7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Kalman Filtering and Recurrent Neural Networks for Fuel
Moisture

Jan Mandel, University of Colorado Denver

Abstract

"Fuel moisture is an important factor of the spread of wildland fires. Some weather stations have
fuel moisture sensors and data are available online. We review a simple model of fuel moisture from
atmospheric conditions, and show how to adjust the model using the weather station data.

Table of contents

1 Introduction

2 Background
2.1 Imports

2.2 Kalman filter
2.2.1 Overview

2.2.2 Formulation

Q.L#omatic saving failed. This file was updated remotely or in another tab. ~ Show

|

2.3 Fuel moisture model
2.3.1 A simple time lag model
2.3.1 Fuel moisture model with drying equilibrium, wetting equilibrium, and rain
3 Methods
3.1 Kalman filter demonstration on the simple model
3.1.1 Creating synthetic data
3.1.2 Running the Kalman filter

3.2 Acquisition and preprocessing of real data

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 1/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

3.2.1 Acquisition of fuel moisture observations

3.2.2 Acquisition of weather data

3.2.3 Preprocessing and visualization of the weather data

4 Results

4.1 Kalman filter with fuel moisture observations, followed by forecasting

4.2 Model with an augmented state

4.3 Kalman filter on the augmented model

4.4 A comment on the information flow in the Kalman filter and in neural networks

5. Conclusion

Contributions of Authors
Acknowledgements

References

1 Introduction

The Kalman filter is at the foundation of many technologies in daily use, from GPS to weather
forecasting. No model is completely accurate. Think space navigation: the movement of a Apollo 13
between the moon and the earth, subject to gravitational forces and propulsion, with the position
ascertained by visual measurements. No matter how accurate the model of spacecraft motion is,
the measurements are always burdened with noise. The idea of Kalman filter is to evolve a
quantification of the of the state (here, positin and velocity of the spacecraft) in the form of a
ﬁ.t#omatic saving failed. This file was updated remotely or in another tab. Show state to split the
|
Here, we use the Kalman filter to estimate the evolution of fuel (dead wood) moisture content from
a simple theoretical model, adjusting the state of the model hourly for measurements from fuel
moisture a sensor in a wood stick exposed to the elements. This is needed for forecasting of
wildfire progress; for this purpose, we also want to have the filter adjust the model from the data, so
that it gives more accurate data for future when we only have hourly weather forecast but no actual
data - because the future has not happened yet.

2 Background

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 2/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
In this section, we take care of preliminaries: we install some packages we need, and then proceed
with the Kalman filter.

2.1 Imports

We may need the pygrib package to read weather data, but pygrib requires current numpy while
google colab is using an old numpy version for compatibility with tensorflow. We will upgrade
numpy and restart the runtime then the notebook will need to be run again. If numpy is current, we
just download and import packages we need.

2.2 Kalman filter

2.2.1 Overview

The Kalman filter provides an estimate u of the time evolution of some unknown process, called
"nature” or "truth". We do not know with certainty what the nature is, but we can observe it at regular
intervals (steps) with some error. In each step, model F' advances the model state u in time,

u < F'(u), and attempts to reconcile the state with an observation d of the true state, sou ~ d.
The filter modifies the model state u to balance the uncertainty in the model and the data (this is
called analysis) and the cycle continues. For that purpose, the filter evolves also an estimate of the
uncertainly of the model.

More generally, instead of u &~ d, only a part of the state is observed, and Hu ~ d where H is a

el was
Automatic saving failed. This file was updated remotely or in another tab. Show

diff
See Kalman (1960) for the original publication, Kalnay (2003) for a gentle introduction, and the
Wikipedia article.

2.2.2 Formulation

We present the Kalman filter in perhaps the most used form, as extended to nonlinear models.
Consider a discrete time model of some natural process. At time step k, the model has state

uy, € R"™, which can be approximated from the previous step u;_; by applying the model M to get

a forecast u,J: = M (uj_1). We model uncertainty in the model itself by adding normally

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 3/40

https://en.wikipedia.org/wiki/Extended_Kalman_filter
javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

distributed noise with mean zero and covariance () to the uncertainty of u,J: We also need to

estimate now the uncertainty in the previous state u;_1 propagates to the uncertainty of the

forecast u£ So, assume that the model is differentiable and quantify the uncertainty of the state by

a covariance matrix. That is, assume that at step k — 1, the state has (approximately) normal
distribution with mean u_1 and covariance Pj_1. Using the Taylor expansion of order 1 of the
model operator at ug_1, M (u) & M (ug_1) + M’ (ug_1) (v — ug_1), where M’ (uy_1) is
the Jacobian matrix of M at u;_1. It can be shown that the forecast has then (approximately)\
normal distribution with mean and covariance

uf = M (u1), Pl = M(up1) PeaM’ (ug 1) +Q
At time k, we also have an observation dj, ~ Huy,, where H is a given observation operator, and
we want to find u;. so that both

up ~ u,J: and di, ~ Huy,.

We quantify the uncertainly of the error of observation d. by a covariance matrix R: assume that
the observation error has normal probability distribution with a known covariance R. Then, the

—Hu|%1/2

likelihood of state w is proportional to e lldk , Where we used the notation for the norm

]| 4 = (’UT Av) Y2 induced by a positive definite matrix A. Similarly, we quantify the uncertainty
of the state by a covariance matrix Pj. That is, the forecast state has (approximately) normal
distribution with mean u£ and covariance P,f. From the Bayes theorem of statistics, the probability
distribution of the state after taking the data into account has density
g Euf®,_, ‘“"‘“ﬁHif‘l

pr(u)xe = e 3 i
where < means proportional. Note that the probability density at u is maximal when
|dy — Hul %1 + [lu —uy, Hif,l is minimal, which quantifies the statement that dy, ~ Huy, and

k

U~ u{ By a direct computation completing the square and using the Sherman-Morrison-

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
- %
pr(u) e 2,
which is the density of the normal distribution with the mean
ul = ul + Ki.(d — Hu)), where K, = P/HY(HP/H™ + R)"!

and covariance
1 -1
P = ((Pkf) + HTR1H> — (I - KH)P/!.

These are the equations of the extended Kalman filter. The original Kalman (1960) filter was
formulated for a linear process. The extension to the nonlinear case made broad array of
applications possible, including the Apollo spacecraft naviation (McGee and Schmidt, 1966), and is
still a de-facto standard in navigation and GPS.

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 4/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

import numpy as np

def ext kf(u,P,F,0=0,d=None,H=None,R=None) :
One step of the extended Kalman filter.
If there is no data, only advance in time.

tparam u: the state vector, shape n

:param P: the state covariance, shape (n,n)

:param F: the model function, args vector u, returns F(u) and Jacobian J(u)
tparam Q: the process model noise covariance, shape (n,n)

:param d: data vector, shape (m). If none, only advance in time

tparam H: observation matrix, shape (m,n)

tparam R: data error covariance, shape (n,n)

:return ua: the analysis state vector, shape (n)
:return Pa: the analysis covariance matrix, shape (n,n)

def d2(a):
return np.atleast 2d(a) # convert to at least 2d array

def dl(a):
return np.atleast ld(a) # convert to at least 1ld array

forecast

uf, J = F(u) # advance the model state in time and get the Jacobian
uf = dl(uf) # if scalar, make state a 1D array
J = d2(J) # if scalar, make jacobian a 2D array
P = d2(P) # if scalar, make Jacobian as 2D array
Pf = d2(J.T @ P) @ J + Q # advance the state covariance Pf = J' * P * J + Q
analysis
if d is None or not d.size : # no data, no analysis
return uf, Pf
K =P H' * inverse(H * P * H' + R) = (inverse(H * P * H' + R)*(H P))"
H = d2(H)
HP = d2(H @ P) # precompute a part used twice
K = d2(nn.linala.solve(d2(HP @ H.T)Y + R. HPY\Y.T # Kalman again
Automatic saving failed. This file was updated remotely or in another tab. Show
qg:s = dl(H @ dl(uf) - d) # res = H*uf - d
ua = uf - K @ res # analysis mean uf - K*res
Pa = Pf - K @ d2(H @ P) # analysis covariance

return ua, d2(Pa)

2.2.3 A Kalman filter tester

It is a very good idea to make write a simple tester for every piece of code. How else would we know
it actually works, and that something basic did not get broken inadvertently, perhaps as a side effect

of changing something else? A simple tester may save a great deal of time trying to debug cryptic

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true

5/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
errors later. And, what better place for a tester that right after the code it is testing so that it gets run

every time?

a basic ext kf test
import numpy as np
u = [ll
2]
Pp=10[z, -1],
(-1, 2]]
A=111,2],
[3 ,4]]
u = np.array(u)
Q = np.array([[1,01,[0,1]1)
A = np.array(A)
def fun(u):
return A @ u, A

F = lambda u: fun(u)
H=1[[1, 0],
[0, 17]]
d =12,
3]
R=1[[2, 0],
[0, 2]]

H = np.array(H)

d = np.array(d)

R = np.array(R)

ua,Pa = ext kf(u,P,F,0Q)
print('ua="',ua)
print('Pa="',Pa)

ua,Pa = ext kf(u,P,F,Q,d,H,R)
print('ua="',ua)

nrint('Pa=' _Pa)

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
ua= [5 117
Pa= [[15 18]
[18 25]]
ua= [4.66666667 7.66666667]
Pa= [[13.93333333 18.73333333]
[18.73333333 23.933333337]]

2.3 Fuel moisture models

2.3.1 A simple fuel moisture model

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 6/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
First consider a simplified fuel moisture model without considering the effect of rain. The evolution
of fuel moisture content m(t) is modeled by the time-lag differential equation on interval [tq, t1],
dm E—m(t)
d T
where the initial fuel moisture content gy = m (%) is the input, and m; = m(ty) is the output.

m(ty) = my.

