufficiently strong assumptions to yield interesting
results. We noticed, however, the deficiency that a single Markov chain can comprise multiple modes of
interaction, but it seems that one could mitigate this problem with post-processing. We would also like to
note that we were fortunate that the Markov model structure could capture the ArrayList interactions
in a sufficiently interesting way. If we had a library with more complex interactions that did not fit the
Markov assumption well the learning results may not have been quite as nice.

The results of this work has many applications. Given that we know that there are common use cases
of an API, we could generate a useful set of example use cases for the programmer. We could also use
this information in code synthesis: knowing about different usage modes, and perhaps about the common
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cases, could greatly optimize the search space. This information is also useful in test generation: we might
be able to predict interactions with the code we write and make sure our code is robust to those cases.

If there had been no time constraints, we would have loved to look closely at other libraries, construct
traces from more programs, and use variations in classification such as collapsing repeated states into a
single states or a set of states and handling variable length clusters in a more clever way.
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