From 91f14abce145a2afca34421ceb94f3bce4d4bb79 Mon Sep 17 00:00:00 2001 From: Jan Mandel Date: Sun, 24 Oct 2021 13:49:35 -0600 Subject: [PATCH] reading old files as grib ok --- fmda.ipynb | 2982 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 2958 insertions(+), 24 deletions(-) diff --git a/fmda.ipynb b/fmda.ipynb index 9937e38..0a34b5d 100644 --- a/fmda.ipynb +++ b/fmda.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "colab": { "background_save": true @@ -127,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "id": "eqcs0zEiAn0j" }, @@ -168,11 +168,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "id": "-_pz-wXnCMnP" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAD4CAYAAADhJ8tCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOxdd3gV1fZdk15IoSYkJIGEXkIv0lVAQLHzFGmKPtRnb88CdrE8n4r6bNiViGLhB1IUUJBOQg2hJ6SSkJBAes89vz/2nWTuvVNvm4nc9X33g8ycCztnzzlz9jl7r8UxxuCBBx544IEHHnjggQceeOCBB3rDS28DPPDAAw888MADDzzwwAMPPPAA8ASoHnjggQceeOCBBx544IEHHhgEngDVAw888MADDzzwwAMPPPDAA0PAE6B64IEHHnjggQceeOCBBx54YAh4AlQPPPDAAw888MADDzzwwAMPDAEfvQ0QQ4cOHVjXrl31NsMDDzzwwAMPPPDAAw888MADJ2P//v3FjLGOYvcMGaB27doV+/bt09sMDzzwwAMPPPDAAw888MADD5wMjuOype55Unw98MADDzzwwAMPPPDAAw88MAQ8AaoHHnjggQceeOCBBx544IEHhoAnQPXAAw888MADDzzwwAMPPPDAEPAEqB544IEHHnjggQceeOCBBx4YAp4A1QMPPPDAAw888MADDzzwwANDQFWAynHcVI7jTnIcl85x3FMi96/jOC6V47hDHMft4zhurNrveuCBBx544IEHHnjggQceeOABoCJA5TjOG8AHAKYB6AtgFsdxfa2a/QFgIGNsEIAFAD7T8F0PPPDAAw888MADDzzwwAMPPFB1gjoCQDpj7AxjrB7A9wCuEzZgjFUyxpj5x2AATO13L3nU1wOffgo0NOhtiTROngQ2bNDbCnmsXQukp+tthTQ8fnYOPH52HB4/O476emDZMo+fHYXHz47D42fH4fGzc+Dxs+NoDX52E9QEqNEAcgU/55mvWYDjuBs4jjsBYB3oFFX1d83fX2hOD953/vx5Nbb/PXDuHPDee8CaNXpbIo3du4F//hOordXbEml89RXw7LN6WyGNvDzglVeAVav0tkQaW7YAs2YZ28/vvw/8+996WyGN7Gyy76ef9LZEGuvXA9dcY2w/v/oq8NBDelshjYwM4J57gJUr9bZEGr/8Akyfbmw/P/UU9aNRcfIkcPfdwIoVelsijaQk4/v53nuBO+7Q2wpppKWRn5OS9LZEGp99Znw/z5kD3Hab3lZI49Ah8vO33+ptiTTee8/4fnYT1ASonMg1ZnOBsVWMsd4Argfwspbvmr+/jDE2jDE2rGPHjirM+psgKooWtX/8obcl0ujQATh7lgJVoyI4GNi8GTCZ9LZEHDExwIULwNatelsijS5dgLIyY/s5MhLYscO4fu7aFWhsBLZv19sSafToQf23Z4/elkijRw8gJcW4fu7eneacnTv1tkQaAwbQn0Yez0OHAqmpxvVz795AmzbGHisjRtCfRrbx8ssp2DeqnwcMID8nJ+ttiTQmTKA/jTyer70WyMoCmOgyX38MHkx+3rdPb0ukMW0a/Wnk8ewmqAlQ8wDECH7uAiBfqjFjbBuABI7jOmj97iWJN98EQkKAP//U2xJxnDpFCwjAuDauWQNUVQHFxcDRo3pbI46PPwY6dTJuH2Zk0IsFMK6Nv/8OeHkB588b18/LlwNxccbtw8xM4OJF+rtRbdy6FQgLM7afV68GevWirAMjIjcXaGqivxvVxj17aFPMyH7+4w9g4EDjjpX8fNooAYxr46FDQJ8+xvZzcjIwcqRxx0phIR1meHkZ18YTJ4Bhw4zt5+PHgbFjjduHxcVAz57kZ6OOZzdCTYCaAqAHx3HdOI7zA3ArAIt8VI7junMcx5n/PgSAH4ASNd+9pJGZCTzzDODrS7uLZ8/qbZEt/u//gEWLjL3ofuWVlh0xI9qYmQk8+CDtHhvVz7/8AjzwAPnZqJP34sUtthnVzwsWAJWV5Od8A+7F/fgjMG+escfzE0+0lDwY0cbMTGDmTKCkhBZlRvTz998D119vbD8/8ADw3Xf0dyPOOZmZdJqRl2fc8bx8OXDFFcb28z//CXzyCf3diDZmZlLQkpFh3PH8zTeUbRATY8w+BIC5c4GlS+nvRrQxM5M2m06fNq6fv/iCNj6NvA5zIxQDVMZYI4D7AfwO4DiAlYyxoxzH3cNxHF88chOANI7jDoFYe29hBNHvuuD3aJ3gH8BXXrH82Uj480+gb1+qK0hOBioq9LbIEqWlwP79wO23AwkJxpwYW5uf9+6lIMtIuHgROHCA/Ny9u8fP9qI1+dkznu1Ha/KzZzzbj9bi5zvuMO545m1qDX6eNcvYfp4/37h+5v364ouWPxsJvJ9vuYUyTKqq9LZIV/ioacQYWw9gvdW1jwV/fwPAG2q/64EZf/4JRETQpLNmDWC02tv6eqqlW7CASFWKi2nAhITobVkLtm2jk8krrgBCQ/W2Rhy8n2+9lVLGYmKUv+NO8H6+4w7guuuI4a62lmo1jAKhnzt1AnxUTV3uhXA8p6RQHaWRIBzPN94IBAYaj81Q6OfYWLLRaBCO5+PHW2o9jQLheJ45k2w1Wu2f0M89ehhz7haO57w8YPhwvS2yhHA8z5pFqYGcGO2HjhD6uX9/oH17vS2yhXA8l5UB48bpbZElhON57lx6Do32/hP6efhw6k+jQehnkwmYNElviywhHM933AFceSXg56e3VbrCYE/5JYatW4k8wNvbmGyQ+/YB1dVk4+jR9DEatm4FAgKofmT8eL2tEYfQz198obc1tti/nzYeLr+c+nHkSL0tskVr8/O77+ptjS2E43nYMPoYDa3Nz/ypi5EgHM+DB9PHaNi6lTYfRowwXkDAQ+jnp57S2xpbCMfzgAHG2ygBLP3s76+3NeIQ+vlf/9LbGlsIx3PfvvQxGlqbn+fO1dsaWwjHc8+e9LnEoaYG1QNXoKGBWF379aOfGQPKy421052XR3/yNjY0tBCsGAU5ObQD7+9PfVhaaqz0l/p6qjkV9mFenrH8fOYM/cnbWFpqvDrZzMwWPzc1kd+N9CzW1Vn6ubISOHbMWH7OzKQ/eRvPnjWeZp3Qzw0NJP9QVKS3VS2w9nNJCaVi8YRERoD1eD51CjhyRD97xHDmTIuf6+qAXbuMNedY+7mgANi40Vh+th7PBw5Q+qeRIPRzTQ3w228tZHxGQF0d1SLyfZiVRRJhRvKz9Xjevt14agBCP1dVEdeBkd4t1uP55Ek6LDCSn63H82+/efRQGWOG+wwdOpRdEjCZGGtooL9/+CFjAGPnzulrkzXq6hhraqK/T5jA2PjxuppjA5OJscpK+nthIfXh++/ra5M16uoYq6qiv7//vvH8bDIxduFCy7M4fjxj48bpa5M1amsZKyqivxvRzyYTY8XFjF28SD/zfi4s1NUsC9TVMZaVxVh9Pf08frzxxnNJCWOZmfT3c+eM5+emJrKP9+v//me88VxRwVhqKvmbMWP6OTeXsaNH6e9GHM+NjYwdPkx2MmbMebukhLEdO2huZIzmbKP5+eRJxlJS6O9G9HNDA2PbtzN25gz9bMR5u6CAsfXrGaupoZ+NOJ4PHGBs61b6uxHn7fp6xtatY+zECfrZiH7OyWHshx8Yq66mn43oZxcAwD4mEQt6Unz1BMe11BLw9aeFhcbK3xfmwHfqBBw+rJ8tYuC4Fpr99u2JnruwUF+brOHn19KPkZH0p5H8zHFA27YtP0dEGM/P/v4tY8SIfuY4y/oq3s/nztG4MQL8/IgdkEdERIuElFHQrh19ANJfNpqfvbxI65YHP4aNNJ7btLFM9zSin7t0afm7EceztzeQmNjysxH93K4dMGZMy8+RkcbzszBN0Yh+9vEhBl8eQj8bZd6OjGzRxgSMOZ6FZQRGnLd9fYHp01t+5v1spPdzTIwlP4kR/exmeFJ89UJyMjGe5ebSz8IBYxR88AHw/PMtP0dGGmvSYYwo7NebObi8vWmyMZKNBw6QnAJPaS58ARoFn39Oerw8IiKMZR9jwKOPEsEUQH7u2NFYY+XwYZJj4vvNiH5OSiI9Xh5GHM8vvADs3Ek/G9HPR48Cb7xBhHGAMf38yy8kP8IjIsJYfcgY8NZbLdJgvJ+N1IcnTwIffdRSRiDcWDQKNmwgGTgeRvTzsmWUpg8Y089nztC8WF5OPxtxHbZlC7BpU8vPRnw/r1hB8i2AMf2ck0NEpHz5lxHn7T17gN27W342mp91gCdA1QtHjpC2FV+jZsQB8+uvLcEfQDaWlRHDqxFQUQF89pmlKLTRXtKHDgH/+18LW6oRX4A//kgfHpGRxvPzO+8ABw+2XDPa5L1vH/Dqq1RnBRhzPH/zjSVJV0QE1Rsbxc+VlSQBsGtXyzWj+XnPHiLM4en/jTiely0D3nuv5WcjztuPP24p8xAZaaw+3LGDCHOsAxcjPYvvvktzDg8jztt33021dDyM9n7esgWYM8fYGxGvv06bnzwiI401b1dUkMzR6tUt14w2b2/aRAoFJSX0sxH9/PzzwEMPtfxstPezDvAEqHrB+qTFiAOmsLDFLsB4L2nrPuT/bhT7gJaXsdH9bN2HgHHIacT8bLTTP2sbjRi4GN3P1mMFaD1+NpKN587Z9iFgHD/zfWX9bjFSH7ZGPxttPLfG97NR522xdZjR/Wy0PgSMPZ6N/n7WAZ4aVL1QWEjabwEB9HNICPDss8CoUfraJURhITB0aMvPo0YBr73WUvOpN8QWOgsXGkvcWMzP//kPMHGirmZZ4Nw5Sz+PG0fp3UbRuxV7AT74IDHzGQW8n3ndztBQShEU1ojpjcJCSy3Hyy+nU9XwcN1MsoDYeH7ySaCxUR97xHDunOV4Dg2lFEEjSfYUFlraM3kypYLytb16Q2w8v/CCLqZIorAQCAuz9PPq1cDAgfraJYT1eJ42jbQejaKnLrbh9J//UH2iUWD9fg4NJYbc3r11NcsC1n6+9lqq+TRKLbTYeH7/far7NArE5u0DB4Bu3fS1SwhrP990EzBhAhAVpZ9NOsMToOoF691PjgNeekk/e6xhMtHOjdDG/v3pYxSITYw33aSPLVKw3v3kOOCJJ/SzxxomE3D+vGUf9upFH6NAbKFz9dX62CIFsfF8zz362WMNMT8nJNDHKBAbz1dcoY8tUrDe5eY4Sm8zCng/C+ecuDhLciy9ITaeL7tMH1ukIDaer71WP3us0dRkO56jo+ljFIiN50GDdDFFEmLv5wkT9LPHGmJ+7tTJOMQ+QMt4FvajkdYPgLifjaQP3dRku94WEgZeojDQVtYlBh8f28VhaSkVcxsB5eXExibcvTGZgOxsmjCNgOpqOs0VDuqqKiJlqK/Xzy4hamuBzp0tr509C5w4oY891igtJXZX4eTd1EQ10kbRJSwtpT+Ffr54kWoVjXKKeuGCZR8CRBqxf78+9ljjwgXyq7APGxuJkMgouoRiC9rCQuD3341Th2O90AGoznz7dl3MsUFJia2fGxqIUOfUKf3sEkLspDw3l+rg+RpuvSHG1rtrFz2LRoCYn+vqgB9+sORk0BNi4zkjg0j5qqv1sckaYn7evBlYtUofe6zB+1k4VmprgU8/teRk0BNifj5+nHgjjOJn6w0ngDIikpL0sccaJSW0vhbaWFNDZHLJyfrZpTek9Gf0/FwyOqjWuPZaxhIT9bZCGjU1pB31yit6W2IJk6nl799+SzbyeldGgNA+xhibMcNYfjaZSPePB+/nl1/WzyZr1NeL+/nkSf1sEsJkatGp4zFjBmMDB+pijijq6y1tNJqfTSbSkeV1lxlj7JtvjOXnujrSnxTCSPM2r2lcXt5yzWjzdl0daf4J/Wy08XzhQosGKg8jzduNjaRpLHwWjebn8nLG0tIs3y1G83NuLmOnTlleM9K8XV9PmsZC/V2j+bm4mLGdOy39bLR5+/hxxg4dsrxmJD/X1pKmsXDOMZqfXQTI6KB6TlCNBKMRCFgjIIDq1YxU/A5QugYPIxa/C+0DjEf8wnFEDc+D97ORbPT1NbafOa6lvoWH0ZhJfX0tbQwIoDo7I/VheLhljZrRSMX8/GzTrow0b/OaxsL6caP52c+P9P6EfjYaOU3btpZarYCx/OztTWnbwmeR97NR+jAkBOjXz/LdYrR5u0sXoEcPy2tGej/7+pKmsfBkzWh+bt8eGD3a2H7u3du2ftxIRE7+/sRXIZxzjDZv6wBPgKoH6uuBSZNs00giIih9tqlJH7uE2LgRuP56WwYxI72kX3jBkn4dMNaCtq4OuPFGS6kewFh+3rIFmDevRdeRh5H8/MYbRM4lhJEWtHV1wO23t+i08jCSn7dvB+6/n1J9hTDSYuy99yzlUQBj+bm+njSNd+ywvG4kP+/ZAzzzTEtaPA8jbZZ8+imleQphpAVtXR29V6xT6yIjjePn/ftpTuRlcHgYad5OSqKUYyGM5Of6enq3HD5seT0igtY9RvDz4cNEWMjrd/Iwkp9XrQLWrrW8ZqR1WH09ERZal1UZaTwfOwZ8+61tSrSR/KwDPAGqHigspMWsdS1nRATloVsHC3ogLY1y9P38LK8bacD89pvtIsJIL8CiIpq8rWs5eT/zmlx64uBBmhh9rPjSjLS7uGoVsVMKYTQ/f/01ib4LERlpHD8nJ9NCx5pB00jj+bvvbBc6RvJzYSFpGh8/bnndSPP2rl22mzmAsfz8+efA999bXjPSgrawkPRFxQIXo4znv/6ijQheR52HkTac3n9feiPCCO+WwkLSNBZbQxjFz5s308aiNZO5kfz8xhvSG4tGsLGwkDSNrXkCjOTnDRvooKChwfK6kdZhOsAToOoBMZIIwFiD+tw5Ck7DwiyvG2knXozgoH17WoQboQ/FyAOAFr8boR8LC8X9bKQFrRgxTYcOxvez0RZjrcHP1n3I+9kofQhI+9kI/Sg1bxvNz9bjuTXM20bzs7+/uJ+NMFYA+fFslD4EpN/PRrCxNczbYgRErcHPRns/+/uT/I0QRvKzDvDIzOgBqRfg8OHAhx/avrz1AP9ysa6fvPtuY+w4MSa+0PH2Br74AkhM1McuIaQmxlGjgOXLjSEJcO4c9aG1nx96yDZ9TA/wfrbuQ29vYOVKoG9ffewSQsrPY8YAa9YYQ+KDHyvWfn7qKWMwLcr5ef16oGdPfewSQsrPEyaQdmJ8vNtNsoGUn59/3nZ3Xg/I+Xn7dmPoEkq9n6+8klJru3d3v03WkHo/v/469bHekPPzoUO29b16QOqgYMoUYmA38ry9dKlt1pMekPNzeroxtFqlxvP06XSvQwf322QNqfH8ySe23BaXEAzwhF+CkFrodO0K3Huv280RhVjwBxhHl7Cykmi4xSbA+fPdb48YpF6AXboAs2e73x4xiL1cAAqujICKCmk/G0XzVsrPnTsDM2a43x4xSPl5yBD32yIG3s9ic85VV7nfHjFILXSMpEso5ed+/dxvixjk5u3Ro91vjxikxrORdAml/GyETRJAft4eMMD99ohBajyHhtqeZOkFKT8L5f/0REUFyd6IzdtG2GwCpMdzcDB9jACxU2jAOPONTvCk+OoBf39iFbN+IBmjupfsbH3sEqJ9e6B/f9vrZWWknVhV5X6bhCgvJzFosV3O9HRg92732ySGzp1tF6+M0WmBEXQJAwJs9XgBqqfbsIFeQHqitJReLGIv5CNHbImJ9EBdHTFWWvvZZKLTv7Q0fewSorFRvA/z84nIpKzM/TYJceGCraYxj7176SRab5SX0w63tY0mE9VUGkHz9uJF8T7MziZyoosX3W+TEOfPUx+KLWi3bKE6ZL3Bc0NY92NTE7BsmTHeLVIbyOnpwNtv25KhuRtSwR8ArFsHfPaZe+0Rg9RBQWMj8N//Up2v3pAKXI4fJ5JIveve5fz800/Au++61x4xyPn5ueeATZvcb5M1pDYiUlOBRx+1JSu9VCClP6Pn55LVQTWZGAsIYOzxx/W2RBpr1pA20969elsijblzGYuN1dsKabQmPycn622JNObOZSwuTm8rpGEyMebvbxw/W+vxMma88SzUxuRhJD83NNheM5KfTSbSGbWGkfzc0CBuo1H8bDIxVloqft0ofq6vF7fRKPM2r2lcVWV7b84cY/i5ro6xvDzb60by84ULjBUU2F43ip8bGhjLzmasrMz2nlHGc3k5Y8eO2V7n/fzEE+63yRo5OYydOWN73UjztosAGR1UT4qvkcDvzht5t4Tf5TG6jUa2j+PotM3INhqJEEQKRicQMNp4tq5vAYw3nq1ZhgFj+Vms7stIfuY4W+Z1wFh+lqqdM1IfWpPS8NeNYqOvr7iNRpm3eU1jMRilD/38xHkgjOTntm3FrxvFzz4+QGys+D2jrHFCQoA+fWyv837Wuw8B0oUWg5HmbR3gSfHVA/feC/zzn+L3wsNtNezcjcpKYMQI4Mcfbe/xE6beNq5eDUycaCvVA5CNtbWUeqknHnsMePhh8Xtt2+rfh5WVpMe7erXtPX5xobeN69dTHacYMZdR/Lx4MX3EYAQ/V1WRHu9vv9neM4qfN28G5swRT0E1ip9ffVVcwgUwjp/nz7eVZAKMM29v3UrvPzE7wsOpbrG+3s1GWWHpUunURCP4ubpaXI8XMI6fd+4kAjYxor22bY3h508+sZXB4WGEdVh1NenxpqTY3jOKn1NSgCVLbHVaAeP4+dtvbWWteBjBzzU14nq8gHH8rBM8AaoeOHRIus40PFz/erDSUpp4xOzgd231HjAZGVQj4utre4+3Ue9+3LWLBJjFYAQ/X7worscLGCdwOXGCtDG9vW3vGcXPf/xhq6XHIyxMf/suXCAt2bw823u8n/W28cgRIClJ/ATVKH7+9VeqkxSDUfz8zTe2eryAcfx84ADw8cfip/lGsfGHH2hjTAxhYfrPiSUl4nq8gHHGyt69tOgWYxQ2ip+/+oqY4MVghMClpIQ2xQ4dsr1nFD9v306bs01NtveMYuMHHwBffil+zwjrsOJi2swR24gwSh/qBE+AqgfKyqTTX4wwMfL/v1gKkVEGTFkZLXLE2PaMElzJ+dkICx3eh0b2c2mp8f1cWmrs8azGz3rbyPs5JMT2nsfP6qBm3tbbRn7eNrqfxfoQMMaClu8fsWexNfjZKDZ6/Ow4WsO8rbTeNoqf5eZtsRPqSwCeGlQ9IDcxPv44HfnrCbmJ0d+fUn/1poovLaWgRezEZcIEOu3o3NntZllAzs/PPqt/6ouSn3/7jZiS9URZmbSfJ02iU3S9NfXkXoCvviq+u+xOKPl550795SnkxvPUqcDBg9K1Tu6CXID6zjvutEQc/EJLzEY/Pzql1lt7Wc7P11xDmTFS9VjugpyfP/5YPJvDnZDzs78/ZWfpre0o5+cbbqCsHb0lNOT8/PXX4rXc7oTSvH3xonhg6E6UldEaR8zP//gHMHMm2aon5NZhK1fq72el8dzQYAzNWx1waf7WekNuYhw71p2WiENuwADAzTe7zRRJyE06XbroH7QA8n4eNsydlohD7gUIGEN/Uq4PIyKMIQQu9ywaQX9SbocWMIb+pFyQ3749ffQGvxgTg94BPqDsZzHZMHdDbjyHhUnb7k7IPYt6b3oCyn7WeyMHkPezUfQnlTIi9IbSOswINsq9+/QO/HjI+Vnv4BlQXoddosEp4EnxdT+ammhBKMYqBgA5OaQ/aTK51y4hgoKAyy4DOnYUv79nD9WY6ImYGGDkSPF7VVV0gqqnnmxTEy0IxTRGAeD0aap10tPPfn5ko9Ti/48/pGvu3IX27aWDvIoKqltMT3evTUI0NtKCUGpD5OhR0p/U088AjRepE4vVq6Vr7tyFgABpYfeyMuCjj8Rr7tyFhgYirLDWuuVx4ADpT+rp54YGWuRILXS++w74+Wd3WmQLxqT78OJF4D//oZNevdDQQCekUn24ezfpT+rp56oqOrGSsnHZMmD5creaZIOqKmn7SkqobvHAAbeaZIH6eiJek7Jx61bSn9TTz0obEW+/Tb7WE3LBX1ER8OCD0vwM7kBdnbyff/8duOsuff0sV4IDAC+9ZAw9WT0gpT+j5+eS1UFljLG33iLdIzGNM6Ng1CjGJk/W2wpp5ORQHy5bprcl0nj7bY+fHUVr8HNrGc9TpuhthTQ8fnYOPH5WDzHNYMaM42eTSdrGkSON4ef6evHrvJ8//dS99lijsVFcj5cxY/jZZGKsspLsFMPIkfq/n+vqSO9WDEbwM69pXFEhft8Ifq6rYyw/X1xjmzFj+NmFgIwOqucE1WgwSmG5HIxQWC4Ho7AEysEoJAdy8PjZcbSG8WwEwi45ePzsHBjdz0YhZgPEWYYB4zyLHCdvoxH8LMawDxhnrHh7S6ehGsHPHEep0FI1z0Z4P/v5Kacg6+lnXtO4TRvx+0aYc/z8qHRAKpXXCH7WCZ4A1d04eJDSPv/6S/y+EQb1a68Bw4dL3zfCQmfSJODFF8XvtWlDKVB62piaCgweTFIzYjCCn99+G7jySun7RvDzdddR2p8YjODntDQi5RKjiAeM4ecPPiBiEikYYUE7ezbw/vvi94zg5+PHSY/34EHx+0ZY0H72GTBvnvR9I/h54UJKeReDEfx86hQ9i1JpxkbYWFy+HLj/fun7RvDzo49Kpxkbwc8ZGaTHe+KE+H0j+PnHH4Gnn5a+bwQ/P/ss8NNP4veM4OfMTODf/5YuAzLC+3nNGiJTlIIR1mE6wROguhvFxaRTJ8Z6BhhjYszKEtdM5GGEiXH/fqplEQO/a6anjYWFpF8mxeBqhAXtiRPSOq2AMfy8bZv0s8j7Wc8+LCggG2trxe8bYYf28GGqG5eCEfy8fr30IsII4zkvj/R4pej+jTBvJycDmzZJ3zfCTvzKlbSpIwYvL/39nJ1NtbpS/WSEBe22bfK1xHrPiQDwxRfSm3ZGGM+ZmcTIXFwsft8Ift60ibRapWAEP7//Pj2PYjDC+zk9HXjzTeDcOfH7RvDz2rWkaywFI8zbOkFVgMpx3FSO405yHJfOcdxTIvdncxyXav7s4jhuoOBeFsdxRziOO8Rx3D5nGt8qoZaZTc8HUo6ZDdB/QWsyyTMtAvoPaiVmNiMsaI3eh2r9rGcfKvnZCC9ApT7UexHB+9nIc47aeVvvZ1HJz3rP2+Xlyn42wrwtp48pbKcHlPys91hR4+ewMGqjF9T6uaLCHdaIQ42fpTZG3QHez3I2tmtHREV6Qc28HRysbz8qrbc7dpROl/+bQ5G/mOM4bwAfAJgMIA9ACsdxaxhjwqOXTAATGGMXOY6bBmAZACHF6uWMMYmtqksMShNjz56kPzlkiNtMsoHSxHjXXcDVVxMjo1QdjCtRWUn/t5yN33+vr86aEjNb796U/ivF5uwOKE2M//oXMGuWfn6uqFD286+/6ku3r/QC7NuXTozi4txmkg2U/Pzoo8Dddxvbz3/+SbqKekFpI6J/f2Jgl2KodQeUgvynnwaeeMLYfk5O1leCRGk8JyYS27Cez6LShtPzzxPzp15Q4+djx4i5Wy8ojefBg4mhXU/NW6V12GuvAW+84S5rbKHGz6dP6zPX8FBabw8dKp0V4y4o+fmVV+hzCUKNwM4IAOmMsTMAwHHc9wCuA9AcoDLGhIV2ewAYQITSoFCaGENC9NefVHoBdu9OH72gNOkAwIgRbjFFEkp+Dg4mKR89UVpK0hlSiI3VV1NPabEI6K8zqvQsBgYaw0Y5P+utJas0VgCga1c3GCIDJRv9/UnKR08o+Vlv3UQ183aHDm4xRRJKfvb1NUY/yvk5KMhtpohCjZ8DA91iiiSU/CxVguVOlJXJb7LrbaMaP+sZnALq3i16Q8nPlzDUPOHRAHIFP+eZr0nhTgAbBD8zABs5jtvPcdxCqS9xHLeQ47h9HMftO3/+vAqzWim6dgWuuUaaVQwAfvmF6hf1wogRwJgx0vfPniUChAsX3GeTNaZOBeLjpe/v3EkkA3ohMhIYP17az4xRfYmeerL9+tEOohSysoAPP5Su03E1TCbSDJZb+G/eLF+n42q0bUu77XJ+fu896ToddyAujk5ypXD6NPD666RbpwcaG+kEsnNn6Ta//kpkT3ohKIg25eT8vGQJPY96oX17aS1ZgIieFi2SrsdyNerqaMNLSl8bIG1oPU+FvL3pFFzOz//+N7BunXvtEsLfn94vUkhNBR54AMjPd59NQlRXU0AgF0R/9RWd9OqFxkYa03J+vvdeWovpBV7XWAr79wPz58vzhbgSFRXymsEArR8ee8xtJtmgspICeSk/m0xEivb99+61SwilzJc9e4jkMCfHfTYZBVL6M/wHwEwAnwl+ngvgfYm2lwM4DqC94FqU+c9OAA4DGK/0f17SOqiMMRYczNhjj+lthTTWrSPtqN279bZEGrffzlhMjN5WyMPjZ8fRGvwcFNQ6/Lxnj96WSMPjZ8fh8bNzEBTE2KOP6m2FNFqLn2Nj9bZCHkbws5TWLWPG8LPJxFhTk/R9I/i5tlb+vt5+bmxkrLpa+r4R/OxCwEEd1DwAwiOMLgBstuY4jksE8BmA6xhjzfSqjLF8859FAFaBUoY9kIPeZBZKMAKRkxL0JopQA4+fHUdr8LPRbTQCYZcS9CbPUQOj+9kIBD9KaC1+NrKNrcHPRn/3Acbws1yKrBH8zHHyqcZG8LO/v/x9vUkCvb3lU95bwzrMRVAToKYA6MFxXDeO4/wA3ApgjbABx3GxAH4BMJcxdkpwPZjjuBD+7wCmAJDgmL9EcMstwJQp8m30XOjU1lIK1kcfSbfRe0H7ww+UKiaX8hAeTikoUjIvrsbtt8trTwL6+zkhgeQApKC3n1etotRPJckjPf18773A3LnybfT286BB0pqEgP4LnV9/pVRuuZREnvVTLz8/+ihwzz3ybfRc0NbWUknBypXSbfQez7/9RqUZhYXSbfT28+LFwOOPy7fRc9FdW0slQmvWSLfR28+bNwMzZwJypVrh4fr6eckS5RRjvf182200ZqSgd+Dy11/AnXdKy/0B+vv57bdJZkYOer6f6+qIoHDLFuk2eo9nHaEYoDLGGgHcD+B3UPruSsbYUY7j7uE4jn9jPwegPYAPreRkIgDs4DjuMIBkAOsYYzIj7hJAQQHVFshBzwFTVkY1h5SWLQ69F7RFRUBurvyuEz+o9aKyP3NGuX/0XNCWlpKNcvTqevv57Fng6FF5tke9/Xz0qHINkN5+PnxYvn/09nN2NrB7N+DnJ92Gt1EvP+/bB5w8Kd9GzwVtaSmwfbt8vbjeC9rTp4Hff5dnRtXbz9u2AQcOyLfRezyvW6e8aQfoZ+Px48BPP6k7/dNLxuX332m8yEFvP69YQe9oKegduKSm0ga3mrWiXn5etQrYsEG+jZ7r7YsXgWXLSJNeCnq/n3WEGhZfMMbWA1hvde1jwd/vAnCXyPfOABhoff2SRlmZPLkPQA+kXoQlaljP9B4wShIugKWNcmQNrkJpKZ1QyiEsTH6X2ZVQw5Cr90JHDUugx8/y8PjZOVDj5/Bw/fysZt7We0GrZd4uKzO2n/UeK0p+9vYGamrcYZEt1Pi5bVsirqmo0IdhVY2fO3Uiwic9oHYdFh6u3+mkmnm7Y0cgKgqoqtLHz2Vlyn7u2lW/saL23RcbC/ioCtf+Vrj0fmO9oaRJCABvveUWU0ShZsAEBZFenRxjpCtRWko2yJ24XHstnW5FyxFOuxBKUj0ApVHrpbOm5gUYFESnRnKMka4E72c5keobbwQmTdLPRjV+/uor/YS21Y7nggJ9AgJAnZ9vuYV8HRLiNrMsoKRVB1B6rVK9k6ugZiMiOJgWinpJfKjx85w5lDKv57yo5Oc1a/RbLKr1c0ODfhIfavw8fz599IIaP//f/7nBEAmo9fPFi24xRxRlZWSDnJ9nz6aPXlDj5+++c4cl4lDr5+xst5hjNHgCVHdDzYDp3dsdlohDTeDCccDw4e6wRhxqgvx27fTVllJjY1ycW0wRhVoNs5493WKOKNQEf6Gh9NELavzcqZNbTBGF2vGsV4APqJsTAwP11U5U8yzKSYe5GmrHs54amWr8rPcpgRo/62lja9GeNLLuJGB8G1uDfqead5/eMLqNrcHPOsIAasSXEBgDbr2VCEHkcOgQaf7J5fa7Ch070o6X0snjypXA2rXusckaQ4YAN90k3+bCBdKflMvtdxUYA6ZPB4YNk2+3dy9p/unh5/BwYMYMee1JgGpM9NKT7d0buOoq+TbnzwOvvAIcOeIem4RgDBg7FhgwQL7dtm2kP6mHn4ODgQkTgIgI+Xbvvw98+617bLJGXBz1oxwKC0l/8uBB99gkBGNAYqLyZs2mTaQ/qYef/fxIj1dOYxQAXnuNap70QKdOZKMc8vOJjColxT02CcEYZQUpbRz++iuR4OnhZ44jPd727eXbLVoEvPuue2yyRps2QI8e8m1yc4kEaPdu99gkhMkEdOig/O778UdaZ+jh56YmGi9KWS0PPqifbrCXl/I6MSuLSL2U6n1dAZOJ5kWlg4rly4HJk/Xxc20tcWwoBdF33gm88IJbTDIUpPRn9Pxc8jqor79OukdVVXpbIo2hQxmbPl1vK6SRkUF9+NVXelsiDY+fHQfv5y+/1NsSabQWP199td5WSMPjZ+fA42fH0Rr8PGRI6/Cz5/3sGDx+dhxG8LOc3i1jxvezA4CDOqgeOAsmE32UoCcJkdpdJCNohMlBbyInNWgtNrYGP7cGG43sZyPo1cnB42fnwONnx9Ea/Gx0TV69CbvUoLU8i0buQ4+f1UEpLd/ofnYRPAGqO5GaSgXlchpmgL6DevFi+v+VAlU9Fzr9+wMLF8q34esS9Zh0Dh+m/lGiN9fTzy++CMTEGNvPI0cCDz8s34b3sx42HjlCfbh5s3w7Pf38+utAv37KftbzBXjFFcDTT8u30dPPR49SH/71l3w7PRc677wDXHaZcjs9/TxjBvDSS/Jt9PTziRPUhzt3yrfT088ffqhc9gDo6+dZs5S1J/WcE0+dIi365GT5dnra+PnnpCWrBD03kO+6C/jf/+Tb6NmH6enUh0plIXrauHw5pe8qISzM2BslLoInQHUnSkvpBFWJTEPPF2BpKQXRRt7RKSpSZnn08aF+1sPGixdJx0+J0VNPPxcVEbW6kf2cmUlC1nLg/axHH5aUkB6hl8I0qqefc3OpflODn5OSiHnfy4v+TEpysY1pacrPmJ5+Pn8eOHZMWc5B78XY6dPK7fRc0O7ZQ2zRctBz3i4sJBvr6+Xb6enno0eB/fuV2+np582b5fU7AX39nJ9P9eJVVfLt9DwpP3AA2LJFuZ2eG8irV9PzKAc95+28PNLjVaNHD+jTj7t3Uz8q4RI9QfWw+LoTaiilhff1eCDVsBgC+g0YxtQz8Ollo1o/67nQ0eJnPV4urcHPahn4Woufy8uRlETJCbz8X3Z2S7KCS9QCtPq5stIFRihArZ/Dw2njTA8btfhZD91ExtTbGBmprhTG2VDr57ZtiXhFafPMFVA7ViIjiSDN3dDi54QEfWSZ1L6fO3Qgwiw9xotaP8fF6cPArmXeHjhQHyZdtX6OiCCiQz3Yr9X2Ya9el6TUjCdAdSf4AaMkizFwIKWhdOniepusUVamTrbjqaeARx5xvT3WqKsjjTc1Nu7erY8EiVo/DxkCnDunjxyOWj8//zx93A0tfj5yRJ/FWHk5/alk4/DhFPEFBLjeJmuo9fNrrwFvvolF8bba9NXVRArqkgBVi58zM/WR+FDr5xEj9NOfVOvn//5XH53t2lr1flZzEuwKqJ23R46k7Ak9UF6urg+XLKGPu6HFz4cOudwcUaj187BhxEKrB9T6Wa/3c20t0NiozsYdO1xvjxjU+nnwYCq/0wNq5+0nn6TPJQZPiq87oXahExhINO166P6VlwMhIcrtOnbUJ4BW2YdJSUDXsV3gFR7qnjRFIdT62d+fdu/khK5dBbUvQL10RtX2IUA7kHr1IaBso48PjWU9Ahe1fvbzA7y8kJMjflvqusPQ4me99CfV2ujlpZ8GpVo/62kfoK9msRJai41Gtw/w2OgoPH52HK3FRiPbpzM8Aao7kZhIulVK6Q4NDbTTvWuXe+wS4vrrgZtvVm6XlkaEFxcvutwkC/j4AP/6F50yS4BPUxyZ/QPuZh81pym6LUjt1Yt08pQmnoYG4Lnn1NWaOBuTJ5NWqxIOHgQef9z9JwZeXsCcOUDfvsptv/ySxou70bUrcOONyn6uryeyp99/d4dVlhg9Grj8cuV2ycnA3XdjYHSx6O3YWCfbJcS11yrrJgJEyPHiiy40RAJRUcCkScp+rqsDFizQRx964EBg1Cjldjt2EIlNUZHrbRLCZAImTqQxo4Q33yTNW3ejfXs6HVXaoK2tJfKVn392j11CJCTQOkIJf/4JXH011dW6E42NdCKlpI8J0Fi+/37X22SNkBCgTx9lP9fUECHVihXusUuIiAjSu1XC778D48ZRJpY7UV9P9inpawN08rdggettsoafHz2HSn6uriZytK+/do9dQoSEqBsra9cCgwYp1/D/3SClP6Pn55LXQW1sJF2m55/X2xJp/PAD2Xj0qN6W2CAujkz7ETexo+jDqGCCrhsKTU3G9/P33xvWz8246SbG+vbV2wpptCI///p6GgsKYs1jBmAsKIix5cv1NpAZ38/8vP3CC3pbIg1+PKel6W2JNFqLn1vBePbM2w7A42fnwONnx9Ea/Gwn4NFBNQgqK2n3VQne3lRTx6couBNVVeq0UPldKXfb2NhIHxnw6YgVCEEIKmyuuxxqSRW8vIjhrqJCua2zoVbvlj810uNZVIuQEGPb5+VF41kPP6uF2c+fL61AdXULSXZcHLBsmYvqT7UiJMTYfSiYt93OhKwW/Hg2cj+2Fj8b2Ua93s9a4PGz42gt49nIz2Fr8DM/no1sowvgCVDdifvuA3r3Vtc2NFSfh7FjR3XpVXoNmN9/p3rDlBTJJnw6YjlCLQJUl6YpCrFggbqURUC/yTskhJhv1LQD3O/ndeuAoCBlDTNAv7Fy112UdqMGetnYuTPw8suKzTbuJj9XnaNnsamJun/JEhcHp7//TiyUakgqQkP1GSv3309pdGoQEoL0A+VYuJBIFxmDe0oMevZUl+au13jevJnmxLQ05bZ6+fmJJ9SVPQD6zdtDhihrTwL6BS5btxK50IkTym318vNzzwH/+Ie6tnoF0RMm0M6gEvTaiNi+nfSr1RCa6dWHr76qPrVYLxuvuQb45hvldq3hoMAF8ASo7kRFhToCIkCfAdPYSHUXamzU6wXID1AZG5csocV1ywkqa15suwUVFeoJrvTyc1WVOop/vSbG8nJ6FtX0Ix/8qT0VdhZKStSfluuxoG1sVF2b9M5nNJ6EGzo8e69LceEC1cn5+Sm35ceKu/189qx6iaDQUBxPrpBkQnYJGhtpoVhTo9xWr/F8/jxptaohutLLz+nppBusBnrN2wcPquN90Ov9nJ+vTqcV0M/PR46oC6ABfYLohgZg2zZ19cN6bTjl5hJ3hpr3n17v55QUYN8+dW318vO6derkYzwnqB64HBUV6hm79Bgw/MOvxka9du54G2UC1NmzafPRJzwE3jChd0y1e9MU1TIhA/qcrNnjZ3drO6rYiGhGSAixk1pHBa6GlvEcFqaYmu50qBgrAJ3snSgIRTUC4Yd6i3suT4vX8iy2a0eMzWrKJJwJLX6OikJptTijtMv6UqWfAdBz2KmTiwyRgRZGzchISndxt86oFj937+5+bUctYyU8nGx0N/O1lmcxNhbo318fP6t9Pw8cSFko7oSWPmzXjk7Vg4Jca5M1tDyLCQlEQlRfr9zWmdDi59Gj1ZFSORNa+rBDByKZ00NPVkd4dFDdifJyEvlWgw0b3K+bqGXAxMbSCZK7KbJVLnRmzwZw00MAHsJxf3/AneoKFRXq/bxtm/vFyrUEf3Fx9GJxt4yLlmfxsccoPc/dEhpa/Lx3r/vtU+FnnvG6Gt0QDNsA3+Vp8VqexUcfpY+7UV6uXqt4yxY82xWAyKa4y/pSS/AXF+d+ZldA26L7/vv1YXfV4uf1611rixi0jJXYWH30ZLXM2wsX0sfd0OLnlStda4sYtPRhTIz6E2tnQsuzeMcd9HE3KirU+/nLL11rixi0zInR0fqoPegMzwmqO6FlR6dDByLQcSe0TDre3jT49dqhDQ5WbhsQQB89Ahe1gXtgIDGpuBNaJkYvL301RtX42dvb2BqjgD72qVjoLFokffDslrR4LeNZL2iZt9FSYiCES/tSy3jWCxUVNAb+Rn52O1qDn7XM23pBy/tZD7QGP7eGeVtLJpseaA06rTrDE6C6E/fdB9xyi7q2//d/VOTtTrRrBzz7LKXdqMHzzwOrV7vWJmuMHg08/bS6oO7ECeChh4CsLJebZYF580jbUQ1WrACeeca19lgjLIz6pU8fde0feQT44QfX2mSNoUNpvKjxc1oa7dBmZLjeLiFuugmYMkVd2y++oD53J4KDSY9XJnVJmHb6Ge7EXLQQNrglLb5fP2D+fHV+PnSINJrdfTJ01VXA+PHq2n7wAWb/eSeWLaPDSo5zAxNyQADp8arRGAVIw/PTT11kjAQSEshGNX5OSaFxpbZO0FkYPRoYMUJd2//+V/273Fnw8yP96pgYde2nTlVHqORMdOlCNqrx8+7dpN179Kjr7RJiwAD6qMHLL5OerDvh5UV6vFFR6tqPGQO89ZZrbbJGhw7kOzV+3raN9MyPHHG9XUJ066aerPKZZ9TphTsbffoQMakaDBjgRiIVg0BKf0bPzyWvg8oYY/fey1iHDnpbIY8OHchOo+LPP0k7assWvS2RhsfPjmPLFo+f7QSvGQwwdh7t2Qe415iawYy1jvF8zz2G9LMFOnRg7F//0tsKafB+/vNPvS2RRmvwc/v2rcPPRh7PBp23LeDxs+O4917GOnbU2wp5tG9v7HWYnYBHB9UAYIxO8qqq1LXXgzynqorqk4zMTHrxonrCHj0YKxkjZlK1hDh6sEHW1xPRjFpWPT1srK0FTCZ1bfUg7GJMG+mRHmPFZFL0sTAdlZdlcivjtRZmx9ZAta+XnJAWGF2XsDUwVrYGP+sl46IWHq1W58Aznh2H0fsQaB3PopPhCVDdhaoqSjn48EN17UNCiN3OncxnK1cSg2Jenrr2egyY225Tn4qhx8RYVQW0bw+884669qGh7vdzUhLVvqqlFdVjoXPDDZRCpAZ6+dnXF3j7bXXtQ0LIx+5krPzqK0oLlPEzz3gdF0eyTBGBFe5lvL7mGmInVAM9/FxZSRH8Bx+oa6/HvP3NNzTnGHnenjmTfK0GekikVFYCERHqU5/1mLdXrKA1RH6+uvZ6+HnePPWpz3qN5x49gK+/VtdeDz//9BOxB6uUCNNls+Tuu9VrjOqxsVhZSWVC33+vrr0e8/bq1cDYsUBRkbr2rWFTzMnwBKjughYCImE7dz6QWm3USyJFi1QP4N6JUSvBQWvwsx4LHa1SPYB7bdRKEqGXjY2NimRrs2dTcsfAsaGYMqrcfcEpAJSVEcmVGuhx4sLr8aolg9PDzxcvUtaGWqkJPebtggJ1Oq2Afn4uKtKeteHOfiwqooGqlt1fj1OhM2eI3V8N9Bgr5eWkd6tWqkoPP589C6SmqtOGBvTxc1qaOv1OQJ8+LCsDDhygP9VAj2cxKwvYuVM9CWVrOOV1MjwBqrugNXDRc9GtJXBRm7LsLGhhTuX1Md2pm6iVmS00lE4z3akzqtXP7dvrw4Ss5TkMDVW/uHQGtAb57drRCY1gkZ6URLw2Xl70Z1KSzjZ26eJ+1kMt4zk0lGx0J6u01rESEUEnNO48Kdfq5549yU53Qquf+/RxL4u9Vj/HxNAJTUOD62yyhlYbBw0icip3QuvG4siR6qW6nAGtY6VbN8rYUlv25AxotfGyy4DERNfZIwatGuCTJ1N2nrugdaz07Alcd52x1xBXXkm+voTg0UF1F7QGLrNnA3PmuFfGpaKCdmdVLgC/u3UNnnnOBzleJLu2ZIkbUgO1BC5BQXSC5E4ZF60T4/z5xLTqTpSXa/Iz/u//XGqOKLS8AIOD1e+UOgta/TxnDn3MaNYfNUu8ZGe3SAI6bQxpHM9YsQIffvghvhk1Cnl5efj+++8xduxYJxkjY6PaPgwORtLruVi0CMhZ6KY5R4smIUDpje5md62oIC1ltX7+/HPX2iMGjX7GsWOutccaWt/PN9xAH3dC67ztbgZfQLuf9+xxrT3W0Dpvz5hBH3dC67z95puutUcMWtdhGze61h5raJ23p06ljzvB+1ntGv/FF11rjwHhOUF1F7ROjL6+7tcY1bD7mZQE/PNeH2RnE88Jv8B2+imQNbQELhznfo1RrbtieuljGlkfDDC+hpnWF6AVxPRHq6vputOg0c+MMbzwwgsoKirC2bNnsXXrVicaIwGNc87ChXDvnKN1POsBo+s6AtpOUPVAa9GeNLJ9QOvxs5FtNPq7DzC+nz3z9t8CngDVXejenYhzevZUbJqUBFzWJRcfcvdhWtRh1wd9PG68EXjhBVVNFy0CplSvwke4p/ma0xfYYli8GLj+evXtn3oK+Phjl5ljg7g42umS0Z60QGYmMHcusH+/a+0SYvp04Ikn1Lf//nsip3InHn4YmDZNffv77weWLnWVNbaIigIee0y99mR6Omnj7t0LQJq3SC1vlSpMnAjce6/q5ufefRfnz5/Hww8/jOjoaKSnpzvRGAnccYdq0rNFi4APqm/HU3it+ZrL55yICIqCY2PVtT95kvp91y4XGmWFkSNpDlGLjz8GrrjCdfaI4aabtKWn3XQT6Wy7C+3bA7feCkRHq2t/7Bil+G7b5lq7hEhM1HZqu3QpMGyYy8wRxVVXUb+oxZQpwJNPus4ea4SG0vuvc2d17VNTKWV/yxbX2iVEz56UEqsWr78O9OrlOnvEcNllQP/+6tuPHu1eHfCgICIg6tRJXfuDB2mu37TJtXYJERND/aIWL76ofn76u0BKf0bPz6Wsg7p8OWNBQYz1RRpjAPsHvmdBQXTdSOA4xp7H84wBjENTs5Yix+ltmRX69mXs5pv1tkIaaeRn9v33elsijeefJxubmvS2RBp9+jB20016WyEN3s8//MAYs9QfFX7cpT+6fDn9XxxHfy5fztj6225jANhfW7awCRMmsNGjR7vHGJXgOMaOog/7ETdZ9Jmh5hwrPxsSzz3XOsZza5i3PX52DB4/Ow6Pnx3HkSPG93NrWIfZAXh0UA2AoiLg+HHFYns+9a8ClJoQggr3nEwCxMBXUKCqaWxsi41tUGlx3WVoaABOn9ZGzORu5rOLF4mFz8hskIWF2mo2eRvdReTU1EQ2aqF8dzczaVUVPVdatGSB5mdRqD/Kw+n6oxUVoiQuUqmy645eBAAMTEhA9+7dXX+CajLRZKeyD/k5JwQVNtddhoYGbcQZepDbaSX24G1013jm9xK0oLVoeBpZ9sHdfrYHHj87jtbi59bQh0a20d3rMAPAE6C6C19+CfTtq8juyKf4lYMGTCjKLa67FDNnAnfdparpkiVArZ+ljU5fYFsjN5fSX376Sf133C2R8sknxDSqljnYPDHu31rhWkZXIa6+WhuzjLsn7+xsYvxbsUL9d9y9EfH++8ROqFY6w6oPhfqjHEd/Ol1/dOJE0ZRAqfrXP46fRzcAYRyHHj16oKioCOWu7NOsLCJK+eYbVc2XLAGqvEItAlSXzzlvv00yONYdJgU9JFKGD9eW+unuRfeZM8Sp8N136r/j7nn7zTdpjGqct93q5zFjtE0Q7n4WMzOJrdzI7+d336X3s1qWbT3G85QpwD//qb69u8dzVhYtUtasUf8dd7+fP/yQmMCN7Ocbb9SW9twaNkucDFUBKsdxUzmOO8lxXDrHcU+J3J/NcVyq+bOL47iBar97yaC8nKKPwEDZZvxpQCWIYp9fjLn0lICHyqLtpCRa5JbUt5zyumSBLWYfoKnwPacsFCf3lbsn8APIRm9vRT83wyylsGFlufvIX7SSMLh78raHyMLdCx07/Sy0kdcfNZnoT6ePHQlSFanNrrP1ZzHI/L3u5hrqjIwMJxslgEYii9mzge5DQtDet9x1Qb2YjRr9vBxA/9dfR43azQtHUVGh3j7A/cFVRQVlRajV7wTcf7JWWkqbEP7+6tqLjGeXQ4tOK+D+BW15OWUQqdU1Btx/slZUBJw7p01jFHCvjZmZ2k7J3D2eS0tpkaJFesfd7+ezZynbzsh+Tkuj51EtWsMpr5OhGKByHOcN4AMA0wD0BTCL47i+Vs0yAUxgjCUCeBnAMg3fvTTAB38KrK186l8TfHABbeGDRtefEvBQEbgI0wPLEIYyhKJtQK37JGYA1YFLUhLw+8FOqGzwdx/rJx8UqGXn9fFBvncX1DRYMja7NK1bIxvkH4faI9+7Cwb2bXBPkG8PA19sLNCxo2vsEQM/VjT4GX370omhuyCx4SS+2VWFCpzDwI4dAZOpOUA9ffq0a+0DNG1ExF7ZE72u6ua6oN4adoznT0JCcLSoCL/88otrbeOhdcMpKgrnhwxBXmGh62wSwp4Np4EDgQEDXGOPGOzwMyZNci9piVbWz9hYOo1zl26wPfP2yJHu1XZUuQ5rho8PkTLGx7vULAtoZWuOjwduvlnbBpAjsIfxeuJEehbdBZ5lWIuf586ld7S7oJUJuWdPYMEC29qgvzHU6JiMAJDOGDsDABzHfQ/gOgDNQmWMMSFl4R4AXdR+95KBykmHX3AtWgR0yLmA2FhgmTuCP0CVjcL0wN8wDeEoA2qB/EVusFHjC3DRIiC78SOLa9XVJEe5aJGLNBTtoF/vYsqFWIWWy9K6VdjIn5JnZwMcNxmM5dINV+h1WsOeF6A7GXwB+yQfjh51jS1SkAhcliyx1GAFAH//I6irYxj06adAv37obq7zdmkdqj1+fv11eja70vhwuRaqxuDv3Llz2Gk+/fjiiy8w2x0Tt9Zncfx4XOPjg+TLL8fgwYPx888/o1u3bq6zz57A5bnnXGOLFOyRfHAn4yeg3c9jxgC//+46e6xhj5///W/X2CIFeyRcVq1yjS1S0LqGGDEC+PFH19ljDa2awQDw4IOusUUK9ryfVZaaOA1abRwyRB8Nax2hJsU3GkCu4Oc88zUp3Algg9bvchy3kOO4fRzH7Tt//rwKs1oZNEw6Lk/9E0NTE61YrWxMSoJFbWR2tvjX3VIjq3EnXs4ml52m2jExSqVvuyStm/ezjI3CU3LAlt/E5aRd9rwA3Q2ja5jJ+Fms/vW22w4BAAYNGgQACA4ORufOnS0CVOu5wOGxY4ef3a6FqsHPSUlAv37/B8YYgoJuwZ9//onMzEwXGWaGxLwtB8YY0tLSMGrUKBw+fBhfffWV6+wDWofGqNG1JxsbNfvZ7WgNGqNG15JtbCReAyPb2BrGs73vZ61kbvaCH89a+5Ax7aR4rRhqAlSxM3JRL3IcdzkoQOWFrVR/lzG2jDE2jDE2rKM7U/XchfvvB155Rdt3XnwRePVV19hjDcaAL74AZsxoviS2GBRmTLRHMb7HLbgSm91TIztkCPC//5EGpQrExgLX4FesxrUIgG09mEsCrTvvBJ55RtNX1vf/N17zedbimsvSuk0mOm286irJJtYkOh1RhHWYjqvwW/M1l25IJCYCr72mXqsOIGKOiRPVkxY5ilmztOu63Xcfaae6A01NwEsvSWqMWm+C+fsfRlhoKGJvuw349VcAQI8ePZpTfF0SGPbuDTz9NBFiqcTeh7/D9uohFuPZpRsm116rijiO758LF35GJELxTLUfAA4zZ37pWvKzxkbSNB4zRvVXig4fRnV1Neb074/ExETscrVma0ICPfsREeq/8+WXpD/prvE8eTKNaS24+Wbg9ttdYo4NGhuBu+8mQiy1yMujh+6HH1xmlgViYihNUsv67eOP6blwl5/HjAGuu07bd6ZOBW65xTX2WKOhgZ7DgQOV2/LIziZyKpfX3pgREUF92L69+u+8+y7Vyaslm3MUgwZRCr4WjBun/dmwF/X1RFbZp4/672RmUrr+8uWus8tokNKf4T8ALgPwu+DnpwE8LdIuEUAGgJ5av2v9uZR1UC0wYQJj48bp9t9LaTVyHP3ZAUWMAWwu9yzz97+TAenNmopiOovuxvLljD3s+z/GANYJ5yR/F90xcSI713u87v3Fg/cv/+H9fB/eb77m7W0wbd7/kZ/ZuXN6WyKNCRMYGz9ebytEMWbMGDZ25Ejqw/ffZ4wxtmDBAhYWFik5D7hTt5XHv/CB6HjWexxTH5UwwJvdhhi2FeMZMJoBYy3sNIKm9c61axkAtv6ee9i9997LQkJCWGNjo75GWeMD8jMrLNTbEmkYeDwzxhgrKrIYz4YEP297/Gw/eD//7396WyINz/vZcRQWGt/PdgAO6qCmAOjBcVw3juP8ANwKwIJfmuO4WAC/AJjLGDul5buXDJKTAa2MmO5kuKusBPbssdDHlDolY4zSAisQiuUAVrDXUVf3OYC3kZ0N3HEH1XI7PQ0vJwc4fFh189mzgetuD8SXAIKRL9rG6Se/R48C+eL/lyRCQhARUO6etO7qauDYMVktWes+EWry8mhqcmFqZWEh7RZqgR5SOBcvavuOO5lJ6+pIlkkFzT4zp3wO4HftzTZWVnZHWdk5ZGdL/54OnaSXlgIlJZq+4tfe9lkEXMhyXlys6nSH+iEZQBP6IdpsX08Qf2ALnH7a29BAc7aGtK8zZubI+MBAXHbZZaioqMBRV9ZH19aK6vHKwt3M4bW12tP73CmdYTJpT+1zNzOpPemRIgy0DQ0NSE5ORp1aiRBXw90SKVqhh0SKVrQGiZTWotVqZD87GYoBKmOsEcD9AH4HcBzASsbYUY7j7uE47h5zs+cAtAfwIcdxhziO2yf3XRf8HsbHzTdrT/F1JzV3Whqx6e3c2XxJatEXF0dBVFktcB+AzugIYAqAHwE0oqGBMhiEcMrCbOlS0VQ2qdq48+fPY/H2N7EAQO/hS2zIz1ySRjttGrB4sbbvuNPPqalAv37Atm2STXgmaR518Ec9fJv1bnm4LLXyP//RzuDp7sl77Fjg0UdVN09KAv7vjxCkH6pwDxPywYM0gP/8U7Fpbm4uysrKKED18QEqKpCUBPz00wRzi98kv+tQYPjyyzSZaMD188jPbtNCHTwY+Ne/FJtRP9DmWQd0MY+VeABnAVhqazo1PX7/fiA8XBMZzpmcHHAA4ry9MXr0aADA7t27nWiUFRYtohRELTAvaPPPnME37iAv6dFDtQZ4M9y5oE1OJvkWLaRH/v6UEuguGx97TFvaJ2ATuHz66aeIjIzEyJEj8fHHHzvZQBDj7X33afuOO/28dy/1iYp5uxn+/s3ztlvw9NPaWY3dvYGcmAg8/ri277hzIyIlhUrV/vpL/Xf8/XHB2xupGRk4efIkn5X6t4YqHVTG2HrGWE/GWAJjbIn52seMsY/Nf7+LMdaWMTbI/Bkm991LEnawu7r1xEWE4MA6UAEsF4MbN25EOYBrMBjAvQDOA/hD8r9weGEmQnAgVRu3fDnD9OnTsf/MGUwE8Pv+VXj22TQLYhiXaCjaQbZRHRiINJHTOKeT0vD2AbI22pLocKhAiM2pFeCiWlR7CA7cvUOrkTxn4ULgXHUIQlHuHrkjDYyaR44cAQAMSEwEQkNxcn8FFi4ETKZRACIA/J/o9xwODO2YEydcQ79Pzwg3aaGq9POSJYC392EAsTChvSBABYAsi7ZOPe21g7Ak48wZRHt5IaCmBvHx8ejYsaNrA1R7CIjMff7ce+9h/vz5OHHihAsME6C8vEXbVC3cuaDl/azFRo5zv41qdWR5CE7/GGNYvHgx4uLiEBER4Zra6AsXKJjTaqO73itlZZTNpqUfOc69a8XiYso40IIQWj0wQYaeS5GTY1/Whrv8fPEiUFCg+lmsqKjAE//+N7o0NWHg55+jd+/e7tm40xmqAlQPHARj9rHHRUTQ7rg7ILKgFWP7FC4Gf/jhB4TCG13QCyR1GwZgheR/4fDCTGSxaE3oA9DPTzyxH/v27cNbjz2Gn2JjERoUhC1bHnNtGq2dfn7w8GEMunDBQnPSZWylKpkWrUl0TvoPRAlsd8ddklppz4K2Y0cilnCH5p9GPz/0ED2Tp9ATR9EPgBuYkDUELnyA2r9/f2DMGKxOiTaPKS+QKth6WJ8COiUwtHdOHDcO/1x8BNOnX4PTpxtcF5zyflYRoM6eDURGHkZg4ECkYQAOB47CDTfwAeqZ5nZOP+21gwn5zJkzSOjQAejRAxzHYfTo0a4lSrLHz1FRqJ46FSu3bgUA/Gom7nIJGKOgQKuNw4a5T9vRHgkXALjpJjpNcgfs8XNMDHDrrUDbtkhLS0NRUREeeOABjBs3Dvv27XOufRrGswXGjgVuugmpqanYvn27a0+uNG44bd++HQ888ABM8+aRpqw7YMf7OdPbGx29vTH7zTdR7WqiJHv9fOWVVJ/mDmj087PPPou33noLNw8YgB8ffRTdunXDt99+60IDDQKp4lQ9P387kqTKSipufv11vS2Rxpdfko1nzqhqXl1dzdq0acMmTLiTBQXxJCC3M6AN8/b+gvn61jqfHGTaNMasng1rQp+Wz79YQEAAu3jxImOMsTfeeIMBYEePHnXQCBlUVdF//sYbqr9y7Ngx5uXlxQCwefPmMcaon7y9XURKo9HPPJYvZwI/u5jwRcTPhgI/nlX4eflyMT8WMKDYtcQ+Gvx82223sZiYmOafLcfUegaAAeuc7/Pp0xkbNsyur44aNYoBYPv27XOSMSLQ4Oeamhrm7e3NrrtucTPZWZcu5xgA1rbt+64jP7NjPEdFRbE77rij+Wd+bszJyXGycWZMm2aXn5cvX84AsNDQUDZu3DhmMpnYL7/8wkpKSpxrnwY/6wY75223wk4/81i6dCkDwLKystjrr7/OALDi4mLn2eeAn5uamlhMTAwDwAYMGMCOHz/uPLuE4P2cmamq+bx58xgA9t1337nGHjHY8X7+7LPPzO8RsBEjRriWlK01jOcvvlDt56amJhYVFcVuuOGG5muLFy9mXl5e7JyRSadUAg6SJHngKFSeWrkkpVMtNO7o/Pbbb6isrMSiRbc0n7ICT8HXtxuamhZg8OC5zk+nFdmhFT/Bq4WX13e44YYbEB4ejqQk4P335wHwwujRP+DLL2tw6623Ijk52UGDrGDHLvfixYsRHByM+fPnY/ny5bjnnm8wf/58NDUdF23vcEqtnRqjSqfpToXRNUY1jBXbU1ITgIkA5rtWmkljiu8AQc2vpV1XAGgDYBW8vZ3sczu1Jw8cOIA9e/YAgF0nf6rnWQ26jkePHkVTUxM2bBjYnPWQl9cJQBBGjjzjuqwNjXNOTU0N8vPzES+oIbvpppsAAMtdJV9gp/bkV199ha5du+LBBx/Ezp078cEHH+DGG2/E584Wq7f3dNKduAQ0Rv/44w8kJCQgLi4Ow4ZRldj+/fudZZ1Dft6zezdyc3Nxxx13ICcnB4tclf6i0caDBw8CAJ577jk0aE27tRd2vJ937dqFdu3a4b133kFycjIOHTrkGtsA+3VaGaPUJnfojGqwcc+ePcjPz6d5ur4eqKjALbfcApPJhJ9++snFhuoMqchVz8/f7gS1upqx1atldz/FTqim+v/Jzg64irH8fNfbePo0YytWMNbQoNjUZDKx8ePHs86dO7OGZ59l7O67Le7dcccdLDg42Pm7ZJs300cAsX7z8/uBAWAbN25k331Zy/70upLNxrcMuIIBPZmv71sMAFuwYIFz7ausZOzbbxk7eVJV8/T0dAaAPT9nDjs3bBgLDAho3mUEFrjmBPXoUcaWLVPlZws88QRjc+c6+J+rxP/9H2Nr1mj7Tk0NYyNG0M6kAhyWQCovZ+zDDxlLS1NsKjyNvBq/so8RZ/ZvW/bttyaN/7EGHDjA2H//y1h9vWyz+vp65uvry5588km6cN99LHv4jVZjahoDBrL27Z0sg5SUxNgPP2j7TnU1WxAWxoL8/FinTp3YrFmzNH1dUyZAaSllvRw8qPjvfv7552a/nmQ34GeWhVjWBTkM6M8CA6/TZKMm7N7N2HPPMVZXJ9ssNzeXjR8/vvkkI2nCBMamTm2+P378eNajRw9mMrngmfz0U8a++krTVwoyMhgHsOeuuoolJycL5kWwhQsXOte+CxcYe+YZxpKTtX3v++8ZCw9nLDvbufaI4a+/GHv4YcXxbINbbnGfdMY779C8qAUVFYy1acMa3niDhYaGNvv24sWLDABbsmSJ8+wrLmbs/vsZ27lT2/e+/ZY9yHHM38+PlZWVsaeeeopxHMfS09OdZxuPjRsZu/NOxfHMGGWxeXt7s2HDhjEA7AN3aX698gq9WzSgV48e7BqAnV28mAFg/9X4fU0oKmJs3jzGtm7V9r3PP6cXgjvG86+/MjZzpio/P/roo8zX15eVlpYydtVVjA0fzhhjrF+/fmycjjKUzgJkTlB1D0bFPn+7AFUCwoWyWErnTfiRMYBN7nzEEPqYPP744w8GgL333ns0yHr1srj/7bffMgDs8OHDbrHHOuC4/PJ/snbt2rHGxkYWF2tiTeDYi3iWAZ+YFzlBDACLiopyzYJMJVavXs0AsORXX2UMYL8sXWq28RYGhDOgzj0ptTLYtm0be+ihh5jp5psZ693b5r4R9G4ZY4yZTIxxHMt/+GH27bffSvrVranKzFJL+GasZNcJFtoZGRmu+U814MiRIwwAW853wMyZjPXubeFXf/+7GdBB92eRMcYuFBezAIAtHDKEzZw5k8VpXJRJabpq+WfEnvkHH3zQPK80spuxkjGA9UcqA2YwYIAmG12B5557jgFgPj4+DADbfcUVFuP5iy++YADYTq2Ldxdh3a+/MgBs+/z5rKmpiUVGRjJ/f38WExPDJk2apLd5hB/p/cyOHNHbEmnMnMlMvXqxiooKvS0RR1MTYwDbs2ABA8B+EGxY9ejRwyKtUS80ff896wywG668kjHG2NmzZ5mvry+7//77dbVr7969DAD7+eef2cSOHZkvwFatWqWrTWI4f/48A8BeAxh79lnWo0cPNmPGDL3NssXKlYYbzyaTicXFxbHp06fTBfP7mTHGXnzxReenwesAuQDVk+LrDhQWAuvWke6fGdYkOE1Ntl/j9ScrC8rBmBOJcsSQmgrs2KHYjDGGZ599Fl26dME///lPUeazUaNGAQD27t3rXBu3bAHOnLG5bE3oU19/DP3794e3tzdycoUMtDcC8AFQDeBu5OfnNxPEOAUlJSTfopIJLj09HQCQ0KMHAOCG4cMRF7cQwDwApQA2Nrd1WnrlqVOAhvSa559/Hu+++y42V1basAS6jMgpJUW1lmxzuqY3hwq0wVOr/sLcuXOxbt060fZSpFqaMrbKyqgPFfQxk5KIe4VHIWrxK4B2HJFZOJ0ERIicHFHdZev01o8+MjP48im+ZkkF4ZgKCOgCoBhCoiSnkDydOKFZB/WnX35BLYB/9uqF0aNHIzs7G/kadIelUuRFr1dW0nwj0MySeuY3bUqFn98AAN4oh1AKJx4cd4Z2g12BoiJ6v8jAZDLhm2++QZ8+fZqvJUREWMxTM2fORHBwML766ivn23j2rKzushjSjh0DAPQLDISXlxc+/PBDrFixAmPGjMEZkXeAQ6itJWZSsZewHNypP1lRYTtxqcCCQ4cQePIkQkJC8OOPP7rAMAHKy7X3oZcXEBKC1UeOgOM4TJw4sfnWsGHDnDtHNjaq0oW2xs68PBQA+Mf48QCAqKgozJo1C1988QUqhRO8M9DQQBOLChw4cAAAMHToUKyaMgVDfH0xc+ZM/KVFusQeaEyB5cswRgcGAhUVmDhxIrZt24Ymrc+KWtg71xpQqzUtLQ3Z2dm48cYb6YJgvX3ZZZcBAFJTU/Uyz+XwBKjuwN69wDXXAOaABBBfKFuDD1CF8h4uY/98801g3jzFZocOHcKuXbvw1FNPISAgQFQjLCEhAe3bt2+uE3Mapk0DPvlEtgljDMeOHWtejMXGUj+S7EMHUPA3H9HRzwEAXnvtN+fV/e7aBUyYQEGgCqSnp6Nt27ZoFxVFFyoqsGQJEBg4CUA7AN8DIObPr792Uv3ayy8D/GSngOzsbGzZsgUAsPTECRs/OyXYE8PYscC77yo2sw4WylgoNmbT4vXxxx9HgwjNvKYARQp//UX6mOZFtJxtLfFXOVLxHgDgnTv/CT8/P+fWV1lj0SJg8mRRm4TB1bJlR+Dt7YPevXtTIxFZirKyLua/WQaCDtdDDxxImrcasGLFCvTw9sbQgIDmF7QWiRSpul/R63/+CSQkAIJNLPFnvgknThzAuHGDERRkOW/7+saDsSqcP39etY2a8OijpF8tg23btiErKwuLFy/Ge++9hwkTJqBDp04Wfm7Tpg0mT56MbTL6yHYjIYHmHQ1IS0tDtJcX2po3B2644QbccMMNSEhIQHZ2NhobG51n38aNxAKutS7OnQvae+8F+vfX9JULFy7gm/R0jPP2RkxMjGt0RYXo2NGuyb8mJATLUlNx7bXXolOnTs3Xhw0bhtzcXBQqbMCoxvr1QEAAaQdrwM9798IfwDUCNuRp06ahuroa2dnZzrGNx4IFQM+eqpoeOHAA7dq1Q2xsLMI7dMBGf39ER0fj8ccfd92GGEALEg1a7zt37oSvry+Gh4c3B6hlZWU4fPiwa+xbs4b8rHU8u1NL/Y47aA2hgKNHjwIARowYQRcEckL8prJTD1kMBk+A6g6IEByoWdzxO/EUXLXAZdqTKgq2+V27q666ii7wOzqCXTWO4zBy5EjnnqDW19Pup4yNSUlAbGwhLl68iJUr+yIpiSQdKjmhhufnCAr6Cm+8EYXY2ESsXPmb804ANRIcZGRkoHv37hY78bNnA59+6oc2bW4CsBqxsbXOJabRQHDAk6bcfvvtWJ+VhZNWfnZKsGeN+nr6qCQgEgYLafDHOZQhIGAqTp48Kbog0xSgSEEFwYGlbVUAJqAMh/AFgHlTQpGYmOjaE1QRAiKx4Kqx8Qi8vHrBz8+PLoSE0MmhwM+dOvEBap7FdxlzYFOnro78rIFsIz8/H1u3bsVt4eHgKisxePBg+Pv7ayJKUtJ2toCIn8Wf7VQwVo477hiLZcuANp3pd0roUI4HHyQyIqef+gltVOjDr7/+GiEhIbj++utx7733YuvWreBCQ8nPgoVs3759kZGRIbqxYzdUzNtiSEtLQ7+AAJvgLz4+Hk1NTchx5kvQXlIVvt8FNmZkZGD58uXODxDsICDasGEDmhjDK01NuOvOO7Flyxbn9psQGuZta3xrMqGkrg6PPvqoxXWeKMlp86QdJEmMMfy6ezeuBNBGsCnSuXNnAEBBQYFzbONRXg4EB6tqeuDAAQwePBicWQc1tKoKzy1ejH379mH16tXOtYtHXR19AgNVf2Xnzp0YMmQIAsPCgPJyTJgwAQCw1Swh5XRUVJCN1hO9EtyZEXHhgqqTXl56sHv37nSBfz8zhoiICHTs2NFzguqBgxCZGKUWxN7eLSypXHg4tiEBO7EUwOuK33XYRhWLxbS0NAQFBbWwQMbGAoMG2aTOjBo1CseOHUO5swa7AoshfzqUl0fstxcv9sXChXQvYNRglId0sWGfLS2dBpNpB+CsE2qNC5309HSaeNq1A4YPbxZhnz0b+PzzSQAqsWbNSecyf6pkTmWM4ZtvvsH48ePxxhtvwM/HB8917AiTgCnQKcGeNTSwVVqvtb5GBACgtvZ9jB07Fu+//77NQlFTgCIFFQsdS9vWAjiEcHyALrgCaNsWw4YNw/79+2FyFWOgSOAivjY9goaGFgZf9OsHXH21RVrrY49Fm/9mGaACDmzq2BEUrFy5EowxzJo+HRg4EH5+fhg2bBjWrt2rOgtCExu1yLMo/mxvBwCMHz8es2cDGw92BK6/Hh/+HIEFC2iezBBJt3YKVAQu69atw/XXX48g4YM/eDAwa5aFmH3v3r3R2NjoXFvt8HNTUxOOHz+O/v36AaNHW9zj3ztODfg1MJtfe+21CAoKQnh4OJauWgU2dy5MnTvj0KFDeO6559C/f3/MnTsXa9eudZ59vI0amVPXrFmDiPBwDF+4EPNmzQJjzHXaiXayDJtMJixtasKQ2FiMGzfO4t6QIUPAcZzzAlQ7bDxx4gTO5OVhxsSJQLduzdddFqCq3Iior6/HkSNHMGTIELowbhzw+OOYN3s2evbsiWeffdY17xaN4/n8+fPYvXs3Jk2aRC+Ka69FdHQ0unfv7rpUZHsZr6OigKefBnr1cr5N1lDp51OnTiEmJgaB/IbAlVcCL70ENDWB4zgkJib+rQNU3QmRxD5/O5KkN96g4msBUYEaspYXX0xmQEczqUr35nbt27uAoGTYMNK3UsCVV17JhptZxOTw+++/MwBssxXrrt3IzKRf/ssvRW+3kJ/8z9xfZxXJT0jbEQzYbuEHu/UpeT9XVio2raurY15eXmzx4sWi9/fv399MgOBUqPRzamoqA8A+/fRTxhhjL7/8MgPA7r77btbU1MQYcxHh0Jkz9A+pYOO1JbyZyoCeLC6OsQ8//JAB4rq3DhM7qfCzpW2zzSRDjc3P4513fmp+9k65hlxKxM+2/VXGALDwcHmmzPLycnO7N0QJhuxil9bgZx6jR49mgwcPtrg2efJ9DAhhgMn5BE4ifr73XlvtZW/vm1mHDnGi/wSvj7po0SInGCSCoUNJT1YCFRUVRFDy2muK/1RKSgqDs4lWeD9LzNtiOHXqFAPAvhB5NrKzsxkA9sknnzjPRpXzNs8se8UVV7ApU6YwAGzo0KEsPDy8mfjs5ptvZt26dWPDhg1zLgHf0KGq5m0edXV1LCQkhN11113N1yZMmOA6pmY7/NzU1MTuuusuBoCtWLFCtE3fvn3ZNddc4xwbNbyfefznP/9hgK1GMD8nvuFsrU2Vfj58+DADxPVPP/74YwbANVqtGv386af0njtw4IDF9ZkzZ7Lu3bs73z7GiHldo5+t0djYyDZu3MhqamqcaJgAw4bJzts8RowYwa40k3OJ4ZFHHmGBgYGu1ZV1MeAhSdIZFRW0XS9I3VDayW9oaMD3389H+/YB8Pe/HUA6iDiH6tqcTpak8mTNWjNRCnzO/M03JzunvlPh1KrldOgYgFAAna2u2yI6mv89LHP47T4BrKigYxwVqSXZ2dkwmUwtqRtWSEhIANBCpOQ0qEzxzcrKAgAkmutuFi1ahKeeegqffPIJLr/8chw5csQ12qgqdmh5op/sbPp/CdUAtsDHZzqWLAGuu+46AMCqVatsvm9NqqXZ3vJyGz9bkw9Nn87fbgSwHsB0BAV5Y8kSapuUNMz8zX2uIT8TOXGxPT1OAwAsWCA/nkNCQhAaGoq5c/ME/W0JzZmDGne5GWNITU3FeDNRCY/9+xNBGRAttWBOq9O3Gs9JSVQLbnkoz+Dntw1Tp44T/ScCAgLQo0cP19UJKezE8zVycSRULYte5pOD48fFNZjtgh0nqGlp9Fz279/fJg0uOjoafn5+zj1BVTlv85wKixYtwoYNG7BkyRKYTCbcfNNN+Pbbb5GdnY0ff/wRzzzzDPbt24fffvvNuTZqOBHatm0bKioqMGPGDCIuMpkwZ84cnD59url/nQo7/PzII4/gs88+w+JFi3CLeb62xrBhw5CSkuKclGmReVsJa9euxcCBAxETEWFBihcSEoLg4GDXnKCq8HNmZiYAoIeZYBFNTUTC2dDQTFLJa6Q63T5AtZ9//vlnxMfHY9CgQdR/ZlKGnj17IjMzE/WCTB2n2qjRz80oLsaeTZswfPhwTJkyBZ999pnz7QNUrbcZYzh16hR6CmuS6+qA3NzmjMXExETU1NS4LkNHZ3gCVHfgzjuBP/6A9epObqH87rvv4vjx4/gytgNm+vqbrx5ovl9dDcyZ44TAj8dXXwHPPCPbpKioCEVFRbRw4LFnD6WnWi3A1q0LB8fFoLT0mHPqO7t2JZKDMWNEb7cElccA9AXAtVx/5RVg6lSb77z+ehcAYRAGqJrTPYWYMwf45RcbP4uBn1CaA9TLLgPeeKM50GnbNgxeXh3w229Onnjefx94+GHFZvyLl09l4nbuxKu//IJPn3sOR48exahRo1BcXOx4sGeNmBjghx8A80vWGkKiH4DWr9TdyQDq8Grjb1i0CNiyJQqjRo0SDVAdxsyZFKmY/SxGPvT118D8+UBExC4AF9GhwwwK3l/th8L7XkJtbT8AwQCoftLp5GevvQbcc4/FJesNhXbt6Ll/4AFBgLplC6U6HThg8d0uXbogLy/PeWndUVHAp58CQ4eqal5UVITKykoaL488QmUFAC5c4IlLLNOcnFJqd801wP/+1+xncWK706ipKbJJT0RcXDORyIABA2yCAusNDbvnxcWLgdtvl7wtGaBu2kQlBSkpzZdCQkIQHR2NEydO2GmMCDp1Av77XyLEUgm+r/p+/DHAL8DN8Pb2RteuXZ0boE6eDLz+uuK8vXv3bnh5eWHEiBHw8vLCM888gwOZmfi0XTvMmTMHseZBMG/ePMTGxuKdd95xno0PPQTceqvq5ps2bYKfnx8mNTYCPj7A/v2YNm0aADg3cObRoQPw3HOqiZwaGhrw2WefYc6cOXg5Lw9c376i7YYNG4bCwkKcPXvWcRvHj6dBrOL9DBDJ1M6dOynIDwsDnn/e4n5kZKTzA9QFCwCJYF0IvpaYf+awfj3Qti1w6BD69u0LPz8/1wSo4eE0//KkejK4ePEi/vjjD9x0001UJ3v33YC5rrhXr15oampyTW3+iBHAgw+q9jOPiooKLIyMxGVTpqCwsBBt2rRxXfrszJkAz+MigZKSEpSWlrZsQgA0b8fGNq+3//ZESVJHq3p+/nYpvhpRXFzM2rRpQ6ktnTqx/2KeOYXoP6Lpde7SJOT1Tzdt2tRy8a+/yAirVF5KJ7yKAYMdSwVUiZZ00wgGLLDsl/vuY6xdO9Hv9ew5lvn7j3G7juf777/PALCCggK60KkTO3XF3VYps6OYl9cVuuhNvvDCCwwAq+OFpHk///EH27NnDwPA2rdf7vZ+k9KxBF5nANhJhDf7/tZb32AAWLaLhbfltDUff/xx5uvry8rKyqhxx47sY9xtbnMlAwY1t7c7tdxO3HfffSwkJMQy5W/r1mY/CzFlyhQ2YsQIt+vI8tixYwcDwDZs2GAxnmNiKsxz48sun2esU3vp85l4Ol2nTozdcw9jjLGXXnqJAWjWonRnH/Kp7mfPnrW8wfvZat6+8sor2YgRI5xviAbccsstLD4+XnLenjp1KhsyZIjb7Zo0aZJNijnr2LHZz0LMmzePxcTEuMkyW0ydOpUNHDjQZjwPGDCAXXHFFbrZxWPfvn0tqb0y7+fdu3c7P+1cJZKSkhgAtmfPHvLz3Xdb3B87diwbP3682+1ijN4r/v7+LXO3lZ+HDh0qmxrqDnz99dcMANu7dy9dEPiZX0OsXr1aRwst8fTTTzMvgD2WmMjKy8vZ+PHj2ejRo3WzZ+fOnQwAW7t2bctFKz9XV1czLy8v9txzz+lkpeOAJ8VXZ/z5J/D776qbb9u2DZWVlXj66aeBkBB0D2oAEAdAnB7d4dMXkwlYsQI4eVK2Gb9Lc8cdA5p3/tdvF6fapw2+fgCOA2iyum4HsrKAVask9fRmzwbeeqsEQCEAkphpJprjmYZF0oQmTUpEQEAampqY4yeAe/YAO3eqapqeno7g4GBEREQ023h0T4XVCU0CTKZ0552smUzA2rXUlwooKChASEgH9OzpBy8v4OpbWxjuTp0aDqAjSko2OOd0XIizZynbQEJjVPr52Yt2CEc3VAJgqK4GfvvtegDA559/7gTDBDh0yILCXsqm7Gzg3XfXoVeviQjl07ZCQxERxI+VsQAOAygD4ETyM5OJ9HgVdvePHDmC/v370+42Dwmqff4E1Wlp3UVFdHqnUpeQT3VvZr0uLwcYw2uvtQHHJUB4gupQFoQQp04BZhZFQMo/+wGE46qrelk+/wK5Hn6Xm5cMcJo8k