Tnus, m; = F(mo). The parameters of the model are the fuel moisture equilibrium E, assumed to
be constant over the interval [to, tl], NS the characteristic decay time 7.

We can build the general model later by calling this simple model with different equilibria and time
constants (drying, wetting, rain).

Since F is constant in time, the solution can be found analytically,
m(t) = E+ (mg — E) e /T
For convenience, we use 71 = 1/T instead of T, and the model becomes
my = E + (mg — E) e (001
In the extended Kalman filter, we will need the partial derivatives of m; with respect to the input and
the parameters. Compute

dm;y _ —(ti—t0)Th
dnw -
d7n1 (4 —
—1_ (t1—t0)Th
] dE c
mq C(t—
— — E o (t1—to)Th

dT1 (mo) (tl t()) e

At the moment, we need only dm; /dmo but we put in the code all partials for possible use in
future.

import numpy as np

Automatic saving failed. This file was updated remotely or in another tab. Show

d#ff mu IUuel molIsture content at Start aimensioniress, unit (1)

E fuel moisture eqgilibrium (1)

partials=0: return ml = fuel moisture contents after time tlen (1)

=1: return ml, dm0/dmO

=2: return ml, dml/dm0O, dml/dE

=3: return ml, dml/dm0, dml/dE dml/dT1

T1 1/T, where T is the time constant approaching the equilibrium
default 0.l/hour

tlen the time interval length, default 1 hour

exp t = np.exp(-tlen*T1l) # compute this subexpression only once
ml = E + (m0 - E)*exp t # the solution at end

if partials==0:
return ml
dml dm0 = exp_ t

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 7/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
if partials==1:
return ml, dml dmoO # return value and Jacobian
dml dE = 1 - exp_t
if partials==2:
return ml, dml_dm0O, dml_ dE

dml dT1 = -(m0 - E)*tlen*exp t # partial derivative dml / dT1
if partials==3:
return ml, dml _dm0O, dml _dE, dml_dT1 # return value and all partial derivatis

raise('Bad arg partials')

2.3.2 Fuel moisture model with drying equilibrium, wetting equilibrium, and rain

Here is a little more realistic fuel moisture model from Mandel et al. (2004). A rain-wetting lag time
t, is reached for heavy rain only asymptotically, when the rain intensity 7 (mm/h) is large:
dm S-—-m r—To
= 1 —exp| —
dt t, Ty
where 7 is the threshold rain intensity below which no perceptible wetting occurs, and 7 is the

, ifr > 7,

saturation rain intensity. At the saturation rain intensity, 1 — 1/e & 0.63 of the maximal rain-
wetting rate is achieved. For 10h fuel, the model takes S = 250 %, t, = 14h, 7o = 0.05mm/h and
rs = 8mm/h.

Define model function with drying, wetting, and rain equilibria

Parameters

r0 = 0.05 # threshold rainfall [mm/h]
rs = 8.0 # saturation rain intensity [mm/h]
Tr = 14.0 # time constant for rain wetting model [h’
S = 250 # saturation intensity [dimensionless]
o " 1g/drying
Automatic saving failed. This file was updated remotely or in another tab. Show
diff o
arguments:
mo starting fuel moistureb (%s
Eqd drying equilibrium (%)
Eqw wetting equilibrium (%)
r rain intensity (mm/h)
t time
partials = 0, 1, 2
returns: same as model decay
if partials==0: ml = fuel moisture contents after time 1 hour
==1: ml, dml/dmO
==2: ml, dml/dm0O, dml/dE

if r > r0:
print('raining')

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 8/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Tl = (1.0 - np.exp(- (r - r0) / rs)) / Tr
elif m0 <= Eqw:
print('wetting')
E=Eqw
TL = 1.0/T
elif m0 >= Eqd:
print('drying')
E=Eqd
Tl = 1.0/T
else: # no change'
E =m0
T1=0.0
exp t = np.exp(-tlen*T1l)
ml = E + (m0O - E)*exp t
dml dm0 = exp t
dml dE =1 - exp_t
#if t>=933 and t < 940:
print('t,Eqw,Eqd,r,Tl,E,m0,ml,dml dm0,dml dE',
t,Eqw,Eqd,r,Tl,E,m0,ml,dml dm0O,dml dE)
if partials==0:
return ml
if partials==1:
return ml, dml dmO
if partials==2:
return ml, dml_dm0O, dml_ dE
raise('bad partials')

3. Methods

3.1 Kalman filter demonstration on the simple model

Automatic saving failed. This file was updated remotely or in another tab. Show
D e e e e et er e e s e et et e e rnnepeneeeend O] IS SOIVING
the differential equation for one hour. The equilibrium E is constant during the hour, but it changes
over the day so that it is higher at night and lower during the day, with a 24-hour period. First, we
create the "truth" by choosing the equilibrium E and solving the differential aquation every hour,
with a small additive noise. The synthetic data is obtained as the values of the "truth", with random

noise to simulate observation error.

3.1.1 Creating synthetic data

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 9/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

def create synthetic data(days=20,power=4,data noise=0.02,process noise=0.0,DeltaE=0.(
import numpy as np, random
hours = days*24
h2 = int(hours/2)
hour = np.array(range(hours))
day = np.array(range(hours))/24.

artificial equilibrium data
E = np.power(np.sin(np.pi*day),4) # diurnal curve
E = 0.05+0.25*E
FMC free run
m _f = np.zeros(hours)
m £f[{0] = 0.1 # initial FMC
process_noise=0.
for t in range(hours-1):
m f[t+l] = max(0.,model decay(m f[t],E[t]) + random.gauss(0,process noise))
data = m_f + np.random.normal(loc=0,scale=data noise,size=hours)
E = E + DeltaE

gmatplotlib inline
import matplotlib.pyplot as plt
figl, axl = plt.subplots()

plt.figure(figsize=(16,4))
plt.plot(hour,E,linestyle='--"',c='r',label="Equilibrium')
plt.plot(hour,m f,linestyle='-',c='k',label="10-h fuel truth')
plt.scatter(hour[:h2],data[:h2],c='b',label="10-h fuel data')
plt.title('Synthetic data')

plt.xlabel('Time (hours)"')

plt.ylabel('Fuel moisture content (%)')

plt.legend()

return E,m_f,data,hour,6h2

Automatic saving failed. This file was updated remotely or in another tab. Show

diff :0.000, process_nc
Synthetic data
0301 i # i - -
l"' 'ﬁl :\I J.. ;-‘l ;‘n J’.‘ n f\ ‘nl |{= ‘.L ﬁ lﬁ., '“l ;"‘ 'lul Iﬁl Equilibrium
I i " " n " " N " " n n i n A 1 '\ —— 10-hfuel truth
" H i [e it N n H ' [HH il ' " H I HH
goas| Hb L bR R e 10hfuelde
Nl Iy H ! 1y] N 1 1 1 I [N 1 p] [
= 1 Pl [il 1) b i [i 1 i ! i
= 1 ,'1 ' [H il 1 [I i [[i 1l I i I Pt] i
= [} 1 P g Iy ! I (A 1 Iy I iy T 1 [N} 1 1 ! [} I
1 i 1 i 1 HH] [l 1 1 R I | 1
£ 020 I T S O S T I S I T O e A S A A A A T T A S O N
S Y ! H i I . I [| S S AN W A AT AN AN
w | 9% % 1el® g 1ok i g® gk 58 |4 N N AN A U FA R - T
3 B AR B A A N N A A N ST AN AN AN A AN A A R
Z 015 iR IR ISR ISR IR LRI DRI SIS A P
E R Y Y Y Y R Y R Y AV AR R R A AR R RN R A/ B R R R A
3 IEAVERTEAVER VAR YRR VAR YRR Y AR ' RRVERYVERVERYERYERVERVERVERYERVE
Z 010 I 1 \ A 1 H 1 1 [[S H A I 1 O R
A A A A A A
i i1 1 i [] 1 I L] v ! Vg " [N VT [! Vo 1 (] ¥ \
005 1 s s -'I v 1‘ J ‘\ J', Le "' v ‘\ S L ’J A ‘\ A \ /‘ LN ’l' L ‘l s ‘t.l‘ e l\.,' \ J ‘."‘ bl
T T T T T T
0 100 200 300 400 500

Time (hours)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 10/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

3.1.2 Running the Kalman filter

We have used the same code for model and for the truth, and run the Kalman filter for 10 days. The
graph below shows that the model state was remarkably close to the truth, even if the model is fed
only noisy observations. This is because the dynamics of the model and of the truth are the same.
After 10 days, we let the model continue without any new data to simulate forecasting the future,
and the agreement with the truth was still very good.

import numpy as np
import matplotlib.pyplot as plt

using global E, m f

def plot m(m,Ec=None,title=None,): # global hour

hours=hour.shape[0]

gmatplotlib inline

plt.figure(figsize=(16,4))

plt.plot(hour,E,linestyle='--"',c='r',label="E=Equilibrium data')

print(len(hour),len(m £f))

plt.plot(hour,m f,linestyle='-',c='b',label="m f=10-h fuel truth')

plt.scatter(hour[:h2],data[:h2],c='b',label="data=10-h fuel data')

if m is not None:
plt.plot(hour[:h2],m[:h2],linestyle="-"',c='k',label="m=filtered’')
plt.plot(hour[h2:hours],m[h2:hours],linestyle='-"',c="r',label="m=forecast')

if Ec is not None:
plt.plot(hour,Ec,linestyle='-"',c="'g',label="Ec=Equilibrium correction')

if title is not None:
plt.title(title)

else:

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
plt.legend()

def kf example(DeltaE):
hours=hour.shape[0]
m = np.zeros(hours)
m[0]=0.1 # background state
P = np.zeros(hours)
P[0] = 0.03 # background state variance
Q = np.array([0.02]) # process noise variance
H = np.array([1l.]) # all observed
R = np.array([0.02]) # data variance

for t in range(h2):
use lambda construction to pass additional arguments to the model
m[t+1],P[t+1l] = ext kf(m[t],P[t],lambda u: model decay(u,E[t]+DeltaE,partials=1),(
https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 11/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
d=data[t],H=H,R=R)
for t in range(h2,hours - 1):
m[t+1],P[t+1l] = ext kf(m[t],P[t],lambda u: model decay(u,E[t]+DeltaE,partials=1))
return m, P

DeltaE = 0.0 # bias
m, P = kf example(DeltaE)
plot m(m)
Kalman filtering and forecast on artificial data
0.30 1 --- E=Equilibrium data ' ,'.. F-*I A A h A A ,4= i A A i A A ,ﬁl i A
—— m_f=10-h fuel truth | N i " h H i h h i n n I " h i " n
— m=filtered \ i h i '\ HH h i I h I 1 I i i [i i
= 0.25 1! [1 |.I n II| 1 ! I] fl r 'i I [H 1
£ 59— meforecast I
E e data=l0-hfueldata } 11 L1 b1 0 boorvodb o pbooarorn bbb by bty
£ 0201 TS PR P D D O O A S T T A R B A
a]] [l i
o N . ! H 1 ! I . B I i | P T A A T A A T A
v I i {1 W | g% 4t I & S i1 S I A A A O A T A Y 1 S A U L S T R
£ 015 AR A A A AV ABA Y & A A AN A A AN AR AR
n 1 i [} P il i i ¥ & i i i o I I
= DAk AL W il R i 1'% ig % 'g %, if vy AT NI A R HERI !
]] I (]] 1 1 1 1 1)
3 AL URR VARV ARV AR VARV AR VAR VARV RAVERVERVARVERVERVERVERVERVERYE
Zon{ A VIV IV IV VIV V. VIV VIVIVIVIVIV IV IVAY IV
(A S T B ! vy Vo Voo ! VEoUd 1 Vol Lo
I ! ! H i ! ! [[! oy [v ! ! [[! [(] ! 1
005 J .\. !I 1‘_"‘ 1\ I ‘x J', . -" “-" II'\ Py i -rJI “_J' |\ S l\ I; . ; .‘-'r l\ ;‘ | l‘ !‘_’r .\.,' l\ .u' ‘J‘ l"
0 100 200 300 400 500

Time (hours)

We have recovered the fuel moisture from data with random noise - we filtered the noise out.

Let's have a look at the evolution of the filter's estimate of the variance P. A common problem with
the Kalman filter is when the variance converges to zero over time, then, since the filter trusts the

madel taoo miich it innares the nhservatinne Of ecalirce nnece we cwiteh tn fnrpna_qting mode, the

Automatic saving failed. This file was updated remotely or in another tab. Show \ds when there
diff

arc iU UuSTIivauuris, vyut mmuu i uns Snripnricu versivrt.

gmatplotlib inline

plt.figure(figsize=(16,4))
plt.plot(P,linestyle='-"',c='b',label="Estimated state variance P')
plt.title('Kalman filtering and forecast on artificial data')
plt.xlabel('Time (hours)"')

plt.ylabel('Estimated variance of fuel moisture (%7°2)"')
plt.legend()

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 12/40

javascript:void(0)

pynb - Colaboratory

fmda_kf_rnn.j

7/3/22,12:39 AM

<matplotlib.legend.Legend at 0x7£7a398d5d50>

Kalman filtering and forecast on artificial data

=]
o R
o
o]
£
5
=
2
u
g
7]
b
]
E
i
i
'8
R=]
R
=]
=]
]
L2
=
—_— e
T T
un = u =] [Ta]
2 & 8 4 = 8 8
o o =1 o [=] [=1 =]
(=] = = = (=] (=] =

(Z.,94) 2UMISI10W |30) J0 S3USUEM BE1ELUNST

Now what if the model is wrong - different from nature? That is always so in reality. Now suppose

that the model and the truth are not the same. That is always the case in reality. Consider a simple

case when the model thinks that the equilibrium E is too high.

-0.05
kf exam

DeltaE

ple(DeltakE)

P
plot m(m)

m,

Kalman filtering and forecast on artificial data

-8
llllll
«=2IIII700 =
r
ssIIITTT
>-2
llIF
~=ZITTTTT
—
—_— T | =
«zzzZI2I00 g
IIIIII !
<
-
> -2
- _2
S S —~
||||||||| .
]
||||||
llllllll e - [=]
s =
=
S>>
-
==y
ezzzzzzi
]
T =
||||||||||| LS
-—-. 8
‘1-\
———
——
i
||||| —
l-
«=2IIII000
e —
=1
eI DD0T
||||||||||| . o
-}
—_—— m
B S
|||||||||
Ar==———_TS _
25 3
- B E T -
E W 27
23y 2 eI ¥
= u = ==
= m T
ESfic e - ’
RN s
Mo
W o g m =S _—
wEEETD e
'
1
= I =) 1 =) i
m ~ ™ — = =
= = = = = =

{56 JUSIU0D 2UNISIOW [2n4

Time (hours)

Show

Automatic saving failed. This file was updated remotely or in another tab.

diff
DeltaE

0.05
kf exam

ple(DeltakE)

P
plot m(m)

m,

13/40

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Kalman filtering and forecast on artificial data

0.30 1| === E=Equilibrium data ! A 2 ” A 7 A A A . A A H I A ;
— mi-lohfusltutn i] \
— m=filtered 1 I’ |
i
—— m=forecast 1 ! T

==~

h A

n

—————

(]

1

1
I
1
[}
1

{ ! |
i 1
I 1 [
1 1 (R
! i I
1
i H !

n

e

——

—r

n
i i
I |
[1
i H
L n

h I
1 I
Jll 1
I |
] i
[1

@ 025

We have found a good estimate of the state m, while data is available. Also, the estimated state
variance P converges with time - we have learned the variance that balances the noise. But for
forecasting fuel moisture, we need to continue the fuel moisture model into the future, and we can't
have any measurements from future. We only have the equilibrium from weather forecast. And the
forecast and the truth disagree - as soon as there is no data to attract the simulation, the model is
doing its own thing.

3.2 Model with an augmented state

In reality, the equilibrium moisture &/ computed from atmospheric conditions generally does not
agree with the data. We want to add a correction AE to E constant in time, and identify the new
parameter A E' from data. Because the Kalman filter identifies state, add the parameter to the state.

Define augmented state u = M | . since AE is constant in time, it satisfies the differential
AE |
equation dgtE = 0. So, we want to estimate the state u governed by the
dl E+AE—m(t)
dt | am | = ! ’
|AE 0
which we write as ‘fl: = F(u), where
_ 1
F (u) AE 0
Automatic saving failed. This file was updated remotely or in another tab. ~ Show
dlff v v Uiy uriey Uml U?nl
Ouy Ous — Omyg OE — omy OF
OF, OF, 0AFE OAE 0 1
Ouy Ous omy OAE

Here is a function that implements the augmented model F'. The input is ug. The output is u; and
the Jacobian du;y /duy.

Define augmented model function. Also, add use drying, wetting, and rain equilibria

def model augmented(u0O,Ed,Ew,r,t):
state u is the vector [m,dE] with dE correction to equilibria Ed and Ew at t

#
m0, Ec = u0 # decompose state ul

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 14/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

reuse model moisture(mO,Eqd,Eqw,r,partials=0):
arguments:

mo starting fuel moistureb (1)

Ed drying equilibrium (1)

Ew wetting equilibrium (1)

r rain intensity (mm/h)

partials = 0, 1, 2

returns: same as model decay

if partials==0: ml = fuel moisture contents after time 1 hour
==1: ml, dmO0/dmO

==2: ml, dml/dm0, dml/dE

ml, dml dm0, dml dE = model moisture(m0O0,Ed + Ec, Ew + Ec, r, t, partials=2)
ul = np.array([ml,Ec]) # dE is just copied
J = np.array([[dml dm0O, dml dE],

[0. ' 1.11)
return ul, J

def run augmented kf(d,Ed,Ew,rain,h2,hours):
u = np.zeros((2,hours))
uf:,01=[0.1,0.0] # initialize,background state
P = np.zeros((2,2,hours))
P[:,:,0] = np.array([[le-3, 0.],
[0., 1le-3]]) # background state covariance
np.array([[le-3, 0.],

0

[0, 1e-3]1]) # process noise covariance
H = np.array([[l., 0.]]) # first component observed
np.array([le-3]) # data variance

o)
Il

ext kf(u,P,F,0=0,d=None,H=None,R=None) returns ua, Pa

print('initial u=',u, 'P=',P)
prlnt('Q=| IQI "H=" ,H, 'R=" ,R)

for t in range(1l,h2):

ydel
Automatic saving failed. This file was updated remotely or in another tab. Show

diff
lambda uu: model augmented(uu,Ed[t],Ew[t],rain[t],t’

Q,d[t],H=H,R=R)
print('time',t, 'data’',d[t], 'filtered',u[0,t], 'Ec’',u[l,t])
for t in range(h2,hours):
uf:,t],P[:,:,t] = ext kf(u[:,t-1],P[:,:,t-1],
lambda uu: model augmented(uu,Ed[t],Ew[t],rain[t],t!
0*0.0)
print('time',t, 'data’',d[t], 'forecast',u[0,t], 'Ec',u[l,t])
return u

def augmented example(DeltaE):
hours=hour.shape[0]
h2 = int(hours/2)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 15/40

javascript:void(0)

pynb - Colaboratory

gmented kf(data,E+DeltaE,E+DeltaE,0*E,h2,hours)

fmda_kf_rnn.i

7/3/22,12:39 AM

E, hours are

data,

run_au

Ec =

m,

augmented example(0.1)

Ec=
plot m(m,

m,

Ec)

Kalman filtering and forecast on artificial data

— m_f=10-h fuel truth
filtered

— o
= o

— Ec

=forecast

Equilibrium correction

® data=10-h fuel data

T
%l
=]
=

T
=
=]
=

(9%) JURIU0D 2UNISIOW (20

—0.05

=010

200

Time {hours}

augmented_example(0.0)

Ec=
plot m(m,

m,

Ec)

ast on artificial data

Kalman filtering and forec

=== E=Equilibrium data
— m_f=10-h fuel truth

— m—filtered

= m=farecast
— Ec
e data

Equilibrium carrection

10-h fuel data

[
A
Ll
1
1
]
]
1
\
%

=
M
=

A
™~
=

=
™~
[=]
(2] JU=qUOD 2aN3sIoW 2N

[T} =]
= =1
= (=]

w
=]
(=]

000 1

200

Time (hours)

Show

Automatic saving failed. This file was updated remotely or in another tab.

diff

augmented example(-0.1)

Ec=
plot m(m,

m,

Ec)

16/40

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Kalman filtering and forecast on artificial data

iy === E=Equilibrium data

——
—-——
==

L I O L O T O L O T L O O R)
P A A AR AR IR IR A A A A A AT et e
From Kalman filter to neural networks

| —
In the Kalman filter, at each time step k,

* the input state is uy_; size n and its covariance matrix P;_1 sizen X n.
f

» the model is applied to external data e and the input u;_1, P;_1 produce the forecast uy,
and its covariance Pkf

* the new state uy, is found by minimizing ||u£ — 'u/kHi)f + ||Hug, — dk||§2
k
e the new state covariance is Pj, = ((Pkf)_1 +H'R'H)™L.
Here, the state consists of

 the fuel moisture and the adjustment to the equilibrium, dimension 2

* the covariance matrix of vector of dimension 2, which is symmetric 2 X 2 matrix, given by 3
numbers because it is symmetric Thus, the dimension of the state is 2 + 3 = 5. The first
component of the state, the fuel moisture, is the quantity of interest, the rest are auxiliary.

This can be understood as:

e amapping M of the 5-dimensional hidden and external data state to a new hidden state:
M : (up—1, Py_1,ex) — (ug, Py)

* retrieving the output (the quantity of interest) as the first component of the hiddent state

« feeding the hiddent state back to the mapping M for the next step k + 1

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

Note that in the augmented Kalman filter above, the mapping M is fixed and it has a one
component of the hidden state as a parameter. To get a better fit, we could increase the number of
parameters, e.g., by modeling the moisture in multiple layers, as in van der Kamp et al. (2017) two-

layer model.

Building and evaluating RNN

A recurrent neural network (RNN) has a similar information flow but it can be more flexible and look

for the best model automatically, i.e., build the model from data.

Welll start by how to evaluate the map, then actually create it later.

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 17/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Some of the code is from https://machinelearningmastery.com/understanding-simple-recurrent-

neural-networks-in-keras/

import numpy as np

import tensorflow as tf

from keras.models import Sequential

from keras.layers import Dense, SimpleRNN

from keras.utils.vis utils import plot model
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean squared_ error
import math

import matplotlib.pyplot as plt

import tensorflow as tf

import keras.backend as K

def create RNN(hidden units, dense units, input shape, activation):

inputs = tf.keras.Input(shape=input shape)

https://stackoverflow.com/questions/43448029/how-can-i-print-the-values-of-keras

inputs2 = K.print tensor(inputs, message='inputs = ') # change allso inputs to

x = tf.keras.layers.SimpleRNN(hidden units, input shape=input shape,
activation=activation[0]) (inputs)

outputs = tf.keras.layers.Dense(dense units, activation=activation[1l]) (x)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

model.compile(loss='mean squared error', optimizer='adam')

return model

Demo example
hidden=5
features=2
timesteps=3

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

print(demo model.summary())

w = demo _model.get weights()

#print(len(w),' weight arrays:',w)

wname=('wx','wh','bh','wy', 'by', 'wz', 'bz")

for i in range(len(w)):
print(i,':',wname[i], 'shape=',w[i].shape)

wx, wh, bh, wy, by = w

plot model(demo model, to file='model plot.png',
show_shapes=True, show layer names=True,
expand nested=True,)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 18/40

https://machinelearningmastery.com/understanding-simple-recurrent-neural-networks-in-keras/
javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Model: "model"

Layer (type) Output Shape Param #
Cinput_1 (Inputlayer) [(Nome, 3, 2)] o0
simple rnn (SimpleRNN) (None, 5) 40

dense (Dense) (None, 1) 6

Total params: 46
Trainable params: 46
Non-trainable params: 0

None

0 : wx shape= (2, 5)

1 : wh shape= (5, 5)

2 : bh shape= (5,)

3 : wy shape= (5, 1)

4 : by shape= (1,)
nput_1 input:

[(None, 3, 2)] | [(None, 3, 2)]

InputLayer | output:

simple_mn | input:

(None, 3, 2) | (None, 5)

'

'
I f'lﬂ'I'IE'ﬂ I imiTmatte I I I

SimpleRNN | output:

The input layer here is just a formality. The input of the hidden layer simple rnn consist of vector

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
INOW 1€T'S 00 @ SIMple eXPEriment 10 See NOW Tne 1ayers Trom a SImpIekNN ana vense layer produce

an output. Keep this figure in view.
Time skeps = 3

Xp —> W Xerg —> X Kz —> W% "
—» I | Y3
he — wh | —hpr1—> Wh |—> g Wh —hers b:} .

b b b

recurrenk

feedforward
Layer

recurrent recurrenk

Lo«yer Lager Laver
he Ls inikialized to zero vector

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 19/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

We'll input x for three time steps and let the network generate an output. The values of the hidden
units at time steps 1, 2 and 3 will be computed. h(0) is initialized to the zero vector. The output o(3)
is computed from h(3) and w(3). An activation function is linear, f(x) = z, so the update of h(k)
and the output o(k) are given by

h(0) =0
h(k+1) =x (k)w, + h(k)wp + by,
o(k+1) =h(k+1)w, + b,

Reshape the input to sample size x time steps x features

samples=4 # number of samples

x = tf.reshape(tf.range(samples*timesteps*features), [samples,timesteps, features])
print('test input x=', x)

print('model.predict start')

y_pred model = demo model.predict(x)

print('model.predict end')

o3=np.zeros([samples,1l])
for i in range(samples):

h 0 = np.zeros(hidden)

h 1 = np.dot(x[1,0,:], wx) + np.dot(h 0,wh) + bh
h 2 = np.dot(x[i,1,:], wx) + np.dot(h 1,wh) + bh
h 3 = np.dot(x[i,2,:], wx) + np.dot(h_2,wh) + bh

03[1i,0] = np.dot(h 3, wy) + by
#print('hl = ', h 1,'h2 = ', h 2,'h3 = ', h 3)

print("Prediction from network ", y pred model)
print("Prediction from our computation ", 03)

test input x= tf.Tensor(
rrr n 11

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

[[6 7]
[8 9]
[10 117]]

[[12 13]
[14 15]
[16 171]

[[18 19]
[20 21]
[22 23]1]], shape=(4, 3, 2), dtype=int32)
model.predict start
model.predict end
Prediction from network [[6.292497]
[16.906956]

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 20/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
[27.52142]
[38.135868]]

Prediction from our computation [[6.29249701]
[16.90695661]
[27.52141621]
[38.1358758]]

The result is the same.

Training and forecasting with the RNN

We are given a sequence x of inputs size [train steps+forecast steps,features] and want

to train a model so that at step i in range(train_steps), the model returns close to
features[i, :]. The trained model then returns for i in

range(train_ steps,train steps+forecast steps) a forecast features[i,:].

def staircase(x,y,timesteps,trainsteps):
x [trainsteps+forecaststeps, features] all inputs
y [trainsteps,outputs]
timesteps: split x and y into samples length timesteps, shifted by 1
trainsteps: number of timesteps to use for training, no more than y.shape[0]
print('shape x = ',x.shape)
print('shape y = ',y.shape)
print('timesteps="',timesteps)
print('trainsteps=',trainsteps)
outputs = y.shape[l]
features = x.shape[1l]
forecaststeps = x.shape[0]-trainsteps
samples = trainsteps-timesteps+l

mradint /' AadradrvrAacnAns caamnlAaca—=! caamnlAans 'ddmAactAanca—! FdmAacdtAna

'Fantarng=" features)

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
for i in range(samples):
for j in range(features):
for k in range(timesteps):
x _train[i,k,j] = x[i+k,]]
for j in range(outputs):
y _train[i,j] = y[it+timesteps-1,7]]
return x train, y_ train

def seg2batches(x,y,timesteps,trainsteps):
x [trainsteps+forecaststeps, features] all inputs
y [trainsteps,outputs]
timesteps: split x and y into samples length timesteps, shifted by 1
trainsteps: number of timesteps to use for training, no more than y.shape[0]
print('shape x = ',x.shape)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true

21/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
print('shape y = ',y.shape)
print('timesteps=',timesteps)
print('trainsteps=',trainsteps)
outputs = y.shape[l]
features = x.shape[1l]
samples= trainsteps - timesteps + 1
print('samples=',samples)
x_train = np.empty([samples, timesteps, features])
y _train = np.empty([samples, timesteps, outputs]) # only the last

print('samples=',samples,' timesteps=',timesteps,
' features=', features,' outputs=',outputs)
for i in range(samples):
for k in range(timesteps):
for j in range(features):
x_train[i,k,j] = x[i+tk,]]
for j in range(outputs):
y_train[i,k,j] = y[i+k,j] # return sequences
return x_train, y_ train

print('test preprocessing for RNN')

trainsteps=5

features=1

outputs=1

timesteps=3

x = tf.reshape(tf.range(trainsteps*features),[trainsteps,features])
y = tf.reshape(tf.range(trainsteps*outputs),[trainsteps,outputs])
print('x="',x)

print('y="',y)

x_train, y train = staircase(x,y,timesteps,trainsteps)
print('x_train=',x train)

print('y train=',y train)

X _train, y train = seqg2batches(x,y,timesteps,trainsteps)
print('x_train=',x train)

print('y train=',v train)

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
[2]
[31]
[4]]1, shape=(5, 1), dtype=int32)
y= tf.Tensor(
[rol

[11]

[2]

[3]

[4]], shape=(5, 1), dtype=int32)
shape x = (5, 1)
shape y = (5, 1)

timesteps= 3
trainsteps= 5
staircase: samples= 3 timesteps= 3 features= 1
X _train= [[[0.]
[1.]

r”o 11

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 22/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
L<«-11]

[rt.]
[2.]
[3.1]

[([2.1

[3.1]

[4.111]
y train= [[2.]

[3.]

[4.11]
shape x = (5, 1)
shape y = (5, 1)
timesteps= 3
trainsteps= 5
samples= 3
samples= 3 timesteps= 3 features= 1 outputs= 1
x_train= [[[0.]

[1.]

[2.1]

(1.1
[2.]
[3.1]

[[2.]

[3.]

[4.]11]
y_train= [[[0.]

[1.]

[2.]]

(1.1
[2.]
[3.1]

rr2 .1

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

E,m f,data,hour,h2 = create synthetic data(days=20,power=4,data noise=0.0,process nois

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 23/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Synthetic data
}‘ L]

030

-
>

=== Equilibrium
\ = 10-h fuel truth
! @ 10-h fuel data

-
=
=

-
=
e

——
——

——
Zo=s
———
it
e
m—mmy
T
Itz
=~

scale=False

tr
Et =
data
if s
sc
sc
Et
sc
sc
da
X tr
prin
samp
prin

def

Aut
diff

def

ansform as 2D, (timesteps, features) and (timesteps, outputs)
np.reshape(E, [E.shape[0],1])

t = np.reshape(data,[data.shape[0],1])

cale:

alerx = MinMaxScaler()

alerx.fit(Et)

= scalerx.transform(Et)

alery = MinMaxScaler()

alery.fit(datat)

tat = scalery.transform(datat)

ain, y train = staircase(Et,datat,timesteps=1,trainsteps=h2)
t('x _train shape=',x train.shape)

les, timesteps, features = x train.shape
t('y _train shape=',y train.shape)

shape x = (480, 1)

shape y = (480, 1)

timesteps= 1

trainsteps= 240

staircase: samples= 240 timesteps= 1 features= 1
X_train shape= (240, 1, 1)

y_train shape= (240, 1)

create RNN 2(hidden units, dense units, activation, stateful=False,
batch shape=None, input shape=None, dense layers=1):
if stateful:
inputs = tf.keras.Input(batch shape=batch shape)
else:
inputs = tf.keras.Input(shape=input shape)

" :-values-of-keras
omatic saving failed. This file was updated remotely or in another tab. Show allso inputs to

x = tf.keras.layers.SimpleRNN(hidden units,activation=activation[0],stateful=state

x = tf.keras.layers.Dense(hidden units, activation=activation[1l]) (x)
for i in range(dense layers):
x = tf.keras.layers.Dense(dense units, activation=activation[1l]) (x)

model = tf.keras.Model(inputs=inputs, outputs=x)

model.compile(loss='mean squared error', optimizer='adam')

return model

create RNN functional(hidden units, dense units, input shape, activation):

inputs = tf.keras.Input(shape=input shape)

x = tf.keras.layers.SimpleRNN(hidden units, input shape=input shape,
activation=activation[0]) (inputs)

outputs = tf.keras.layers.Dense(dense units, activation=activation[1l]) (Xx)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

model.compile(loss='mean squared error', optimizer='adam')

return model

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 24/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

def create fit predict RNN(hidden units, dense units,
samples, timesteps, features, dense layers=1, activation:

statefull model version with with fixed number of batches

model fit=create RNN 2(hidden units=hidden units, dense units=dense units,
batch shape=(samples, timesteps, features),stateful = True,
activation=activation,dense layers=dense_ layers)

print(model fit.summary())

same model for prediction on the entire dataset

model predict=create RNN 2(hidden units=hidden units, dense units=dense units,
input_ shape=(None, features),stateful = False,
activation=activation,dense layers=dense_ layers)

print(model predict.summary())

return model fit, model predict

the simplest model possible

activation=['linear', 'linear']

hidden units=1

dense units=1

dense layers=1

features=1

hours=Et.shape[0]

statefull model version for traning

model fit=create RNN 2(hidden units=hidden units, dense units=dense units,
batch shape=(samples, timesteps, features),stateful = True,
activation=activation,dense layers=dense_ layers)

same model stateless for prediction on the entire dataset - to start onlg

the real application will switch to prediction after training data end

and start from the state there

model predict=create RNN 2(hidden units=hidden units, dense units=dense units,
input_ shape=(hours, features),stateful = False,
activation=activation,dense layers=dense layers)

model predict=create RNN functional(hidden units=1, dense units=1, input shape=(hours,
activation=['linear', 'linear']1)

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
plot model(model predict, to file="model plot.png’,

show shapes=True, show_ layer names=True)
not fitting yet
fmda model.fit(x train, y train, epochs=40, verbose=2,batch size=samples)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 25/40

javascript:void(0)

7/3/22,12:39 AM

Model: "model 3"

fmda_kf_rnn.ipynb - Colaboratory

Layer (type)

input 4 (InputLayer)
simple rnn 3 (SimpleRNN)

dense 3 (Dense)

Total params: 5
Trainable params: 5
Non-trainable params: 0

Output Shape Param #
[(None, 480, 1)] 0
(None, 1) 3
(None, 1) 2

None

nput_4 input:

InputLayer | output:

[(None, 480, 1)] | [(None, 480, 1)]

w=model predict.get weights()
wl=[np.array([[l.-np.exp(-0.1)]1]),
for i in range(len(w)):
print(i, 'w:',w[i],w[i].shape, '
h=0
outl = np.empty((hours,1l))
for i in range(Et.shape[0]):
h =np.dot(Et[i,0],wl[0])+np.
out=np.dot(h,wl[3]) + wl[4]
outl[i,0]=out
print('out="',out)
model predict.set weights(wl)

np.array([[np.exp(-0.1)]]), np.array([0.]),np.array

wl:',wl[i],wl[i].shape,)

dot (h,wl[1l]) + wl[2]

Automatic saving failed. This file was updated remotely or in another tab. ~ Show

diff

print('m="',m)

- s - — - Y -

0 we: [[0.9473685]] (1, 1)

1 we [[-1.]] (1, 1) wl:
2 w: [0.] (1,) wl: [0.]
3 w: [[-0.50949776]1] (1, 1)

4 we: [0.] (1,) wl: [0.]

out= [[0.13301569]]
m= [[0.13301574]]

print(outl.shape)

wl: [[0.09516258]] (1, 1)
[[0.90483742]] (1, 1)
(1,)
wl: [[1.]] (1, 1)
(1,)

plot m(outl,title='Hand computed RNN prediction')

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true

26/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

(480, 1)
Hand computed RNN prediction
0301 ——- E=Fquilibri | . s .) Y s
it S S Y N ST ST S (N S N S S| N S ST N N
m_f=10-h fuel truth | i n - n n " 1 " i i n n " I i i n
— 025{ — m=filtered [T L O S o T R A
g —— m=forecast P Ty AR Ty o Tyooab N N
1
Eoq e data=lohfueldata o | L S Tl 1L SRR Pl T BN Pty
= i v i 1 h | 1 I 1 i H | 1 I T 1 1 !
s ! " J' i I I ; | : J' i] I ; : l| J' 1 1 | I |'
p 015 1 i i i ! PR i ! i i ! THEI AW i i !
5 1 i i ' H IpiR i i i H ! R i i B H
% ! I i I : 3Ry I i I H ! AW] i i H !
E 0101 | H ! (I v
E 1 1) 1
2 505 | L / (WA
0.00 1
. : . . : :
0 100 200 300 400 500
Time (hours)
if scale:
mt = scalery.inverse transform(mt)

m=mt[:,0]
plot m(m,title="'Actual RNN prediction same weights')

NameError Traceback (most recent call last)
<ipython-input-31-a91690c22f0b> in <module>()

1 if scale:

2 mt = scalery.inverse transform(mt)
———-> 3 m = mt[:,0]

4 plot m(m,title='Actual RNN prediction same weights')

NameError: name 'mt' is not defined

SEARCH STACK OVERFLOW

fmda model, fmda model eval = create fit predict RNN(hidden units=7, dense units=1,
samples=samples, timesteps=timesteps, features=1,

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

7o aAllT 1IuuTL ado dLacltTclicod LUl prTcuxrcuoaivulls

.es)

w=fmda model.get weights()

fmda model eval.set weights(w)

prediction on the entire dataset from zero state
mt = fmda model eval.predict(Et)

m = scalery.inverse transform(mt)

plot m(m,title="'RNN prediction')

x = tf.zeros([3,4])

x.shape[0]

trainsteps,outputs = x.shape
trainsteps,outputs

y = tf.zeros([trainsteps, features])
print(x[1l,:])

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 27/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

print(x)

tf.zeros([1,2,3])

3.2 Acquisition and preprocessing of real data

Double-click (or enter) to edit
Double-click (or enter) to edit

Data assimilation for fuel moisture from Remote Automated Weather Stations (RAWS) was
developed in Vejmelka et al. (2016). First, they use regression from all RAWS in a given area to
extend the data spatially from RAWS to a grid in the whole area, then they run the extended Kalman
filter at each grid node. Here, we are interested in a simplified problem: estimate future fuel
moisture at a single RAWS location from weather data.

3.2.1 Acquisition of fuel moisture observations

We try to load the data from a saved file first. If that fails, retrieve the fuel moisture data from
sensors on weather stations in the Mesowest network. Get all stations with fuel moisture datain a
spatial box within one hour, then pick one station and retrieve the whole time series.

import json
jfile = 'raws.json'; vars='fuel moisture'; case =1
1se = 2
Automatic saving failed. This file was updated remotely or in another tab. Show
dLI)f;lelt(WLLCTLINY JSUIl LLIle ;1)
json.dump(j,open(f, 'w'),indent=4)
try:
#! wget --no-clobber http://math.ucdenver.edu/~jmandel/data/math4779f21/raws.json
j = json.load(open(jfile,'r'))
print('loaded from ',jfile)
Take the first station in the boulding box that has data between time start and
Then retrieve data for that station between time start and time_end

time_start = J['time_start'] # start of data time series
time s2 = j['time _s2'] # end of segment to read coordinates
time end = j['time end'] # end of data time series
meso_ts = j['meso_ts'] # get meso observations time series
obs lon = j['obs lon'] # where we retrieved observations
obs lat = j['obs_lat']

except:

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 28/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

print("can't read",jfile,', creating')

set up bounds

time start = "201806010800" # June 1 2018 08:00 in format yyyymmddHHMM

time s2 "201806010900" # June 1 2018 09:00 in format yyyymmddHHMM

time end = "201907200900" # June 20 2018 09:00 in format yyyymmddHHMM

#time start= "201810230100"

#time s2= "201810230300"

#time end = "201806022300"

!pip install MesoPy

from MesoPy import Meso

bounding box = "-115, 38, -110, 40" # min longtitude, latitude

meso_token="b40cb52cbdef43e£81329b84e8£d874f" # you should get your own if

m = Meso(meso_token)# create a Meso object

print('reading MesoWest fuel moisture data')

json w(m.variables(), 'variables.json')

meso _obss = m.timeseries(time start, time s2, bbox=bounding box,
showemptystations = '0', vars=vars) # ask the object fc

json_w(meso_obss, 'meso_obss.json')

pick one station and retrieve the whole time series.
station=meso obss['STATION'][0]

json w(station, 'station.json')

lon,lat = (float(station['LONGITUDE']),float(station['LATITUDE']))
print(station['NAME'], 'station',station['STID'], 'at',lon,lat)

e = 0.01 # tolerance

bb = '%s, %s, %s, %s' % (lon - e, lat - e, lon + e, lat + e)
print('bounding box',6bb)
meso_ts = m.timeseries(time_ start, time end, bbox=bb, showemptystations = '0', va1

json w(meso ts, 'meso_ts.json')

obs_lon, obs_lat = (lon, lat) # remember station coordinates for later

j={'time_ start':time start, 'time s2':time s2, 'time end':time_ end,
'meso_ts':meso_ts, 'obs lon':obs lon, 'obs lat':obs lat}

json w(j,jfile)

print('done')

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
from datetime import datetime, timedelta, time

import numpy as np

import matplotlib.pyplot as plt
import pytz

station = meso_ts['STATION'][0]

time str = station['OBSERVATIONS']['date time']
obs time = [datetime.strptime(t, '%$Y-%m-%dT%H:%M:%SZ').replace(tzinfo=pytz.UTC) for t
start time = obs time[0].replace(minute=0) # remember obs time and start time for

end time = obs time[-1]

obs data = np.array(station['OBSERVATIONS']["fuel moisture set 1"])
obs _data = np.array(station['OBSERVATIONS']["fuel moisture"])

display the data retrieved

#for o _time,o data in zip (obs_time,obs data):

print(o_time,o data)

gmatplotlib inline

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 29/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
plt.figure(figsize=(16,4))
plt.plot(obs data,linestyle='-',c='k',label='10-h fuel data')
plt.title(station['STID'] + ' 10 h fuel moisture data')
plt.xlabel('Time (hours)')
plt.ylabel('Fuel moisture content (%)')
plt.legend()

%debug

Double-click (or enter) to edit

3.2.2 Acquisition of weather data

Our weather data are results from atmospheric models, with assimilated observations from weather
stations, satellites, radars, etc. The models can be run in reanalysis mode (for the past, with data for
the period modeled) or in forecast mode (for the future, with only past data assimilated - because
future data are not here yet). We use the Real-Time Mesoscale Analysis (RTMA) interpolated to the
RAWS location. RTMA is a real-time product, posted hourly, and available only for few days in the
past. We have our own collection of selected RAWS data over past few years, obtained as a side
effect of running the fuel moisture modeling software WRFXPY.

First try to read the data already extracted for this RAWS and staged for download.

import json
jfile = 'rtma.json'
try:
'9f21/rtma.json
Automatic saving failed. This file was updated remotely or in another tab. Show
diff
r
if j['obs lat']!=obs lat or j['obs lon']!=obs lon:
print('lon lat doesnot agree, need to load original RTMA files')
read rtma=True

B e S J ey

else:
read rtma=False
except:
print("can't read",jfile,', creating')
read_ rtma=True

print('")

Next, functions to get the files, open as grib, and interpolate to the station coordinates

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 30/40

https://www.nco.ncep.noaa.gov/pmb/products/rtma/
https://github.com/openwfm/wrfxpy
javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Note: If read_rtma==True, the notebook will say it crashed when run the first time. This is

because it needs to install different version of some python packages and restart
runtime. Simply run it again.

Set up environment to read RTMA gribs
we will need current numpy for pygrib - needed on Colab, tensorflow is using numpy :
if read rtma:
import subprocess,os
def load rtma(path,file,reload=0):
url="http://math.ucdenver.edu/~jmandel/rtma/' + path
if os.path.exists(file):
if reload:
print(file + ' already exists, removing')
os.remove(file)
else:
print(file + ' already exists, exiting')
add checking size here
return 0
try:
ret = subprocess.check output(['wget', '--no-clobber','--output-document='+ file,
if os.path.exists(file):
print('loaded ' + url + ' as ' + file)
return 0
else:
print('file transfer completed, but the file is missing? ' + url)
return 1
except:
print('file transfer failed: ' + url)
return 2

Qi#omatlc saving failed. This file was updated remotely or in another tab. Show on returns zero if

the file transfer succeeded. If the file is not available, it returns a nonzero value. Note: if needed,

maybe in future add more sophisticated checks, check the return code of wget and if the file size is
correct.

if read rtma:
def rtma grib(t,var):
tpath = '%4i%021%021i/%02i' % (t.year, t.month, t.day, t.hour) # remote path on se¢
tstr = '%4i%021%02i%02i ' % (t.year, t.month, t.day, t.hour) # time string for !
gribfile = os.path.join('data',tstr + var + '.grib')
remote = tpath + '/' + var + '.grib'
if load rtma(remote,gribfile):
print('cannot load remote file',remote, 'as',gribfile)
return []

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 31/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

else:
try:
gf=GribFile(gribfile)
v = np.array(gf[l].values())
except:

print('cannot read grib file',gribfile)

return []
print('loaded ',gribfile,
return gf[1] # grib message

containing array shape ',v.shape)

if read rtma:
times = pd.date range(start=time start,end=time end,freq='1lH')
varnames=['temp', 'td', 'precipa’]
j = read interp rtma(varnames,times,obs lat,obs lon) # temperature
for varname in varnames:
j[varname]=j[varname].tolist()
j['obs lat']=obs lat
j['obs _lon']=obs lon
json.dump(j,open('rtma.json','w'),indent=4)
print('done')

from scipy.interpolate import LinearNDInterpolator, interpn

from scipy.optimize import root

def interp to lat lon slow(lats,lons,v,lat,lon):
on mesh with coordinates lats and lons interpolate v to given lat lon
interp=LinearNDInterpolator(list(zip(lats.flatten(),lons.flatten())),v.flatten())
return interp(lat,lon)

def interp to lat lon(lats,lons,v,lat,lon):
on mesh with coordinates lats and lons interpolate v to given lat lon
points=(np.array(range(lats.shape[0]),float),np.array(range(lats.shape[l]),float)
def res(ij): # interpolation of lons lats on the uniform mesh, to noninteger cooz1

return np.hstack((interpn(points,lats,ij)-lat, interpn(points,lons,ij)-lon))
interpolate to |

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

print (result.message)

exit(1l)

return interpn(points,v,result.x)

The interpolation function needs to be tested.

def interp to lat lon test(lats,lons):
print('testing interp to lat lon')
vx, vy = np.meshgrid(range(lats.shape[0]),range(lats.shape[l]),indexing="1i]j")
i, 3= (1,2)
lat,lon = ((lats[i,j]l+lats[i+1,]j+1]1)/2,(lons[i,j]l+lons[i+1,]+1]1)/2)
vi = interp to lat lon(lats,lons,vx,lat,lon)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 32/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

vj = interp to lat lon(lats,lons,vy,lat,lon)

print(vi,vj, 'should be about',i+0.5,j+0.5)

test slow = 0

if test slow:
print('Testing against the standard slow method scipy.interpolate.LinearNDInte
vi slow = interp to lat lon slow(lats,lons,vx,lat,lon)
print(vi_slow)
vj _slow = interp to lat lon slow(lats,lons,vy,lat,lon)
print(vj_slow)

#gf = rtma grib(start time, 'temp') # read the first grib file and use it to test
#lats, lons = gf.latlons()
#interp to_lat lon test(lats,lons)

#%$debug

Now we are ready for a function to read the RTMA files and interpolate to the station coordinates

if read rtma:

import pandas as pd, Jjson

def read interp rtma(varnames,times,lat,lon):
read RTMA from start time to end time and interpolate to obs lat obs lon
ntimes = len(times)
time str = 'time str'
j={time str:times.strftime('%Y-%m-%d SH:%M').tolist()}
for varname in varnames:

j[varname]=np.full(ntimes,np.nan) # initialize array of nans as list

n=0
for t in times:

Automatic saving failed. This file was updated remotely or in another tab. Show

diff S
print('n=',n, 'time',tim, 'expected’',should be)
raise 'Invalid time'
for varname in varnames:
gf = rtma grib(t,varname) # read and create grib object, download if nee
if gf:
lats,lons = gf.latlons() # coordinates
v = gf.values()
vi=interp to lat lon(lats,lons,v,lat,lon) # append to array
print(varname, 'at',t, 'interpolated to',lat,lon,' value ',vi)
j[varname][n] = vi
else:
print(varname, 'at',t,' could not be loaded')
n = n+l
return j

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 33/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

%debug

3.2.3 Preprocessing and visualization of the weather data

rtma = j

td = np.array(rtma['td'])

t2 = np.array(rtma[' 'temp'])
rain=np.array(rtma['precipa’'])
compute relative humidity

rh = 100*np.exp(17.625%*243.04*(td - t2) / (243.04 + t2 - 273.15) / (243.0 + td - 273.:
Ed = 0.924*rh**0.679 + 0.000499*np.exp(0.1*rh) + 0.18*(21.1 + 273.15 - t2)*(1 - np.exg
Ew = 0.618*rh**0.753 + 0.000454*np.exp(0.1*rh) + 0.18*(21.1 + 273.15 - t2)*(1 - np.exp

gmatplotlib inline

plt.figure(figsize=(16,4))
plt.plot(t2,linestyle="'-",c="'k',label="'Temperature')
plt.title(station['STID'] + ' Temperature')
plt.xlabel('Time (hours)')

plt.ylabel('Temperature (K)')

plt.legend()

gmatplotlib inline

plt.figure(figsize=(16,4))
plt.plot(td,linestyle='-",c='k',label="Dew point')
plt.title(station['STID'] + ' Dew point (K)')
plt.xlabel('Time (hours)"')

plt.ylabel('Dew point (K)')

plt.legend()

Automatic saving failed. This file was updated remotely or in another tab. Show

diff
plt.figure(figsize=(16,4))
plt.plot(rh,linestyle='-",c='k',label="Dew point')

plt.title(station['STID'] + ' relative humidity')
plt.xlabel('Time (hours)"')

plt.ylabel('Relative humidity (%)')

plt.legend()

gmatplotlib inline

plt.figure(figsize=(16,4))
plt.plot(Ed,linestyle='-",c="'r',label="'drying equilibrium')
plt.plot(Ew,linestyle=":"',c='b',label='wetting equilibrium')
plt.title(station['STID'] + ' drying and wetting equilibria')
plt.xlabel('Time (hours)')

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 34/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

plt.ylabel('Fuel moisture contents (%)')

nlt.lTeaend()

Double-click (or enter) to edit

¢matplotlib inline

plt.figure(figsize=(16,4))
plt.plot(rain,linestyle='-',c='k',label="'Precipitation')
plt.title(station['STID'] + ' Precipitation')
plt.xlabel('Time (hours)')

plt.ylabel('Precipitation (mm/hour)"')

plt.legend()

print(rain[1900:2000])

Precipitation from RTMA is in kg/m2. Tm water depth over Tm? is Tm? with mass 1000 kg thus 1
kg/m? is the same as 1 mm of precipitation. RTMA values are accumulations over 1 h so these are

values in mm/h. So 9999 mm/h = 10m/h makes no sense. Replace anything over Tm/h by nan and

try again.

rain[rain > 1000] = np.NaN

gmatplotlib inline

plt.figure(figsize=(16,4))
plt.plot(rain,linestyle="'-"',c='k',label="'Precipitation’)
plt.title(station['STID'] + ' Precipitation')
plt.xlabel('Time (hours)')

plt.ylabel('Precipitation (mm/hour)"')

plt.legend()

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

fix isolated nans
def fixnan(a,n):
for ¢ in range(n):
for i in np.where(np.isnan(a)):
a[i]=0.5*(a[i-1]+a[i+1])
if not any(np.isnan(a)):
break
return a

rain=fixnan(rain,2)
t2=fixnan(t2,2)
rh=fixnan(rh,2)
obs_data=fixnan(obs_data,2)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true

gap.

35/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory
Ed=fixnan(Ed,2)
Ew=fixnan(Ew,2)

print(np.where(np.isnan(rain)))
print (np.where(np.isnan(t2)))

print (np.where(np.isnan(rh)))

print (np.where(np.isnan(obs_data)))

4 Results

4.1 Kalman filter with fuel moisture observations, followed by forecasting

We run the model first with Kalman filter for 150 hours. The observations are the RAWS data After
150 hours, we run in forecast mode - the RAWS data are no longer used, and we run the model from
the weather data without the Kalman filter. The weather data are taken to be RTMA interpolated to
one RAWS location. In a real forecasting application, the model would be run from weather forecast
rather than data.

run KF on an initial data segment
import numpy as np
import matplotlib.pyplot as plt

hours=1200 # total simulation

h2 = 300

m = np.zeros(hours) # preallocate

m[0]= obs data[0] # initial state

P = np.zeros(hours)

P[0] = le-3 # background state variance

H = np.array([1l.]) # all oQ = np.array([0.02]) # process noise variancebserved

Automatic saving failed. This file was updated remotely or in another tab. Show
_diff _

using lambda construction to pass additional arguments to the model
if t < h2 and not np.isnan(obs data[t]) and not np.isnan(Ew[t]) and not np.isnan(:
m[t+1],P[t+1l] = ext kf(m[t],P[t],lambda u: model moisture(u,Ed[t],Ew[t],rain[t

d=obs_data[t],H=H,R=R)
else: # just advance to next hour, no process noise

m{t+1],P[t+1l] = ext kf(m[t],P[t],lambda u: model moisture(u,Ed[t],Ew[t],rain[t

——— e g\ ——— =, -

$matplotlib inline

plt.figure(figsize=(16,4))
plt.plot(Ed[:hours],linestyle='--",c='r',label='Drying Equilibrium')
plt.plot(Ew[:hours],linestyle="'--',c="'b',label='Wetting Equilibrium')
plt.plot(obs data[:hours],linestyle=':',c='k',label="'RAWS data')
plt.plot(m[:h2],1linestyle="'-"',c='k',label="filtered')
plt.plot(range(h2,hours),m[h2:hours],linestyle='-"',c="r',label="'forecast')

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 36/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

plt.title(station['STID'] + ' Kalman filtering and forecast with real data')
plt.xlabel('Time (hours)')

plt.ylabel('Fuel moisture content (%)')

plt.legend()

Clearly, there is a problem - the forecast fuel moisture is too high. We need to assimilate also some
parameters of the model, not just its output state.

4.3 Kalman filter on the augmented model

Run augmented filter and plot the result:

m,Ec = run_ augmented kf(obs data,Ed,Ew,rain,h2,hours) # extract from state

def plot moisture(hmin,hmax):
print('training from 0 to',h2,'plot from',hmin,'to',hmax)
plt.figure(figsize=(16,4))

plt.plot(range(hmin,hmax),Ed[hmin:hmax],linestyle="'--"',c="'r',label='Drying Equilibr!
plt.plot(range(hmin,hmax),Ew[hmin:hmax],linestyle='--',c="'b',6label='Wetting Equilibz
plt.plot(range(hmin,hmax),Ec[hmin:hmax],linestyle='--"',c='g',label='Equilibrium Cor:
plt.plot(range(hmin,hmax),obs data[hmin:hmax],linestyle="'-"',c='b',label="RAWS data |
plt.plot(range(hmin,hmax),rain[hmin:hmax],linestyle="'-"',c='b',label="'RTMA rain (mm/!
if hmin>=h2:

plt.plot(m[hmin:h2],linestyle="'-"',c='k',label="'Filtered"')
hl = np.maximum(hmin, h2)
plt.plot(range(hl,hmax),m[hl:hmax],linestyle='-"',c="'r',6label="'Forecast (%)"')

plt.title(station['STID'] +' Kalman filtering and forecast with augmented state, re:
plt.xlabel('Time (hours)')

Automatic saving failed. This file was updated remotely or in another tab. Show
diff
plot moisture(0,hours)

A detailed view of transition from training to forecast:

plot moisture(0,600)

plot moisture(300,800)

plot moisture(800,1200)

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 37/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Filtering by extended Kalman filter using RAWS data until 150 hours, then forecasting mode -
running the model from interpolated RTMA only. For the first 60 hours the forecast is good, the
equilibium correction made the model quite close to data. But then the big spike in equilibrium
moisture around 230 hours attracted the solution, and it took a while for it to get back. The spike in
the RAWS measurement is there but much smaller. The model becomes inaccurate during periods
when the fuel moisture equilibrium is large.

Possible reasons include: 1. There was something in the data we do not know about - maybe it
rained but RTMA did not tell us. Try comparing with data from the RAWS itself? 2. The model is too
simple, assumes the whole depth of the wood stick is wetting and drying at the same time. Perhaps
the moisture got stored in the inside layers of the measurement stick. Try a two-layer model as in
van der Kamp (2017) and make the state larger?

A detailed view of rain episode:

plot moisture(900,1100)

It seems there is some rain that the model does not know about.

4.4 A comment on the information flow in the Kalman filter and in neural
networks

Double-click (or enter) to edit

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

We have shown how to combine a model and data for improved forecasting of fuel moisture from
weather forecast using the Kalman filter. Augmenting the filter state by a model parameter and joint
estimation of augmented state resulted in an improvement of the forecast.

Contributions of authors

Not applicable.

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 38/40

javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

Acknowledgements

This Math Clinic was sponsored by the team of investigators of the NASA grant no.
80ONSSC19K1091 Coupled Interactive Forecasting of Weather, Fire Behavior, and Smoke Impact for
Improved Wildland Fire Decision Making under the NASA ROSES18 Disasters program. The author
would like to thank Brian Zhang from the Math Clinic class for bringing the reference van der Kamp
et al. (2017) to his attention.

References

J. Mandel, S. Amram, J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, B.
Regev, and M. Vejmelka. Recent advances and applications of WRF-SFIRE. Natural Hazards and
Earth System Science, 14(10):2829-2845, 2014. doi:10.5194/nhessd-2-1759-2014

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME -
Journal of Basic Engineering, Series D, 82:35-45, 1960. doi:10.1115/1.3662552

E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press,
2003. doi:10.1017/CB09780511802270

D. W. van der Kamp, R. D. Moore, and |. G. McKendry. A model for simulating the moisture content of
standardized fuel sticks of various sizes. Agricultural and Forest Meteorology, 236:123-134, 2017.
doi:10.1016/j.agrformet.2017.01.013

S. F. Schmidt. Application of state-space methods to navigation problems. volume 3 of Advances in

]] o S ‘ T 7 978-1-4831-6716-

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

M. Vejmelka, A. K. Kochanski, and J. Mandel. Data assimilation of dead fuel moisture observations
from remote automatic weather stations. International Journal of Wildland Fire, 25:558- 568, 2016.
doi:10.1071/WF14085

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 39/40

https://doi.org/10.5194/nhessd-2-1759-2014
https://doi.org/10.1115/1.3662552
https://doi.org/10.1017/CBO9780511802270
https://doi.org/10.1016/j.agrformet.2017.01.013
https://doi.org/10.1016/B978-1-4831-6716-9.50011-4
https://doi.org/10.1071/WF14085
javascript:void(0)

7/3/22,12:39 AM fmda_kf_rnn.ipynb - Colaboratory

@ 1s completed at 12:38 AM ()

Automatic saving failed. This file was updated remotely or in another tab. Show
diff

https://colab.research.google.com/drive/15ZM94L100 IN6vsHM-V_PzsyOWkFSpzVz#scrollTo=bO1ewTj9gGvg&printMode=true 40/40

javascript:void(0)