8lEz+GFC5JNsrOz4efnh8jISMsbEhIpvXv3xokTJ5yTUgmQbSdPWpAxKSEtLY2ydCTm7fj4eOeevOTlKY6VpqYm7NmzB6OtSJuEsg9CREdHo6CgwDlENSYT6fFq0NxsLsWxGs9Tp07F9u3bna/fWVFBfahS25KXhho9erSoljqPgQMHwtvb2zlESSUlmhha165di06dOmH48OGiNnbu3Bnnzp1z3C4ejAHnz6saKzk5OYiNjW2Zu63G8+DBg3Hw4EHnjWMetbW0BlPx765ZswbR0dHUf7yN5vHMp62eUinJpwk1Ndr1eAH8/vvvGBsQgP/274+QkBD069cPx44dc34fMqbqvccz+Fqk+Fr5OTAwED179nStZJ2O8ASo7sAbb9ikh8ghJSUFPj4+xNAWEoKhvSrg7T0UUgEq4GBKW2UlcNttFLzIYNWqIwA6Ii8vojkw+fcrtlT7AL+Y6wugFsL6MLsX4X/8QfqdMoux48e3mv9GaUZ8re6hM6E06YtMCgMGDEBZWRlyc3PtNEyA558HHntMVVOewbf5BRMaCu9q65dndwC5yM7WLi4uispKYMYM4OefFZumpBSgsrJzc9rqyQKaGHf9XoFnn/UCcBWA3wHQAsxpKaobNgCTJgHFxaK3pZ+fZEQiDr5ohD+ov0pLe8LP7x946aU3EB19ynk1nk8+aZE+K23TOTQ0HMfJk5Nb/u+QEAzrVWEujxkH4lbZ7bygCiA/T5gAfPedbLNjx46hX79+lhclApcuXbqgoKAADQ0NzknrXrOGUrFUahymp6fD29ubUlVDQ4HGRqCuDrNnA8OGDYSPT6rz6qB5PPAAMHdu849iDNBADoCuyMnhLDdpBAta6zQsp8kzVVYSG+9XX0k2yc7ORkxMDLy8rF71IhIpANCnTx+Ul5c7L3Xxl18oHVDlv1dfX4+TJ0/ScxkqPm/Hx8ejtLQUF2TeBZpw553ADTfINklLS0NlZWWz9m4zJIKr6OhoNDY2oqioyHH7KipIS1ZBA5zHxYsXcfbsWXrurMbz1KlT0dDQ0Kxv7TT88AOl7efnK7cFsGvXLkRHRyMmJkbSzwAtwPv3748UQSq63bjtNmDKFFVNGxsbsWHDBlx99dU0dkQ2Ijp37uzcFN/yckqJf+89xaZ8gNoMq42IIUOG4MKFC86XFVq+nEoD8mwZ3YVoaGjApk2bMG3aNMsg2uzntm3bomPHjjipcChiF66/XrIUTArFxcU4ePAgJpm1WgGS3SotLXWNlFBAAPD227LNTp061VzS0AyRefuaa67B+vXrNemBtxZ4AlR3QKOGWUpKCgYMGICAgAAgNBRdQitw441DQURJZaLfcej0RaU+2O7dR8AHfzyKasW1o5YsAfz9+bqSYwAcPNlQsLGhoQEffrgIQC8AVzZfr64Gftlk+ZIW1n+98IITc/g1+DkjIwMJCQnNtvx1MAShsF7odAfAEBWV6bhtvH2AKhvT0grAWOfmn3lN3vUrK8wL6WkAigG07Gw75V2oYKN4kHAWwFm0A9Xzhgj6sb5+KYAA5OffizlzGP71LyfYaEVwIG4TABCNfkPDxJbgPTQUXULLsWwZEBMzEoA3AgN3IDCQYiGn1JSrkM0oLy9HcXGxLUmXhBZcdHQ0GGPOOzFQSZLEj49XXkkHx3XFypW+zTb+9GUFunYFUlIS0dh4Gp99Vu2cOmihjQI/C0+PW5ALIAaA1SZNaGjz79itWzcEBwc3zzFOq+NVMW9nZWWJEyRJ+Lm3ubbMaXWoGsmwTp06hcbGxpYTVOG/YQa/YHPa4lsFMQ2vtWtzgio4KReiSxfSDnZK7aTGPuRreC1OUM3/xpgxYxAcHIzPPvvMuWRYGjVGd+3ahdGjR1PwoqA/OXToUBw4cMDxkywNRFM7d+5EaWkprrnmGrogcYJaUVGBKomsLrvsA1RKrFkFqCInqIALiJJUriF2796N8vJyTJ8+veWi1bPYs2dP15ygqiT8FGLLli1gjGFSRETzc8hv3h47dsz59gGKNp46dQrx8fHw9fVtuSgyVp577jlER0dj4cKFztWwNgA8Aao7oGFiZIxh3759LWkRgwcDPXrgzjuJTOSZZw6ILoYrKx1Y2KqYdOrr61FffwTAIIvr5QjFTowmkgQBZs8G3nuvj/mno46fbPA2mrVCrfHZZ5+hsfEkgP8A8LW4t/9iPOlHNTXZENoUFlLA/c03TiiGV6lV19DQgIyMDGRm9sTcuWTLLozGAQy2aklMvrNmOYnJV4PeX319AXgmZID8vAFTcfRClHkhPQVERLWhuY1TUlQVnkWxFNOrrkoGANRhPH7BDeAgXMh0BvAigD8BHMHHHzshAFQVuAAUoIYAGNwSvE+aBIwdi9mzgZycNujWbTDq6jajpORFMPaRc9KlVYxnngWyWc+YR1gYETgINP+AlgV3nsLOuWYbJcYzYE2IdRqNjd2xcCGwqaA/MsbNx6OPceZ7iQBM+Ne/jrqcCZk/PW7Jis4D0KX5frOfr722+bTGy8sL/fr1aw5QnaLFC6jyc3Z2tniAGhZGJ4dWZCd8gMqnIzsMfs6R8bMQFgy+gwfTKbaPj0WbmBjaEHBK1gtvo8JiMSUlBZ06dbI8zQCAW26hzB4rREeTdrBTA1SVi+4jQgKVsDAitTGf4vv7+2P+/PlYs2YN+vbtiy+++MJx+4Q2qvBzfn4+srOzW4L9ESNoZ8fPT7T9kCFDUFxc7PjcoyFwWbt2Lfz8/DB58mS6cMcdFtkUgAu0UFUGLvX19SgoKLAMUMPDKYPLTEKUmJgILy8vHLAiu3OXjevXr4ePjw+uvLLlsABjxhAZmT+RfrosQNXIeA0AmzdvRmhoKIb/+9/N2VF9zcRdTpsLhfYBin14+vRpy/RegIiw/vtfC33okJAQfPDBB0hLS8M333zjXFv1hlRxqp6fvx1JUmwsY/Pnq2rKa8Dx+pM8SkpKmI+PD3vkkUfY8uWkheo0sqQ9e+gfEBZj2zTZYyYj+UmUDEYK0dHRbN68eXYYZYXHH6dfUAJdunRh/v7jmVAPUcw+cUKbWObnN8txG1X6+eTJk+a+/EqUXMfbmwhZunQpYgDY0qVLHbeNMcb27lX0M2OkTwf4MOAp0b5sIXkZyYAhziV5eewxWT+L4cknn2SALwNqRPsTOG3u70+cQ6Aj42fL56sPA6bJ/p8hIY+YbQMD2jGgyXEbVYznVatWMQAsJSVF1T/J6+6NGjWKJSQksPPnzztgIFPl55a+NDEgjAH3NfeNZT+nm/vvvxbPqMNQ9HOV+f99VXEuvPPOO1lISAcWG2tiHEfzd/v2DmjxMtYyntetE71dW1vLALAXXnhB9T9pMplYQkICmzx5sh0GieCxxxgLDFTdfPHixczb25vV1tZKtsnPz2cA2AcffOAMC1XN20OGDGFTpkxR/U861UZ+PEv42Rr33HMPCw8Pl9Q7NZlM7PTp06xt27Zs4cKFjtvHmKZ5+6effmLgyYdUgCeLcZhQR8M6rH///opjgNd637Ztm2N28VAxbzPG2JkzZxgA9vnnn8u269u3L7v66qudYxsPlX5OTExkEydOlG3z+utEbNhMIOgsxMYydvvtmr4SHx/PrrvuOotrJpOJtW/f3nljhIeK8dzQ0MACAgLYo48+quqfNJlMLDQ0lD3wwAPOstJtgIckSWdoSP3kyQCaT1DNaNeuHWbOnInPP/8c115bIbpRaXcdoIodnR07dgAAAgMtc/uVdv779u3rnBQJmd3PkpIS5OXl4aabrkNQkCW1uLV94llhA1Bfn+ackzUVO3ctdRe9RO+bTPTJyemAkJAQ52mhqtz9LCkpAdAIX9/OFtf5vuRPDNu2nQXgADp3TnNe3Z/GdHgA2Lt3L7p1G4igoACJFgkA2gPYC8AJqcgyz2LL6VgRiCBsguwYqaiYD+AaAPcBuGD+joM2qkgV40lmbE5QJcCfWu3ZswcZGRk4fPiwAwZClZ9b+qAEVNrQvfk63eNPyuMBXA7gBQAZziPtUvBzQAB/okMnqDZ+FhDk1NUNQEVFMXJyisAY1cfX1ADffutAHa/CeOZPGCU1UBkDrHQIOY7DLbfcgj///BPnz5+3wygRGzWcZqSlpaFnz57wN5+yoK6O6o0F6NSpE3x8fJx3mq9gY2NjI44ePdqsCW2BpibR1NROnTrB29tbtxNUC/KzqiqL9FSO49C9e3f07dvXeancGk4n9+7dC39//+Y0VDQ1ETlQba1o+8TERHAc53i6qspn0WQy4dSpUy32AdSHVr50+gmqyhRfG4kZHufOEfmcGSNGjMCePXucS/Kjws9nz55FamqqZXovQGM5I6OZ7MtlREkaU3yPHz+OM2fO0GlvSUkzWSjHcejbt6/zT1BVrMNOnTqF2tpaDBST50pPt1kgcBznfPI4A8AToLoD27YBTzyhqmlKSgoCAwNbyEuWLm3WkHv44YdRXl6Or776ynlEGwCl2CQnU0qVBHbs2IGEhAR8+mmkLYPnN1cBjz8u+j0+QHWYzfCpp4DVq0Vv8QHfbbf1EmcYHZgGxMcDmzZJpKH2AnAazzzjoI3r1gH336/YrGVR0BKgPoH/IN2c0svbyC8knBagDhlCOlpiCy0B+BfuPfd0tujLrOjRmL3rPgC0oD558jb4+Pjgttu+cl7d30MPaYosamtrsXfvXsyYMRo/LjqEEq8OmIrf0L69sBUHYBSAPQCckIr8ww8UAYmAD947dKD608jIiZbB+4svEhGGGXFxAwH8CuBh85XtjtuYmEhEWBLaggAFqKGhoWjbtq3tzQEDKP1TgLZt22Lt2rXYuHEjADguDL5woSLpS0sf8M8/BajTIg6ghvljOtabr3MAvgbgDWAugCbnkHZ9+imJ2Ypg9mzg4Yf5FNMY2xIGMwM7j40b+VTalsWYwzb27Qt8+aWkJiGvgWqTlsojPl70Ob7lllvQ1NSEn1WQqSli/nxFMhAhmhl8AXonBQQA5meOh7e3N6Kjo52X4vvWW5SqK4HTp0+jrq5OPEB98knAmiHZbGNUVJRzAtSePYk4x0oTVgyMMaSlpTUTcwGg5+SBB2za9urVy3kkNf/4B/DSS6qapqamNmt1AgD27aM58c8/Rdu3adMGvXr1cjxd9YUXVGmMnjt3DvX19Zbj5vnnyQ8COD1A7daNNNsVNg35AJXfNGzGyJHAv//d/OPYsWNRUlLiXCKia66x+D/EwKeY29RrHzoEdO8O/EXvRj5AdToD7WOPAWbNXzV4+eWXERQUhH/84x+kHz5kSPM9lzD5xsRQH0rNy0DzBrBogHrllaKkq926dfMEqB7Ygf79Va84U1JSMHjwYPjwdTfl5UBqKtDYiBEjRuCyyy7Du+++i5gY8WDKroVtaCjAU6mLgDGGHTt2YKy5ds6GwTM/HzDXtFmjf//+qK6uxpNPPomLFy/aYZwZ3brRBCwCPuDr3bu3uH3e3mRfcbHESVYPALXIyXFwMXHZZTYvMTGcPHkSXl6dALQEBwGoRQLOwAeNFjZ2797d8WCAR7t2VAMZHi7bjH/h/uMfnS36sqNfuQUbZ8eOHXHNNddg+fLlzivO79uXJmCV2L17N2pqajBp0iRMv8Ef7Uwl2LCiFMXFwL33CmsFR4JOJ8scq9cGqLZQuAC0wuzZwC23/IXg4GDk5AyxDN45jk4LzKdCLSeuCQAiAWx3nNG3Uyeqi7OM0i2QmZmJ+Ph4S4kZHowBImP16quvxhVXXAE/Pz/Hn8mhQxUXiy19wweoPRAUBNzzSCD8UY8OfkLSkhgA/wOwGxSsOuGk/Oabm2u6xNCrFwVIb71FC0ULkqvAQIpAzX4uKuLnBcvFokM2RkUBt98OdOwoepsPUCVPUIODRRloBwwYgN69e+OHH35wwDgzxowh9lQVqK6uRkZGRsvmrAx5TkxMjPMC1AULZFk/U1OJn0A0QA0JoaNwq1NegOpQnRKgxsZSgCkSCFsjNzcXZWVllgGqBNNwr169UFhYiNLSUsdtnDRJctPOGs0SODwkpK2E4GVTHMJDD6l6t2SZZdgsxk1IiMV4BoD27dvD19fXecRxCQm0Y2WuX5aCZIBq5ecx5md6p0rpO1W49lrg0Udlm+SbmZyjrX8PKyKnnj17om/fvnjggQfw9ddfO8/GxYtVB6iHDx/GihUr8PDDD5PkX2go+dksU9OvXz9cvHjRuXJCvXuTsoe1/6zs8vX1RZ8+fWxvShCzxcfHIzMz0znSVgaBJ0B1NSorgfffB1Sk0tTW1mLfvn0YKQzE+EFtTou4++67kZGRgbvvTnUO0QZAO1uff26T7sXj1KlTKC4uxtixY8W/LzFgAGDWrFm47bbb8NZbb2HEiOnN7Lma2UrXrCGpGQF4hs877zwJwA+7dnUV/66APW72bLF1O+1MR0Q4cFJZVQV8/TXp1Sng5MmT6Nmzt4X/KkB+fnBBpUVAk5CQgMzMTDSKLIA049gx4McfFXXW+BcMv0PcDAEzKY877rgDhYWF+F2Dzq8sNm8GzIyZ6ppvhre3NyZMmGCzoP3wQ0qhJH+PAqWEpjTLD9kVpFZXkx6vwuJ469atGDNmjCUDH2AznlsIljgA4+Dtvd3xdOn0dNJdlnlmzpw5I53eK6NL6O3tjW7dujkeoO7aBahIEyYt43QAHNq164ply4AZs2k83zu3woqYajZoI+I5ANWOnULX1tJ8IyODw6eYLl4c3Uy6xqcX7z9luRijdDw/CE9Q6boDNubkUD9K+DkrKwteXl7NBFc2kNDw5NN8//rrL8cXZocPW2jJyoHXX20+QZVg8QVadHkdRl0dndTKSNakpqbCx8enmUDKAvy7RURXNDo62jk2njsHpKWp0na0IEgS2ijiZ/73ccoJW3q6TQqsGC5cuID8/PwWHwOyfuYxZMgQ5ObmolhCfkwRDQ20BlOh/yqaeSDiZ47jEBkZ6bwT1AsXaEwrBBg5OTno0KEDgqwXgFZ+7tWrF9q3b+/cADU/X3TzUgi+P2y0l61YfH19fbF9+3aMGzcOt99+u3MyxRobyUaV+tovvPACwsLC8DifAWj1LLqEKKmyEigtldWSPXz4sGWWgRAS7+f4+HjU1tY6N5jWGZ4A1dU4dw548EESpVfA3r17UVtbi8svv7zlotXu4oQJEwAAbdvuFk9ntWdhu2EDcNddkgOGrz+1J0ANDg5GUlISrr/+OaSn70F2dpnFQo4PEoTSL6LB6/PPU7ozWtq3MHyeANAD99zjLR50WE06775rzaJJqYNXX61uISWKggI6zVDxMjh8+ATy8nqhupoOdwHAtx35+a3nLfuxe/fuaGxsdI6kwv/9H6ViKSx0+BeMTYAq4udp06bB398fW7duddw+gFJfXn9ddfPNmzdj5MiRCA0NFdUImz2bJ5bka7qpDtXu9Mr8fDqdlPl9z58/j6NHj2LixIm2N0VOhfhT/3nzxqGpKRdz5mQ7JjezciUwdapk4GIymZCZmYlu3bqJjzuRjQghEhISHA9Q77sPePZZydv8+C4pAYBMAF1QW2uuSzT34ag+5cjKImk+Gs8ciMX7LHx933PsFDovj06FrNJLhcjNzYWXV0fU1FjWPldXAys3WM45r77qDY7rDmGA6vBJeVISnfzJBKhRUVG2myQ8ZDYiZsyYAcaY43qZt9+uWhvagsEXkD1Zi4mJQV5enuOpdzk5lJmzbp1kk9TUVPTu3bulLlYImVNep52gfvklZWyo2KTkA1SbAFDiBBVwUoA6cyalrCjAQgJHaB+geIIKOCCbkp0N9OlDm4sKkDxBBUSlZpwWoH78MS3kFDaQbSRmhDZa1RqPGTOmef3mFFx9tWTZA4/8/Hy0bduWZBKt7QMs/NyuXTt8Yi712Cgz16pGVhadQP/4o2JTxhg2b96M2267raXUxcrPLpGaee89YuOVCaIPHz4snt4LSG448RvOmRLZjK0RngDV1dBAcLB161ZwHIdx48a1XLQaMHFxcYiMjMSuXbvE01ntQXk54OvbTP9tjeTkZLRt27b5hWaD0FCU5ZEmIceRKgDHWQaaO3fyKVQtgTofJFhLv4iSnFgREC1aRN8nnADQWzro4BmlzIPaWqokNjYGvr7+aNfOgQBVpZ8//rgEFRXFqKykvmxqooXqjNvEX4C8TqVT0nwrKmT9zKOgoAChoaG2O7QiCx1fX1/07t3bubIUKgkOSktLsW/fPkyaNIku8H62spFi+3AAfcDXobZc1wgVRBbbtm0D0LKZZAGRIBqgZ33lSn7cb3eM6EfBz+fOnUNdXR2Ki+NFx13ORekNJ6AlQHUoOFAgSbIc31kAuraMbys/W47n8QgImIqgoHcxa5YDqU4qiCxyc3NhMomfTmZdsPTz7NnAkCE94et7yvENRaGNMn7mtZYlIbHQAYBBgwYhLCzM8QBVg+RDWloa/Pz8WmyWGM8ABah1dXWOEzmpmLdTU1PF03uF3xOxMTo6GhUVFaiQ2exRBQU/C3HkyBHExMQgXFjGIbHhFB8fDx8fH+cQJamct0VPeGX8zMPhAFWDxFp2djY6dOiA4ODglosSmyVdunRxrh6vCj/n5uZKB6hW9o0ZMwanT59GkYA8ySGo8HNBQQGioqJsb0j4OSEhAXFxcdi8ebNz7ANUPYvFxcWorKy0XNdavZ87deqEdu3aOfcEVcHP58+fR0FBgXSAKnOCCuBvVYfqCVBdDQ0T49atWzF48GCEh4c3n2yMuiUOWwOmYs1vdNTPcRxGjx6N3bt3O89GhcViVlYWEhISxOvVAOz3G4WfC8eaTzNbDuiEi+yiIssTLB45OdaLUYJNsGk1Mba8ExoAnAFPOCT6rvDyoh1eAcmEMLjPzvZCjx4JOK0yFU0UKv38wgv8bnVLulh1NfCfn+LpdJNyGpvBL9ackv7C+1nCjzwKCgpsT08B4PLLRWs7+vfv77wJXAOL79atW2EymVoCVC8vqicTnh5AmEY5EhSgMqvrGqDiBfjXX38hKCgIw8TqF3v2JAIi4eIH9KzX1g4AsQ0T+Y/dp7z8WJHwM/8C27Chm+i4+1/GNBovEkhISEBFRYX96XaAYuBiOY6zAHRtue7lRfVkgv4VjufPP5+LsrJz2LNnD+yGio2IvLw8BAaK1xFd7NyXarXCwprn8v37e6KhIR1ff93k2Iai0EYZPysGqDfcQONFBN7e3hg/frzjmREaNpyOHTuG3r17t/AveHnRABCpD3WaFqqCny9evIicnBzpADUxkch32rWzucWnVjt8iqqhD23qOwFg1ixRkiRfX18kJCQ45wRV5UbEkSNHEB4ebhnAeHtT1oxMfWi7du0QERFhv60aDgqysrJsicUGDyayL6t67x49eiAjIwNNKtKvVdmo0IcmkwlnzpxBNyudagD0XnnmGYtLfNab09J8VbyfJdcP3t5Ud3P11RaXOY7DlVdeiS1btjjejxr8zG/6W8yRw4cTOV5ERLNtPFGS08CzSUvM27IESQBlH4mk3sTFxYHjOE+A6oEGqBwwtbW12L17Ny6//HKLE8W9GInLazdg1nM9mk9TLrvsMmRkZDhvV0xxsSiRUmLGTTsfw51Ny0Tv8YvsuLhwUBCZbHE/Nlb6JMviutXE2GJOBoBG8AGfpJkrVwJz5kj+Dj169HAsQFXp58JCcYmZdYXDiB3Wqi4wKioKAQEBzjlBVUmzL/mCue8+Yry0Qr9+/ZrJOdxlI0Bi6m3atLGs2f78cyK3EaCFbGcUgGIAmfanV6rw89atWzF69Gjx+pFBg4DPPrNh8KNn3RvADSBW31rBdTtsFNhnnca7fDm9wIqKxGtQ/3vxTmIblgC/U+vQM6mw6G4Zx40AzoIPUBkzZ2YMX0qMklZISgKeeupqAL6YNu0X+9OkVfg5NzcXY8fGiHIBzH+zP/DWW0j6q4ugFKEngAYsXJjtuAQOIDtWqqqqUFhYKB+g3nabJPs6AEycOBGnT592LMDSsOF0/PhxW1KQV14BJk+2acsHfw7XeCpsOImmpArRpw+Vn4jMlzxJjMM2qgz+GhoacOLECcv0XoBKEu65R/Q7vXr1cs4Jqko/8wzDNpvdTz4JCDPHROBQaYGGk7WsrCxbYrEePYBHHrFgYAeI6KehoaG5btUhqNiIyMzMRE1NTXNtpAWmTbNZ4wwdOhReXl6OMyALbVR4FvPz88XXDwClgVtJKALApEmTUFpa6ridGg6E+GfJgouhWzcqdxMQlfBSM05j8lUYK4oB6uWXA9dfb3PZ398f0dHRngDVAw1QOTHu2bMHdXV1mDhxouKJIk/f7bRTVPPEKFaPxhhTDFCVFtE5ORQMeHuPBJ2g0kDngwSpf7r5ekMDkZYIJp2WoKMl4HOkpovfCbWbAU2lhllo6AkQWUpXi+tSfeDl5YX4+HjnnqAqQDJAlYDT6jR4P6uwsba2Fj/99BNuuOEG20DQ6kXCp4B27jwKANChwx770ysV/FxSUoIjR46I158K7bPaKW7x/0wAlQA2Wl3XaKPZPrH0+S++yATHcYiNFWd3jY0F1cdIvJD5oOebbzLsIz1rbFT0c8v4zgPQBOF4yc4G7v1nI77/wnKS5H/X3NwwAJNQXr4K//wnsy8YtFroWM+Nn39eidLSUlxxRRdxLoDbGFBRgZeeqRXM5cTkW1t7ynEJHEB2PPOLFNkAtb6eGKUl/MxzIdh9iioyb0uhpqYGmZmZtgFqWRlfiGwBp5+gSvQjX4/Il1rYoKmJ6tIlSJIA952gnjp1Cg0NDbbBdGUl6U+K+Ll3795IT093jIRPpZ95CRybABqgPlTwpUOM9irfz4wxZGdn256g8iRLVgRBTtXyVPF+5jOVmpmuhSgpAQ4etPCzv78/4uLinLPB3dBA7wUZGxljOHfunHiKL0CEaSJ9dcUVVwAA/rAiwtQMDSeo/BxpcRpdW0ukaYLDH57Jt1CGME+zjTLP4eHDhxEVFYUOHTqIN8jPJ+lKkfH8t9NCZYwZ7jN06FD2t0FVFWPp6YzV1ck2e+GFF5iXlxe7ePEi4zjG6OljrDPOsmzEsFlIYhxHbWtqapivry/797//7RwbCwrY/72dwYKCWv5fgLGgIMY++qiYAWDvvPOO5NefbvcxO4/2LBgVFt/nP3Fx1G7+/P8xAAzIZnFxjC1fTteXL2ei/zd/nzU1MXbiBGPnzln8v8uXMxYe/joDwGJiSlvai2HqVMZuvFHy9ieffMIAsKysLKXeEkdpKWMHDjBWWyvbLDFxKuO4gTa/6y/v5jAWFsbYV1/ZfOfaa69l/fr1s88uITIyGEtNlW3yzTeNDPBlwJMWPmKMMfbuu4z5+jJWUWHxnfT0dAaAffrpp47Z19jIWHIyYzk5ik1/+uknBoBt3LjR8sa4cYxNny76nYaGBhYUFMQefPBB+20sKmJs61bGqqtFb69evZoBYNu2bRP/flYWY15ejH3xhcXlljFQz4C2DJhrOQa0IC2NsT17GGM09mzH5Hzm7R0lOe72z3qTfqisFP3nq6urGQDm6/ui9JiVQ2MjY5s307wog+XLGYuI2GKeM/6w+L+SMYz9EWjpZ8vfdZn5e4ea5x9NOHuWsTVrGKuqEu2ngIDjDABbLvULnznDGMDuwBeC750z2/Ru81zuEJKTGfvjD9Fbq1atYgBYcnKy9PffeEPWz42NjSw8PJzdeeed9tnX0MDYL78wduyYYtODBw8yAGzlypWWN4YOZWzaNJv2TU1NzM/Pz/F3YFYWY0lJNnMaj5dffpkBYNUS451lZlIffvmlzS1+nLz88suO2bh1Kz2LClixYgUDwA4dOmR5Q8bPX3zxBQPAUlJS7Levvp6xr79mzPr/tUJ2djYDwD788EPbmxJ+FuLFF19kHMexmpoa7TaeOsXYRx8xVl4u2+zcORqj7733nuUN83i29nNhYSEDwN59913tNllj/XrGVqyQbfLqq68yAKy0tNT2poSfJ0+ezIYPH+64fXV1jL3/PmN790o2KS6m9eLSpUvFGwwbJunnAQMGsCuuuMIxG9PSqB/E+scK8+fPZ9HR0ZYXRfy8efNmBoBt3rzZMdt4/PSTzftfiMTERDZNbizIjOfbb7+dRUVFOcNKtwHAPiYRC3pOUF2NoCDStxJL9xPg2LFjiI+PR3h4uMWpSR38EYtcdEBx8/WAgAAMGzYMy5Ytw4MPPuiYvigAREbioXfjRU9tX3qJjkflTlCvv9aEDihBCGwLt4WnmvffT6mYK1futajBsiYtsiEQ8fICevVqrgvgMXs2cNNNpxEREYGcnDD5E7H6eotdMWvwO+R2p/mGhVGdigLBQVHRIYwdO8jmd71hdhCdFoho0nXv3h1nzpxxXN8qPl5Wv5NOoPJAdb0JtkQ9fn60i2pVoN+tWzcEBgbi55+P2i8jBFCNyvDhsvpgPJYvX47IyMjmnddm+PhIEr/4+Phg+PDhjtUmduwITJhgUyvMIyUlBV5eXhgiEPu2QJs2VChp1YctY8AXwPXguNX44IM6+055+/Vr1gwWz27IQ1NTjOS4GzLeklTMGoGBgfD2jkZDg+WuvOqaWW9vqjeTO90D9cnrr2eZf+pqca8CIfCtsbTP8ne9DsTqu8q+NOmoKGDGDCAoSDSjpbaWmBJttAh5mHfIY9sK/dwJQBiAk47Jy/AYPhywfv7NEK2vkrBRTlJo7Nix2KVB9skCPj5U5yqm5WeF48ePA4DtCaoEkZOXl5dzZFzi4ijVmSdwsUJOTg46deqEQInxLsdAGxgYiK5duzanCduNCRPoWVTAkSNH4O3tbSuHI0PkdN111yEsLAyvvPKK/fb5+gLz5gFSKYlm8D4WTU9VYA4H6FlmjNnHUtqjB6U5K5ysiUrM8PYBNjZ27NgRYWFhzjlBnTYNuPVW2SZHjx5Fly5dEBYWZntT4lns3r27czKw/PyA++8HRoyQbCIpUSe0UcLPV199Nf766y+UiGRMqEa/fqQEINY/VhCt0RcZK05n8r3pJuCOO0Rv1dfX4/jx49LpvRI28oiPj0d+fj5qa2udYanu8ASorsYffwBvvqnYLDMzszkXviW9rUUfs71vuUX66kcffYTLL78cH3zwAV599VXHbPz4Y/TN3iB6q6BAOUAdMYkm795RNGB46RTrQDMxMRH+/v5IEZHckWUkLiwkggKR1IXCwkJ16agyUjgApfgCDgSoO3YAZrp0KZw7dw7nzp3DjTcOsv1dZSadhIQE1NTUOE5nv3y5rDwKEfXwfUzPokXQIWGjl5cXIiL6YOPGo/JMzEo4f57qMxVSvS5cuIB169bhtttugzf/sPGQYSYFgJEjR+LgwYP2T+ApKcB338ncTkG/fv0sGSCFkFnQ8mNg9errwVg54uP32rRRhVWrKE0JUinCuQgKirH4P9U+izyamhJA9d+WUBUMXrhANeEq9NooxZIDYMmWW4EQdPC17EPL37UTSFpoo33BYGoqsHYtAKnfaR8ATp5pEcD1kyoENaocgJ7w8jrpmLwMj02bADMrqjUyMjIQHh6OdiLkPdY2yo2X7t27Iycnx776q9JSkjBTQaZ17NgxeHt7N8/DFjZKPIcxMTGOp/iePEnpchJQKm9RGisDBw5srimzG7t2qdKSPXLkCHr16mUrhyMj19OuXTs88cQTWL16NfbutXO+qaggeTWRzVUh+CDJxseA4vsZaNlssStdNSuL9N4Vm2UBEAlQJcYKx3Ho2bOncwLU1FSSt5LB0aNHxdN7hTaKKAFcvHgRF2S0flWhqormm6oqySb8GkUyxVdmI+If//gHmpqasEqFFJCMAaTJqwKiWuAifo6IiEDbtm2dRwR55oxo2QJAmzgNDQ3yAarMeOYPWpxK6qQjVAWoHMdN5TjuJMdx6RzHPSVyvzfHcbs5jqvjOO5xq3tZHMcd4TjuEMdx+5xleKvB2rXAyy8rNhMOFuHJRiPnhzr44+arKiyCtoEDB+KXX37BqFGjHK9FfeUVzA/+SfRW27a0o6jmJb1ldTkYoxIzxmwDTT8/P/Tp00f7jnJGBmnpibwEzp8/j45WzHqSNsosuKOjoxEQEGD/TuNPPwFPPCHbhF+oDBo0yPamnx+dvorYyE86Du+CPvUUBakSoIU4//KPt7oO2Ynx/Pn+MJksJ3DNLLSnTwP//CegMLnu27cPDQ0NSEqaYXtaq+DnUaNGoaGhAYdULFZE8d13koQjjDGkpKRguAgJRDP8/OgjY+MI8w71/v377bPx/vtpAoHlZpfZSgC5GD9e5pRa4WQNANq06QHAdtGsKhg8cQK45RZAxcI9KysL7dpFIyjIMgOl2jsUXcIt7bP9XScDSMYzz5Ta/LuKustffkkna5D6nZLh69tb/CQDaB7Pg7qVW5xSh4SMhLf3TsyYIb8YV4Xbb7fQhhZCkcEXUBWgRkVFoaqqyj6plGPHgOnTARXP8fHjx5GQkCAeXEn833Fxcc0Bhd346CPZ00nFAFVm3gboPX3q1CnU1NTYb+PMmcAbbyg2E2XwBRSD6IceeggdO3bECy+8YJ99R44AY8cCCgFuRkYGAgMDxTeUVZ6gAna+B5cuBcaPV2wmqoEKyM7bvXr1cg4T8rRpxAgtgaamJpw4cUI6QJWYt522fjh8mFirZRiBJTXUechsRAwaNAjdu3fHypUr7bfxjTcAqewlAWpqapCfn287R/r72/jZ6Uy+48YRKZgIFAmSANnxzPMGrF+/3jEbDQLFAJXjOG8AHwCYBqAvgFkcx1nnaFwA8CCA/0r8M5czxgYxxkR0F/7mUEFwUFZWhpKSEovdHOHJhn+HEPTrIj6oR40ahf3796O+vt5+GysqkDguVJSN8rLLchAQECAfBKo4ceHRr18/7QGqDMFBcXGxdDG5EAovQC8vL3Tr1s1+kWMVTIuKk4/E5O00LVRVzKlnAPgAiLG6Dlk/V1X1A5APwDLdXFN6pUqCg59/pjSiwsJY29PakBDUni+XDD54xl+7afdl/JyZmYkLFy7IB6iA4rMYGRmJ6Oho+wNUAdmGdRpvly4XAdRgyhSZAFVF4DJjRm8ARQBadoJVk5RpZNTs27erTSry0IkhCDFZ2mf9u0ZETAHQhI4dt1i0U6W7LGCrFA/ykzFqlHSqW/PvV1FhMZdv2HArGhpqsWbNGsXfXREyz6KqAFXFRoRDRD8qiWkA2vG3Se8FZBe08fHxyMvLc/jdJ/UcMjNBoE2wosHGgQMHwmQyOZbmq2INUVRUhKysLHFpK4Xx3KZNG8yZMwdbt261jyxJpZ/5Z1JUrk5FgNqhQweEhITY9x5UyYR8+vRptGvXDqFibSWyc3r27ImcnBzHNiF4G2X8fObMGdTW1oqTTAGyKb6AEwJUFfO2Iym+HMfhH//4B/7880/79Y1V+lmWRE7EzwkJCc4jH5Kx8fDhwwgICBDPMhDax/87VoiMjMTIkSPx66+/OsNS3aHmBHUEgHTG2BnGWD2A70EFPs1gjBUxxlJAxWseCKFiwHzwAQVF//53vPhu/syZwKBBorv+I0eORG1tLVJTUy2+onhCwIMxoKICfYaHiNajBQfTDrKUBioAqhmcPVtUC84a/fv31y5JIjMxqj5BHTuWdEZl4BADmgoGvkOHDiEuLg5t27YVb3D77cBll9lc3rEjFhwXiDvv3G9fbSfQUveowJzq7X0GQBwoSLUKOuLiiCbeqhYYADp25Hd1LU9RNaVXqqSIX7ky3/y3lpcgf1q7zfdKfFh7p2TwERUVhUGDBuHLL7+0L21RZrHIp64rBqj3309U8TIYOnSofQGqiJ+FAdLatZQSyct0iCI+nnZ4ZdrMmUN7lBERx8XrxuWgIXDhNQmtU5F7PnI16YxaQdguJ2cUgoODsWnTJos2qnSXZYL86OhcAEW49VaFAPXpp200/y677DLExsZixYoVir+7LGTGc2NjI7Kzs23T16zRvTvJuMgEYHyqHr/w1ASVGxENDQ04ffq0eG3ijTeSjIsI4uPjm1lX7YbMeL5w4QKqqqrkT1AB6kMraSse/Gak3Wm+JhOx8Cr0IZ9FdZnI+wO9ewPvvUf+lsCQIUNQW1trn+SMSj+np6dLb5rMmgX8V+p8g8BxnP1SMyqZkHft2mUpWybE0qWiUnU8k69DASA/nmXmRFkGXwDo2xf4+mvytwDx8fHgOM7xAFXFBnJBQQHCwsIQZH3aweOOO2RLoRxO81XpZ1GJGR6ffUZSMwLExcUhPz/fsc0wQHEddvjwYfTv379FC1oMAwZQGY/EczBjxgwkJyc7XhJmAKgJUKMBCAs98szX1IIB2Mhx3H6O4xZKNeI4biHHcfs4jttn9+6JEaEQFCQlAS++2FL3J7qb/+GHSGpzt+iuf0EBSWcI60dUnRDwqKqiRiEhovVoiilOAL34li9XJEkAgOJi2v0LDz+mPtiSmBjr6upQXl6u7gR11izggw9km/ABql2Bi8oAVTS9l8ebbxLZhABJScC99/qAsUkA1iM7m2mv7QRa6kZkbJw9G4iNzUBAQLx40NGtGwltiywkn3nGNkDVLPuj8gS1tPQsgLYALIlLcnKAeatvwmONlulw1sHHww8/jKNHj2Lz5s0ajBPYKBOg+vn5SWsm8nj+edp0ksHQoUNx8uRJ7amVCn7ma/YkyX0A2lV4/XUiFpEAf9r18svHxevG5aDgZ35zjeMakZ2dh4qKrraNrr7aRpTeGn5+frj88sttAlR7dJeFc+PSpVTfO0KGLAQABdBWAaqXlxduueUWbNy40TEyEBk/5+bmorGxUfkEtUsXGhgygaxTTlBVBC6NjY3iJ6iTJgEPPCD6PX5x6dDJhsx4zslR5l8AANx9tyRZVbdu3dCmTRv7A1QV8zZAAaqvr684OVvnztSHMmOe/97Bgwe126jCzyaTCWfOnJF+JseOBebPV/yv7A5QVbyfL1y4gGPHjmHMmDHiDWbPBswSf0I4RWpGhZ/5AFV0IwegjeN582w0eQMCAtClSxe3BaiynCDDh9OmkwQSExMRHR1tv7SVSik92RPU666zSRPu2rUrGGOOk7LJ+JkxhsOHD8un9wKk0Xr99UTYKIIZ5pKFdevWOWKpIaAmQBU7OtOygh/DGBsCShG+j+M40UIAxtgyxtgwxtgwVSdirQVlZbKMYosWAfX1/AuW9JjEavekdv3ffjsGnTt3tmAmVXVCILQPkLRRVYDKQyKwa1lwAm+9xaenpKkn0pGwkV/gqX5eTCZJGwFa8FRUVNi3cFTwc3V1NU6ePCkfoDJGbMMCtPjyGgBZAI5pr+3k7QMU2e3Kys7g9tsTpIOOxkbSQrPCgw/Gwt8/GCEhR7WfqGm0MTAwH4AtCUNsLJCTzdAGFfBCk8U9YfBx6623IiIiAu+8844G4wQ2StiXkpKCQYMG2eqyWqOuTpFQZOjQoWCMaV8wKvQh/4KVDVAZI70/meA4Li4OgYGBzcyczrJRuLnGa6Bu2NDVdo6oqwPOnqXnUQaTJ09Genq6Req+ou4yb6NEHyYnJ8PPzw+JiYmy/zcuXiQbrTBr1iw0NjY6RgYi04eqNFAB/piZSKsk4NAJqsrxzNeDi27sVFYCx4/bzIuAkwJUGT+rDlDPnpUkMfLy8sKAAQNsMpw02Qco9uHu3bsxaNAgcbbhpiaqE5UhJevVqxcCAwNx4MABl9hYUFCA2tpaaT3ZCxeohlXk3SJE9+7dkZmZiSYrHWlVNir0Ic9WPXbsWPEGp0+LEi3x6ZgO1Siq6MNTp04hOjoabSQYp9HYSPWhIhkFTmHyVWFjfn6+fIBaWAhs3kx6oyLgOA6XXXaZ/Uz7KvwM0AlqaGgo2rdvb3vz8GEiJhOAT/N3uOZdpg8LCgpQXFysHKA2NBD5nMScM2DAAMTFxf0t0nzVBKh5EBakEZ2i6rcVYyzf/GcRgFWglOFLB5s3E2OlBOgdmAk6EQq3um7G7NlYmS3ebbm5HEaNGmUxoFWdEPDo3JnkV8yEIELU1dWhoKAAsbGx8inDdXVAcDDw2ms2/4blghMAYgEEA6CaHFXB1j330D9gNaj5k3ZVAer335Psgczuq0MLntWrga++krydlpYGk8kkH6DeeGOzPAiPFp9NN/8pxywqg8hI+t1l0pxLS0tx4cIF6dTAujrA1xf/iXzL5jnw8vLCwIH9MHz4Ue0najzuuIMWUgqpn1FR+fDysgxQ+dPah9ovRwVCEQ9LHwrXmP7+/vjXv/6FDRs2IDr6jDZZnO++I2IVK9TX12P//v3Kp2oAnZ6qSPEF7CBK6tSJxNpvuEH0dm5uLry9vREZGSn9b9TVUbr+//4n2cTLywu9evWyL0CdPZsWUiJ+ttxcowVVfX032zli5Uo6AVSoGR9vJkYRZpjY1pSKnPZ/+ikxh4sgOTlZ3UbE/PnANdfYXB40aBA6duzomNxRhw7AX3+J/vt8YKVYO1lfTztJMil3wcHBCAsLsy9Avflm4LffFMfzvn37EBAQIJ66+MsvlLEhMuFFRkYiICDAsQB16VJK0RWB6n685x7ZeZVn8rUrM6ddO+DXX4GrrpJs0tDQgJSUFPH0XmpA5DZffin5b3h7eyMxMdG+E9QZM2g8yviZD44kN03WrgVGjVJkcE9ISEBDQ4P2k6wlSxQXGjt27GiWIhPFo4+KyoO0adMGAwYMwPbt27XZJER4OL1bZN4LeXl58psljY10Ei3yInNKgHrVVZT+6sgJ6saNwOTJsmzFo0aNQmZmJgoLC7Xb+PTTwCOPKDaTrYdevJjKcATg5wCHygkAGiMff0xESVbg69QVNz6bmoh87scfRW9zHIcZM2Zg06ZNjtdF6ww1AWoKgB4cx3XjOM4PwK0AVDE8cBwXzHFcCP93AFPARyaXCoKCAKmaQwiJaeJFrpvh5YXO3uJpz7GxNKDT09NRbKbzV3VCIPi30bGjqA4cn9aVnx8nnzLs70+DRqSu1PY01wtAPwgfA8VgKzCQjPeyfFz531dVim9QEBkvU/vKB2Z2ESV17AhES2e+86cEsrtjbdrY2Nfisy4ABgFYZ3VdJXx8KJUvPFyyCb/QkwpQk37yRx38wErLRJ+Dfv36OUbFHh4O9O9v42dr1NXlY8yYKFHd3Ovm0SZGGFr6USzV2MuLFvb5+Qe0yeJ07Spay/XXX3+hqqoKU6ZMUfotaaNFoQY7MjISUVFR2gNUPz9g0CDJ9J/c3FxERUXZyvMIERBA/47CKW+fPn3sC1A7daJUORE/W84F/O8+0HaO4DerFPqxX79+8PPzs+hHRd1l+qKoZrDJZML+/fuV64x5G0Xs4zgOiYmJ9p+qAeSj8eNJr9UK/OJdUupB+G/4+Sn2YVRUlH0pvjExtKhVGM985oGvr6/tTX6+EnkWeWI7hwLUkSNtNgV5ZGdnIyAgQPn9Eh4u24cDBw5EWVmZfYvboCDahJAJklNTU1FTUyMdoKr085AhQ3Dw4EHtetvdu9Omm4yfFXV5eT8r2NitG2WZaX5HX3EFMHGibJOdO3di6NCh0vWTMvP2xIkTsXPnTvtrFNu0oTIkmTrhvLw8ee4AGT93794d58+f18b9YY2+fYE772zREbQCYwz5+fny846KeXvUKNuyNdW49loK3hQgKjHDIyzMZr6JiYkBx3HOCVDvvtumThhoWW8rZmyoGM8zZsxATU0N/vjjD4fM1RuKASpjrBHA/QB+B3AcwErG2FGO4+7hOO4eAOA4LpLjuDwAjwJYzHFcHsdxoQAiAOzgOO4wgGQA6xhjv7nqlzEknnwS+P13ydtLlgAcZxmg2iyow8LQKaBMctefP7XZt29f87+peELA49gxiiJFdsj5dIb/+78Y5ZRhiclbPPjsD2GtomKw9eOPoqc5mk5QZRY6PPiXn10LnldeoRMNCRw6dAihoaG2+mpCiEyMlr68BsBOBAZe0K6jePIkUbAXFYneTkoCrrqKfu8HHkgQDdQWLQJKEW4R/Amfg379+qGwsLB540Azfv1V9hQaoAChoKAAY8dGiermTryOXoA9O5XJphovW9bT/LcWeYDqajr0kg1S331XVE7h119/RUBAAK688kpZ+wGoClCTkoCLF4ciKUkjMVZGBp3wSvggLy9PPr1Xg419+vRBdnY2qmR08USxaRPJMonAci44AKArgPa2c4TKANXX1xeJiYk2qYuyussA8OWXWP/qIZuskbNnz6KyslKaSdPaRgn7EhMTkZaWpj1VkUd2NtX9X7xoc+vs2bPo0KEDAgIC1NmosBERHR1t3wnqjh10giqDpqYmHDhwQDrgV/CzQ8R2AL1bJDZZ+PIWWYJA3kaZ55Cv77SL9OzsWWDNGllGbVmCJB7h4Yp+Hjx4MMrLy7UHf/v3k69lkJGRAR8fH+nTaN7PCjbyc5fmE9Tff5fNtqirq0NKSop0/SkguxFx+eWXo7q6WlTjXRUKC0mjXGIu5esfZQNUQPJZdEhDlsfRo7JasiUlJairq5N/v6iYt4cMGQIfHx/7Mkx27SItVBk0NTUhMzNTerNEpA/9/PwQFRXleIpvSQlw4IBoijN/YhwhQkKpxkYhJkyYgDZt2rT6NF9VOqiMsfWMsZ6MsQTG2BLztY8ZYx+b/36OMdaFMRbKGAs3/73czPw70Pzpx3/3kkFjI/Cf/wAyA+3WW5vg7Z2F0FAJYhoACAuDf205ln3CRHf9Bw8eDADNizD+hECYXi9WmgKAxKFffVX0YU9OJjKQoiLxlAOL4FNiwIgHn/0BFAI4r45IZ8UK0TQ0PkBVdYKqYmIMDg5GRESE9gVPYyPw7LOKAeqgQYPkFzthYbQQEaSCCU97gKsAmHDPPdu1p88ePEg6qCL1tXwadnEx/d4FBd1ETxNzcoAyhCEcpTbXgRZ2QbtPUb/8UpHJ8fz582hqapLepTVvRHz3UZlsqnFeXhvQqbSlfl1Tk8xJamMj8PDDNotuxhh+/fVXTJo0SXr3XQh+rMjUbC9cCNTUDARwCtnZteqJsVJSgH/9C5AgmsvNzVUXoCqcCgEtZB0nT55UzxoOUAAtofdnuSGzH8BQ8TlC5YkLQOnSBw4cUJ9i2dgILFiA/S+sscka+eADCmZECX2sIeHnpCTgm28SUVNTg9jYDPtYuXftAubOFa0rVLWQtbZRBnafoL79NvD447JNTpw4gaqqKnF5FN4+QDFAtSt9trGRUnMlUuVU8y8ojOeBAwfC19e3+X2qCdu2EWmLzAZBSkoKIiMj5W1V4Wd+HaE5zXfJEmJ3l0F6ejri4uKk2UlVbjjxz7WmALWxEZg6Ffj2W8kmhw4dQl1dnXyAKuPn8ePHg+M4+8l9/vyT0nsl0slKS0tRXV2tPHdLzNtOkZp59lmacyTA+0R27lHh58DAQAwaNEh7gNrYCIwZQ+UZMjh79izq6+vlT/NF/BwXF+f4CerGjcDQoaKbJefOnUNoaKi6NYTC+9nf3x9Tp07F2rVr7ZsbDQJVAaoHdoLf9ZRJq8zPz0djYz3efDNeekEdHg40NWH29VWiu/5hYWHo3r27zQ6tMP28pERi4S1TtP3XX3+hb9++iIsTP6G0eB9KvADFTnMBCng7dtyljkhHovC9uLgYHMeJF7pbQ2Fi5BfYhYXdsHz5GW2LRt7PEsX5TU1NSE1Nla8/BZr9bL2Lyp/21NQMg6+vL3x8dmowzgx+Z1rExpY07DMA2gEIE60Njo2lAFV4gspfB5wQoKogOOBPciQDVJULHbK5FwBbWQXJumiJ8Xz06FFkZWU1s+cpQsLPPFr80R+ACcBJ9cRYMn7md+FVn6CqSPEFgE8/PaaeNRwg30jMifyGTExMKYAMhIcPFZ8jVPoZoAC1tLRU/caT2c/FDZZ9WF0NLFtGz0tvkRQtG4SFkZ8F6Sf85kNJCc2B+fmp9rFy87+3SD9qClBVnKxFR0ejoKBAe+qnjJ958Fk/kieoChsR8fHxKC8vxwUZoidJKMzbmgJUKz8L4e/vj0GDBtkXoKogpklNTcXAgQOVNz8Vxgovb6H5pLe0VHHezsjIkCZIAlRvOAUHB6Nt27bNbOSqoKIP+VNj2XHN+1lk3m7fvj0SExOxZcsW9XZpsFFV8Md/X+YE1aEAVeH9zPtEVYCqMOeMGjUKycnJ2jJMVBKKKZUySfm5a9eujgeoMvP2uXPn5LkhrG1UGCszZsxAfn6+fcRnBoEnQHUlZBaLPPiJkU8vFcXQoXQqIrMTMmTIEIsHUTWTr4SNjY2N2LFjB8aPH68uZfi222wkFQDxeq+vvhqPTp06YcyYr9SdBEpMjOfPn0e7du3k6+l4dOgAPPgg0KuXzS1LIqd41Naewdy51OWqoMBKGhubgaqqKiQlDZJfiF52GZ1ySiAgIABDhw7Fzp12BKgyNrZs2p6FkA/NejN3yRLgW987sRIthCDC56BLly4IDQ11LEBVWNAqBqgdOxLJgQLRwJIlgI9PL9AJqu24Et3IlujDtWuJuKqu7mp1p4gTJlDWgkTNVsv/zZPGpEnbJGWjSD+WlJSgtrZWXfDywAOihCBCdO/eHT4+Pvjuu2PqWcN5G2XmxNmzga++ornshx+Gis8RnTpRdorUyZsAmgmnzHNiGWxtvHjxBMLDw9GpUyflf2fyZOD99y383DIv9wW9flOdzsqtKUB98kngvvtkm0RFRaGxsRGa5d9UBC779u1DmzZtmqU6bBARQaQiIvIegIPEdjLv59raWhQUFCgTJAFU8/b115K1eQCV4ezbt88+9lkJGwF6Tx87dkyZWOWll4AnnpBtEhAQgCFDhmh/v6jYWMzIyJDX5Y2MJJIghTpRgN4zmk5QVQQufIaAbP3k9deT/qRYrTSoDnXXrl2oU2AilrVR4v2nOkD9739FdYPbtGmDyMhIlwaoqmzs3JlKeRS4GkaNGoWqqqpm7g7V9gGKawjFeuiZM4E//iBuFQHi4uKQm5trf1mG0EaRfjx37py69F6A5P7+8x/ZJtOnT4eXlxfWrFFFGWRIeAJUV0LFxMjvOsnu1F5xBWl4yrCnDR06FFlZWc0SKVKL2exsy1S8tJ1l9GK1ikAPHTqEyspKTJgwQR2pyCOPSC50rOu95s/3xe23345ff/0V52So75shc4KqKr0XIBKCd98VXehYBvPxAHLAWAM+/ljlyQa/0LGaGPnANz//EACgpGSQ/GnJ2LHEhCxFIw9gzJgx2Ldvn+hLUDbNskzcz4DwJPwshBLH1o/k7NnAyC/vwZa4O0SfA47jHCNK0nCCGi1FSBUcDLz8Mm3qyGD2bGDWrF4AykHp5pYQHY4SC9pt27ahS5f+eOqpaHWniCNGENugRCpPy//dE4AP+HptVcRYZWVEiCWS069KA5XHvHmyzKQA1eX07dsX5eXiKYGSAbWKwIUPJodK+TEoiBbcEpqzSUm0J8VxwNCh/QH44ttvVe4km+dtsQDV3/8EevfurVyXCACDBxMbpMAXLX0SADrBT7W6rhISfq6pqUFJSYn6APXmm0WZgIXgx5rmOlQV4zklJQVDhw6V3mQMDCRSEZGNRcDBAFXm/czXmskGVTz696fxIlPzO2LECFRWVuLECduMDUUbJcYzQNIj9fX1ytrL06YpMocDwLhx45CcnIxaCRkQSRtlgoLS0lKUlpbK92VAAJEEyW3UmxETE2NfgKqQyRYYGIgwuee1Z08KUq0CFx5XXXUVampqsHTpUvW2CW2U8bOq00mANj8lSL8cZvItLZXtw7y8PHh7e8sHWQEBNN/IEEoCwJQpU+Dt7Y2ff/5ZvX0qT1D5emjJ92C3brTmttqIiIuLQ2Njo331+DxKSyX9rOkEdfhwmndk0KFDB7zyyiu4XMW4Nyo8AaorwesIygxqfudOcsHNo6FBVvOPJ2LgT1GlFrMcZ5mKt2NDOeoCw+iGAH+Z6yknTJgAQAWpiMlEmnUqsWDBAjQ1NeHrr79WbixY6AiDsDVrzoMxDZq5tbWiNlouDuNBaZXZYEzlyYbIxJiURIQ7FPgeAgUafeVPS0wm0oOTCT7femsM6uvr8er/t3fe4VFU3R//TnpCEhJChyT0XqSFLiBIVWkWJAoiLyiCHUXFn/IKNhBe7KKCoiBgAcVCFxSk10BoAumBhEAKIQkpe35/3J3NlpndO2U3i87nefaBTNuzc+beueeec89545DNdkFgy0NkDSTx5SIxsK70kGdArC8qtzY4fkwxkvdekn0OOnbsiMOHD6ubZeQwXMSXg9OO/PJl2SRB1sTHs0FvYKDtOlTZddEyL8CEhATk5nbi9yKWlrKbJxPiW6mPADAj5gTfWm1RxuqO7Rmo7Gu4jJfcXICj8HzXrl3h43MQUl5oWYOaw1N+6NAhxMbGOg/fv3BBsizFypXM+Vu53DoAQHv8+utefP01x3Np1vONQFs9h4QAQUGn+NafAmyNxfHjNglubO9JB4gGquKs3DJ6djmBY09mJkva4QTRq6R4HaoLPZeWluLo0aPy609FEhIAmYG1GHn04YcfqvP8AU5ryXIZqNeusbJJEgmrRMREhorDfJ20ZwCWTNAuPagXLrD1rC7o27evJWGQYhll4IoSA9g9POG6yEPDhg2VhfhyRLJlZGSgQYMGzieecnOB336TfbcMHToUd999N2bPnm2pqapIRid6Tk9Ph4+Pj2sD5uRJ4NdfJXdpNlA5PKguM8QDLIeDObRfjlq1amHQoEFYvXo1/xpKBQaq0/XQOTnAmjUscZUVupSaEftECT1nZWXxG6iHDzMZXfDiiy+iP0dUgtdCRF736dKlC/1jKC9nHxkef/xxCg8Pd36NvXuJAKLffpM95MqVKwSA3nrrLSIiWrGCKCSEneb8Y6IW0UUO17vzzjupefPmfL+RiOiZZ4iqVeM/noj69u1LwcHB1LZtWxoyZAg9+eSTdOXKFccDb9wgun5d4je1I1/fUbRiBecXNmxINGmSw+bYWOtrJhAAAhYRQCQIHNetqCDKy2NyktS9H0ZAB8vfstfcvVtSz7bXu0QAyN9/Pk2b5lrHsbHmixQXE2Vlyf6EL78sNf/uVyk2luTv6dNPE4WGyl7n66+/JgB09OhR2WNkyckhktK/FVOnTqXatWs7v46Mnu1JTk4mADRp0icUG8v04vS337hBlJpKVFTZXnJycsz3bYHk/ZfUtYyerVmxQnwu7yU/v8b8z/jVq0Tnz0vuWrp0KQGg5ORk19dxoWeRDz/8kABQUFCKze8OCXFyH5OSiDIznV63WbNmNGbMGOdf3rAh0UMPOWy2bc/iZyYBIB+fOrR69Wrn171+nejECVr9+TWb52LJklwCQG+//bbz80X27HHQs21bfp0AkCB0ok6d7uS7pkhmJtGxYw6bd+zYQQBoy5YtfNfh0HNaWhoBoCVLliiTMSGB6MIF2d179+4lAPT99987v06DBk7b84IFCygiIoIEQVDW7+Tns7aYl+ew64MPPiAAdPHiRdfX4WjPFRUVFB4eTo8++ii/fESsLf/1l+zul156ifz8/KikpMT5dTjbs9ifvf766/wy7tpFdOqU7O61a9cSADp48KDz67jQs8hrr71GAKi4uJhPvitXiDZtYn2jDH379qVbb73V+XVEPW/YIHtIbm4uNW7cmKKiomjdunV88hERJSYyGWWYNGkS1a9f3/V1nOh53rx5BIAKCwv55bJmwwaiI0dkd992223Us2dP19fh1PMXX3xBAGjfvn188mVlEX33HdHly04P69q1Kw0ePFj+ABk9nzp1igDQ119/zSePFAcPEv3wg8Pm4uJiZe2Osz3fDAA4SDK2oOFBdTe+vk7XpmRkZLj2aIgFsJ0sLK9RowYaNWpkCY2TyuQrjYC/023DDYqKivDnn39aitxzUb068wg58fLas2jRItx///1o3rw5srOz8e677+Lbb791PDAgAAgJkVhXexkVFbX41285SeRUOaHVHkAfAB8AqODzbPj4sGsHBACQWv97DKyGKUP2mjKJImyvVwdAU5SV/YVPP5XNy2HB4h0OCmLr9mQYMIClZv/00waymW8BsN9ZWCir5z59+gBgRc8VExXFCtPLsHIl8PXXmcjOru98jSdHAgGAhYoFBwcjIuKM8+gAkYAAVtvRKjzn+PHjAIDataU9GJK65kjwI0YsvPZaO5SXJ2HUKM5SLpGRrN6tBNnmEkNcZZlc6FlE9H498shB50sArGnUiK1FkqG0tBQXLlywJN1yKiN3aat5AFbBZKqPRx55xPl6ypAQoG1b3Dc51Oa56NiRedq5EiSJ8gE2Mtpm5e4PwBeRkZdx5MjPyrxC9epJrrPmXqtmLaMLPdepUweCICj3oLZv7zRkk6s8CuAykdPMmTORkJAAIsLvv//OL194OFv3L+NBDQ4O5lsTxpHgx8fHB926dVNe27FJE9n1twDzoLZs2RKBMmGnFjjbc1RUFNq2bYs/ObytFnr3lqzrKMLtQeXIHA5ULlHgfh5r1GBrHp3Uo8/MzHQddcCR4CciIgIbNmxATEwMRo8ejc9cZJS10KaN03WZ3OvKRT1LRDCJSaouXLiA8vJy5dldhw5lNbadyKhXCTMAGDVqFAICArB69Wo++WrXZksWXCz7On/+vPz6U1E+wEHPYsmpv//+m08eKbp0AcaMcdisqMSMKKOMnv9JGAaqO9m0CXj0UadWRHp6On/H6KJRd+nSxZIVEWCDISfLGQEAz+NtvBT5sc22d999F/n5+fjll4f4ykZYy+ikXps9Xbt2xdKlS7Fu3TocOnQINWvWdAwtys1l67j27bMbeJoA5ACoyb9+SyYzaXw8U1OlkfoEgAsICPiNL6xy+3bg+ectaZNt5ckGkAmgIwAn4aOifICDjI6/rzeAPaiocP2CsRhI773HEnnIwB1qLg7GZPQcGxuLBg0aKDdQ8/KAl15i5XAkqCy9kgmgvvM1npwvQB8fHzRv3hxnzpxxeSwAFoI2b55NDTMxxO6VVzpw1R5euRKIGxwBAHhper7LdiUaaSdPnuSTcelS2bIZ2dnZqFatGn8pHMBle+7QoQP8/PwQEnKQz8gvKADeeovV1JMhNTUVJpPJdXilotJWgQDGoX79lSgsLMT//d//yV93/362Xr201GazuH5Qi4EKVE4+EPVCRUUpdu3aDADYsGED33UBVnrrt98cNosGKneIL4ee/f390aBBA2U1AK9dY4k8nISJ79mzBzExMc4T04gyumjP0dHRiI2NtRi9XBw9ykpblZU57Lpw4QIaN27Mt9aY8/3cv39/HDlyBBdd1Gm0Yf169n6R4fjx467De61l5Hg/9+3bF7t370Y5z2RzYSEr3+Lk2UhKSkJ4eDginRiIFhldZHcFVJSaOXkSWLtW1jgnImRkZLh+DjkzDbds2RJ79+5Fo0aNsHnzZj4Zt26VrK8tosj4AyT1LBqox44dQ5MmTbBgwQI+2QA2hv3pJ1aXVwLirdMKcE9EREREYNiwYVi9ejXfs3juHKux7eTY3Nxc5Obm8hmodjKGhISgS5cu2LZtm2tZ5NizRzKMXczFoiiLL6BovH0zYhio7uTAAVa/UybrG8DpQeV8Afbo0QNJSUk2iYdcGW8PCivxSOPKTvTKlSuYO/ct+PrehaysPnxlIxTIKGKf0OebbwTExcU5rtHJymIJos6ftxt45gOoAFCLf/2Wk4HORx+x9yzzbIyCr29DtGjxHl+W4V27gAUL2OJ32A+Qj5n/vQW+vi48SzL30PH3dQOQDR8f5y9oGwPp88+BH3+UPZYri6ETGUUEQUCfPn2wc+dOZTO0ly6xBFGnTknurvQiZwBg3jfZNZ4cpTNEWrZsiVMy3+nA77+zWnBWEREJCQmoVasWHnusjstEYqKRnZjB7mH51XyX7aqdORECd+Kpd99l2TDh2Mb277/Ml30W4B6MBQUFoV27dvwZcjMzWYKoY8dkD9HqcXn9dekuNyAAmD+/NWbMmIFPP/1U3ujftInVu7UzTk6dOgV/f3++dYkAV5/o4+ODVq1aITY2Fr9JGJyyvPGGZL2/jIwMVK9eHWFOEuoplRFgGS/F7JdcZGaypHlO1prt2bPHtfdUlJHjvdKrVy/89ddf/P3Ozz8DDz8suSspKcn182ctH+BSxtGjRwMAfnTSDzswezabXJQgPz8fKSkprhMkKZARYAbqtWvXLNEhTklPZwminKy5TE5ORqNGjVwb+woiX9hXcxqoP/wAjB0rWwUhLy8PJSUlmt991gQEBKBVq1b8ybuefppN3MmgyIMKSL7/RKPsv//9L9LS0pQZWqmpLEGUTK13sU4rt4yc48RJkybh4sWL+FVmXa0Nq1YxL7ST9s+1ttzJu2/IkCHYu3cv8jnld2DqVDaGsEOxgSrKyDnOuVkxDFR3kpfHrAQZA7W8vBwXL150PdsdEsKMHxeNQgyvtE4W4cx4i40FGtfIR3S7yhCnBQsWoLi4EBUVb9oc67IUgoLO27qsi7UBHBjYDYmJibgmJpeyvl716nblbliIXkBALT4vpygjR1glkT+efnoczp79k2/mLj+fhX2a9Wwr51EAQHBwRyxf7qLmq4yeHcv8sLBKf/+DYlSxBXEM4GAguUhwwJ1chUPPffr0QUZGBlKVpCZ1keCAXeoKWMbdlnbbJWTkfIH07t0bSUlJfGE7+fkO7TkhIQEdOnSAIAguE4mJRnYRQlAOX0Qgz2W7atq0KYKCgvjT7ZuTbUi1sT17suHjw5lUjLNeHVAZucFlGCioSajWgxofzxxj1ssboqKAZcvYvpdffhm+vr746quv5GWU6LePHDmCVq1aySfXsCckhE1muHgWBUHA8OHDsW3bNv4SFTIJiBSVmAG4JyIUG6gymc1FMjIykJaWhh49eri+FqfHpWfPnsjMzOQPlZbRMxHhwoUL/BMRnHpu06YNmjdvjnXr1vFdV5RRpq2IBqQiDyrHfezYkUX7cE3ccbZnLmOfU8/iO0qrnkW4332cehZp0qQJv4HqRM8FBQW4du2aMgNVQsaIiAjUrFnTkijp8OHDyhMQaS2DI8rIaViNGDEC9evXx5IlS1wf7GK8DVRm53b6PIp6lpBxyJAhqKioUO9FldGzGOKr2IOq1lC+STAMVHfipNNh3o0smEwmfPRRQ+feSUFgXgcna0JXrgTuu68zgCBMmrTLcj25GqYrVrBBdLWyPBsZt27dCmAAWJ0+W5zaG23bspkhjrIvcjVa//orDkRkW1jYqmO0Xb/FMuk9+WRNPi8nwMpmPP4416Ht27dHaWkp36DMbrBoK+dR+PpG47PPolzLKQhMYbffbrPZcT1xRwB+uHHjIIjYdtFr9/XXzCBxMJBcZMjNyMhAQECA67I9HTsyb7GTtRKq1qG6eAGyiZZKb7TtdjsmTGDhwhyMGjUKAKdXw649V1RU4MSJE3wDRFi3HwGP4338jDvttjvi6+uLvn378od/mp9FqTZmMmUjM5PTg9q5M4v+4AgV7dq1K65evcoXAspR8uHChQvw9/d37dGYOpV53SWIj2fJGMV0RDk5le2hZs2aGDRoENasWSM9QJNoKzdu3MDOnTuVZUQUBODLL9m6KBcMHz4chYWF/G1G5t3CtWTEmrg45nF3ET7YtGlTXLp0CYW8mdpdGC579+4FwLH+FGD1q99/3+VhvcxrNbnDfGX6xKtXr+LatWv8BqogMC/dAw+4OEzA6NGjsX37duQ6yfhrg5MxhJhpX8wQ7JRevYBffuEq49K0aVP+tXYu2jMR8Ruos2ax9uKC0NBQRERE8HtQOd59AEf0kCCw6Ir//Ifra5s0aYK8vDw+XTvJeK3I+Lv1Vpat2RzOa48Y5jtkyBDk5OTw30MX7VmRjHPmAN9/z/W1fn5+mDx5MjZu3Og6ey5HdniuUmuCwCICZsxw2NWjRw+EhYVh06ZNrkRXJKPoQeWOcBowgC1RkCm/9U/BMFDdiczLRfRuZGSwRn31agPXIbSvvcYWqUsgXi81NQBAHK5d+8tyPac1TE0mtlbILGN5eTkSExMRHn6L5Pc4DaVt0YLJyNFByQ3Is7O7AbBNxb/zF9Yxtu9THY0asW1JSYRnnmH1seLj5ZOtODB6NBvsuGDlSmDWLGag9+2b6Hr9rcQLUPSmtWlzFMOH38JvRD//vGS9Otv1xMEA2gE4iLIytt3p2j87PUshrsFxGYbVpAkwc6bTJDft27dHWFiYsrIPLl6ALGxTNFBdrOcdOpTVGeEgNjYWnTt3xrp16yyeE1ns9Hz+/HkUFxdzG6jW7ecTTMNe9HTYLlXLduTIkTh79qzrtbJWepZuY9koLuZ8AcbGsk6F44UpGgZcCWo4Sj4kJSUhNjbWdbmC/v25jD8p7rvvPiQnJ9us2bcg0W/v2bMHxcXFGDRokLIveuABVg/VBQMGDEBgYCDfwMdJe1bsQW3QgNWfdJFNTwwPVOQRApwaqIGBgejEcW/Qo4fsu8+aDh06IDg4mL/Eh8z7WfyN3CG+ADByJMBRfmj06NEoLy/nC1kU9Swz6N6yZQs6derEl/Ssbl1gxAiXJTgAFrYfHR3NZ6C6aM85OTkoKipCI/Hl7YyOHVnCJQ6io6OVeVD1iB4CgIEDuYx8QEGNXhfvZ/F3cslXsybQt69s8pHevXuja9eueOWVVwCAf2mGCz1z12kFmFFl9tLz8B/zhMAXX3zh/ECOusvp6ekICgpCDSfJGAGwiTuJCQt/f38MHDgQmzZtUp5kqqKCrRmVkPHSpUuIioqCvxPvrw0REeweytTN/adgGKgqkBpEyiLhaar0boizVw1dh9Bev25d2E/megDLQHsYRUXXMWsW6zRkQw+vXweqVbO8AM+dO4eSkhLcfz9fwhcbTCa2XpRj0bacoRsbWwuNGze2JEpauRL4akkxyuGLPFRHSgowZQphyJAnsGjRIkyePJnbOADAblJSktPMZ6Kxf+kSG2xcvpzoevKguFiy0ykuLsbp06dxi5PMdw5kZ0vWdgTsDfuuAFj9SZeRtIWFzI0kMdARn+WVKzNx8WJ918Z4eTnw99+yzyLAvH69evVS50GVecHExwPdux+Fr289CEJt55li8/JY7UTOjNKjR4/Gnj17MH36dDRt2hRff/21vIxW8p0wJzt48cX2XH2BdTRDIyShBc7YtCu50PfycuZpXb9+vfMfcu0aO7F6dYk2RgAuIzycM8S3rAw4dIitDXZB+/btERsby++FBpzOdCclJfF5r7Kz2fpvBZnDRUaOHAl/f3+skaolJzHQ2bp1K3x9fS11obk5cUI28Zc11apVQ8eOHaUNZnus9GxNSUkJLl26xJdMReTGDWDHDtk+R0T0vHCH+boI8T169Cjat2+PAPs1ClKkp7OEUBLJjKzx9/dHXFwc//p3FwYqtwcVYAluOCbk4uLiEBMTgyVLlriWUUbPAFBYWIjdu3fjdrtoG1lKSljCJU79NW/eXJkHVabf5l5PDjDZVq92SE4mRcOGDZV5/5z0N6KBWs/JpKuF339niXg44DZQCwpk9QxUhqVyGflFRSw8zpzQzZ533nkH+/btwy233AIfHx/baDVncHhQueq0AizPxKefcukZYNlzO3Xq5DoygsNATUtLQ3R0tOuJ+J9/Zu1FgiFDhiAlJUV5Nl9x6ZqMB5U7vBdgY7qPPmJ1tv/JyNWfqcqPN9dBdVZfNCrKSe0/KwRBPOddAkBANrmsudm/P1GfPi6uRwT8ar5mHwJAm5zU1rJgMhER0erVqwkAHTlyxFKH0WVtSJHLl5kA777r8uuk7qFYN/G+++6jWHPxzsp6hibzhwj4kQDQU089RSaz3Nx89BG7oJPadrY1FBsRMI5s6onKUVbmsGn//v0EgH6QqHslixM928r2iVnPF1zLRsRq8ZaW2myy1UMLAu5xXr+SqFLP773n9Ovmzp1LgiDQVSe152wwmVj9yYoK2UM6duxIQ4cOdX0tDj1bc/z4cfO9BAUEBFCbNm2oQkqO0lJWO5HEe7fQfN5Vh+dYDrFd/Y7+tC+wj82x0vU72fbY2E4UGNjbeXs0mZh8hYUSbYzV8Bw/fiHXPeHVs8gTTzxBQUFBrmvs3bjB9CJRG7qy9msUhYY+4rrP+fBDLj3L9WV33HEHxcTEOPYjubkO1+zevTtfjT97nLRne6ZOnUqRkZGu+7WKCqK0NCanFSdOnCAAtHLlSn75OPWcm8uenwULFvBd99o1ojNnJPtFIqK6devSQxI1bCUR9XzpkstDFy9eTADoyy+/dH3djAzJmsFvvvkmAaBr167xyUekSM/vv/8+AaDt27c7P7CsjNXHlKhf/csvvxCU1LtV2J4fffRRioyMdH3glSustqPdu0VEHFMkJCS4vhZneyYieuyxxyg0NJSvFurZs0THjzu9FtdvJWJ67tuX69CCggICKmvTy1Jaymomp6VJ7p41axb5+/tTuUSf6YACPbdr145GjBjh+ppETCe//26p9W7PfffdRw0aNOC7lgI9i0ycOJHq1avn/KCjR4lc1Ezt2bMn3Xbbba6/0ImexfGC4nqoN24Qbd4sWRu6Z8+eNHDgQP5rZWcras/eDIw6qPohtbZL5MoVlhTQlReq0ruRDiAAQE277RI4yUxqe15PAAKAXQD8pD0E9phnkxISEuDn54fWrVu7TPjigIJF287Cjjt16oSUlBQUFBTYrNljn2IATwFoi/nz5/OVAFAoo603si2ARIntEkgkThET2yjyoDpJFGG7npglSgoIOMiXJMrX1yF5QOWzTGDZcRvwJ8NykeSgd+/eICL+9WCCwH6cj3SXVFpaipMnT1oSeDhFYQKBtm3bYsiQIZg2bRqWLl2KkydPSofg+fsD4eEWT2dRURqAagAiLIe4un9iuxowsjriWuTbtCu5ZywlBcjIuAs3buwG0WX5rNqCwGo7Vqvm0Mbq12c1UIcN4wzxVXgPR40ahZKSEtdlFQICWLihXfhupff4GoArKCxsrEvmcDmv9MqVLAFHamqq49rZiAgmo5m8vDwcOHBAeXivKCPnPezUqRNyc3NdJxfz8WFLKexm4sUQ8JZK1iVx6jkiIgI1atTg96CGhrJlHxL94tWrV3Hp0iXXdW4rv5z9y5FYZcaMGejXrx9mzJhhSQYjS/36kjWDL1y4gFq1aiHUVY02exk59Tx58mTUrVsXr732mvMD/fxYfUyJMPstW7YgKCjIst7fJQrbc/PmzZGbm4srTiJlALAao126yCamUeT940zYBQBjxoxBYWEhfvrpJ9fXbd4cMGdDl4KrBqqIggQ/YWFhqFWrlmsPqr8/C2OXCY/lXvIgygdw3cPOnTvze1Dr1mVLjyQiHgoKCrB+/XqMGDGC71oqEvx06NABFy9eRE5OjvxBHTuy0FwnpKWlac403KpVK4SEhPBFu1gTEMDyi0hEE2RlZSnzoBpJkgykcDV2KC21GqBOmsTSSdpRaWgwowAQXIfQyjSYlSuZt7+SSABvIyBgDXr2vAfr16+Xz0SbmMjWH5nDQRISEtCqVSt8/30gfwiziL8/+1GcDUbOABbDYlJSUhATA0zCMizGk+az3gGQjDp13ueP1beGw7iyNfbbADgDoNz55MGMGSzFuR1Hjx5FeHg438vZWkaZe2ibfKk9gAAMGrTf9eTB6dPAI4+wOmFWVD7LBQCugz2LLp5xTj3HxcXBz8+PP8z3m2+Al1+W3X3q1CmUlZXxGfsKO29BELBx40Z89NFHGDduHGJjY/H22287Hvjii8CPP1oZ9mkAosEmTyrhSl4sMaCVe8Z8fYHy8qFgEwk7AcgYwn//DTz3HAtjh20b+/ZblvWaa70awPQcHMw9GOvbty8iIyNdDxjXrgUk7m3lPU0yb2nierKEY0Arl5Bt9mxYMsiKCXssvP46sHGj5c/NmzfDZDJh4MCBToSRQaGBCsB1xuYLF4C5cx0eNNFAbdGiBb98CvTctGlT10afyG+/sRA0CcSSSdwGqoL27OvrawnRnz9/vvOD33tPsmzG0aNH0aaNY5JAlzJy6jk4OBjPPfcctm/f7txASEkBFi9mJXvs2LJlC2699VYEBQXxyaewPTdv3hwAXIcxbtvGMvPJcOTIEURFRfGVPVKg5wEDBiA6OhrLndT2trB0qdMao1w1UEUUTEQAnJl809PZODE7W3K3opJHop45DdSLFy/y1eX96y9AJvv0t99+i+LiYjwsU7LJAQUTESJiKSWnpY++/dZp+TKxagZ3PVmZtuLn54fOnTsrN1AvXWLJ1K5etdlMRLh06RLqOEk86UBAALeeb2YMA1UhPDU3LeOGNWtYkWg7REMjMDAdQEPn6+lEJF6AonfAfpIzKuo5LFt2L55+ejRycnLkk9UkJbE1H+bY+GPHjiE8vIOsx8ElCl7ScsQy6wvJycl4/XVgkO8OjMRPYIPzz+DjMxQLFzomEeKC4wVo66VsC6AUQUHnnU8eLF0KSAw0zp49i5YtW8JHxisoK6OTQURlKZwA9O3bHVlZ211f89w59oDZZROsfJbFAVB9u+1OZHSh52rVqqFz5878BurGjWztjAzHzC8eRR5UFTXC/Pz8MH36dPz1118OnrXyhYuxZOJfqEwmmApmoNrCVZdX4h7KZdxmS6ZFD0BlPVQHQ/jMGeCdd1jKWjuyzYMf7iyBgKLBmJ+fH0aMGIFff/3V+dq6n34CPv7YYXPlbxEHc43ttkvAoWe581NTWY3ZkJAQRwN13jy21szM4sWL0bhxY/TmTOBig4J72L59e/j4+OCIqzWrJ08Cr7zC1vxbcebMGdSvX5+/BqoIZ78tlpo5dOiQfIkekTVrABkDUVy77Q4DFWAJdLp06SJf51Zk1izALlLixo0bOHr0KLp3784nm7WMCt5948aNA+Ai03lCAquPac4yK5Keno6TJ0/yrz9VISO3gbp8uWRdRwD49ddfsWbNGkycOJFfPoCr3/bx8cHEiROxadMmyxpSWWbMYIaBDJmZmfwGqkI9cxmoR46w0DuZLLXJycnKEnZxennFZ3z7do4xxJIl7FmUYNmyZWjTpg1fNmlRPkCVgZqQkCB/0MSJTgeqly5dQkVFBZ+B6qLf7tq1Kw4fPsxXhlDkwAGW1M8uCiUjIwNFRUWWRHTcKPDm36wYBqpCpAaR9sTEgLlSZZLnAMzQaNgwA+PGNeALoY2IYIakyWTZJBduHBrKrjds2DAEBgbK112zWviem5uLtLQ0nDzZQdbj4BIdDFTR25icnIz4eKBvx3wU+1cHqyeahsmT7+XPiCslH+CyFmqll5INoB555KT8d5aWsgQUEnpWNPMpIqFnOQYNGoTDhw/jqt2MnAMyCQ5sPfkA0MC1J1+8Doee+/Tpg/379/PVdnSR4ODo0aMIDg7m8w5pDH+56667AAAbNmywJJEKEErhV1aC1IIIqyNFD2olXPdPlLGgwEbPcqHv7FkMBdAI1gaqffbfJx9iv3fAqOoO72lVBiqHnq0Txv32Wx/k5OQ4D1HNy5NMElH5W0QPamO77TLyAU5llDs/JoYZ1d26dbM1UG/csGnPf/31F/bs2YNnnnmGv/6pvYx2erbG+v61aROCunVbujZQZTJqnj17Vpn3VITTiG7atClSUlJw++23Y+LEic69qU5KeyQmJiIsLIw/mZOKovQtW7bEaZlEMQBk++2jR4+irKyMf7At4kLP9tSvXx/16tVznkVVpt9mpeDgVgO1SZMm8PHxcW2gyvTbly9fxqRJk9ChQwe8zluoXKFnbeLEiTCZTM6zuzp5PwPA7t27kZGRYTGAXKJQz02aNEFKSopzQ8ZJAqLCwkJcvnxZtygsa+Li4lC/fn18z1PyRSbR1KlTp7Bnzx48/PDD/EuuVEwg16lTB7Vq1ZL3oNr121IoyjTsQs9du3ZFcXExX61gERk9ixEl7ZyEocvKaHhQDaxxrElpS0CAeYDqIutZRUUF0tPT+V/SQ4aw+pNWGWideQcAVi/s9ttvx48//ggicsg+vH9LpYzizFRennRWXK6wxRdeYDUoNVCrVi0EBwdbvFfRYflo3aM6XnnlR/j4+OD11+9QlkXZmuhoFjLlwgsneimvXWsFAKhZM1H+YJmspBUVFUhNTVVuoN55J5ut5HgBDhw4EETkegZU5lmsfJbFOnANXHvyARZe+Mgjlj/l9NGnTx/cuHGDb52Li0yLiYmJaN26Nd86nNhYYNkyoGtX18dK0KJFCzRp0gSfffabJZqgOtg9zId4D0sBZMHaQI2K4oiEELn7bhbWbOdtlAp9r5xIaAuAeYWksv+WX8kDAJzMrO4Q9XD5MgvxdVnn1ppFi2Rnza2/V4y2uHq1MwCgXbtD8m1TZkBb+RuTAIQDqOHa2G/UiNXTM5e5kULOKy1et0ePHjhy5AhKSkqwciXQpRnT8ysLmZE/f/58REVFYRJn2SIHxo9n9SclvMpS62Ozsm7BX38ddX5NmfZ85swZZetPRZYs4ZqBbNasGUwmE4gIfn5++OSTT5zL6MRAbdu2Lf+AtnFjVn9SQQblVq1a4cqVK/Jr1mTuoVjiTLEH9aGHWP1JBXTp0sV5mKCMjFu2bEGdOnX4jSqRFSs4Z8+AgIAAxMbG8hmoEv32d999h8uXL+PLL7/kD0Nu2hTYswfgXOvdrFkz3HHHHXjjjTfkvZROxmFEhOeffx5169bFI1bvM6c88girP8lJkyZNUFFR4bwkjpPM5uI4SNE4Yt061ne7wMfHB2PHjsWGDRtc1zeWac/ffvstBEFAvBKvQYsWbHnZsGHcpwiCgPbt28t7UF2MtwHOGqgijz/OPJ0yfVRX89hCUZivjJ4VR5SIbN4MOOuD/wnIZU+qyo+3ZvG1zwY5bRrL3CuZxffvv9nGr76SvNa5c+cIAH3++eeq5XGW9VPk448/JgC0cOE5h8y5r/i/wf5TXEzz588nANSgQabLa7qb1q1b05gxY9gft9xCdOed1KFDB+rbt6/TDMDuIDY2lsaPHy9/wNmzknpOTU0lAPTJJ5+4RzAiKi0tpdDQUJo2bZrzA19/3aJn6d2vEwC6fv26Yhmc6SMrK4sA0Pz582XPFdvTCf9bKK3TnZL7YmOJatRoSA888IBi+dQyffp0EoQQAooJIGoGpucH8JX5d14gAAQsJUFgfYE7WbGCKDz8eQICKCamTDL774tgeg40y2zdZh9//HGqXr26rjI59j/FBPgRMFu+bZrbs9xvDA4eSUA7vszhnDjLSL5u3ToCQK++uptCQuz1nE2AQCNHztZHEDuk+2/WD+fk5MifKNGeL1++TABo0aJFbpGViOjkyZNUq1Yt2rRpE917770UGRkp32c40XPNmjVp8uTJbpOTiOjXX1k2+127dkkfIPN+jo+Pp3r16inPEK+COXPmkI+Pj3y2YAk9V1RUUO3atSk+Pt7t8g0ePJhcjsU6dpTU8/3330/169d3+31MTU2l8PBw6t+/v3TmdZn3M1Fl2//000/dJt+ePXsIAPXr14+Oy2USFvVcUuKwa/369QSA9u7d6xb5/vzzTwJAq1atcn6gjJ7FcZkneOqppygkJEQ6m7GoZyeZdRcuZFn3uSsLOKGiooLCw8Ppscce4z9p3jxJPT/00ENUt25dzTLdrMDI4qsdqdnu5cuBd9+tHFrk5Fh5T0pLmSdHJimJGBrQmqO4NwAWLnz2rE1MryvvAAD079/ffOx2h9Dd4jJfZPo2BIKCsGXLFrRp0wZvv11PeQ1Ukexs2fpbSmjUqFHl+r+QEFyoVg0JCQkYNWqU06QnXJw65bLmnzUtW7a0JB+RpLgYiIxkHysU1X+z5to14ODByppZMqxcCTRv7o/Cwn747LOtzr3IFRVsZlFmJjszMxMREREIcRW7LpKSwmSE8yQ0tWvXRosWLSTXWdm3p4qyCvyZEIGVK6XaWgGuXk1HaamCxCX79zskhVLC8OHDQVQEgHlFQlGIMvhZeVDFZygaRCwnjCJyc4Ht2xUlFXv/fbYmetOmc5LZf6vhOkoQiBsIstkOsBBfReG9AGvLO3bI7naMqggC8/JWhi06tM2CAllPeXw80LZtBoYM4Vz2AABbt7LZeCc4y0guesree28viorsPeV7ABA2bhzKH6VhT3Y2W3crEYYvHZXCvND7nCR1QX4+EBho055VZfAVOXLEYS2mFK1bt0ZWVhYGDx6Mxx57DLm5uVi9erX0wTIhvtnZ2cjJyVEezrZuneQ6fzlatWLRL7J9t0yY9L59+9C9e3flGeIzM1myIGdZRu3o0qULTCaTfFIsCT0nJCQgOztbeXgvAOzezdYGcyKGSZc5qz8r41nbtWsX+vbtq/w+Ll/OvKicREdHY+HChdixYwc2bNggLR8g2ed8/fXXiI6OVhYdkZoKfPihw/pvOXr06IGPP/4Yx48fx6233ori4mLHg/LymJ4DAx12qRpHbNvG8mJw0Lt3b9SrVw/fffed8wMl9Hzu3DkkJCRgzJgx/LKJvP8+e/8poH379igqKpL2lnN6UKtVq4YIJ5FaFi5cAN56C5BJIOXj44MuXbpYIi64ENuznZ5PnDihvD8EWGTOu+8qP+9mQs5yrcqPN3pQebyVShA9ltyzOZs3sy/cudNms6t6pSaTierWrUtAvKT8gkBUXFxMQUFB9OSTT3JdU5YpU4jq1OE8WJ5p06ZRjRo1LH+/8847BIDOnTtnV/PV9ndwERFB9Pjj3LI8/vjjFBoaqngm+MsvvyQAdPbsWUXnWfT855+yh9h6LRcRAAoKSlHtcRo1ahS1bduW/4QpU4jMM36u9PHwww9TVFSUw+y2dHsymWt+2m/fZ/ZWruN/HhXq2Z6lS68TEETAEzbyCagw/3+FWaZTyp4/EQ4923PgwAECQE888b1N+7SO4vBDqWTfNGDAAOrVq5cyGa30LIW0DicRUIsq6xbb3ZuKCklPgUi9evWUedeqV9ekZyKiRo0aEdCZgAICTBSEIvLHDQKeJ8CfgCL1ESRO9Cx9/4pJEMJp0qRJ8tcsK2P1J61YtmwZAaC///5buYwu9CyFyWSimJgYuueee6QPKChwqNNKRLRt2zYCQJs3b1YmY/XqRE88wX14eXk5BQYG0vPPPy99QFkZq6taVGTZdOXKFQJAb775pjLZiFS158zMTAJAixcvlj7g2jWilBSbTeK4IT09XbmMCvW8du1aAkB//PGH/EGZmQ71LFNSUggAvf/++8plVKhnIqKSkhKb8YvdTuZdKyhw2NW5c2caNmyYMvlkxmGuT9tMAOjHH38kInaPLO/Ey5eJTpyQPE/0GioafyjU8xNPPEEBAQGUmpoqf9CZM0RJSTabxGcxOTmZXzYRFf320aNHCQB9+OGHjjuvX2f1eCX6HJGxY8dSy5Yt+b6MQ89z584lAJRkd19kSUtj9W6tqKiooJCQEOln1xUq+m1vBIYHVTuu1nsq5dSpU6hTpw4i7TxvssgkinBVr1QQBPTv3x++vtsBkMNlY2JYIpCSkhJLnT/FNVBFdFq03ahRI1y9ehXXzF7E7777Dp06dULTpk2dJj1xh4wtW7ZEYWEhoqMzFa15TUpKgiAIiOEWzEo+QEHpjNsAACUlf/B7ke3IyMjgrwMnymh+Dp39PEEAli3rgytXruCdd2w9GdLtRkBqqtQ+MRFBG/6s0hqexZUrgccfDwEwFMBqsPWmTD7WZRKsPaiAgufPWj5AkYxitMXHHyfaRHIUFFSWpysHK79kH/Vw+fJl5R5UF/dQOmFcZwCXUZkZ2u7e+PhIegoAoKysDJcuXVL2LCos+yDFokWLABwDMATABZQgGGUIALAbQBcAwar7eWd6lo6ACUKfPqOxdu1a+eRifn6s/qQVZ86cgb+/v7JkKtYyKryHgiCgRYsWSJHJPIqwMEmv1R9//GHxPijCSR1wKXx9fdGsWTP5REl+fkCdOqxUg5ndu3cDgPIESYCq9lyvXj3Ur19ffh1baKhN4zGZTFi5ciU6dOigrI1Yy6hAvttuuw1+fn7YaFVyyYF69WxqBgOVmYm5a7Tay6gwM2lgYCB69+4tnYshMJDVQZXIbM1K2al8PyuUsX///oiMjMQPP/yAXbt2oVGjRli/fj3bWbMmILP+UEy0qMgTrVDPzz77LAA4T2bVogUb/Fixdu1adOnSxVJ5QREq+pwOHTqga9euePfdd2Gyz9EREsLq8TrxjqalpfHnfOFozxMmTIAgCHyljgBW59Zc2kwkOTkZRUVF6jyoRpIkAxHFhtEvvwCDBwPm5CT2nDx5UlmtNQ2ZSfv374+KikwEBdmGPL7j9wJ+a/sctmzZAj8/P/RTkIRCVsaSEhberAGxw0s5fRrJ/ftj3759aN78XjRqxAbk9n01dwiyKKOCe5iezkLmMjLOWAwCGwNp0yaW8Mau1k9SUhIaNGiAQJnBuFP5AAWlM9oBqA5gl/wg+rXXgDlzZK+nqFC5KKNZz3JZrckyF8JKc7z00i7LPVu5ktkpIsEowiqMw+3YjJgYqTZ1EkAAAFYjlyukW0PnXTkBMAVANoCfMAC/41NMQtOY4fD1HQdmoEYCqKbs+bOWD1AkY7Vq1eDn1xhlZbYhrWVlbPz1esQCPIcFkmWrVIX4Vq/OQthl2rN91uGoKMDPTzQ8WJivzb0pKmKNRyZs+NKlSyAi5c+ixpd0UdFo+Pp+C+AggGZojmiEIQXAAQAsAZPiCQhr+QBJGeWyNr/44n3Iz8/Hpk2bpK/54YcONUYPHjyIFi1aqM807ETPcsTGxkobqMXFwMyZkqGaGzduRFxcHGrYGdhcMirUc6tWreRDfPfuZaV6Cgosm9577z3Url0bPXv2VCabKB+gWMYuXbpg06ZNeOCBBxxDVL/4goW8mvn2229x7NgxzJo1S7l8oowK9Fy9enX06tVL/jksLmbvFrtMxLt27UJYWJjyJE6ijCra84ABA5CQkOCYFOvwYVZ6yy4J0PXr13HlyhXlxpVKPfv7+2PkyJFYv349nn/+eRBRZbbuNWtYsjcJFJeYEWVUoOeYmBhMnToVS5culQ6fLSlhySWtMuhev34de/fuxYgRI5TJZi2jikmxZ555BmfPnsVv9mtqjh9nnadUWQszipKScozDYmJiMHDgQCxfvtzRYJZi/XrAro2LCZJUG6gq+u2bCcNA5YRnvacNZ88CW7awwsl2EBFOnTrFv/4UqJwZsqtlycOAAQMAAPHxO2wGQxMa/YE2pUexdetW9OzZU3n9PDkZNdZmspSaSUzE9+ZC6uvX32MpE0ZUaaRy1ZC1l1HBPfz6a3FNV+VAx8ZASkxkNdbssssmJyer82Zw3EPbwbIv2CB6l/wgesMGVmhbgoqKCly6dIm/DpydjPaDbMcku80B1EJFxS7Mnl25vtQqGTWicAXjsAYtAljtW8e2dgpACwCVg2+XHi2Feram8tpDAMQA+BS34CiS8SXOp25ARcW38PPbDCBa+fNnLR+guK2Ul1dm8rXm6lXgpVZrMX/QZoeoB1aqIAdr1tRTlvmaQ0braIucHOCTTzqAvVYOW+4NwL4zptoV4LPPsHeFdGbQDHO9R8UeVJV6Fpk9G6ioGAPgPHphKP5GOooxGcANAL3VTUBYywfI3kOpaJVBgwahRo0a+PDDD7Fs2TLHTKorVrA1mWaSk5Px+++/4+6773aLjHLExsYiKysLJSUltjtycoCFCwHz4Evk8uXLOHDgAIYpyN5pI6NCPbds2RLnz5+XXkO5ezfLRm4eWO7btw9btmzBzJkzEWzlVVUkH6D4Ht59990QBAE//PAD5s2bZ7tzyRJLbeiysjL83//9H9q3b2+poeoJGYcOHYrDhw8jS2rNZU4O8OqrDmuDd+3ahV69evFlXJeSUcMY5w/zeMHCjh3Ac88BdmVexIkVxQaqhjHO2LFjkZ+fjz3miRvL5Mn//sd0bQcRISkpSfk4QoWML730Evz8/LB48WLHnZcvs2zuVuW4xBwh4lpvxajU8913342GDRti4cKFtju2bGEZlmWMtfz8fGRmZvLXGuW8hw899BCSkpLwJ08G7zfeYLq2QjRQFTmrFMp4M2MYqJzIzXbLDkyvXGGjdYlF2xcvXkRBQYEyA1Wccbbz1PHQvHlz1K9fH9nZP9sMhgJN2XgmLQ2HDh3C4MGDFV/XAbGEhQoZrbEYqGfO4FsANf2aoqTEtmMhYjpQFIIMMDePAvkyMhoACIG1gQpYGTEyelZVAxXg0rOjAdcHwEm88ILMOVeuVOrGjqysLFRUVCgzCuz0bD3IdpxIFMzy/YmUFJJMqhQFdp17p7HrisdUjm9OArBtKy49Wgr1LH1tXzAv6lZswhK8AWDcuHEICQlBefk5jBgRrfz5E1HZnsPD24I9i7aD7pgYyOr5tdd2gciE/Pze0lEAcqhoz5MnV0ObNq1wxx2HIOY5ExNe1TDrefHXNSW/W5WBqkHPIpUTEtEYjs4YBwHl2GaWpae6CQgRFXr29/fHvffei82bN2Py5MmYOXOm7QF2el62bBkA4OGHH1Yno8p+W+ynHereitexexa3bNkCIsLQoUOVy6hCzy1btkR5ebm0V8iu3547dy6ioqIwbdo05bIBqtvzhAkTkJWVhRkzZuDgwYO2Yd1mPa9atQpxcXE4d+4c5s2bBx8flcM2FXoWdbV582bHnRJ6LiwsxIkTJ9DLSeknlzKqaM/dunVDtWrV8PvvvzvKKPF+Vm2gahiH3X777QgLC0Pjxo0xcODASgNVpt/Ozc1FQUGB8nGEWANRgYz16tVDXFycdA1mCT2LBqqqSXjxWiruob+/P55++mns2LHD1rPvZLwNVJaD6datG98Xcep59OjRCAsLwzfffOP6mhJ6TkxMRExMDMLDw/nkskaFnm82DANVAYrWZubksIdRYu2A4gy+AFszs2QJcMcdimQGWGjElClT8PPPP1tmbADg3tRULD5zBo8++iiedlLvkJsePVhYUp06qk4X62nWrVsbghCENz/5CgcAhJVLZyxUtS7siSeAN9/kPjw21gdAS9gbqBYjRkLPpaWlSE9PV2eg+vuz+phOvCH2kyV16rC1Pg0a7JY+ISdHtnCvKqOgTx/mNZbwukobjiMBJKNOnR2SOqsJFpZ1I6ymxZgBmJfVz68YwAUAlTOMXB6tWbOADz5w2Oyshq64zzaMfDKAWriMi3jQPwjLli3DxIkTAXDWU5PD35+F/LiwfOzl7dq1LZhxWhmub7kf4rNox5IlOwD4QwxXBTjDpPv3Z7XWFP7OLl26WGrfWk9IiHrOLI3CxImOBrL4LHIVUhd59VXgyy8VyWeP9TNbEzl4DlEAQuDn1xhvv10Ps2erqLks4u/PvDiTJys6bf78+fjjjz9wxx13ONb+s9JzeXk5li1bhiFDhihfTycyaBDzjigcbFqWYtiH+YphlnbP4oYNG1CzZk1LDUFFvPUW63MUIIbNORgtoozmfjsnJwe//vorpk+fjtDQUOWyAUzPhw4Bjz2m6vRevXqhtLQUh6zDZXNycLCiAuPHj0dZWRmWLVuGO++8U518ADB0KHDyJKs3yknHjh1Rp04daQNVQs+nTp0CEaFDB+l66i55913A2ZpXGfz9/dG3b1/Hdajiu89uHCZOqig2UP39WXScivFSYGAgvv/+e/zwww9o164dzp49y0JDZfpt1ZUA7rgDSE9na28V0KpVK+k12xJ6VlWf1ZpPP5WN6nLF9OnT0axZMzz55JMoFT2mTsbbQKWByr323d+fZfB98UWnh4WEhOD222/Hpk2bQJXrmqSRGIcdO3ZMfVsZPZotUVDrxb4ZkMueVJUfb8ziq5ixY4natJHc9f777xMAysjI8Jg4V65codDQUBo3bhwREV2+eJF8AJrtoRpWrnCsp9mKANAkgPrXPSyR7dIztVlXrCDy9R1HQGPL99rUdhwzxkHPf//9NwGgL774wnINVVmROSkqKiJ/f3/pjJVlZUzoV1+VPPfHH38kAHTgwAFdZFmxgsjf315XRQREUbduY20yzoqfe7GaCKCB9RIl9Mwy9wnCaovO1d4/ZzVbpfaJGYpjY4lSulXq+fTp0+Tj40PvvPOOLvdMibxBQQcJANWs+Z3t8yTqec4ch+sAcQT0dri3ijMPc/K///2PANDFixdtsjyLem6NRMd2RETPPfccBQYGeqQGpTXW9/l7jKETaEMBAT/S0KE/erTmshTz5s0jAFQgZiE16/n6Sy9Rq1atqHr16gSAfvjhB88JZSY5OZkA0GeffWa7YzXTMyUmWjYVFxdTrVq1nNeU1hmTyUQ9evSghg0bUrF9DWirfnvTpk0EgH7//XePyWbPpUuXCAAtWLCAbTDr+YEOHSgsLIzy8/OrTLZ77rmHYmJiHHesWuWg5y+++IKgJnu9DixevJgAUEJCQuVGifczEdGLL75Ifn5+0jU1PcBHH31EACj1wgXZfvu7774jAHTkyBGPyLRoEasIcPnyZdsdEnp+9tlnKSgoyON9tcgvv/xCgFXd5zFjiJxUIhg7diw1adLELbIsWbKEANDJkyflD5J4PxcVFZGvry+9/PLLbpHrZgFGFt8qoG5doHNnyV2nTp1CeHg46tWrp+ya584Bx46pEqdGjRqYPn061qxZgzNnzuCXtWthAjDmtttUXU+S8nI2E6/CtekY+vkO4vAUXvZtiun/10B9bVZ7srNZnTC5DJl2xMcDd93VEkAygBLH0O7wcMsMFhHhjTfesITkNW7cWLJ+rsvwyoQERbXggoOD0bVrV+zcudNxZ2Eh0LgxIOMhVeVBLStjnrXz5x12xcczJ7r1RKGPTzCAyThw4Efk5qY7nBPoW4Hi8No4flEqDJl54ojaWXTOFW6Zns7W6Vmtj3NWs1Vqn3UYeUwjX4urrWXLljhy5Ij6cECRvXtZHU8ZpGQqKWkNQMCMGYm2kRz5+eym2yVCKigoAEtYNMDh+i4dbjduMK/VqVMuDrSls7nfO3z4sM13BKMYxQjCFbCHw96Lm5GRgfr16yvLWHnhAkskI1VfkBPriIQglOBaYC0sWzYSp06N1FZzWWTbNuYtV4HoBTx50rzuOC8P8PfHrvx8nD59GoMHD8bs2bNx1113qbo+ANZGli1T/G5p0KABfH19K2tWi4hroqw8LvPmzcPly5fVhyGfPs1qJzpJgmKPIAiYN28e0tPT8dlnn9nuzM21yCd6+zt16qRONpGffwbk6sK6oE6dOmjatCn+Er1KV6/iIoA1iYmYNGmSuhBAe4qLmYdSLmuwDH379kVqaqpjKLeEZy0xMRGBgYFo0qSJOhkTEthavevXFZ/6wAMPICgoCB9//HHlRpnw2ZSUFDRs2FDdOtnVq9lLTgNiveIzoi4kIpxUe1CvX2frqxWMIYDK9aQOXlQZD2psbKzyOrciBw8CL7zgkLyKlxEjRqBHjx6VdZidLGMCgAMHDvCH94osXSoZhWXPkCFDAEA+mRhQWQfbrq1UVFTglltuUSaXSGEhW19tv+76n4Sc5VqVn5vZg8rjLRs0aBB169ZN+cVHjCDq1Em1bFlZWRQaGkqjRo2ikSNHUnR0tL4zYNevs1kiBXXkxPsl5SG19vLo5oVcvpxdWEG9wG+++YYA0PHjxx3ktpZH9CiEh4dTixYt6OrVq+rq56rQ8+zZs8nHx4f22NXZcsVLL71Evr6+ymaSOfVs6wG8QIBAwAsO9yIqih0vfa/GE1CbYK4/yu01F/V87pxlk7OarZrr66rBhZ7lZAKa0L333sv1FeJMc2DgNuWeQBXtmYiooKCAANDcuXMlvMAmkquR2q9fP+rTp4+i76Ivv3TQs2bM9Ql1eyY09Nvnz5939FKaTDTruefIz8+PCgsLVV3XBpV6JiKKiYmhBx54wHHHjRtE5nfLsWPHyM/PjyZMmKBeRpV6NplM1K9fP6pXrx7duHHDegf73cQ8hI0bN1Yvm8iIEUSdO6s+fcKECVS7dm3LO/mVl14iQRDU1baVQqWejxw5QgBohX2HUV5OlJNjaS9ERMOGDaOOHTuql1Fje544cSKFhoZWepyvX2d1Ru3o3bs39evXT52MGvVMRJSenk4A6IP33yfKziaS8JBPmzaNIiMjlV9cpZ6TkpKkIyKKilgNVCs9d+nShYYOHapcNhEd+u3nn3+eAgICqKSkhN1DmTquWVlZBEB5xJMCPbdq1cr5/SgrY7/Vqn71559/ToDK2tVEmvptbwKGB9Uz8HrLzp07h2bNmin/gpo1K2ezVFC7dm28+OKL+PHHH/Hrr79i5MiR6mfApAgJYR9OGa3vlxyiB0Z1bVZ7VCSK6NixIwDgl19+ASCv5/feY2vFNmzYgDNnziAyMlJd/VwVen7uuecQHR2NBx54AEuXFsqus7QnMzMT9erVUzaTzKlnWw9gYwDjACwG80ZXIk4uOiZ/IgBbAQyEuFye2zkv6tlKRmelojTX11WDCz3LfXdwcFskJiZK77Rj69atCAgIwMcf9+RP8CaisD2LhIWFoUWLFjh06JDFO1n5eAnmD8P6NyquxwtI6lkOZ+uPbTAnodHtmdDQbzdq1AghISE2uQMgCPh9xw706NED1apVU3VdG0JCWD1QFTLKlpoJCLCsB3v55ZcRERFhrjerEpWJnARBwPPPP4+LFy/i559/tt5h6WwOHz5s8fprQuP7uVevXsjOzsZ5c2TKd+vWYeDAgerGClKobM/t27dHeHi4Y6ZSX1/m+bNK2nTy5Em0lanpyYXGRIuPPfYYCgsLscKc/RghIbIeVFX1O0UZNegZAOrXr4/Q0FCcOXsWqFWLRWLZoTrRoko9x8TEICgoyNGDGhxc2XFayaY6QRKgqN+Wo0ePHigtLWWJnWrVks2VoDhBkrWMnPINGTIEO3bsQLFcJI+fH1v7bVVe6+jRowgNDVUfbSDq+d+eJEkQhKGCIJwRBOGcIAgvSOxvJQjCHkEQbgiCMFPJuf8kKgfkhCO4Bf/BZw4hYaWlpUhNTVVvoGp8GJ9++mnExMSgvLwcI7duZSFyeqKgUUuFMFoz3+8l/B49USfBzIihNAo6xjZt2mD48OGYP38+8vPzbfT8B27Fg/gKRUXA0qUsRM66/puqQa4KPVevXh1fffUVLly4gEcffc1iPDdO2Y66Ewbjx3elZwHEsErFcOjZ0Zh8G6zLedZq2wY8GfIIMH26Tagl4zhYHdLKJFncxoFEhjtnpaKclpEiAkaMYPXq9MSFnuVkGjSoLc6ePWtbPmPnTmDsWCA93WKICcJfWLz4Q9xyy12YNClY3QSPysGYdaKk+HgWhTvbfz7eQmUNR+swfSLSZqC6aC9ck4dEwLhxwE8/AVBRWsyZjCr7bR8fH7Rt27bSQN2zB3nx8Th06BBu03N5hko9Sxqo77/PQgzBylj9+eefGDNmDKJkErVxyweoknHIkCFo2LAhPv/8c7aBCJgyBdi0Cfn5+Th//rxXGKi9e7Oa0bt27ULe9u04deoUbtVDLmuiohTL6Ovri969ezsuIfn8c5uyGYWFhUhJSVFXMkNEo+HSrVs3dOnSBR999BHIZAKefdah7nJZWRkyMzOr1EAVBAEtWrRgIb7/93+slIsdqkvVAar07OPjg5YtWzoaqCtXVtYLA1s2cvXqVX0MVA3j2e7duwMA9u3dy+q8y4Q0HzhwAIIgKA/hV6DnoUOHoqSkRDohG8BKbi1YUDkbD2agduzYUX1WbkCVnm8mXN4ZQRB8AXwIYBhYKs37BUGw74GuAngCwDsqzv3HIA7Iw1GAW3AMYbhmsx0A3nsvGSaTCXPnNlOeFbJmTWYZKViHY09wcDCWLFmC4e3bo9/p05J1WjWhoME484bFxgIPtDqIJmUyhdbVovIFOG/ePOTm5mLhwoU2er4VOy3ZSfPzE9CkSROberKqBrlRUar0fOuttyIw8HaUl1euhWiGcxho2oK3F0g3dVVGgSiji3voaExGA3gJwFoA8QAeADAcP5etAJmzV8bHAzt3puHtt0/B319cnzkIgELjQELPzkpFOS0jVVAA/PYbYF6vqxsu9Cwn0733tkVZWZltfczTp4G1a7FuLZkNsUwAYwA0wvHjnyrPPiui0rjq3LkzUlNTkWO+//HxwPSWW3B7wJ+SXtzc3FwUFxcry+Arygco9OYzHNaTFhSwSQizB0txaTE5VLZnkfbt2+P48ePsjxMn8Oc338BkMulvoKrQc6NGjZCRkYFy6zqT69ez9gK2zio/Px99+vTRLh+gajDm6+uLhx9+GJs2bWLrKAsKmHF18iSOHj0KAPoZqBr03KZNG9SsWRPbt2/HAfOa5e5qM3zKoVLPffv2xalTpyztGQDw7bfsY0ZcJ63Jg6piAtkaQRDw2GOPITExETs3bAAWLQLsSqdkZGTAZDKpN1A1tmeRli1b4uzZs8C8eTa5EgA2YZecnKw+S65KI7pVq1aWKhMs+hJsdtFqza04IaVaNkCzngHmhY6OjsbenTuB//5X0kAtKSnBihUr0KlTJ5txGbeMRUVc+Q1uu+02REZGVq6JtWfPHuD55y3PjMlkwrFjxyzRearRYbLEm+Ex3eMAnCOiC0RUCmA1WN0IC0SUTUQHYF+cj+Pcm42lS5dizJgx6NevH9bYeVTEAblosIjJQMTtK1cCL78sJpZpyl+PUESnOqNDhw7Fr+PHwx+QLT+iGgUNRs4bJiamqecvnX5dEwruoXVI4OjRnRAXdw8WL16M6GiW2txez35+jh2OvVfQ17dyYCyrdw16LimJA5AIoMhGxmMZjnpeuRI4dSoD69Y1UDdZ4kLPUsY5MBPAkwB+AbAKbdoMwPnSIhwJCLAcMX78eMye3QHh4Yvh59cSghCt3DiQGdA6CxWPj2cyx8SwyROLjmTKZmiGQ89S8ooeCpswX7OML74TZX4HfgPmfV6H4uJI5Yl9RFTO0IoD/j1Wg4Z6/lfQeXBNyXuvKlkXwG24cIXaS+hZl6UFGvvtdu3aITs7G9nZ2UBODn4HEBQUhB49eqi6nqyMKj2oFRUVFv0BsElYsmvXLgCV3kFN8onXVsGkSZMAmGvG5uTgLIDHf/sNa9euBaBDgiRAc11CHx8fDBgwANu3b8c+c9uOG+CY3EwTKvXct29fAMDu3ValzOzKo4j9kS4hvhoG3ePGjUNERERlsiS7MY7qGqgiOsgIMGMw5epV5AIOMl66dAklJSXaDFQVz2Hr1q2RlJSEp556Cu3atWN1ee30LCZv0sWDauVRVEP37t2xb/9+22ta8cYbb+DcuXN4++23lV+8Zk02+OOQMSAgAGPHjsWPP/6IIqmJC/FZMes5OTkZ165dU58gyVpGFQnFbhrkFqeKHwB3A/jc6u8HAXwgc+wcADNVnjsVwEEAByVTmnsJ//d//0dt27alWrVqUbNmzWySDIkJQeKwlwig4fjFJhkJSwLzHgEg4BJfwhxrkpKI1q4lunZN+w959lkmrN789RfRzp1chzor+0FERNHRRBMn6iufyUT000/sXiqULSDgewJAc+bsddBzcPB1EgSBxoyZI5nMyeVvtSYtjWjrVpacQCG1av1kfr52EUC0AM9SIUJIEGy/a8UKouDgXPOx8/kT54gcPsw+LlixQi7Rz3UCLtLVq1fJH6BnzKUArly5Qj4+PlSrVi0CQDNmzFB8D4iI6XnbNqLMTO5T5HS0YQ7TM/36qzpZ5Lh0iWj/fqKSEkWnXb/OnrVXrUsHmdtzZWKf+wiI1Z7s6dQpIhUlI4qLi6lu3bo0aNCgyo0y7TktLY2mTp1KAGjXrl3KvshkIjp40Cb5hBRcycr2uknPOTnsPpaWqjp98+bNBIC2bt1KFc88Q00EgQYPHqyvjMnJitqKvWw7duyo3Gil5/vvv5/q1aunPRmfycQS22lICtW/f39q37490d69NJ0tcCcA1KBBA22yieTnE2VksORBKhHLj7SJiqJW7sjQlpUlmZDHFWLis3nz5lVutGvPM2fOpMDAQG2lW0wm1i+qbCsiTz/9NPn7+dFFifYslqO5cOGCuosXFbExmMZn+uBBVjLsY39/h31//fUXAaBf1fZF166peg5Xr15taRcAaPv27Q56fvfddwkAZWVlqZONyCZJmRYWLFjAZJHQ86lTp8jf35/i4+PVXby01CYxlCt+//13AkBr1qxx3PnMMzbjbbGE0P79+9XJJlJFZZL0BE6SJPEYqPdIGJnvyxxrb6Byn2v9uRmy+C5fvpwA0J9//mmzfcUKoom1fyUCaGTdvTYDfjZ4fIKAUJLLZOkxJk4kMk8EuLtOpzOcfndICBt4VwHSA9qLBHM2OHs9//e/+wgABQSslTRCVWXzVcH772eaXy7/I4DoC0ykFEQ7fBeT56D52HVuk6fyu+R/+0hfX6ofGkrl5eW0atUqAkC7d++mb7/9lrKzs/UXSKGcop5p3z6PyeKKZs2a0ZgxYyo3TJxIFB1t9RuaEHC3W/Xqivnz5xMA2ifet+Bgm/acmJhIY8eOJV9fXxIEge69914q1TgwlYNrguiXX7xOz0REV69epeDgYHr44Yfp98GDCZDIqFpFZGZmkp+fn2UiadWqVbTa39+i55iYGLrnnnuqUkQL4vOY9uWX1BSgWzt1ov/85z80f/78qhbNwunTpy3GwcRq1apaHBtiYmLo/vvvr9xg15579epFnTRUGdCTM2fOEAB6XaI99+rVizp06FBFklViMpmofUQExQUEOOxbsWIFAS5qa7oB8fmbNGkS+fj4sBqdduOwp59+mkJCQqqsBqo1O3fuJAC0zk7PYvbuiIgIunTpkkdkKS8vp3r16tGtt95Kq1evpoyMjMqdVuNtIqLx48dTZGSkbWbxfylaDdSeADZZ/f0igBdljrU3ULnPtf7cDAZqYWEhhYWF0UMPPeS4c8cOogEDiFJSbDazweMIAjqqM1KKi4k2bnTp/ePi1VeJHnxQmWePh6Qkou+/Z2m1tVBaSnTrrUT2Kc/14M8/ibZvd3qIfImPpjR69Gh20JYtRF26ECUl0aeffmoeWJyXNMQUlay4fp3o229Vea6IiICGBNxPANHbeI6+xxiH72LyrDLLfFz5ZMmZM0RffMGlZ6fP2I0btCY2lgBQ7dobCXiQfHyi6KuvdJgZ3LCB6LffuA+X09Ew/EbUooU+7c6aa9eIPv+cSMUg5J577qFGjRpZJj8+wHTaETSEpk0jCg7OMev1Le3tOSGB6N13VbXngoICioyMpP79+9P6H36grNhYosWLiYi9zFu0aEERERH03HPPqfdmELH+5vvvXR7mciJu3TqiunWJzp9XL4sUeXlEixYRHTum+hIzZswgf39/uq1ePYrw9aUiFdEVTjlwgGjuXFWeq//85z8UEBBA33zzDfn4+BAAmt6zp8VDtNisc80sX0709deqT09ISCAA9MKoUQSAPrCOQNCDq1eJ5sxhHn2VmEwmqlevHgGgj9wRSbZrF9Fzz6lqz8OGDas07IqLiQICLCUuxFI0ikt5SPHhh0RLlmi+zG1t2lAjgCqs3qNiKbg33nhD/YVzcphHTGFJNykWtWlDACgxMdFm+9y5cwmA+nb+++9Ejz6qSs8pKSlkMpmoR48e1CMujr0EzXquqKigXr16URtzxJMm3n6bvVs0UFJSQjWqVaN7AaJz5+jy5ct0/Phx+uyzzwgALdHyHGVnE02Zwh0RSEQ0a9YsywSTTdkZq5I1165do5CQEJo6dap62UR++43o/vu1j7erEK0Gqh+AC2B1IgIAHAPQVuZYewOV+1zrz81gbict/gAAM/1JREFUoBIRTZkyhUJCQiprbrlgxQoiQWhJwFh1xmB2Njvp/ffVC22H7p69Dz5gF/DQrJUq+vVjxq8T5O5LtWoTqFatWpbZw6+//prCw8OpadOmBISRWK/T3ghVdJ816jk4eDQBzZx+F5Nnrrkzva5c7wr17Mw4WLasiAQhloBGBNQiYLw2o0qEQ8/WeMrLbUHU8wcfKD71rbfeIgBmY9TW8B8xYqNZr9u0R0RobM8LFy60vLBr1KhB69evJyKitWvXkmw4lFIU6tnjZGVp7reTkpLI19eXNIW9O0ODnpOTk8nf358AUNOmTempp56y6BwAHdRgsNmgUc8mk4kaNGhAgYGBBIDO6VVfVEQHPRMRxcfHEwA6pNd9s0bUs4rwzJkzZ1JAQACViYNhk8kSYvjwww9TSEgIXb16VbuMOrXnNWvWEADaYBX6+fbbbxMAOq9lEkonPRMRZWdlkZ+fH82cOdNm+8MPP0x16tRRf2ENehZ5+eWXycfHh/KysizLjcT3zgcq3lkO9OvHPhp5+qmnyN/fn1KTkqhly5aWfqdnz55UoSBE1wEVei4rK6NTp07RtGnTyM/Pr7I9FBVZ6vGK3vE//vhDvWwiOui5qtFkoLLzMRzAWQDnAcw2b3sUwKPm/9cFkA6gAECe+f/hcue6+twsBuru3bsJAH1tN6srNxgvLy8nX19/Cg+fpS6ctqyMqUzHmV/ditGLrF7NLmA3I+hVjBlD5GIGUM7rN3ky85SePXuWSktLqVGjRlS3bl0KCgqioKAhsgaOIk+1Rj3fe++b5k76iux3rVhB5Os7kYAG6iZLdNQzMwz3EuBnlvtrfQzDsWNd6tka3aMJXCHqec4cxadu2bLFfK82S7TdeQSAoqNztcuug55TUlLojz/+oE6dOhEAeuaZZ6h79+7UpEmTysGuFjjasxweWd6gQc/WjB8/ngDQkSNH9JHLGo16njFjBvn5+dHevXuJiGjfvn30v//9j9544w1tg0RrNOhZZPLkyQSAmjVrpo9M1uik523bttGIESPcE+6+apVqPX/xxRcEgE6fPm2z/fLlyxQYGEiPPPKIPjLqoGciohs3blCtWrXo9ttvp6+++ooWLVpELVq0oO7du2u7sE56Fhk8eDBbG21F7969qU+fPuovqkHPIjt27CAA9OOPPxIR0YEDB8jX15fuuecefcJ7x4whattW82VOnjxpadOid/zVV1/VNglBpEnP+/fvJwD05ZdfOuwbNmwYRUdH69Mv3gzjbRdoNlA9/blZDNSKigqqU6cO3XfffZZtK1YQLfZ7lnahl8MgVwwv+fTTT9V/aWQk0fTp2oVv147ozTf19xpt2cIuoHV26I8/iFq2JDp6VNt1pJg6lah2bZeHSQ1eExMTCQAtW7aMlt9xBwGg9evXU35+Pn3++TWnBo6iwbAGPW/dupXEkNnd6EH/jfyf5He1aNGbAgP7qRuc66XnXbtoH7pRWxwn4H0CahBwWdskicjUqUQKZ6EldfTf/xLdfbdGYWSIjCRS4RG7cuWK2UB9kwCiTbidpuIT83M3koAW+hjYW7eq0rP9fdwwZy8V9+9P081GFgD68MMPNQhmhQo9izJat9eZmE9f+T7kHiNVpZ6tycrKom/j4ogkBj2aUalnkfLyckpNTWWhwqNHq16e4BTOftsZ33/PEt1NtzMIdEMHPRMR0YQJbPCpNxr6bXHQ/cMPPxAdOcLW1V24QHPmzCEAdOLECX1k1EHPRES0ZAnN6tHDxpuvOexTJCJCHz0/9hi9fM895GsVtm8ymah69eo0bdo09dfV4f1cUlJCIUFBNKNDB6LUVHrhhRfIz8+P8vLy1Mtljcp+24GvvqJbGzcmAPTggw9qv541KvVsMpkoJiaG7rzzTrZh1iyijRspMTGRfH19adasWfrIJ+rZLhfOzYQzA1VDhVgDHx8fjBgxAps2bUJZGauwM3s20LA8CdWRbzlOLCty7tw5AECzZs3Uf6mGou8WystZ4eAbN/QrRm8tH6ApBfvKlcDjYzOBM2cwcHiA+hqOcoj30GRyephUiYlWrVqhRo0aeOONNzB72zZ0CAzEHXfcgfDwcEyeHOq0bqKikhUa9BwXFwd/f388NGEremIvXnkyX/K78vPP4YEHmqkroaFTqn2kpSEOB1ABXwAzAFwGwK4tV4aIG7GkAovk4EJSR0ePAubacLqjsuxDjRo14OfXGMAh+KIcg7EFdZBl3nsAQFcAErU+laKiXt3KlTDXYmW3PiUFWPVGEoJ27MAHL7+M77//HhMmTMBDDz2kQTArVOgZcKyN2hN70KnigLb7JYcO9epqR0binv372Q3VG411CX19fREdHQ2cOwesW8feMXoj9okK9WzN4MGDMahWLTzsrtIMetQlLCsDvvoKOKNzDXBAU7/dunVrAOZyMqdPA8uXIzcrC4sWLcLo0aO1lZexl1GjngEAGzfi5bw8/PTTTzh58iRyc3ORn5+PqVOn6iOjHnr+6CN09vVFRUWFpdZxWloa8vPz0b59e23yAZpkDAwMRJ/mzbEjIQEoLMSBAwfQvn17VK9eXb1c9jKq6LcdWLcOL5hM6Nq1KxYtWqSPbCIq9SwIAsaMGYPNmzej4MoV4O23UbZ7NyZOnIiIiAg8/fTT+skH/GNroRoGqkZGjBiBvLw8S32w1FRWezIHtjWZUlOBrVu3wtfXF+3atVP/hSrrEtog1nWqWVO/YvQiGuvViYNbMv/G45lRymrF8lCzJlBRAeTnuz7WDh8fH7z11luoWbMmCkpLMa9ZMwiCYJF99mym65gYZuRruo8q9RwWFoY+ffpgw6+/Vl7LjmvXriErK0v9ZIlONXnF31gULMrIuiRNkyQiGvRsg1VdR93RoOfOnbtAEA6hBlh7ZvV4UwBkgpWgZsjVAOWWD1Ako73hBwBhpZU1RseOHYvly5cjxDwzZl1vWHE9XoD1iSr0bH9fonAFOaip7X7JoceAVuy39a5dDeg30HFXzWCgUs95eaovERYWhi2tW6NzdLR+clmjxwSyJ/Scm6v41NDQUDRq1IgZqGY9L/ruOxQUFGDOnDn6ySj+7oICbdfJyUFonTq466670Lp1a0RERCA8PFy7fAC7j1L1LpVg1nNnc13rw4cPA4DFUNVsoPr7a66ReWtMDE4AyBEEHDx4EN26ddN0PRtq1gTCw4Fr17Rd58oVDGvcGAcOHEBNvfudhg1Vn3r33Xfjxo0bWLVsGQDgrcOHcfDgQXzyySeoU6eOPvLVrMnaS2mpPtfzNuRcq1X5uVlCfIlYpkp/f3/LIvfYWKITaEPfWSVCAohiYsqpfv36NGLECG1feOAA0fHjsru5wkgTE5lQ7gghKi1lWYxVLtoWQ45fxatEAPmiTJ/1iNZkZLD7qGCNj+R9bdOGrXMkN6xfTEwk4sxsKiWbWFIhHaDpNVc7PA9i1sXvvvtOnXxlZawOam6uuvNF5swhEgRaubxM/7WA2dks27DWWmFWetadCxdUJ5oS1xr3rf0n5QM0TlhNwMfmULaT2sP1idi9O3dOUc06qXXtr+JVqoDgkG1Ql3aTm0t08aKimnVEjkmxTqANfY8x7kmKlZWlvX71iRPu67fLy1l70bom+NVXmYzuyCp5/boutRPd2p4LCrT3N+7Uc0UFy8CrkhEjRlC7du2IXn2VcgEKDQ3Vv4xQaanmGqNE5F4961F/0qxn06pVVKNGDZoyZQoREb35JuvXNSWcMpl0uYd/PPQQAaB3zOOJz/SsqqBXmRp36lkDJpOJevXqRXWiougPgPx8fWn8+PFVLZbXASPE132EhYWhX79++PnnnwEwr08t5Ji9GYyQEKB9+63IzMzEr78+pM5LINK1KyDjgZUKrZP0PrpzltvfH+jXD6hdW9XpovciCldwFZGogJ/Ndl2oX5/dR39/rsPl7mtxeg4QFYWVK4GJEx0nVDWFV7ZpAzRurFq2ioqhAICNAE7l1HR4HjSHm/v5AZ06ARER6s4XyckBIiIwfoIff/gzL7VqAS1aAL6+2mV0hzcDYDrmmE2V0vNPP7Ew3j1XBqAhgNHTfeDr+xuARgBaAdDBE+3rCzRt6rgOwAlSodk1kYM8RGDlGj+b7VLeVsXtJiICqFuXuWAVYL+8oSZykOdXU7vnXoratYHQUG3XED1z7ui3fX1Ze/Hzc32sM3JygMhI7deRIiRE0XMoS06O+yIiwsK09zfu1LOPDxAUpPr0du3a4cyZM8jLyMDK4GAUFhZi1qxZOgoI9l42RyVpwp161qpjwKJnoVYtdO7c2caD2rBhQ0RGRqq/tiDocg/jAgMRAODd998HAH09qHroGHCvnjUgCAIWLVqErCtXMAhArYgIvG++jwZ8GAaqDtx11104c+YMTp8+jfh44Frf4Tgb1csSMjtxIrBx4xcAagC4U95w5CExEfjyS8ld3IO9sDBg1CgdFvnJ8PPPwJYtqk4VRTqLFliPuxy260JuLvD552y9FAdy93VHeR/sK+9iNgilz1VtWB86BLz3nmrZPv64HYJ8amE5aiEdDW32Wa+Hbtq0qUoBAaxaBaxfr/58AIiORkrzgdpCPOW4cgVYtIitl9JChw6yk0Ka2bOHy4KU0vONG71RrVo8ptx5JwoB7Lv2K/z8tiE0dDgEQdAeri/y2WfAt99yH/76645jjxzUxD50d+iL5NqHonaTnQ3MmcPW1SvAZnkDCBcDGqHTPc31mRyxZ/t24IUXtF3DZAJatuSa0FDF//7H1j5qoVo197WVixeBZ55ha8LVQgTUqOG+d9+GDcD06dquUVoK1KvHJgzcwdy5wJIlqk4dN24cysrK8N7x4/gMQKdOndClSxd95UtPB/7zH+DgQfXXIGKTJO5qKz/+CDz4oLZrXL/O2ktUFDp37ozjx4+jtLQUx48f1xbeK/L888DixZouEVRejrjgYKSlpSE4OFi/dcYAm2W9915g71711yBiL0Z3GairVwOjR6s+vXv37hh/660oA/D5nDmoUaOGfrKJPPYY8NZb+l/XG5BzrVbl52YK8SUiSk9PJwD02muvSe6Pjs4lIJCAGdoz5b71FjtZItRJTckYt5RZ6NyZaPhwVad6pNTH+fPswpzZMJ3dV7ksyJrDK53omVc24D8EhJN1uRmglIAPqWPHjtrqrBFp0rOIW/WtUM9VgkY9i7oOCRlLgiAQAPrll1/0lbFzZ1ZoXAHOZLVGlyziN4Oe33yTS89Vigo9exRDz/qgUc8jR46koKAgAkAfffSRjoKZ+bfp2WSi1atXEwDat28f+fv70/PPP6/9ujq155defJEAUK9evbTLZI2eetYj5FoKHfR8/fp12rNzp+IlKNx4e7/tAhghvu6lQYMG6N27N77//ns2y01ksz8tbR2AGwAesNmuyrsmhs5mZTnskpsUdthulo87JFiNjBLy8aB70iYpxJlpThnl7quPj/OEmprCK53omUe2mBigbt1HAJQAuBuAuIj+HQDTcfHiRUyZMkWlcFYyqtSziC4hnnIo1HOVoFHPgDiJ/ByICP7+gRgwYICOAkKVnmNjpbfb/w5dsoj/g/RcpejQnt2KoWd90KjnV155BSUlJQgJCcH48eN1FMzMv03PgoDOnTsDAGbOnImysjJ9PKg6tee+t94KgFUH0BU99axHyLUUop6zs1VfIiQkBD369FG8BIUbb++3NWAYqDpxzz33ICEhAWeXL2drjfbvt+wLCloNoAmsM2sCKqOMxOyDaWkOu7gHe9OmITe2o/7rJq1llJCPl/h4ILm8IUyv/le/9YjWhIWxdWucMkrd19uwDWkV9dAZhyXP8fXVaFiL2eNcyOhM59s7rsArQiyA7QBmAiAIwnK0bNkXWVlZmDt3rkrhzGjUMwBsTGmF5zDfYbsua47DwoDq1bXJuGMHW8eakKCDQBJo0LPIW5iF3zAHwHD4+4+2ZMfVDRV6tpf3ALriWf/3HPoiXSakFLZnSf78E+jWjS2hcAdO+m1uXnmFhcS5Cx3aM/r3ZyHh7kAPPe/eDdx2m3tKuAD66PmNN4DJk/WRRwqNeu7cuTMeb9QIs4YO1a/kiDV69Nv79rFlTOfP6yaWDXroedEi4KmnALBcELNnz8Zec7hrhw4dNAoI9m7R2p7vvx99Ll9Gjx49MHbsWO0yWaOHng8eBCZMYIkr3IEeev7oI+Dll/WRRwo9+m0vxTBQdUJsvN/9/DOz8syzQ9nZ2Sgt3QY/v3EAKhdmqfauiQ1GYgTPO9jL3J2MpHR//ddNisTEsBmnkhJ151+7BmRkAMHBGgVxQnQ09w8V76v1JF0sUlAPl3AVkQ7r7UJCgOXLNRrW4uyFCxmd6byVcAZPNKqOsLAZAD5EjRrLQHQGzz03UYNgVkRHMz0XF6s7/9o1tIL0QFG3JWIxMdoe6AsXgL//Zunw3YFKPVvTEcdQEzkAfkFx8Sr9ZYyOZjO0CtqztbzhKEBXHEL82BKHNqFbaSatev77bzbY0du4F+HUs1P27weSkvSRR4qYGMV6tqGgAPjjD1UlTLhR0G9Lcvo0Ww8cGKifTNbooeedO903IQaoas82FBTgveRkvNKjh75yWaO1PScmAj/95D7PmpNxGDebNwN//QWAJdSZN28eTp48iRUrVujjQdWjPa9ejdCLF7Fnzx706dNHu0z2aNXzsWPA119rr6Uqhx7tef16YNMmfeSRQmt79mIMA1UnGjZsiK5du2LToUNsBNmgAQDgu+++g8lUgblz79cnbNVFxxgfD5fZUK+fTkWySd4C0GwciBdIT1d3vjgb5K5EFuK1FXQ68fHsnlpORypMEJCBBiByQ0iygpk7WZ2npiKqUwySk/+LyMjqyMubiqCgINx9990ahTOjk56zAmz1rEsNVBGtL8DUVJv2rDsq9WwdQhuNNKQiBoDgniYjXjQjQ9Fporz5J9hv63SXbe1JXZcYREcDmZkqTjSTluYZPWsIFUNqauV13EF0NBAQAFy6pO58T/XbWupjeqI9BwRoq70szta4i5gYlpVc7bMo6tmdz2KzZvKZB3nwhJ5r1NBmFEjouVmzZoiPj7fUVtdEkyYsS7zauryeaM/t22tzRHhCz40b2w7+lOLu9tyyJdCxo6b60F6L3OLUqvzcbEmSRJ544gkK8fOjsrp1iYiovLycOnToQO3bt9f3i44cIcrLU3euyUQFCKX/4UnJ5CS6JKi5epXo77/V18LbsIEJs2uXRkGckJpKdPmyolOsE7p8jocpHfW1JUJyxblzRCUl6s41mYhCQ4mefJKIiBYtWkQAaNy4cfrJV1DAaieqrWdm1vPGV/7SP1GXSHY2UVGR+vMnTSKqX18/eaTIylJ8DyuTS7H2vAhP6Z9MTKSoSNs9/O03yfasS4IkkWvXtCWh8ISetdxDk4moWjVLe3YLpaXa7qGo57/+0k8me7QmQ3n4YffrWcs9FPvtp57STx6p79CC+H52p5614on2rAVP6FkrMv22V3Ez6Nnd/fZNDowkSZ4hLi4OReXlOGkO712xYgUSEhIwW5eML1bccguL3VdDXh7CUGj2uNiied2kSGQkmwFVWwtP9Hi5c9YpOlpxanLrdXUxSEUqYvT19tnTtKn6ULT8fKCw0HIPp0+fjkcffRQvaC11YU1YGAtlVzvba9bzkCkx+tdAFalVS9sMbVoaLofEuKcMjkjt2orvoRhC274ha8+FkdH6JxMTCQ7WfA8BADExWLkSlnspl2BMlcM7NFRbEgp3eycBbfcwL4+VpXBnn+jvr/0eAu69j1pDNt3tzQC03cO8PNZvu/MeavXOeeL9rBVP6FkLop69WUZDz9rxRL/9D8YwUHWke/fuAID97dqhuLgYL7/8Mrp164Z79U5ssXUroLbgb0UFztw+A8cCu9ts1mXdpAgRq6mnNu6+SRO28L1ePR2EkeH8eeDVVxWFLVqvq9uBAdgeMcZ9RgHA1i68/ba6c0tLWQFec426gIAAfPzxx+jYsaN+8hEB//2v+lqoDRqwGmPu1PPp08DTT6tOInAiuBs+Thmuf6Zra1avVpVEIT4eSNhfAowejf/7rqP7nkMi4Nlnge+/V3d+zZrAwIH4Zns9m5BeOVS9y48fZ4llnKXVdkabNix5jjv54gtWx1MN168DAwcCetYhtIcImDJF/cMdFgbExbm3PR8+DNxzj/qkKNHRgDvXTgIsKcojj6g799o1lqyrZUt9ZbLGZALuu489j2rw9wdat3avnvftA4YOVZ/kqEYNNpHvThYsAB54wPVxUuTmMh1rqUPuCpMJGDYM+OQT9ec3aOBePe/cCfTsyV2T3gF/f/e2FQB47TX1tVBzctj9k0trrwcVFUCfPuptAm9GzrValZ+bMcR3xQqimBgTATUoNPQ/NH78OwSAduzYof+XPf44UXi4pku4pf6pNXXrEv3nPzpfVEf+/JOFr2zaVNWSyPP440TVq+t+WV11X6cO0eTJOknmBjTqWdcwVDlmzNDcnt1OnTqa27OrmsGalhj8i9uzrtws/fbmzVUtiTw3g551aM9u5WZoz/+Sftut/PGH9+vZaM9uBUaIr3sRk31kppbDD51QWLgTq1YtRJs2t6Ffv376f6GYKEJNIobCQqC0lCuZkmYZ1SanuXbNfVnZREQ3jRrPWkUF81C6m5gYpmM1ei4tlbyHute+1aJnLUkweNGShY8IqSnSz6EuZXBEtLRnd7cTEa3JpuD6dE1LDPTItuhutLRnT6E1S667uRn0HB3NdKwlmZO7iYnx7tIUemTJdTda+m1PcbO0Z29/Fr293/b29qwSw0DVgdmzWWWZDkjAS9gG4AyILiIn50X3fKGWRj1vHiuZoSUrGQ9aOsZbbgEeekhPaRypX5+tFVIj47FjQFAQts/81b1rE7XU4HrlFRbmZGfAiM+qNZpq32rpGFu2BKZNU/nFnNSvz9ZcqdHzkSO4LlTDIGxx2KXrkhIt7fmll1j4kLsNVS3tuX174JlnXN4zk0nDRJnYntXcw8OHgbp1WfkRd6KlPc+Zw+6jJybu1LbnHj10KKLtAq39dvPmwK5d+stljZb2/OabQO/entGz2vY8cKAbEy+YadCA9dtq7uHx40DXrixM2J1o0fPChSz81t1o0fPIkaxWqzsR9axGxhMngAEDgEOH9JfLGi16/uAD99auFtFhAtkbMQxUHbDkhkAaKld2dkV29kD3fKGW2cXU1MqXvDsRBzpKX7QmEytb4s51DwBbu1Cvnvp7SISXP6zr3rWJWjrGtDRmoNolxJD7uar7NrFjVKPn1FT1yb548fdnz7uae5iaimAqRlFQlM1m3RNjafEKpaQw16MeZQmcoUXPZ84AAQE2ScbkvkI1WtpzSgqrI+euWrciWvR89iybSfJmPR8+7P6oCC16Tkpia93cVetWRIueT5xgZX7crWdxwkmNnnfuZJFY7kTst9Xcw/PnmdHi76+/XNZoGYcdOsTatLvRMg7bsEFbWSwetOj577+BHTt0F8kBLeOw3bvdb0AD6vttL8cwUHVAfH5jkIpeAHzREsAbiI1100tGywvQU1nPYmJYYg+ltZmys1l4ql3GT7d4KGNi1NVONN/3syW291GTJ1IKUU9q6hLK6FlO9aofiehoNihVGv6SlQWUlXnuWVRTI8ys56f/F6N/nVtrxNqJubnKz01L89w9DAlh4fdKsNKzmGQsKsrxMF2M/ubN2XcpxRP1/sTrR0WxflEpnsgyDLCkLXXqKDdAsrM91547dlSX3dwTWYYB1kk0aaJuGYin3s+tW7P2Yh9O4wqxPXviWezZE4iIUH6ep7LPNmrEnkU1kwme0nOHDixRYnGxsvM8+X4eOFBdHVNP6rlvX/aOVoqn9NylC/Mm37jh/u/yJHKLU6vyc7MlSRJrEi7As1SEIAJM7qtJSMTqrKmtPxkTQ/Tgg/rLZM/160TFxcrP27ePCKDtz6w313nUIYGKHAUF6u7hzJkWPdsneREEHeUzmdTdQyJJPa9YQRQVpWNiGiJWO1HNPTTrmX7+WeUXK0BtPd5nnyUKCtJeN9AVJpP62omeas9q78HevUzP69fbbHZLkja1MnpKz1qIjvaMntXiyfaslptBzzExRBMmVLUU8ojt2dv1HBxs6FkLN4uevb09e3u/7QXASZIklYUqDawRvSnVp6YirSgasbECXn/djeVHfHxYfUellJezsiqemNFRG0ZlnhV7e1WM7FpJ3e5rWJi681JTkekXA5Q7zpzqemsFAQgKUn5eRYWDnsXkSPb3NCoKePddDfdUbRiVJ2usqa3HK3on3R1uJwjqvsOT7VntPZDxTsbHu6F/1FKPNzra/XpWS3k5i/Tw5lp6nvJOasFT7VktYr/t7fcQ8P5n0dvbs6f6bbXcDO1Z9E4aev7HYoT46kR8PHDHyvFo8fks92TFteeLL1hCBSWUl7NzPLE4v6SE1Z/87Tdl57VoAcyejd0XG0vu1nUd+P79wMMPs1pVShg5ElfHz3CwwXVfmwgAH34I/N//KTuntBR44QUWOmNGKjkSAISGanxWi4tZ/cmfflJ2XqNGwOOPs3/dza5dwN13A5cvKztv0CD22zzBggWs1qgSbtwApk8Hbr3VPTJZc/06qz/53XfKzqtfn9XjdWcdOJFt24DBg5XruWdP4P773SOTPXPmKE8MVlwMPPggk9PdFBYCQ4YA33yj7LyaNVmtQE/oeeNGlpBJ6fq4jh1Z4hdP8Nxz7LlXwvXrTL6uXd0jkzUFBex5Wr5c2XlhYey94olB908/sfrESvXcrBlw++3ukcmexx5j/aISCgtZOGaHDu6RyZq8PFY7+bPPlJ0XFMRqGntCz999xwzhrCxl59WrxxKKeYIJE4ARI5SdU1DA2nLr1u6RyZrcXHYPP/7Y/d/lSeRcq1X5udlCfKuERx4hiohQHxrobkwmoshI1bWZPFJ/cutWTTW43F5Llkg3PcvVndQckqxRzx5Bo549wj+8PXsEUc/eXCPT0LN2bgY9T51q6Fkrhp61Y+hZH24WPU+ZUtWSKAZGHVQPcPkyy2KoJkmHGuLi2OzY33/zn3PqFAs58ASCwGRUmur90CGguFgy46fuHsquXZmc+/fzn3P1KssESeT+WrKAOj0nJdkkLVq5Uj4KRvMEqVo9nznjmTqogDo9FxS4P4OhNWr0fPGiZ+rxApV6VnIPARaa6qnMgqLnSYmM16+rS1qkFlHP587xn5Ob6/6yYCJq9ezJmp9q9FxSwiKIPIUaPStNZKMFtXr2VH8DVOpZybulvNyzmUzV6NlT7z1AvZ491d8A6vTs6Wy1avTsSRnVjsO8HMNA1Yv161kmraQkz3xfXBz7V0nH8/TTysMUtNC9O5CYyJ8RMi+PdVYLF1oyfro1e2r16kCrVsru4bp1LPuhEkNCC2r0PG0a0K+f5c/Zs6X7SkHQyeBXo+dWrYD583X4cg7U6Pm771g20/Pn3SeXNWr0/NBDQK9ebhFHku7dWRkMJXpu0MD9tfRERD0reUmvWsXKyyQnu00sG0Q9K5Fx3DjPhHGLxMUp13NEBKv55wnU6HnFCqbn9HT3yWVNd3PBOSUyjhoFDB3qFnEkEfXMO0GTl8dCfD//3K1iWVDTb3/5JVC7Npu88wSinpXIeMcdbMmJp1Cj5xo1WJvxBGr0vHQpyziuNCxYLWr0PGoUe0d7CqV6vgkwDFS92L+fvaSbN7dscmuZlNatgWrV+BsMETtWHCB5gri4yvp4PBw8yP41dwYe81Du388/2yWhZ7eig57l1u0S6XRP1erZE2utRNTquUkTt4plQa2eO3d2r1zWqNVzx47uk8me7t2V6zk83DNrJwH1em7Txr1yWdO9u3I9E7FBpqdQo+fAQHXlLNTQujVb4K9Uz55MqCLqmbdO48GDzIPqibwBIt27MyNfiZ7Ly4G6dd0rl4ioZ96JCCJg715mAHoKsd9Wouf8fM/dQ0Bde756lU1GeAKx31ai5z//VFeaRi1K3883AUYWX70QjQJzLKV91tSUFPY3oJNR4OvLvCe8dQnPnWOhYp42UGvV4g+VFF/m3bq5TyZ7evas7JB5aq7t22ejZ7fj68uSUvB23BJ6jolhz589uo3J4+KYIcdbC7Uq9Ny3LyuMfu0aM0hcURV6HjGCvQR5OHeOzXR7uj3fcgsLl+RB1LMnJyIGDGB1g69fZwNHV9j1227H15clVeEdWFWFnrt1YxEYvH2OOGjzpJ4HD2YhscXFfBnjq0LPEyYAjaWT/TlQVe35zjv5M7FXhZ5HjGDylZQAwcGuj68KPT/6KP+Etahn0SPnCbp3Z4NOnv4QqBo9jxrFSgqUlvLVOK4KPT/zDNCyJd/xVaXnadOAyEjPfae7kVucWpWfmy5J0vXrRL6+RC+/bNnkkSQ/Suo/rVjBBEhI0FEADpTIeNddRC1buk8WrRQWOujZ6xD1fOyYzSa315RVgqFn7Xz9tYOevQ5Dz9oR9ezpflsJhp61U1XvZyUYetaOoWftFBYS+fh4t55vhn7bS4CRJMnNHD7MFr5bzZbIhVXqWiZFyezRvn3MO+PJUDGAX0aiSq+Vt3LkiIOevQ5Rz23bWjZ5ZD0vL1WtZx6vUFXrmUfG/fsd9OwxeBJoVLWeeRLiVKWeifgS6ol69nS/DbAyRq6oaj1L1c6yR9RzVchYXs6X/Kgq9ZyX5/qYqtSzyQRcueL6uKrUc2EhXzRbVY3DiPjWX1elnm/c4Eviefgweyaqot/OzmYRaq6oqvZcUQGcPOnZ73QjhoGqB7fcAmzeDPTpY9kkt5RE1yUmhYUsFIun9tEzzwA//MBCFTzJhg1sbZJY4NsZ33/PEjl5mmeeAYYPd31c27ZMRk/V3hIpKAA6dQLee8/1sY8+Cnz1lYOe3b6e98cfWc1LV3omApYtY/U7Pc3UqTa1YWVp0YLJ6MkERAAbKDZpAixe7PrYCRNYu/d0e16zhoXCuxrsELHfMWWKJ6SyZfx4oH9/18c1asRk9ER9UWuuXGFLH95/3/WxY8cCCxd6Xs9ffcUS4rjSs8kE/Pe/ymt+6sFdd/G15wYNgNde87yeL19mywl43s/DhjEZPa3nzz5jIYGu9FxRweo0jx/vGbmsGTyYJRZyRa1aTMYePdwvkzWXLrFEPzzJo/r1A1580fN6/vBDVifTlZ7LylifrbS2qx4MHMiXPCoigr3LPW1EZ2SwxIlffun62K5dgSef9Lye33uPjVM9lQzO3ci5Vqvyc9OF+ErgkbBKk4koLo7FDd+4oeOFdeTcORZ28+STVS2JPAsWMAXt2lXVkkhj6FkfbgY9d+t2c+j5qaeqWhJ5DD1rx9Czdgw968P8+TeHnhs1MvSsBVHPf/1V1ZJIY+jZLcBJiC+XwQhgKIAzAM4BeEFivwDgPfP+BACdrfYlAzgO4KgzQaw/N5WB+sknRM8/T1Ra6rBrxQr2bhIE9q9b1vxt2MDU+NFH0vtNJqKHHiJav94NX87Jww8TBQYSpaVJ709KIrrvPqLkZI+KZeH6daI6dYgGDJA/5vPPiV5/nai83HNyWcOj50cfJdq2zbNyWcOj5ylTiDIzPSqWBR49f/kl0QcfVF1BblHPH38svd9kInr6aaJ9+zwrlzU8ep45k+jKFY+KZaGwkKh2bed6XrGCrRNSskZeT3j0PHs20YkTnpXLGh49z51LVFDgUbEs8Oh5zRqin3/2bj2//jq7l1UFj57fe4+opMSjYlng0fPatUQ7d3pOJnt49Lx4MVFWlmflssaVnpOTib76qurGOKKeb7tN/phffqnavAs8ev70U6K8PM/KZc2kSc717GVoMlAB+AI4D6AJgAAAxwC0sTtmOIANZkO1B4B9VvuSAdR09T3Wn5vGQD1zhg14+/evOhlMJqJevYjq1yf6+2/HfUuXOjdsPEFSEpG/P9G4cawTsqaggOjuu6u+QS1ezO7TV185DmZEPTt7Qbqbm03P167Z7isoIBo71tCzK0Q9N2hwc+hZqj2Lek5PrxLxiIjof/+7efR87pzjvptJz1XZnkU9f/214z5v0/P58477Pv/cu/RcVGS7z9v0LDXL7216vnDBcZ+36bm42Haft/Xbq1Y57hP17MyAdTfWerZ3qFjrecmSqpGPiD1/fn5Mz97q6bVCq4HaE8Amq79fBPCi3TFLANxv9fcZAPXon2qgTplC1Lcvc42GhFStN4OIhUQEBRHNmMH+TkoiGjaMqFUrpuKOHav+QX3xRSbLnj3s7y+/JBoyhCgykm1/9dUqFY+Ki4natSNq1oyorIxtmzTJO/UsZq9LTPRePYuen48/9k49d+pUabjcd5936nnBAvb3wYPeqWc/v8qX9MKF3qfntm0rJw9NJqI77/ROPX/2Gfv7zz9t9XzLLd6h55AQouxs9vfcud6p51Gj2N9FRUR33OGdev72W/b3xo3eqefIyEpv+EsveaeeJ05kf1+54r163ryZ/b1unXfquUGDSm/4U095p57FpUJpad6r57172d8rV3qfnl94gahFi6rzhitAq4F6N4DPrf5+EMAHdsf8AqCP1d/bAHQ1/z8JwGEAhwBMdfI9UwEcBHAwJibGM3dGLWPHEvXsyR4CjpANj4T6XrxYKcuJE0Rdu7KZpuXLJcOPq4Tjxyv/v2ABUffuRPfeW/UdjkhpKdHZs5V/DxqkSM8e4eJFotxc9v+9e71Tz2fOVP5/zhzv1LP17GePHt6pZ9FrtW2bd+rZ2lPw3HNMz/fdR7R/f9XJZE1paaU3oKyMTUp4o57Fwcz69d6p59TUyv9Pm+adehb1mZfnvXoWB4vffOOder54sfL/EyZ4p57FZQPp6d6p5+zsyonPzz7zTj1fvlz5/7FjvVPP+fns/2fOeKeerZevLF7snXq+erWqJeDCmYEqsP3yCIJwD4AhRPQf898PAogjosetjvkVwJtEtMv89zYAzxPRIUEQ6hNRpiAItQFsAfA4Ef3p7Du7du1KBw8edCrXzcLKlSzhmHU2/JCQKizzYWBgYGBgYGBgYGBgUIUIgnCIiLpK7eMpM5MOINrq74YAMnmPISLx32wA6wB4caFL/Zk927FUW1ER225gYGBgYGBgYGBgYGBQCY+BegBAc0EQGguCEABgHID1dsesBzBBYPQAkE9EFwVBqCYIQhgACIJQDcBgACd0lN/rSU1Vtt3AwMDAwMDAwMDAwODfip+rA4ioXBCEGQA2gWX0XUZEiYIgPGre/wmA38Ay+Z4DUARgkvn0OgDWCYIgftc3RLRR91/hxcTEACkp0tsNDAwMDAwMDAwMDAwMKnFpoAIAEf0GZoRab/vE6v8EYLrEeRcAdNQo403N669Lr0F9/fWqk8nAwMDAwMDAwMDAwMAb4QnxNdBAfDxLiBQbCwgC+9dIkGRgYGBgYGBgYGBgYOAIlwfVQBvx8YZBamBgYGBgYGBgYGBg4ArDg2pgYGBgYGBgYGBgYGDgFRgGqoGBgYGBgYGBgYGBgYFXYBioBgYGBgYGBgYGBgYGBl6BYaAaGBgYGBgYGBgYGBgYeAWGgWpgYGBgYGBgYGBgYGDgFQishKl3IQjCZQApVS2HE2oCyKlqIQwcMPTifRg68U4MvXgnhl68D0Mn3omhF+/E0Iv34c06iSWiWlI7vNJA9XYEQThIRF2rWg4DWwy9eB+GTrwTQy/eiaEX78PQiXdi6MU7MfTifdysOjFCfA0MDAwMDAwMDAwMDAy8AsNANTAwMDAwMDAwMDAwMPAKDANVHZ9WtQAGkhh68T4MnXgnhl68E0Mv3oehE+/E0It3YujF+7gpdWKsQTUwMDAwMDAwMDAwMDDwCgwPqoGBgYGBgYGBgYGBgYFXYBioBgYGBgYGBgYGBgYGBl6BYaA6QRCEoYIgnBEE4ZwgCC9I7BcEQXjPvD9BEITOVSHnvwlBEKIFQdguCMIpQRASBUF4UuKY/oIg5AuCcNT8eaUqZP03IQhCsiAIx833+6DEfqOteBhBEFpatYGjgiAUCILwlN0xRlvxAIIgLBMEIVsQhBNW22oIgrBFEIS/zf9Gypzr9D1koA4ZnSwQBOG0uY9aJwhChMy5Tvs7A/XI6GWOIAgZVv3UcJlzjbbiJmT0ssZKJ8mCIByVOddoL25Abjz8T3m3GGtQZRAEwRfAWQC3A0gHcADA/UR00uqY4QAeBzAcQHcA7xJR9yoQ91+DIAj1ANQjosOCIIQBOARglJ1e+gOYSUR3VI2U/z4EQUgG0JWIJItBG22lajH3ZxkAuhNRitX2/jDaitsRBOFWAIUAviKiduZt8wFcJaK3zIODSCKaZXeey/eQgTpkdDIYwO9EVC4IwtsAYK8T83HJcNLfGahHRi9zABQS0TtOzjPaihuR0ovd/oUA8onoNYl9yTDai+7IjYcBPIR/wLvF8KDKEwfgHBFdIKJSAKsBjLQ7ZiRYYyUi2gsgwvzAGLgJIrpIRIfN/78G4BSABlUrlQEHRlupWgYCOG9tnBp4DiL6E8BVu80jASw3/3852MDCHp73kIEKpHRCRJuJqNz8514ADT0u2L8cmbbCg9FW3IgzvQiCIAC4F8Aqjwr1L8fJePgf8W4xDFR5GgBIs/o7HY6GEM8xBm5CEIRGADoB2Cexu6cgCMcEQdggCEJbz0r2r4QAbBYE4ZAgCFMl9httpWoZB/nBg9FWqoY6RHQRYAMNALUljjHaTdXxMIANMvtc9XcG+jPDHHq9TCZk0WgrVUdfAFlE9LfMfqO9uBm78fA/4t1iGKjyCBLb7OOheY4xcAOCIIQC+AHAU0RUYLf7MIBYIuoI4H0AP3pYvH8jvYmoM4BhAKabw4GsMdpKFSEIQgCAuwB8J7HbaCvejdFuqgBBEGYDKAewUuYQV/2dgb58DKApgFsAXASwUOIYo61UHffDuffUaC9uxMV4WPY0iW1e1V4MA1WedADRVn83BJCp4hgDnREEwR+sMa4korX2+4mogIgKzf//DYC/IAg1PSzmvwoiyjT/mw1gHVj4iDVGW6k6hgE4TERZ9juMtlKlZIlh7uZ/syWOMdqNhxEEYSKAOwDEk0ySDo7+zkBHiCiLiCqIyATgM0jfb6OtVAGCIPgBGANgjdwxRntxHzLj4X/Eu8UwUOU5AKC5IAiNzR6IcQDW2x2zHsAEgdEDbIH4RU8L+m/CvNZhKYBTRLRI5pi65uMgCEIc2HN+xXNS/rsQBKGaeYE+BEGoBmAwgBN2hxltpeqQnd022kqVsh7ARPP/JwL4SeIYnveQgU4IgjAUwCwAdxFRkcwxPP2dgY7Y5SsYDen7bbSVqmEQgNNElC6102gv7sPJePgf8W7xq2oBvBVzFr8ZADYB8AWwjIgSBUF41Lz/EwC/gWUlPQegCMCkqpL3X0RvAA8COC5UpjR/CUAMYNHL3QCmCYJQDqAYwDi5mXADXagDYJ3ZzvED8A0RbTTaStUjCEIIWJa+R6y2WevFaCseQBCEVQD6A6gpCEI6gFcBvAXgW0EQJgNIBXCP+dj6AD4nouFy76Gq+A3/NGR08iKAQABbzP3ZXiJ61FonkOnvquAn/COR0Ut/QRBuAQtBTIa5PzPaiueQ0gsRLYVEfgOjvXgMufHwP+LdYpSZMTAwMDAwMDAwMDAwMPAKjBBfAwMDAwMDAwMDAwMDA6/AMFANDAwMDAwMDAwMDAwMvALDQDUwMDAwMDAwMDAwMDDwCgwD1cDAwMDAwMDAwMDAwMArMAxUAwMDAwMDAwMDAwMDA6/AMFANDAwMDAwMDAwMDAwMvALDQDUwMDAwMDAwMDAwMDDwCv4fWgbsteowOBkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "import numpy as np, random\n", "days = 10 \n", @@ -217,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "id": "_-CjONZkD18n" }, @@ -256,11 +279,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAD4CAYAAADhJ8tCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gTV9bGf+Nug43BBlNtquk19B7SezakbEJ6simbZDebtullU7ckm2x286VXSN/0HgKkAaEbMGDABlNtA8YFG1fd74+jsSV5JI1sSTNs9D6PYkszCsfzzr1zz73nvq+mlCKCCCKIIIIIIogggggiiCCCCKxGlNUBRBBBBBFEEEEEEUQQQQQRRBABRBLUCCKIIIIIIogggggiiCCCCGyCSIIaQQQRRBBBBBFEEEEEEUQQgS0QSVAjiCCCCCKIIIIIIogggggisAUiCWoEEUQQQQQRRBBBBBFEEEEEtkCM1QEYIT09XfXu3dvqMCKIIIIIIogggggiiCCCCCIIMlauXLlfKdXZ6JgtE9TevXuzYsUKq8OIIIIIIogggggiiCCCCCKIIMjQNK3Q27FIiW8EEUQQQQQRRBBBBBFEEEEEtkAkQY0ggggiiCCCCCKIIIIIIojAFogkqBFEEEEEEUQQQQQRRBBBBBHYApEENYIIIogggggiiCCCCCKIIAJbIJKgRhBBBBFEEEEEEUQQQQQRRGALmEpQNU07UdO0PE3TtmqadrvB8TM0TVuradoaTdNWaJo21ex3I4gggggiiCCCCCKIIIIIIogATCSomqZFA/8BTgKGAOdrmjbE47TvgJFKqVHA5cCLAXw3gggiiCCCCCKIIIIIIogggghMraCOB7YqpQqUUnXA28AZricopQ4ppZTzbTtAmf3urx51dfDCC1Bfb3Uk3pGXB19+aXUUvvHZZ7B1q9VReEeE5+AgwnPbEeG57airg+efj/DcVkR4bjsiPLcdEZ6DgwjPbceRwHOYYCZB7QHsdHm/y/mZGzRN+42maZuAz5FVVNPfdX7/Kmd58Ip9+/aZif1/A0VF8K9/wSefWB2JdyxZAr/7HdTUWB2Jd7z6Ktxzj9VReMeuXfDQQ/Dhh1ZH4h0LF8L559ub56efhttuszoK7ygslPjef9/qSLzjiy/g1FPtzfMjj8Af/2h1FN6Rnw/XXAPvvmt1JN7xwQdw8sn25vn22+U62hV5eXD11fDWW1ZH4h3z5tmf52uvhcsuszoK71i/XnieN8/qSLzjxRftz/OFF8IFF1gdhXesWSM8v/GG1ZF4x7/+ZX+ewwQzCapm8Jlq8YFSHyqlBgFnAg8G8l3n959XSo1VSo3t3LmzibD+R9C9uwxqv/vO6ki8Iz0ddu+WRNWuaNcO5s8Hh8PqSIzRqxeUlsKiRVZH4h09e0J5ub157toVfvrJvjz37g0NDfDjj1ZH4h0DBsj1W7rU6ki8Y8AAWL7cvjz37y99zs8/Wx2JdwwfLj/t3J6POgrWrrUvz4MGQfv29m4r48fLTzvHePTRkuzblefhw4XnZcusjsQ7ZsyQn3Zuz6efDtu3gzIc5luP0aOF5xUrrI7EO046SX7auT2HCWYS1F1AL5f3PYE93k5WSv0A9NM0LT3Q7/4q8fe/Q3IyLFhgdSTG2LxZBhBg3xg/+QSqqmD/fsjNtToaYzz7LHTpYt9rmJ8vDxawb4xffw1RUbBvn315njsXsrLsew23bYODB+V3u8a4aBF06GBvnj/+GAYOlKoDO2LnTmhslN/tGuPSpTIpZmeev/sORo60b1vZs0cmSsC+Ma5ZA4MH25vnZctgwgT7tpXiYlnMiIqyb4ybNsHYsfbmeeNGmDrVvtdw/37Izhae7dqewwgzCepyYICmaX00TYsDfgu41aNqmtZf0zTN+fsYIA44YOa7v2ps2wZ33gmxsTK7uHu31RG1xEcfwV132XvQ/dBDzTNidoxx2zb4wx9k9tiuPH/wAdxwg/Bs18777rubY7Mrz5dfDocOCc97bDgX9957cPHF9m7Pt97avOXBjjFu2wbnnAMHDsigzI48v/02nHmmvXm+4QZ480353Y59zrZtspqxa5d92/PcuTBrlr15/t3v4Lnn5Hc7xrhtmyQt+fn2bc+vvy7VBr162fMaAlx0ETz5pPxuxxi3bZPJpi1b7Mvzyy/LxKedx2FhhN8EVSnVAFwPfA1sBN5VSuVqmnaNpmn65pHZwHpN09Ygqr3nKYHhd0PwdxyZ0G/Ahx5yf28nLFgAQ4bIvoJly6Cy0uqI3FFWBitXwqWXQr9+9uwYjzSef/lFkiw74eBBWLVKeO7fP8Jza3Ek8Rxpz63HkcRzpD23HkcKz5ddZt/2rMd0JPB8/vn25vmSS+zLs87rAw+4v7cTdJ7PO08qTKqqrI7IUsSYOUkp9QXwhcdnz7r8/lfgr2a/G4ETCxZARoZ0Op98Anbbe1tXJ3vpLr9cRFX275cGk5xsdWTN+OEHWZmcNQtSUqyOxhg6z7/9rZSM9erl/zvhhM7zZZfBGWeIwl1NjezVsAtcee7SBWJMdV3hhWt7Xr5c9lHaCa7t+ayzIDHRfmqGrjxnZkqMdoNre964sXmvp13g2p7POUditdveP1eeBwywZ9/t2p537YJx46yOyB2u7fn886U0UDOS/bAQrjwPGwZpaVZH1BKu7bm8HKZNszoid7i254sukvvQbs8/V57HjZPraTe48uxwwLHHWh2RO1zb82WXwTHHQFyc1VFZCpvd5b8yLFok4gHR0fZUg1yxAqqrJcbJk+VlNyxaBAkJsn9k+nSrozGGK88vv2x1NC2xcqVMPBx9tFzHCROsjqgljjSen3rK6mhawrU9jx0rL7vhSONZX3WxE1zb8+jR8rIbFi2SyYfx4+2XEOhw5fn2262OpiVc2/Pw4fabKAF3nuPjrY7GGK48//73VkfTEq7tecgQedkNRxrPF11kdTQt4dqes7Pl9SuHmT2oEYQC9fWi6jp0qLxXCioq7DXTvWuX/NRjrK9vFlixC3bskBn4+Hi5hmVl9ip/qauTPaeu13DXLnvxXFAgP/UYy8rst09227ZmnhsbhXc73Yu1te48HzoEGzbYi+dt2+SnHuPu3fbzrHPlub5e7B9KSqyOqhmePB84IKVYuiCRHeDZnjdvhnXrrIvHCAUFzTzX1sLixfbqczx53rsXvvnGXjx7tudVq6T8005w5fnwYfjqq2YxPjugtlb2IurXcPt2sQizE8+e7fnHH+3nBuDKc1WVaB3Y6dni2Z7z8mSxwE48e7bnr76K+KEqpWz3Ouqoo9SvAg6HUvX18vszzygFShUVWRuTJ2prlWpslN9nzFBq+nRLw2kBh0OpQ4fk9+JiuYZPP21tTJ6orVWqqkp+f/pp+/HscChVWtp8L06frtS0adbG5ImaGqVKSuR3O/LscCi1f79SBw/Ke53n4mJLw3JDba1S27crVVcn76dPt197PnBAqW3b5PeiIvvx3Ngo8em8/vvf9mvPlZVKrV0rfCtlT5537lQqN1d+t2N7bmhQKidH4lTKnv32gQNK/fST9I1KSZ9tN57z8pRavlx+tyPP9fVK/fijUgUF8t6O/fbevUp98YVShw/Lezu251WrlFq0SH63Y79dV6fU558rtWmTvLcjzzt2KPXOO0pVV8t7O/IcAgArlJdcMFLiayU0rXkvgb7/tLjYXvX7rjXwXbpATo51sRhB05pl9tPSRJ67uNjamDwRF9d8Hbt2lZ924lnToGPH5vcZGfbjOT6+uY3YkWdNc99fpfNcVCTtxg6IixN1QB0ZGc0WUnZBp07yAvFfthvPUVHidatDb8N2as/t27uXe9qR5549m3+3Y3uOjoYRI5rf25HnTp1gypTm91272o9n1zJFO/IcEyMKvjpcebZLv921a7M3JtizPbtuI7Bjvx0bCyef3Pxe59lOz+devdz1SezIc5gRKfG1CsuWieLZzp3y3rXB2AX/+Q/cd1/z+65d7dXpKCUS9l84Nbiio6WzsVOMq1aJnYIuae76ALQLXnpJ/Hh1ZGTYKz6l4KabRGAKhOfOne3VVnJyxI5Jv2525HnePPHj1WHH9nz//fDzz/Lejjzn5sJf/yqCcWBPnj/4QOxHdGRk2OsaKgWPP95sDabzbKdrmJcH//d/zdsIXCcW7YIvvxQbOB125Pn556VMH+zJc0GB9IsVFfLejuOwhQvh22+b39vx+fzWW2LfAvbkeccOESLVt3/Zsd9euhSWLGl+bzeeLUAkQbUK69aJt5W+R82ODebTT5uTP5AYy8tF4dUOqKyEF190N4W220N6zRr497+b1VLt+AB87z156eja1X48//OfsHp182d267xXrIBHHpF9VmDP9vz66+4iXRkZst/YLjwfOiQWAIsXN39mN56XLhXBHF3+347t+fnn4V//an5vx377llvcbR66drXXNfzpJxHM8Uxc7HQvPvWU9Dk67NhvX3217KXTYbfn88KFcOGF9p6IeOwxmfzU0bWrvfrtykqxOfr44+bP7NZvf/utOBQcOCDv7cjzfffBH//Y/N5uz2cLEElQrYLnSosdG0xxcXNcYL+HtOc11H+3S3zQ/DC2O8+e1xDsI05jxLPdVv88Y7Rj4mJ3nj3bChw5PNspxqKiltcQ7MOzfq08ny12uoZHIs92a89H4vPZrv220TjM7jzb7RqCvduz3Z/PFiCyB9UqFBeL91tCgrxPToZ77oGJE62NyxXFxXDUUc3vJ06ERx9t3vNpNYwGOlddZS9zYyOe//Y3mDnT0rDcUFTkzvO0aVLebRe/W6MH4B/+IMp8doHOs+7bmZIiJYKue8SsRnGxu5fj0UfLqmpqqmUhucGoPf/5z9DQYE08Rigqcm/PKSlSImgny57iYvd4jjtOSkH1vb1Ww6g933+/JaF4RXExdOjgzvPHH8PIkdbG5QrP9nzSSeL1aBc/daMJp7/9TfYn2gWez+eUFFHIHTTI0rDc4Mnz6afLnk+77IU2as9PPy37Pu0Co3571Sro08fauFzhyfPs2TBjBnTvbl1MFiOSoFoFz9lPTYO//MW6eDzhcMjMjWuMw4bJyy4w6hhnz7YmFm/wnP3UNLj1Vuvi8YTDAfv2uV/DgQPlZRcYDXROOcWaWLzBqD1fc4118XjCiOd+/eRlFxi151mzrInFGzxnuTVNytvsAp1n1z4nK8tdHMtqGLXnSZOsicUbjNrz6adbF48nGhtbtucePeRlFxi151GjLAnFK4yezzNmWBePJ4x47tLFPsI+0NyeXa+jncYPYMyznfyhGxtbjrddBQN/pbDRVNavDDExLQeHZWWymdsOqKgQNTbX2RuHAwoLpcO0A6qrZTXXtVFXVYkoQ12ddXG5oqYGunVz/2z3bti0yZp4PFFWJuqurp13Y6PskbaLL2FZmfx05fngQdmraJdV1NJS92sIIhqxcqU18XiitFR4db2GDQ0iSGQXX0KjAW1xMXz9tX324XgOdED2mf/4oyXhtMCBAy15rq8XQZ3Nm62LyxVGK+U7d8o+eH0Pt9UwUutdvFjuRTvAiOfaWnjnHXdNBith1J7z80WUr7rampg8YcTz/Pnw4YfWxOMJnWfXtlJTAy+84K7JYCWMeN64UXQj7MKz54QTSEXEvHnWxOOJAwdkfO0a4+HDIia3bJl1cVkNb/4zVr5+NT6onjj9dKVGjLA6Cu84fFi8ox56yOpI3OFwNP/+xhsSo+53ZQe4xqeUUqedZi+eHQ7x/dOh8/zgg9bF5Im6OmOe8/Ksi8kVDkezT52O005TauRIS8IxRF2de4x249nhEB9Z3XdZKaVef91ePNfWiv+kK+zUb+uexhUVzZ/Zrd+urRXPP1ee7daeS0ubPVB12KnfbmgQT2PXe9FuPFdUKLV+vfuzxW4879yp1ObN7p/Zqd+uqxNPY1f/XbvxvH+/Uj//7M6z3frtjRuVWrPG/TM78VxTI57Grn2O3XgOEfDhgxpZQbUT7CYg4ImEBNmvZqfN7yDlGjrsuPndNT6wn/CLpok0vA6dZzvFGBtrb541rXl/iw67KZPGxrrHmJAg++zsdA1TU933qNlNVCwurmXZlZ36bd3T2HX/uN14josTvz9Xnu0mTtOxo7tXK9iL5+hoKdt2vRd1nu1yDZOTYehQ92eL3frtnj1hwAD3z+z0fI6NFU9j15U1u/GclgaTJ9ub50GDWu4ft5OQU3y86FW49jl267ctQCRBtQJ1dXDssS3LSDIypHy2sdGauFzxzTdw5pktFcTs9JC+/353+XWw14C2thbOOsvdqgfsxfPChXDxxc2+jjrsxPNf/yriXK6w04C2thYuvbTZp1WHnXj+8Ue4/nop9XWFnQZj//qXuz0K2IvnujrxNP7pJ/fP7cTz0qVw553NZfE67DRZ8sILUubpCjsNaGtr5bniWVrXtat9eF65UvpE3QZHh5367XnzpOTYFXbiua5Oni05Oe6fZ2TIuMcOPOfkiGCh7t+pw048f/ghfPaZ+2d2GofV1Ylgoee2Kju15w0b4I03WpZE24lnCxBJUK1AcbEMZj33cmZkSB26Z7JgBdavlxr9uDj3z+3UYL76quUgwk4PwJIS6bw993LqPOueXFZi9WrpGGM89NLsNLv44YeiTukKu/H82mti+u6Krl3tw/OyZTLQ8VTQtFN7fvPNlgMdO/FcXCyexhs3un9up3578eKWkzlgL55fegneftv9MzsNaIuLxV/UKHGxS3v+/nuZiNB91HXYacLp6ae9T0TY4dlSXCyexkZjCLvwPH++TCx6Kpnbiee//tX7xKIdYiwuFk9jT50AO/H85ZeyUFBf7/65ncZhFiCSoFoBI5EIsFejLiqS5LRDB/fP7TQTbyRwkJYmg3A7XEMj8QBo5t0O17G42JhnOw1ojYRp0tPtz7PdBmNHAs+e11Dn2S7XELzzbIfr6K3fthvPnu35SOi37cZzfLwxz3ZoK+C7PdvlGoL357MdYjwS+m0jAaIjgWe7PZ/j48X+xhV24tkCRGxmrIC3B+C4cfDMMy0f3lZAf7h47p+8+mp7zDgpZTzQiY6Gl1+GESOsicsV3jrGiRNh7lx7WAIUFck19OT5j39sWT5mBXSePa9hdDS8+y4MGWJNXK7wxvOUKfDJJ/aw+NDbiifPt99uD6VFXzx/8QVkZ1sTlyu88Txjhngn9u0b9pBawBvP993XcnbeCvji+ccf7eFL6O35fMwxUlrbv3/4Y/KEt+fzY4/JNbYavnhes6bl/l4r4G2h4PjjRYHdzv32k0+2rHqyAr543rrVHl6t3trzySfLsfT08MfkCW/t+bnnWmpb/Ipggzv8VwhvA53eveHaa8MejiGMkj+wjy/hoUMiw23UAV5ySfjjMYK3B2DPnjBnTvjjMYLRwwUkubIDKiu982wXz1tvPHfrBqedFv54jOCN5zFjwh+LEXSejfqcE04IfzxG8DbQsZMvoTeehw4NfyxG8NVvT54c/niM4K0928mX0BvPdpgkAd/99vDh4Y/HCN7ac0pKy5Usq+CNZ1f7PytRWSm2N0b9th0mm8B7e27XTl52gNEqNNinv7EIkRJfKxAfL6pinjekUrLvpbDQmrhckZYGw4a1/Ly8XLwTq6rCH5MrKirEDNpolnPrVliyJPwxGaFbt5aDV6VktcAOvoQJCS39eEH20335pTyArERZmTxYjB7I69a1FCayArW1oljpybPDIat/69dbE5crGhqMr+GePSJkUl4e/phcUVra0tNYxy+/yEq01aiokBluzxgdDtlTaQfP24MHja9hYaGIEx08GP6YXLFvn1xDowHtwoWyD9lq6NoQntexsRGef94ezxZvE8hbt8ITT7QUQws3vCV/AJ9/Di++GN54jOBtoaChAf7xD9nnazW8JS4bN4pIpNX73n3x/P778NRT4Y3HCL54vvde+Pbb8MfkCW8TEWvXwk03tRQr/bXAm/+Mla9frQ+qw6FUQoJSt9xidSTe8ckn4s30yy9WR+IdF12kVGam1VF4x5HE87JlVkfiHRddpFRWltVReIfDoVR8vH149vTjVcp+7dnVG1OHnXiur2/5mZ14djjEZ9QTduK5vt44Rrvw7HAoVVZm/LldeK6rM47RLv227mlcVdXy2IUX2oPn2lqldu1q+bmdeC4tVWrv3paf24Xn+nqlCguVKi9vecwu7bmiQqkNG1p+rvN8663hj8kTO3YoVVDQ8nM79dshAj58UCMlvnaCPjtv59kSfZbH7jHaOT5Nk9U2O8doJ0EQb7C7gIDd2rPn/hawX3v2VBkGe/FstO/LTjxrWkvldbAXz972ztnpGnqK0uif2yXG2FjjGO3Sb+uexkawyzWMizPWgbATzx07Gn9uF55jYiAz0/iYXcY4yckweHDLz3Werb6GIL7QRrBTv20BIiW+VuDaa+F3vzM+lpra0sMu3Dh0CMaPh/fea3lM7zCtjvHjj2HmzJZWPSAx1tRI6aWVuPlmuPFG42MdO1p/DQ8dEj/ejz9ueUwfXFgd4xdfyD5OI2Euu/B8993yMoIdeK6qEj/er75qecwuPM+fDxdeaFyCaheeH3nE2MIF7MPzJZe0tGQC+/TbixbJ888ojtRU2bdYVxfmoDzw5JPeSxPtwHN1tbEfL9iH559/FgE2I6G9jh3twfNzz7W0wdFhh3FYdbX48S5f3vKYXXhevhwefrilTyvYh+c33mhpa6XDDjwfPmzsxwv24dkiRBJUK7Bmjfd9pqmp1u8HKyuTjscoDn3W1uoGk58ve0RiY1se02O0+jouXiwGzEawA88HDxr78YJ9EpdNm8QbMzq65TG78Pzddy299HR06GB9fKWl4iW7a1fLYzrPVse4bh3Mm2e8gmoXnj/9VPZJGsEuPL/+eks/XrAPz6tWwbPPGq/m2yXGd96RiTEjdOhgfZ944ICxHy/Yp6388osMuo0Uhe3C86uvihK8EeyQuBw4IJNia9a0PGYXnn/8USZnGxtbHrNLjP/5D7zyivExO4zD9u+XyRyjiQi7XEOLEElQrUB5uffyFzt0jPq/b1RCZJcGU14ugxwjtT27JFe+eLbDQEfn0M48l5XZn+eyMnu3ZzM8Wx2jznNycstjEZ7NwUy/bXWMer9td56NriHYY0CrXx+je/FI4NkuMUZ4bjuOhH7b33jbLjz76reNVqh/BYjsQbUCvjrGW26RJX8r4atjjI+X0l+rpeLLyiRpMVpxmTFDVju6dQt7WG7wxfM991hf+uKP56++EqVkK1Fe7p3nY4+VVXSrPfV8PQAfecR4djmc8Mfzzz9bb0/hqz2feCKsXu19r1O44CtB/ec/wxmJMfSBllGMcXGySm2197Ivnk89VSpjvO3HChd88fzss8bVHOGEL57j46U6y2pvR188/+Y3UrVjtYWGL55fe814L3c44a/fPnjQODEMJ8rLZYxjxPO558I550isVsLXOOzdd63n2V97rq+3h+etBfh1/tVWw1fHOHVqOCMxhq8GA3D22WELxSt8dTo9e1qftIBvnseODWckxvD1AAR7+E/6uoYZGfYwAvd1L9rBf9LXDC3Yw3/SV5KfliYvq6EPxoxgdYIP/nk2sg0LN3y15w4dvMceTvi6F62e9AT/PFs9kQO+ebaL/6S/igir4W8cZocYfT37rE78dPji2erkGfyPw36lySlESnzDj8ZGGRAaqYoB7Ngh/pMOR3jjckVSEkyaBJ07Gx9fulT2mFiJXr1gwgTjY1VVsoJqpZ9sY6MMCI08RgG2bJG9TlbyHBcnMXob/H/3nfc9d+FCWpr3JK+yUvYtbt0a3phc0dAgA0JvEyK5ueI/aSXPIO3F24rFxx9733MXLiQkeDd2Ly+H//s/4z134UJ9vQhWeHrd6li1SvwnreS5vl4GOd4GOm++Cf/9bzgjagmlvF/Dgwfhb3+TlV6rUF8vK6TeruGSJeI/aSXPVVWyYuUtxuefh7lzwxpSC1RVeY/vwAHZt7hqVVhDckNdnQiveYtx0SLxn7SSZ38TEU88IVxbCV/JX0kJ/OEP3vUZwoHaWt88f/01XHmltTz72oID8Je/2MNP1gp485+x8vWr9UFVSqnHHxffIyOPM7tg4kSljjvO6ii8Y8cOuYbPP291JN7xxBMRntuKI4HnI6U9H3+81VF4R4Tn4CDCs3kYeQYrZR+eHQ7vMU6YYA+e6+qMP9d5fuGF8MbjiYYGYz9epezBs8Oh1KFDEqcRJkyw/vlcWyt+t0awA8+6p3FlpfFxO/BcW6vUnj3GHttK2YPnEAIfPqiRFVS7wS4by33BDhvLfcEuKoG+YBeRA1+I8Nx2HAnt2Q6CXb4Q4Tk4sDvPdhFmA2OVYbDPvahpvmO0A89GCvtgn7YSHe29DNUOPGualEJ72/Nsh+dzXJz/EmQredY9jdu3Nz5uhz4nLk62Dngr5bUDzxYhkqCGG6tXS9nn998bH7dDo370URg3zvtxOwx0jj0WHnjA+Fj79lICZWWMa9fC6NFiNWMEO/D8xBNwzDHej9uB5zPOkLI/I9iB5/XrRZTLSCIe7MHzf/4jwiTeYIcB7Zw58PTTxsfswPPGjeLHu3q18XE7DGhffBEuvtj7cTvwfNVVUvJuBDvwvHmz3IveyoztMLE4dy5cf73343bg+aabvJcZ24Hn/Hzx4920yfi4HXh+7z244w7vx+3A8z33wPvvGx+zA8/btsFtt3nfBmSH5/Mnn4iYojfYYRxmESIJarixf7/41BmpnoE9Osbt2409E3XYoWNcuVL2shhBnzWzMsbiYvEv86bgaocB7aZN3n1awR48//CD93tR59nKa7h3r8RYU2N83A4ztDk5sm/cG+zA8xdfeB9E2KE979olfrze5P7t0G8vWwbffuv9uB1m4t99VyZ1jBAVZT3PhYWyV9fbdbLDgPaHH3zvJba6TwR4+WXvk3Z2aM/btoki8/79xsftwPO334pXqzfYgeenn5b70Qh2eD5v3Qp//zsUFRkftwPPn30mvsbeYId+2yKYSlA1TTtR07Q8TdO2app2u8HxOZqmrXW+FmuaNtLl2HZN09ZpmrZG07QVwQz+iIRZZTYrb0hfymxg/YDW4fCttAjWN2p/ymx2GNDa/Rqa5dnKa+iPZzs8AP1dQ6sHETrPdu5zzPbbVt+L/ni2ut+uqPDPsx36bV/+mK7nWQF/PFvdVszw3KGDnGMVzPJcWRmOaIxhhmdvE6PhgM6zrxg7dRKhIqtgpt9u187a6+hvvN25s/dy+f9x+NUv1jQtGvgPcBywC1iuadonSinXpZdtwAyl1EFN004CngdcJVaPVkp5mar6lcFfx5idLf6TY8aELaQW8NcxXnklnHKKKDJ62wcTShw6JP+2rxjffttanzV/ymyDBkn5rzc153DAX8f4+9/D+edbx3NlpX+eP/3UWrl9fw/AIUNkxSgrK2whtYA/nm+6Ca6+2t48L1ggvopWwd9ExLBhosDuTaE2HPCX5N9xB9x6q715XrbMWgsSf+15xAhRG7byXvQ34XTffaL8aRXM8Lxhgyh3WwV/7Xn0aFFot9Lz1t847NFH4a9/DVc0LWGG5y1brOlrdPgbbx91lPeqmHDBH88PPSSvXyHMGOyMB7YqpQoANE17GzgDaEpQlVKuG+2WAjYwobQp/HWMycnW+0/6ewD27y8vq+Cv0wEYPz4soXiFP57btRMrHytRVibWGd6QmWmtp56/wSJY7zPq715MTLRHjL54ttpL1l9bAejdOwyB+IC/GOPjxcrHSvjj2WrfRDP9dnp6WELxCn88x8ba4zr64jkpKWyhGMIMz4mJYQnFK/zx7G0LVjhRXu57kt3qGM3wbGVyCuaeLVbDH8+/Ypi5w3sAO13e73J+5g1XAF+6vFfAN5qmrdQ07SpvX9I07SpN01ZomrZi3759JsI6QtG7N5x6qndVMYAPPpD9i1Zh/HiYMsX78d27RQChtDR8MXnixBOhb1/vx3/+WUQGrELXrjB9uneelZL9JVb6yQ4dKjOI3rB9OzzzjPd9OqGGwyGewb4G/vPn+96nE2p07Ciz7b54/te/vO/TCQeysmQl1xu2bIHHHhPfOivQ0CArkN26eT/n009F7MkqJCXJpJwvnh9+WO5Hq5CW5t1LFkTo6a67vO/HCjVqa2XCy5u/Nog3tJWrQtHRsgrui+fbboPPPw9vXK6Ij5fnizesXQs33AB79oQvJldUV0tC4CuJfvVVWem1Cg0N0qZ98XzttTIWswq6r7E3rFwJl1ziWy8klKis9O0ZDDJ+uPnmsIXUAocOSSLvjWeHQ0TR3n47vHG5wl/ly9KlInK4Y0f4YrILvPnP6C/gHOBFl/cXAU97OfdoYCOQ5vJZd+fPLkAOMN3fv/mr9kFVSql27ZS6+Waro/COzz8X76glS6yOxDsuvVSpXr2sjsI3Ijy3HUcCz0lJRwbPS5daHYl3RHhuOyI8BwdJSUrddJPVUXjHkcJzZqbVUfiGHXj25nWrlD14djiUamz0ftwOPNfU+D5uNc8NDUpVV3s/bgeeQwja6IO6C3BdwugJtJia0zRtBPAicIZSqkleVSm1x/mzBPgQKRmOwBesFrPwBzsIOfmD1UIRZhDhue04Eni2e4x2EOzyB6vFc8zA7jzbQeDHH44Unu0c45HAs92ffWAPnn2VyNqBZ03zXWpsB57j430ft1okMDrad8n7kTAOCxHMJKjLgQGapvXRNC0O+C3wiesJmqZlAh8AFymlNrt83k7TtGT9d+B4wIvG/K8E550Hxx/v+xwrBzo1NVKC9X//5/0cqwe077wjpWK+Sh5SU6UExZvNS6hx6aW+vSfBep779RM7AG+wmucPP5TST3+WR1byfO21cNFFvs+xmudRo7x7EoL1A51PP5VSbl8librqp1U833QTXHON73OsHNDW1MiWgnff9X6O1e35q69ka0ZxsfdzrOb57rvhllt8n2PloLumRrYIffKJ93Os5nn+fDjnHPC1VSs11VqeH37Yf4mx1TxfcIG0GW+wOnH5/nu44grvdn9gPc9PPCE2M75g5fO5tlYEChcu9H6O1e3ZQvhNUJVSDcD1wNdI+e67SqlcTdOu0TRNf2LfC6QBz3jYyWQAP2malgMsAz5XSvlocb8C7N0rewt8wcoGU14uew6lLNsYVg9oS0pg507fs056o7ZKyr6gwP/1sXJAW1YmMfqSV7ea5927ITfXt9qj1Tzn5vrfA2Q1zzk5vq+P1TwXFsKSJRAX5/0cPUareF6xAvLyfJ9j5YC2rAx+/NH3fnGrB7RbtsDXX/tWRrWa5x9+gFWrfJ9jdXv+/HP/k3ZgXYwbN8L775tb/bPKxuXrr6W9+ILVPL/1ljyjvcHqxGXtWpngNjNWtIrnDz+EL7/0fY6V4+2DB+H558WT3husfj5bCDMqviilvgC+8PjsWZffrwSuNPheATDS8/NfNcrLfYv7gNyQVgmWmFE9s7rB+LNwAfcYfYk1hAplZbJC6QsdOvieZQ4lzCjkWj3QMaMSGOHZNyI8BwdmeE5NtY5nM/221QPaQPrt8nJ782x1W/HHc3Q0HD4cjohawgzPHTuKcE1lpTUKq2Z47tJFBJ+sgNlxWGqqdauTZvrtzp2he3eoqrKG5/Jy/zz37m1dWzH77MvMhBhT6dr/FH59f7HV8OdJCPD442EJxRBmGkxSkvjV+VKMDCXKyiQGXysup58uq1s9fAlOhxD+rHpAyqit8lkz8wBMSpJVI1+KkaGEzrMvk+qzzoJjj7UuRjM8v/qqdUbbZtvz3r3WJARgjufzzhOuk5PDFpYb/HnVgZTX+tvvFCqYmYho104GilZZfJjh+cILpWTeyn7RH8+ffGLdYNEsz/X11ll8mOH5kkvkZRXM8PzRR2EIxAvM8nzwYFjCMUR5ucTgi+c5c+RlFczw/Oab4YjEGGZ5LiwMSzh2QyRBDTfMNJhBg8IRiTHMJC6aBuPGhSMaY5hJ8jt1stZbykyMWVlhCcUQZj3MsrPDEo4hzCR/KSnysgpmeO7SJSyhGMJse7YqwQdzfWJiorXeiWbuRV/WYaGG2fZspUemGZ6tXiUww7OVMR4p3pN29p0E+8d4JPh3mnn2WQ27x3gk8GwhbOBG/CuCUvDb34ogiC+sWSOef75q+0OFzp1lxsvfyuO778Jnn4UnJk+MGQOzZ/s+p7RU/Cd91faHCkrBySfD2LG+z/vlF/H8s4Ln1FQ47TTf3pMge0ys8pMdNAhOOMH3Ofv2wUMPwbp14YnJFUrB1KkwfLjv8374QfwnreC5XTuYMQMyMnyf9/TT8MYb4YnJE1lZch19obhY/CdXrw5PTK5QCkaM8D9Z8+234j9pBc9xceLH68tjFODRR2XPkxXo0kVi9IU9e0SMavny8MTkCqWkKsjfxOGnn4oInhU8a5r48aal+T7vrrvgqafCE5Mn2reHAQN8n7Nzp4gALVkSnphc4XBAerr/Z99778k4wwqeGxulvfiravnDH6zzDY6K8j9O3L5dRL387fcNBRwO6Rf9LVTMnQvHHWcNzzU1orHhL4m+4gq4//6whGQrePOfsfL1q/dBfewx8T2qqrI6Eu846iilTj7Z6ii8Iz9fruGrr1odiXdEeG47dJ5fecXqSLzjSOH5lFOsjsI7IjwHBxGe244jgecxY44MniPP57YhwnPbYQeeffndKmV/ntsA2uiDGkGw4HDIyx+sFCEyO4tkB48wX7BayMkMjpQYjwSej4QY7cyzHfzqfCHCc3AQ4bntOBJ4trsnr9WCXWZwpNyLdr6GEZ7NwV9Zvt15DhEiCWo4sXatbCj35WEG1jbqu++Wf99fomrlQGfYMLjqKt/n6PsSreh0cnLk+viTN7eS5wcegF697M3zhAlw442+z9F5tiLGdevkGs6f7/s8K3l+7DEYOtQ/z1Y+AGfNgjvu8H2OlTzn5so1/P573+dZOdD55z9h0iT/51nJ82mnwV/+4vscK3netEmu4c8/+z7PSp6fecb/tgewlufzz/fvPWlln7h5s3jRL1vm+zwrY3zpJfGS9QcrJ5CvvBL+/W/f51h5DbdulWvob1uIlTHOnSvlu/7QoYO9J0pChEiCGk6UlckKqj8xDSsfgGVlkkTbeUanpMS/ymNMjFxnK2I8eFB8/PwpelrJc0mJSKvbmedt28TI2hd0nq24hgcOiB9hlJ9u1Eqed+6U/ZsB8DxvnijvR0XJz3nzQhzj+vX+7zEred63DzZs8G/nYPVgbMsW/+dZOaBdulTUon3Byn67uFhirKvzfZ6VPOfmwsqV/s+zkuf58337d4K1PO/ZI/vFq6p8n2flSvmqVbBwof/zrJxA/vhjuR99wcp+e9cu8eM140cP1lzHJUvkOvrDr3QFNaLiG06YkZR2PW7FDWlGxRCsazBKmVfgsypGszxbOdAJhGcrHi5HAs9mFfiOFJ4rKpg3T4oTdPu/wsLmYoWQuAUEyvOhQyEIwg/M8pyaKhNnVsQYCM9W+CYqZT7Grl3NbYUJNszy3LGjCK/4mzwLBcy2la5dRSAt3AiE5379rLFlMvt8Tk8XwSwr2otZnrOyrFFgD6TfHjnSGiVdszxnZIjQoRXq12av4cCBv0qrmUiCGk7oDcafLcbIkVKG0rNn6GPyRHm5OduO22+HP/0p9PF4orZWPN7MxLhkiTUWJGZ5HjMGioqsscMxy/N998kr3AiE53XrrBmMVVTIT38xjhsnGV9CQuhj8oRZnh99FP7+d+7q29KbvrpaREFDkqAGwvO2bdZYfJjlefx46/wnzfL8j39Y47NdU2OeZzMrwaGA2X57wgSpnrACFRXmruHDD8sr3AiE5zVrQh6OIczyPHasqNBaAbM8W/V8rqmBhgZzMf70U+jjMYJZnkePlu13VsBsv/3nP8vrV4ZIiW84YXagk5goMu1W+P5VVEBysv/zOne2JoE2eQ3nzYPeU3sSlZoSnjJFV5jlOT5eZu98GV2HCmYfgFb5jJq9hiAzkFZdQ/AfY0yMtGUrEhezPMfFQVQUO3YYH/b2eZsRCM9W+U+ajTEqyjoPSrM8WxkfWOtZ7A9HSox2jw8iMbYVEZ7bjiMlRjvHZzEiCWo4MWKE+Fb5K3eor5eZ7sWLwxOXK848E84+2/9569eL4MXBgyEPyQ0xMfD738sqsxfoZYoTCt/havV/TWWKYUtSBw4Unzx/HU99Pdx7r7m9JsHGcceJV6s/rF4Nt9wS/hWDqCi48EIYMsT/ua+8Iu0l3OjdG846yz/PdXUi9vT11+GIyh2TJ8PRR/s/b9kyuPpqRvbYb3g4MzPIcbni9NP9+yaCCHI88EAIA/GC7t3h2GP981xbC5dfbo0/9MiRMHGi//N++klEbEpKQh+TKxwOmDlT2ow//P3v4nkbbqSlyeqovwnamhoRX/nvf8MTlyv69ZNxhD8sWACnnCL7asOJhgZZkfLnjwnSlq+/PvQxeSI5GQYP9s/z4cMiSPXWW+GJyxUZGeJ36w9ffw3TpkklVjhRVyfx+fPXBln5u/zy0Mfkibg4uQ/98VxdLeJor70WnrhckZxsrq189hmMGuV/D///Grz5z1j5+tX7oDY0iC/TffdZHYl3vPOOxJiba3UkLZCVJaG9x2yVy2AlGybkc1uhsdH+PL/9tm15bsLs2UoNGWJ1FN5xBPH86WPrVVKSamozoFRSklJz51odoLI/z3q/ff/9VkfiHXp7Xr/e6ki840jh+Qhoz5F+uw2I8BwcRHhuO44EnlsJIj6oNsGhQzL76g/R0bKnTi9RCCeqqsx5oeqzUuGOsaFBXj6glyNWkkwylS0+DznMiipERYnCXWWl/3ODDbN+t/qqkRX3olkkJ9s7vqgoac9W8GwWTp5ferKS6upmkeysLHj++RDtPw0Uycn2voYu/XbYlZDNQm/Pdr6ORwrPdo7RqudzIIjw3HYcKe3ZzvfhkcCz3p7tHGMIEElQw4nrroNBg8ydm5Jizc3YubO58iqrGszXX8t+w+XLvZ6ilyNWkOKWoIa0TNEVl19urmQRrOu8k5NF+cbMeRB+nj//HJKS/HuYgXVt5corpezGDKyKsVs3ePBBv6d9s0R4riqSe7GxUS7/ww+HODn9+mtRoTQjUpGSYk1buf56KaMzg+Rktq6q4KqrRHRRKcKzxSA721yZu1Xtef586RPXr/d/rlU833qruW0PYF2/PWaMf+9JsC5xWbRIxIU2bfJ/rlU833svnHuuuXOtSqJnzJCZQX+waiLixx/Fv9qMoJlV1/CRR8yXFlsV46mnwuuv+z/vSFgoCAEiCWo4UVlpToAIrGkwDQ2y78JMjFY9APUG6iPGhx+WwXXzCqpqGmyHBZWV5gWurOK5qsqcxL9VHWNFhdyLZq6jnvyZXRUOFg4cML9absWAtqHB9N6kf74o7cl1QkdX7w0pSktln1xcnP9z9bYSbp537zZvEZSSwsZllV6VkEOChgYZKB4+7P9cq9rzvn3i1WpG6MoqnrduFd9gM7Cq31692pzug1XP5z17zPm0gnU8r1tnLoEGa5Lo+nr44Qdz+4etmnDauVO0M8w8/6x6Pi9fDitWmDvXKp4//9ycfUxkBTWCkKOy0rxilxUNRr/5zcRo1cydHqOPBHXOHJl8jElNJhoHg3pVh7dM0awSMlizstYansPt7WhiIqIJycmiTuqZFYQagbTnDh38lqYHHSbaCsjK3qa9KVSTSBx1TZ/HUkenQhMr2G1BIPdip06i2Gxmm0QwEQjP3btTVm2sKB2yLQYmeQbkPuzSJUSB+EAgippdu0q5S7h9RgPhuX//8Hs7BtJWUlMlxnArXwdyL2ZmwrBh1vBs9vk8cqRUoYQTgVzDTp1kVT0pKbQxeSKQe7FfPxEhqqvzf24wEQjPkyebE6UKJgK5hunpIjJnhZ+shYj4oIYTFRVi8m0GX34Zft/EQBpMZqasIIVbItvkQGfOHGD2H4E/sjE+HsLprlBZaZ7nH34Iv1l5IMlfVpY8WMJt4xLIvXjzzVKeF24LjUB4/uWX8Mdngmdd8bqaPrTDPcG/iSd4iLuhtCR0Xr2B3Is33SSvcKOiwvzfv3Ah9/QGDCbFQ7bFIJDkLysr/MquENig+/rrrVF3DYTnL74IbSxGCKStZGZa4ycbSL991VXyCjcC4fndd0MbixECuYa9eplfsQ4mArkXL7tMXuFGZaV5nl95JbSxGCGQPrFHD2vcHixGZAU1nAhkRic9XQR0wolAOp3oaGn8Vs3Qtmvn/9yEBHlZkbiYTdwTE0VJJZwIpGOMirLWY9QMz9HR9vYYBWviMzHQuesu7wvPs6M+JIZG82WPrUEg7dkqBNJv07zFwBUh3WIQSHu2CpWV0gb+h3gOO44EngPpt61CIM9nK3Ak8Hwk9NuBVLJZgSPBp9ViRBLUcOK66+C888yd+9FHssk7nOjUCe65R8puzOC+++Djj0MbkycmT4Y77jCX1G3aBH/8I2zfHvKw3HDxxeLtaAZvvQV33hnaeDzRoYNcl8GDzZ3/pz/BO++ENiZPHHWUtBczPK9fLzO0+fmhj8sVs2fD8cebO/fll+WahxPt2okfr4/SJdey0xe5gosQwYYMihjnWCYHQum9NnQoXHKJOZ7XrBGP5nCvDJ1wAkyfbu7c//yHOQuu4PnnZbFS08KghJyQIH68ZjxGQTw8X3ghRMF4Qb9+EqMZnpcvl3Zldp9gsDB5Mowfb+7cf/zD/LM8WIiLE//qXr3MnX/iieYElYKJnj0lRjM8L1ki3r25uaGPyxXDh8vLDB58UPxkw4moKPHj7d7d3PlTpsDjj4c2Jk+kpwt3Znj+4QfxM1+3LvRxuaJPH/NilXfeac4vPNgYPFiESc1g+PAwCqnYBN78Z6x8/ep9UJVS6tprlUpPtzoK30hPlzjtigULxDtq4UKrI/GOCM9tx8KFEZ5bCd0zGJTaR5r6D9cqUOqWtJeaD7z0ktVhCo6E9nzNNbbk2Q3p6Ur9/vdWR+EdOs8LFlgdiXccCTynpR0ZPNu5Pdu033ZDhOe249prlerc2eoofCMtzd7jsFaCiA+qDaCUrORVVZk73wrxnKoq2Z9kZ2XSgwfNC/ZYoViplCiTmhXEsUINsq5OhGbMqupZEWNNDTgc5s61QrBLqcBEj6xoKw6HX45dy1F1W6akJPhD709FrAZCu4IaiLLjkSC1b5WdUCCwuy/hkaBYeSTwbJWNi1lEvFqDg0h7bjvsfg3hyLgXg4xIghouVFVJycEzz5g7PzlZ1O3CqXz27rsyKN21y9z5VjSYCy4wX4phRcdYVQVpafDPf5o7PyUl/DzPmyd7X83Kilox0PnNb6SEyAys4jk2Fp54wtz5ycnCcTgVK199VcoCffCsK15nZYktU0ZiJS/+u4Zem74VDjp2FOuIUOHUU0Wd0Ays4PnQIcng//Mfc+db0W+//rr0OXbut885R7g2AyssUg4dgowM86XPVvTbb70lYwiz7dEKni++2Hzps1XtecAAeO01c+dbwfP774t6sEmLMEsmS66+2rzHqBUTi4cOyTaht982d74V/fbHH8PUqVBSYu78I2FSLMiIJKjhQiACRK7nhfOGDDRGqyxSArHqgfB2jIEKHBwJPFsx0AnUqgfCG2OgIhFWxdjQ4Fdsbc4cKe4YOTWF4ydWcP7AVZKAH3+87IMK5QpqebmIXJmBFSsuuh+vWTE4K3g+eFCqNsxaTVjRb+/da86nFazjuaQk8KqNcF7HkhJpqGbV/a1YFSooEHV/M7CirVRUiN+tWasqK3jevRvWrjXnDQ3W8Lx+vTn/TrDmGpaXw6pV8tMMrLgXt2+Hn382L0J5JKzyBhmRBDVcCDRxsXLQHUjiYrZkOVgIRDlV98cMp29ioMpsKSmymhlOn9FAeU5Ls0YJOZD7MCXF/OAyGAg0ye/USVZoXAbp8+aJrk1UlPycN8/iGHv2lHOXL5f348eLB2AoV1ADac8pKRJjOFWlA20rGRmyQhPOlfJAec7OljjDiUB5Hjw4vCr2gfLcq5es0NTXhy4mTwQa46hRIk4VTgQ6sThhgnmrrmAg0LbSp49UbJnd9hQMBBrjpEkwYkTo4jFCoB7gxx3XvGUkHAi0rWRnwxln2HsMccwxwvWvCBEf1HAh0MRlzhy48MLw2rhUVsrsrMkB4Ju//YQ7741hR5TYrj38cAiVKl1jNNugk5JkBSmcNi6BdoyXXCJKq+FERUVAPPPRRyENxxCBPADbtTM/UxosBMrzhRfKy4km/1GnxUthYbMlYNDaUIDtmbfe4plnnqHvvfcyKiqKrQUFTO3eHRYtClJAXmI0ew3btWPeYzu56y7YcVWY+pxAPAlByhvDre5aWSleymZ5fuml0MZjhAB5ZsOG0MbjiUCfz7/5jbzCiUD77XAr+ELgPC9dGtp4PBFov33aafIKJwLtt//+99DGY4RAx2HffBPaeDwRaL994onyCid0ns2O8R94ILTx2BCRFdRwIdCOMTY2/B6jAcx+zpsHv7s2hsJC0TnRB9hBXwXyRCCJi6bJDPfvfgfbtoU2Lh2BzopZ5Y9pZ38wsL+HWaAPQA8Y+Y9WV8vnQUOAPCuluP/++8muqGCpw8GiRYtkBXXv3sDEjAJBgH3OVVcR3j4n0PZsBezu6wiBraBagSPFe9LO8cGRw7OdY7T7sw/sz3Ok3/6fQCRBDRf69xfhnOxsv6fOmweTeu7kGe06TuqeE/qkT8dZZ8H995s69a674PjqD/k/rmn6LOgDbCPcfTeceab586+5Bl58MXw+YVlZMtPlw3vSDdu2wUUXwcqVoY3LFSefDLfeav78t98Wcapw4sYb4aSTzJ9//fXw5JOhiqYluneHm2827z25dat44/7yC+Bdt8isbpUpzJwJ115r+vSip56idt8++tbXk5eSwtatWyVBra83v68sUFx2mWnRs7vugv9UX8rtPNr0Wcj7nIwMyYIzM82dn5cn133x4hAG5YEJE6QPMYtnn4VZs0IXjxFmzw6sPG32bPHZDhfS0uC3v4UePcydv2GDlPj+8ENo43LFiBGBrdo++SSMHRuycAxxwglyXczi+OPhz38OXTyeSEmR51+3bubOX7tWSvYXLgxtXK7IzpaSWLN47DEYODB08Rhh0iQYNsz8+ZMnh9cHPClJBIi6dDF3/urV0td/+21o43JFr15yXczigQfM90//K/DmP2Pl69fsgzp3rlJJSUoNYb1SoM7lbZWUJJ/bCZqm1H3cpxQojcYmy0RNszoyD2RmSmCdOilVU2N1NC2xXnhWb79tdSTecd99EmNjo9WReMfgwUrNnm11FN6h8/zOO0opd/9R11dWVnjCmTtX/i1Nk59z5yr1xQUXqKOdgdw8fLiaPHmyUu++K4Hl5IQnMB/QNKVyGazeY7bbNbNVn+PBs2poUOr665XavNnauFxx771HRns++2yro/AOT57tiAjPbUeE5+DA7jyvW2d/no+EcVgrQMQH1QYoKYGNG/1uttdL/yqR0oRkKsOzMgmiwGdSsTMzsznG9hxy+zxkqK+HLVsCE2bS93GUlsJnn4UmLlccPCgqfHZWgywuDmzPph5juIScGhslxkAk38OtTFpVJWVEgXjJQlPpkav/qI6kJPk8aKisNBRx8VYq+3nuQcY5z6kfMaJ5BRVCo+TrcEhnZ/Ia6n1OMpUtPg8Z6usDE87wFLfbvFn2Ar76atBDa0Kgwh56jOFqz/pcQiA4Ujw87Wz7EG6eW4MIz23HkcLzkXAN7RxjuMdhNkAkQQ0XXnkFhgzxq+6ol/hVIA0mhQq3z0OKc86BK680derDD0NNnHuMQR9ge2LnTil/ef9989/R9/GmpJj3PmsLnntOlEbNKgc7O8aViypDq+jqilNOCUxZJtydd2GhKP699Zb574Rbgv3pp0Wd0Kx1hsc1dPUf1TT5+fzzQRb8mTnTsCTQ2/7X7zbuYyZAZibdhw+npKSESv2hGAol3+3bRSjl9ddNnf7ww1AVleKWoIa8z3niCbHB8bxg3uBpkaJ33LoycigwblxgpZ/hHnQXFMhE4Ztvmv9OuK2t/v53aaMB9tth7XOmTAmsgwi3Xc+2baJWHsjzOdw8P/WUPJ/NqmxbYXl0/PGim2EW4W7P27fLIOWTT8x/J9zP52eeESVwO/N81lmBlT0fCZMlQYapBFXTtBM1TcvTNG2rpmm3Gxyfo2naWudrsaZpI81+91eDigrJPhITfZ6mrwYcQiT29cFYSFcJdJjctD1vngxyD9Q1r/KGZIBtFB8EtPG9vFJDAf+suIKGT7/gnZdCPPtUWSkDWj88N8FppfDluxXhE38JVIQh3J13a4Qswj3QaSXPrjHq/qMOh/wMetvxIqribbJrd91uhgFkZ9PfuYc6X0/MQrGCGqCQxZw50H9MMmmxFaFL6o1iDJDnucCwxx7j8OHDzV6BK1aETmiqstJ8fBD+5KqyUqoizPp3QvhX1srKZBIiPt7c+QbtOeQIxKcVwj+graiQCiKzvsYQ/pW1khIoKgrMYxTCG+O2bYGtkoW7PZeVSb8WiPVOuJ/Pu3dLtZ2deV6/Xu5HszgSVnmDDL8JqqZp0cB/gJOAIcD5mqYN8ThtGzBDKTUCeBB4PoDv/jqgJ39+VFv10r9GYiilIzE0hH6VQIeJxMW1PLCcDpSTQseEGh75S0N4LGbAdOIybx7s2htNI9Es4GhiaOTZ69aFdnVSTwrMqvPGxLAnuieH690Vm0Na1h2gGuR3a9LYE92TkUPqQ7+6C61T4MvMhM6dQxOPEfS2EgDPDBkiK4bhgpcJJ+PJrioqKSJN0yAtrSlB3bxzJ6SmhmYFtRUTEZnHZDPwhD6hS+o90Yr2/FxyMrklJXzwwQfNCerBg7KSGAoEOuHUvTv7xoxhV3FxaOLxRGsmnEaOhOHDQxOPEVrBM8ceG17RkkBVPzMzZTUuXL7Brem3J0wIr7ejyXFYE2JiRJSxb9+QhuWGQNWa+/aFs88ObAKoLWiN4vXMmXIvhgu6ynAgPF90kTyjw4VAlZCzs+Hyy1vuDfofhhkfk/HAVqVUAYCmaW8DZwBNRmVKKVfJwqVAT7Pf/dXAZKejD7juugvSd5SSmQnPh8NfFEzF6Foe+BUnkUo5XWqKOePSVGj/upQthAoBPgDvugseU8OIpY4cZFF/YG0OF144ibvuCpGHYivk13s6dmK0thKysm4TMeqr5IWFoGnHodROORAKv05PtOYBGE4FX2id5UNubmhi8QYvicvDD7t7sALEx6+jvlaRiAYDBzYlqE37UEOxgtoanh97TO7N3tI+Qu6FGmDyV1RUxM/O1Y+XX36ZOd27S+WMwyFlvv36BT/GQO/F6dM5NSaGZUcfzejRo/nvf/9Lnz59gh+XjtYkLvfeG5pYvKE1lg/hVPyEwHmeMgW+/jp08XiiNTzfdltoYvGG1li4fPhhaGLxhkDHEOPHw3vvhS4eTwTqGQzwhz+EJhZvaM3z2eRWk6Ah0BjHjLHGw9pCmCnx7QHsdHm/y/mZN1wBfBnodzVNu0rTtBWapq3Yt2+fibCOMATQ6YS89M8IjY0yYvWIcd483PZG6gsCrpjGj7RTVWLnEkoEOBO/YwekcYD9pLOTXhwklZHkACEso21Fx+itfDskZd06zz5idF0lh5aViSEX7WrNAzDcsLuHmQ+ejfa/XnDBGtIATSno3Jl27drRrVs3SVB79YL8/BZ9QZvbTit4DrsXagA8z5sHQ4d+hFKKpKTzWLBgATV5ebJKFB8fmn2oXvptX1BKsX79eiZOnEhOTg6vhlLACY4Mj1G7e082NATMc9hxJHiM2t1LtqFBdA3sHOOR0J5b+3wO1TYMT+jtOdBrqFTgonhHMMwkqEZr5IYsapp2NJKg6sZWpr+rlHpeKTVWKTW2czhL9cKF66+Hhx4K7DsPPACPPBKaeDyhFLz8Mpx2WtNHRoNB14qJNPbzNudxHm/LB99+C/v3hy7GMWNEEbN7d1OnZ2ZCX/LpSwEJ1LCWEYxgbdPxkCRaV1wBd94Z0Fe+GHYbj8bc4/ZZyMq6HQ5ZbTzhBK+neIrodKaEzzmZE/iq6bOQinaNGAGPPmreqw5EmGPmTPOiRW3F+ecH7ut23XXinRoONDbCX/7i1WPUcxIsPj6Hvnr5sZPcAQMGsGXLFpgyBbV2LX/+XWlwE8NBg+COO0QQyyR+ufFNfqweQwLNPId0wuT0000Jx+l9ZWnpf+lKCndWxwEapTmb+WBtP5bWjuKX/ywPfiLd0CCexlOmmP5KSU4O1dXVXDhsGCNGjGBxqD1b+/WTez8jw/x3XnlF/CfD1Z6PO07adCA4+2y49NKQhNMCDQ1w9dUiiGUWu3bJTNI774QsLDf06iVlkoGM3559Vu6LcPE8ZQqccUZg3znxRDjvvNDE44n6erkPR470f66OwkIRpwr53hsnMjLkGqalmf/OU0/JPnmzYnNtxahRUoIfCKZNC/zeaC3q6kSscvBg89/Ztk3K9efODV1cdoM3/xn9BUwCvnZ5fwdwh8F5I4B8IDvQ73q+fs0+qG4YPlypjh0t8z3y5tWoafIznRKlQOXRUxWRoBSo2zs9p+bONfZZDDfmzlWqlFSlQHWhSD3FDaqC9vbzbZ05UxUNmm759dKh86u/dJ6v4+mmz6KjbebN++9/S2BFRVZH4h0zZig1fbrVURhiypQp6vrBg+UaXn+9Ukqpyy+/XHXo0FXNzvhRKVBn8oFlvq06fs9/mtqznbxQpa88oCBaXUAvtYjpKppJqh7Ug9yl/sX1qpJ2qn1ig+Xt5ufPPlOA+uKaa9S1116rkpOTVUNDg7VBeeI/wrMqLrY6Eu+wcXtWSilVIv22evppqyPxDr3fjvDceug8//vfVkfiHZHnc9tRXGx/nlsB2uiDuhwYoGlaH03T4oDfAm760pqmZQIfABcppTYH8t1fDZYtg/z8wL5TWSniGqFcldRx6BAsXermj+ltlUwpKQusJIU3gUx2MZca8kjl2NJ3uOwy2csd9DK8HTsgJ8f06XPmQEp0NeuAduwhh5Ekc4g+bGs6J+hltLm5gQvKJCeTkVARnrLu6mrYsMGnl6znNXH15NXR2BjC0sriYpktDARWWOEcPBjYd8KpTFpbK7ZMJmT2lbPkc4Qu+OIskzh0qD/l5UV8UjyAKpKYxYIW323TSnpZGRw4ENBX4tJa3osQQpXz/ftNre7IdVgGNDKUHiRTSTd6EgPsIJO1jKA9VaQd3hnc1d76eumzAyj7KnAqR/ZNTGTSpElUVlaSG8r90TU1hn68PhFu5fCamsDL+8JpneFwBF7aF25l0taURxoo0NbX17Ns2TJqzVqEhBrhtkgJFFZYpASKI8Ei5UjxarUzz0GG3wRVKdUAXA98DWwE3lVK5Wqado2madc4T7sXSAOe0TRtjaZpK3x9NwR/h/1x9tmBl/jW1cnPUAiUeGL9elHT+/nnpo+8DfqysiSJKq+BF4AEYAkjeIc6jmYhCfUVTaHrCEoZ3pNPGpayedsbt6+wkOjGOuYCg8Y9zOb4EQBN+1BDUkZ70klw992BfSecEuxr18LQofDDD15P0ZWkddQSTx2xTX63OkJWWvm3vwWu4BnuznvqVLjpJtOnz5sHH32XzNY1leFRQl69WhrwgpZJpSf2LlpEeXk5A/WSLaWYNw/ef38GAPUs4CemcjQLW3y3TYnhgw9KZxIAzrxYeNYT1HYcIj2xKnQq56NHw+9/7/c0uQ7Sr6TTkxQqyHJ6WRfSjSKkjLkz+4JbHr9ypagsByCGU7BjBxqQFR3N5MmTAViyZEkQg/LAXXdJCWIgcA5o9xQU8Ho4xEsGDDDtAd6EcA5oly0T+5ZARI/i46UkMFwx3nxzYGWf0CJxeeGFF+jatSsTJkzg2WefDXKAiOLtddcF9p1w8vzLL3JNTPTbTYiPFxXacMV4xx2BqxqHewJ5xAi45ZbAvhPOiYjly2Wr2vffm/9OfDyl0dGszc8nLy9Pr0r9n4YpH1Sl1BdKqWylVD+l1MPOz55VSj3r/P1KpVRHpdQo52usr+/+KtEKddcm0/BwJKgGAgeeiQq4J3XffPMNehqxhD+wkWqiUPRgt+E/0eaBmYHAgTfRlLlzFZc599OmA1+v/JAz7tJoJIpR5DC8V1loPBRbIbZRnZjIeoPVuKCL0ujxgc8YW4roaFSS3GLVCkK0F7U1AgfhnqENUDznqqugqDqZFCpCL+wD5hU1c3PpPmsWxwBZzj2oeRsbuOoqcDgmAhnARyxgFsPIpQvN1iRtnuBpRZ8441T5e7IzKujIQdbGjGHV4AtCqyhtIsaHH4bo6BwgEwdpzgRVPPh2EMU+ZF9eZ/YFd7W3FYIl+QUF9IiKIuHwYfr27Uvnzp1Dm6C2RoDIec1ffeABbrnkEjZt2hSCwFxQUdHsbWoWCQmywr54cfOzOlTQeQ4kRk2TRpqbC+vWhSYuV1RWmveR1aHfFz/8gNq9m7vvvpusrCwyMjJCsze6tFSSuUCQkCCVHuHgubxcqtkCuY6aJvZl4eJ5//7Ar0NyMlWA+v770FiWeWLHjsCrNsLJ88GDMq43eS9WVlZy6223MaWxkZteeomzBw0Kz8SdxTCVoEbQRigVuHqcUs1mzeFIUA0GtEZqn65J3TvvvMN0NCpozx4upAgZ4HalyPCfaPPAzGCw6CnoA/L+1ltXssfZWV+dnk5KUhLf/nQX0YOyuZe/sHZnR+aoIG82bw3PwB9ychhVWiqCNE6ETK3UpNKip4hOXvxIDtCJq3mWP/AUxzAfCFFpZWsGtJ07i7BEODz/AuT5j3+Ue3Iz2eQyFAiDErLZxMVZSj0c6BoVBbGxfLwy09mmohBXsC9YgFQu6Kuonn1Bq2MMlOeMDJg2jd/dmcO3nQfSt2ELvcrWtyEIH9B5NpGgzpkDXbvmkJg4kvUMJydxIicNkRnuHdQ2Jai94kqCu9rbCiXkgvx83o+JgeefR+vZk6sGDAitUFJreN4p4v93Ll5MAfBDKJWG9WdtoDFu2SIJxZQp4vEYyhWN1li4VFfLIP2TT2RF6V//Ck1sOtrAMzfeiOrfn+SSEm644QamTZvGihUrghtfAO3ZDQUFsh1hyhTKJ0xAhVJFNcAJpx9//JGbrrkG1dAQPp5b8Xzeu2YN7QDtT39C9e8f+Ha3QNBangsLm3jmuONC254D5Pmee+7hmX/8g8UxMcwH1gGV4RJQtRCRBDUcqK6WkX4gjfrAgfCW+HpJXLxZ3hw+fJiPP/6YcUkpLIo+FoiniOMA6Ka9Q2ys+/6RoJTTGnSM3lbwiopeoZszWUn58EPuuOcevvnmG3Zcd52UZiYkwKpVbQzIA4cPy4UKoGPcuHEjr6xaRSPwkLMEfN48uOQS48S7zUlNKyXit720gC8SzuZZruUpbuQbjqdHYmloSitbk6AOHw5r1oCzZDGk0NuzCZ7nzWveZvlPbmIWC5nFe4zhu9AqIZu1fHBaeo1s3574igro04fby+9wOeFM4BCrOUg5KRwfvYC5c4O0T7o1gwhnefrSp57iqH37ONy7t3QCjY1tDMYAAfTbNTU1FBXlcfzxI/k28wr+dPhRVGE1+4H4jnvYRxcArj5rX3BXe1vRnrM2bmRCXZ0oVsbG8sf8fPK3bGGnniwEG4GulCsFzz9PdceOnAlEA1mvvIJSig8//JDS0tLgxhdAe25Cfr6stFx0Edx3H/z4I3z8cXDjckVr+u3/+z/5215+WdS8H3jATWMi6GgNz88+K7Ocn39Oo8PBX4BZs2YxduxYCgoKOBDgHnWfaM04bOtW+PFH1EUX8URKCh3WruVPffqEbkU/QKueF198Ee2559CqqsLHcysWW6KfeYZC4GSgprYWR6DboAJBa3letAguvhjuvx9++gk++ihEARLQxKLD4eC9997jP8OG0bGhAV5+mYKsLM7fvJkSl0WN/0VEEtRwwGSn41rSedrw7c0HwlESEeAD8KuvvuLQoUP0bKxhwHF9yMqCYm4HoIt6jtGjL/K68tqmGD3iM17BqyEq6k1OHCuV5p8uSefppy8Gohhx9z5eGfYQu+LiKF29uo0BeaAVs9x333037dq145JLLmHu3Llcc83rXHLJJTQ2bjQ8v81JTSs9RufMgScuFYuef3ALUSj+74GS0JRW2t1jNIC24jqhoOHgfu7lO87lYc4PnbAPmL8XnYI5QxMTJVnt3NkjrllAexr5hB+YwdnpC4PHeSu9J1etWkVMQQF1wJIJE8SCY7fxtgIjmC6dD2CwmJubS2NjI19+OZIzdvyL9Qzj/Kp5FKIxYUIBFY72EB/PmF5B9vgOsM85XF3NH0tLKUtNlT/8H/+gc3ExFwFzQ2VfEOiA9uuvYfFiXsjIIKd3b5ZPnsxxJSW8feednHXWWbwUbLP61qxO/uUvUq3x17+K5sCgQWIv1tAQ3Nh0BOoxWlkJjz0mK7uXXQaPPy7lrX/7W2ji0//NQK7h55/Lnst77oGTT+bDzEwuALJKSxnrfHavXLkyePG1gecVs2dzW0UFezp04Npdu7jnjjv8fzcMMeatWMHtwI+JidSff374eA7k+fz553QpKOCJpCRO+uc/ecLhIOrtt0UnIVTxQeva8733yh7bcLVnEzEuXbqUij17+G1hoVjnnH02jr//nTRgx/XXhyY+u8CbvK+Vr/85m5nqaqU+/lipggKvp8ydq1RSUrNtwmzeUwqUA02pk08OfYxbtij11ltK1df7PdXhcKjp06erIRkZEuykSfoB5YiNVZ8PH67atWsXfOuC+fPl5QLP6wZKxcW9owC18fe/VwrUj9o0NYc3FMxSkK1iYx9Xn4Eq7NQpuPEdOqTUG28olZdn6vStW7cqQN134YWqaOxYlZiQoBCfYAWXG1r8tNnWIzdXqeefN8WzG269VamhQ5WKi1Pq008lmJ9/bmMwXvDRR0p98klg3zl8WKnx45V6+WW/p7bZAqmiQqlnnlFq/Xq/p7pa9jzHlUqBqgH1C9HqjTcczSd+841SH3wQYCA+sGqVUv/4h1J1dT5Pa/jTn5QCVdKpk1LDhinVp48qHHeWR5s6ScFIdWfSP5UCNalHYXCsUubNU+qddwL7TnW1urxDB/VqVJTaExWlHp45U4JctMjU1436i6QkL/dAWZlSjz2m1OrVfv+/L730krPd5qnvmaYa0NRahqkH6awSE8+Qk3r2VOqSS8z+peawZIlS996rVG2tz9N27typpk+frr6+4QalQC3JzlbqxBOVcjiUGjdOFcfFqcH9+yuHw+Hz/9MqvPCCUq++av78KVNUfc+eKg7UvSecoFbOn69KQb3n7Buvuuqq4MZXWqrUnXcqtWyZufO3b1cqKkqpU09VKjVVqcJCpf77X7mZ3nwzuLHp+P57pW680W97bsLjj0s8xx7bbJ3x29/KzV5WFpoY//lP6RfNYuJEpfr2VapdO1X/17+qnsnJqjI+Xqkzz1QHDx5UgHr44YeDF9/+/WKhZfa5tW2b8HzyyeoPmqbi4+JU1RtvKAXqfFBbt24NXmw6vvlGqSuu8NuelVKqurpa3ex8wIwD9R99cBBqnh96SJ4tZjFxotoeG6vOALX77rtVCqjqpCSlzjwzNPGVlCh18cWmnwlq2zZ5UJ9wgrSZcLTnTz9V6pxzTPF80003qVuioiSeCROUGjdOKaXU5ykpqjoqKnQ8hwn4sJmxPBk1ev3PJahe4DpQjo52HzTdwt+a3qyPHWkLf0wd3333nQLUm7feKjF27958sFcvtXXqVAWonJycsMTjmXAcffTvVKdOnVTjPfeoRjTVCOoB7lHwnHMQmaSeBlWmaaEZkJnExx9/rAC17JFHlAL1wZNPqgSeVkvppKbRXkGtuYF0CPHDDz+oP/7xj8px9tlKtWun1KhRMpADpT75xBZ+t0opGWhrmtpz443qjTfe8MprQAlKEODqJbyVvioP1Fug8kDl5+c3nzh9ulL9+oUmCB8oPe00pUA1REcr1bmzUn36KDVokBuv8fFXK0hXI1ijFKiLedWSe1EppUr371cJoHJSUlRBaqqa3r27XFyTCZA3b+dAJn6M7vk//OEPCpIUNKgt9FMK1DDWKjhNwXD54pgx4ZlsNMC9994rfbamqSJQS2bOVGrQIDn4wQdKgZoF6udQTTqZxYEDSmmayrvgAgWoHy+5RDU2NqoXkpJUNagBPXqoY4891toYn3tObponn5Sf69ZJ/9O9u1KzZ1sbm45jjpEJp3POUY6BA1VlZaVSP/0k8b79ttXRSbIISj3wgFKgll5+uQJU3kknKRUfr9ShQ2rAgAHqN7/5jXUxPvusUqAaH39cdQP1m2OOUcrhUA1du6r/apq63ukXbRV++eUX9S2ossxMNbNzZxUL6sMPP7Qlz3eDehSUuuceNWDAAPVxnz5NPFsOJ8/qn/+0XXt2OBwqKytLrU5LU2r4cElqnf32y1dcoRSoihdesDTGtsJXghop8Q0HioulnKWsrOkjTxEczy1UvdlOJaLY17G+BBVMoRwjrF0rdfd+oJTinnvuoWfPnsweP14+dPWUycgQsRXgl19+CW6MCxeKYIEHPPfJzi74hmW1tUTt3s1BOlJJilOB9iwgBqhmGxPpoBQbXGx12owDB8S+xaSS7NatWwHoN2AAAL8ZN46Z3aYxgVLO5RDwTdO50dFBKpPevFn2aprEfffdx1NPPcX8Q4dkj+3w4U1WAos/Kw2NkNPy5abL2pvKNaM1KmnP7R9+z0UXXcTnn39ueL43Ua2A9vaWl8s19OOPOW9es85Zb7bRjwJeBA7ThVRwFwHZs0du3kCVB71hxw5DIQrP8tY9OVIzHt3YKCW+TksF1zaVkNAT2M86BrCfNI7hO56s/h0drjqvbTFu2hSwD+r7H3xADdA3NpaoLl1YumcPStNM++Z6K5E3/PzQIelvXPo3b+Jl3367lri44UAUGU6lY+lz+qJpBTIb3Llz057foKGkRJ4vPuBwOHj99dcZPGgQM5TiO6Bft27N/dQJJ6ASEpgdE8OroRAj2r3bp++yG77/HpRiubOEcGhiIlFRUQy69VYSgav69qXA4BnQJtTUiDKp2X3MCxaIRcTAgfK+okL2spx2mpQnh8K/s7KyZcflDTU1Yhd3zDFcvmYNiXl5JCcn896uXZCeLmI6oUBFhflruGiR/Dz2WEhO5uN169A0jc5XXCHXb/58xo4dG1yhpIaGwLhx8vyzw8Fe4Nzp00HTiD7jDE6KjmbuSy9xSO/gg4X6etPiPDm//MIUQDv2WD48/njGxMZyzjnn8H1trfD86afBjU1HICJRTp6/AyYnJkJlJTNnzuTFkpImnoMOk9evCZ7tubIy9O3ZJNavX09RYSHDKirgmGPcLAl7nn02+4Cqd96xLL5QI5KghgO//AKnniobsZ0wGii7ojfb2UN3ANLZj1Q3hVD98+9/lw3ifrBmzRoWL17M7bffTlyRU63XdaDetStJFRWkpaWxdOnS4MZ40knw3HM+T1F793JJYSH9qqpg3jzKYtKpJNnp4ZkOXAxcQmWnywGY++B7wbNyWbwYZsyQJNAEtm7dSseOHenUXXimspI/XyBCJZOIBt4GRGDqtdeCZInz4INw1lmmTi0sLKRy4UIeBl7KzZUH04gRTZ6G3713IDRCTlOnwlNP+T3NM1koVyl8UyiD11tuuYV6g2QvoATFG77/XvwxN2zwG5uef53FmwB8AIwdeRSpwEp98KWUJKiNjaYTLb+46y5RIjSIyTW5qt1RjNsQq0OHFl5w5eU9JUyKWMjRXMwb/I4XObn6vYATTDeMHBnwXqm33nqLAdHRtKutpV2fPtQBhzt1kmzaBLzt+zX8fMEC6NfPzbrBs98ezAYuqn6GzRtXMm3aaHolHiDZeUWTqSQ2ti9KVbHPub9X3/MbNNx0k/hX+8APP/zA9u3b+dsVV9Ad2J2dTXqXLs08JyWhHXccZ8fG8kMgvnxm0a+f9DtmsGABJCUxv6KCHlFRdHRODky9805ISWFmZSWFhYU0BHNv2DffCDdmJu6UkhiPOaalt+Ppp8ukhp58BRPXXgvDhpk7d+lSqKmhcvx4Xt+6lWnR0fTq1Ytnn39exiFffBG8iTBXdO5svvNfsEAsc8aN43ByMs+vXcvpp59Ox9NPlz7ok08YO3YsO3fupNjPBIxpfPGFiCOa2dfqcMiE+DHH8N9ly4gHTh0hPuqcfjqJDQ2MP3yYwsLC4MSm4/LLITvb1KnlX39NIpB8xhmkpqfzTXw8PXr04JY//xl16qmyKBIKnpOSzHu9L1hAbWwsa2JiGJea2pSgfllVRUP79qGZLPnkE+HZTHt24ZkOHeQzvV8MZXu+7DIZQ/hBbm4uE4GY+nqYNUv6HGd8w0eN4jMg9eefQ8OzDRBJUMMBA4EDfwPi3mxnJ70AiKOeVMpMf7dVMClwsMqpfHvCCSeIRHx0tMyO67NqXbuiFRUxYcKE4K6g1tXJTJaPGOfNg9cH3EkCkBPdE2prSemTxiHN1cPzJZKSXuXMPx0FwNZvvwveCmCAAgf5+fn079+/+fyKCmb2FXJH4qAdH5GZWRNcv9YABA7mzp3Lb4E7gWG6wufQodKRR0cTfdA4OWnT/VlXJy+TAkSuycJ64iminISEE8nLyzM0eg8oQfEGEwIH7rFVcTaPsBK4Bxg+tCNxwNply+RwRUXzySYnN/zCQIDIaFIsnTJWaC5mx506yUPZZZa8S5eezt92MZ9jAfiG44hCcc2gRa1rL7W1wnMAYht79uxh0aJFXJCailZTQ8fsbOLj4ylKSDCd2PvzdnaDAc+e9/btPMazXMe7VHLlnPG8cFuzqmK/9Ar+8AcxtC8oKIAuXYK/gmqiPb/22mskJydzvNNz79YvvkBLSRGe9dWG00+ny+HDJOXnG07stBom+m03fPcdTJtGzsaNDE1IaOYgLg5OPJEhBQU4GhvZEcyHYCCiKuvXC4f6YNH1+7Nm4UhMJO/vf5cV82AiEAGiBQsgKoovq6poVIqHGhu58oorWLhwIfsmTZJKrmBWDkFA/TYgPE+fDrGxvOFwcKC2lptuukmEak46CT77jLFjxgAEbxU1kOdzbi7s24c6+mg+XbKEY4D2+qTIrFk0JiRwOrA32A4LFRXiaWoCHVatolHT0GbOhJQUUqqquPfuu1mxYgXLMjJCw3NtrbwSE82d/913rGzfnhFHHUWic/JzxowZNABb+/eHzz4LbEXWDCorJUbPjt4ITp6ZNcttHAbIZ0lJoUmiS0tNrfRu2bKFYwAVHS2LH8nJTf12RkYG36ekkHD4cPB5tgkiCWo4YNAxehsQR0eDhqKPtp098X3Y6LQn6MZf/H63zTGaGCyuX7+epKQk+vbtK6O1Tp1g1KjmMoiMDNi3j0njx7NhwwYqPFZjWg0/Kobz5sEDV+7kgqo3eAH4XeOfAahtn07CxNFUJPd0UxQ++bo+AGSpjdCUvLZxBTBA9bitW7dKgtqpE4wbJzPKzoFXDIpxVPHJJ3nMmV0jQa1d28rAXGBSOVUpxeuvv86QjAwA/uz83JGdLeUvnTqR2d7Y7qFN92cAapWeY9TXkFhrap5m6tSpPP300y0GigElKN5gYqDjGls3XmcS1XzBGfRklqw0AAWrVuFwONzLmYMlG2+QuLQc0yu6UMNK1avZP3bwYDjlFLey1ptv7uH8bRcvcQXH8Q2n8SmHaMfw/QtaN6nTCqXFd999F6UUFxx/PDQ0EN21K2PHjmVtRR27ft5uqgrCn7ezYYwu19Hz3h5KLiW050zg1IULOaGvk79jjuGZ/2Zw+eWSoObn5wvv1dXmy13NwETi8vnnn3PmmWcS99NP8gf07Suz9+ef3zzzfuqpAJzc2CixBjM+MMfz3r2wcSOOo49m48aNDBs61N026vTTSaqoYBwEt8w3AGXzF84/H4Dhf/gDT374Ieqii3B068aaNWu495FH+Ky2lqTvvuOzYJdXBmLhsmABjB3Lf+fPJyM1lXFXXcXF55+PUopXdu2C+PjgD7oDURnevRvy8iShdzh4srGRMZmZTJs2TY6ffjqUlDDW4UDTtOAlqIHEuGABAFszMynYtYvTZs6EPjJmICGB6mnTJEENtsOCyYmIuro6hhQVsatrV/l7pk2DW27h4jlzyM7O5oZPPkHFxwe/zDeQ9uzk+YOyMo499liZ/T/9dHr06EH//v35LCpKKkr0idpgxxgAz8yaJWW+d9zRXOqbkAAnnCBtxaIJp82bN3NSXBza2LHy9xxzjCgONzaiaRr7R4+mVtNCV85tMSIJajhg0Ki9DZRfew0cxftIUtV0ntWBa5DErxvvNp136FAI9qGabDDr1q1j6NChREVFyYh36FCRC9dn1Lp2hcZGpg4ejFKK5cuXBy8+8Nrp3HUX9KtZTyyNzAWWcxb38gCP7LyI3ovf5MqKJ9y9XDt2pIx29MYB5Lj9v1o9OR/AQKeuro7t27fTr18/6NFDOumTTpJ/PD0dgEnA9txc2QvxyCPw5putDMwFJnlev349mzdvZqgzQY0F9gO//9vfJKnq1IlpQw60PdnzRACz3J7Jwtt0ALLJyurPBRdcwJYtW9i40d2uJ6AExRtMPABdYxvvLNX+jNu4Ius7mDgRgKjKSqKj87lgpssgJ1grqCYsmdqzhwSgPKGPZHYA55wjD7uEhKbzrr1WVlBTU3fRSAzzOY464vmB6cxiQesmdVqRoL733nuMHj2a7Mcekw+6dCEpaRRrK8vp1riLaFVvqgrCm7dzCxjciyefLPcNiG3QYDbyptaNj+KSaP/VVzLwjoqScsLp0+nbty/R0dFyHzonJoK6iuoncTl06BD79u1jyKBBUso2a5b8Ab/5jVykuDg5sWtXDg0dyikQXI/HQGytFi4EYFd2NjU1NQy79lq48cbm4yedhNI0TiTICarJe7GsrIwuubnsTkyk+6RJ/Oneexm3YQNpp57K6NGjefDBB9k9ejS9gLl33hncVVSzK6iHDsEvv9A4cyZffvklp519NlHPPUfv7GxmzJjBi2+/jZo5E776KnixQWCrk06eHUcfzdVXX83Gffu49a9/RdMb1oknQlQUST/8wODBg4OfoJqJccEC6N+fj5wVY6e8/jocdVTT4dgzzqAXUBeAnoMpmJxA3rxqFeOV4tC4cfLBccfB3/5GTGIiN910E8s3bqRq3Ljg8xxI8ufkeb5SzJ49G/70J7jwQgBGjx7NWwcPSl9p5b3o5JnMTNHWeOQRGDGCxsZGvv32W+qPPx527fK5nadVMFnJtmvjRkbp5b0gq6h33w3OapjsMWP4QdNQwb6GNkEkQQ0H9E3XLqUbPgfKzn0Nn617h5pUSfz6sIe/cQOD2MiBAyEQSzLTMa5aRcmaNQwfPlze79zZctTbtSsAY5z7Ks8+e1lw9nf66XR27ND36kIJ7YBuPMi9PHvgHK//y12xvZE50XVun7d6BbCyUjpcE6UlhYWFOBwOWUF1xY4dMGwYjQMHcjww5q67pBONj/crhmI6RhMd43bnnr6OSsGYMah27SjPzOS555/n6KOPpioxkaz2B9qe7BnFB35LuXv3lmaij2mgGlhITMzJPPwwnHHGGQB8+OGHLb5vOkHxhoqKFjx7ig+dfLJ+uIHRLKMRjfzEUTz8MCxYlQqA/HcFMSXi4VnTPi14K6gGiYvnpFgXpCxo8IyBsqoGTZMjrkhOTiYlJYWLLtrlcr3hO45hMJvozu7AJ3UC9HVUSrF27VqmT5/enOB17szKlSPYRh3ROOiFlKEHbZ++R3ueN08mEPW8I4tCkjjM5pgi9o4fI3G99ZY0BGfil5CQwIABA1i3bp2U+EJwE1Q/iYu+R25kdLSUlR19tNdzY084gbHA1pwcr+e0Kj4wN1j86SdITmalU2hn2LBh7isXnTrBiBFM17TgJ6gm+u2lS5aIKM2MGXz55Zc8/PDDOBwOzp49mzfeeIPCwkKufVsmo1Jzc/kqmINGs1szli2DhgZyUlOprKzktNNOk73tDgcXXnghW7ZsoXjgQNi4UYShghkfmOe5QwduevVVXnzxRe6+6y7Oc/bXAHTsKFoHP/7I2LFjWb58eXCSfYN+2xBKScnkjBl89tlnjBw5kl4ZGW5aGwknnABAcjDbCpjmufzbb4kFYo+VLRc0NkpJb309E50ToPk9ekhi1RadAKP4wDTPh2JiONSnD6NGjZLr54wlOzubnB07cAwfDj/+GLz49BgD5LkJ+/ez9NtvGTduHMcffzxv6yXcJgREA4KJ8bZSipRNm4hRqjnG2loZdzsrFkeMGMEChwMt2DzbBJEENRy44grZc+E6usPHQNk52lu8axf3Zcqg5i7gVv7Nq1yKhoPqapmManPip+PVV8WY2AcaTzuNPx44IAOHhgYp4YiKkvJUXUjEueK2/LNqNK0XZWUbgrO/s3dvWZWYMsXwcGYmdEYGfvsYDGhNn/PQQzIr64GUkdn0IQrXBLVNK4AXXggffNCCZyPoZXRNCeqkSfDXv1K1aSf/XZ7Ja3lTmAl0KyyEt9+WlepgJKhPP+2+KuEF+t6ahKoq6N8f7YEH6Au8cO+95ObmsmjdOhpKStqe7HmiVy94552mVUZPuAr9gDxj5HIvA2p5pOEr7roLFi7szsSJEw0T1DbjnHMkU3HybCQ+9NprcMklkJGxmFHUsDW6O0+9kMScR4ZS/Mx/AUglHlhMd2QFdaHDvMCWXzz6KFxzjdtHnpNi/VNELGTWeSNFyAZkQNO9OzhXDnT07NmTXbt2uU3eLEBmdY9mYeCTOt27wwsvuK1K+EJJSQmHDh2S9qIL7nTpQmnpCPTdp32afgvSPv1TT4V//7uJZ889vEPJBWBNfSXtZs+WWe1t22DAALnITiGR4cOHs379ercVVM8JjVb3i3ffDZde6vWwnqD21weWuvL6t9/KlgKXCpf4Y44hFqhfvLiVwRigSxf4xz9EEMsfcnJg5EjWO6sehjz7rFxLF2hTpzIR2O4iONhmHHccPPaY334795tvSAfSjjuOqKgo7rzzTlZt28YLnTpx4YUXkpmZCf36oTIyODEpiX/+85/Bi/GPf4Tf/tb/ec6E6bPdu4mLi+PYhga5L1eu5KSTTgJggV7WHcx9a+npcO+95oSccnJwjBzJCy+9xIUXXsiDu3ahDRnifs60abB0KeNHj6a4uJjdu3e3Pcbp06UR+3s+794NBw5QlZ3Nzz//LEl+hw5w333N5/TrR0l0NN2CWQ4PIpLkmqx7gWP1agA66itrX3whif2aNQwZMoS4uDh+dropBJXn1FRZCR00yO+pDStXsrKxkbPOPltWx6++GsaOBWDgwIE0NjZSNny4iHoFc9/7+PHwhz+Y5lkXK6qsrOSqrl2ZdPzxFBcX0759e37cs0cWXYKdRJ9zjpQP+8CBAwdE7BOaBZW+/VYGtc7x9vDhw2mK7H9wH2okQQ0Hevf2OXPtiSpnidXg44/n5KIi6oihD7CLDkxgGRfzetO5QbP2mDTJ/yBi/34GI42CvXslK0lLgxUrmtUpnSuon71YjFJDSGcN9/IAcdS2bWUjJUVKYJ3/f088/DB0i9lPPVCOrPA2JZtFRW4DMR2Z0/vQR4P4uJzgrAAOHGjq4QIuFjN6YlBQwJav8ok/sJsNVZl8xBlUEM1shjOv7hxJ/IORoB53nNfkzxV6ghpTXi6Dj3Hj0Hbs4MoZM/j888/Z19hI0Ya9wVkdd0XHjnDuudCzp+FhI6EfpSCF71kF3MBm7i68kut+V0fv3r9h5cqVwRVUAWknzlIlbzFVV8uY4aKLPmUU0Pc3k+S+2rePqCqpBkilP/AT3dlDGR1YUj1KZkfN2kn4wllnwcyZLT52nVA4a+p6ALoMGyaTaA8+KKW9e/e6WWKBJKi7d+92W4XNYSSVtGdKzC+BT+qkp8OVVzaXFvuB3l769+/f7N3TuTO9eg1ju/Oc0axuOj8o+/QnTBD1VCc8b6MhSNnXBmDiiSfKABgkqaqpaZrRHj58OAUFBVQ5L9ySj0uCZ8900UWGk2869AS1W0mJbMPQE764ONkL66oRMHkyDiAtN7cVgXhB165w881SRucLDockV6NGkZubS9++fWmXmAgHD7qfN20a7ZQidv364MU4fTrceqvf00qdap7xepIPsnfb1VZM09CmTWOapgW3VPr3v4czz/R/Xk4OdO3Kkvx8Bg8eTJLTEozKSnr06MHw4cN5fcMG4T+Yg+7u3eGBB5r373mDwwHr1rGve3eqq6s55ZRTZKLEU6ti6lSorma6c5UpKGW+xx8v+/f8wZnkL66qorGxkVNPPVVWu1xj1DRyU1MZoDsZBAt//rPsDfeDxM2b2Quk64m9i2BXbGwsw4cP59O9e4PPc2YmPPGETJj7gsOBWreONUpx9tlnN8fovIbZTqXigm7d5Hm3erW3/1PgOP10MDM5pK9+O8e9jz76KC81NnLziBFs2rSJMWPGkLthg9yLwU5QH3pIlHx9YPPmzYwEajp2bK6+8RByGjJkCKs0jYbo6ODHaANEEtRwYMEC8VMyiT2//EI1cP2990JyMnVaAo3AiUxkMZP4K38mnpqm89tc0uZwSGlaXp73c+rqiK6rYwBw2WXDmZopo7Vl+3rLcf0h7UwgYw8UAUOZzSYe4P6mpLrVucL27fDhh14FRubMgVMn7HQW+Uqn3SQ0p3tHeZYJ9elDonLQO34djY2q7SuAS5eansXaunUr7dq1I8O54kxyMgVLS4ihkZ304lNOJ5Xz+ESVCbfBSFAdDlHNM2HJsXfvXjq0T0MdKOXBZ9I45bfNHePmzeM4QCIdHWXB9+fdvVuqDbx4jHq7f0Yzn9FAHA6u5CWuPvxPvvrqTABeeumlIATmgjVr3CTsvcVUWAivP/kJWUCsvlcoJYWURJktTiULyKE7heyhO6XpTnuBts7KOxzix+tHYbLMWU6sdekCY8bIapw+0PEYMOorqK6rsGhR7Irty2nDtwfebkpKZNLIpMecW4Kqqz527syjj7ZnB335nnQe4m4msbjt+6B1bN7sVnLtmfQOYQO7aUc5qZxwwkBWdD9dDgwY4Dag1bdEbHCWVC58d19w7JkcDrkPS43FykAS1Li4ONrl58vqVnS0HNAHOq7JVWoqe9LSGFBUFLz9k6Wl8lzxt0JSUCB9+8iRrF+/Xqp0jPptp5BOZjDtPXbt8ttWGhsbidP3oel2I+A26HaNMb2qipg9e2S/flvhcMj1MeO5uWYNjBzJunXr5L7zaM8nnngiCxYvpvGoo4JbtlhZKdfQnw9qfj5UVbHeubo3efJkN2/HJjh5HrRvH9HR0cFJUA8caMmVEZx9+9sbNtClSxfGjRtnGOP2Xr3oWlsbPFsFpaT838RqYvru3WxJSmret+vRnkePHs2ytWtR48cHN3GpqZF26q9/yM8ntraWHampcv30GJ3tWU9Ql+taB8GM8fBhc368+jPc2Z6//vprpiYk8I9hw0hOTmbo0KFs2LABNXWqcBxMnk0897Zs2cJIoNG1KsGD58TERLIGDiQvJSWSoEbQSvz1r+7lIX5Qs2ULO4ExRx0Fyck4MrrxF20wueTzNDeQQQn9cS9xalPbOXQILrhAkhdvcDaIzkDlrnh6Ovd7Pfx2P7fjtG8PiYkMSC4ChpCNSLPfxBNoOFq/svHdd7Iq5GMwVr93szNBlQat79VdU5Ainb5np+CUsR9SWclO3UalLbjvPlktMAFdwbfpAZOSQrsaKVHegVwkxQBgJ4WFtZKglpS0TU3u0CERXPrvf/2eunz5XmIOdSEKxX7SyNsrHePiryu5554oDjCQdjQSj4y0g7bv78svxbzdy/4ob/fPAGRFJQr4iNO5l7+QUhZPXNy5/OUvf6VHj83BW+X985/dyme939NFDGmQkt3vSp0lOsnJDM+W+zCVroCiO1sojurOyX90rm61tcz30CHZs+JHVKteL5vTS0+d8QEtBmM9e/Zk79691NfXu63CDj6pNz0bWpEsfPKJlGKZnHTZunUr0dHRZGVlNQ8+4uKYMwfGjhvFudGp7CCTz6JO55Uny4Njy3TDDbJC6YTnHt6h5LKBRKA3O3Zo/Pb9s6nI6N9sB+C8hnqCmpOfD/HxxJYZ70ENuA8/dEhKv1591esphYWF9OrZE81ZPtsET4sUJ0qHDmVcYyN7g9Efgmx5GDTIbwKor2bUDxlCXl4eQ4cOlRg9++3u3SlLS2NsTQ2lPp4FAeGKK0Q0ygfWr1/P4Lo6Kjt3dt8j6CO5mtjYSEkwfG8rK6UE348HOHV1sGEDNQMHsnv3brnvPNrziSeeSH19PQU9eogfaLAUpd95R1ZR/anaOnlecOAAPXr0oFevXsY8d+sG/foRu3Qpw4YNC47Y4gUXyCqqP+TkoPr04YP58znllFNEENJgImKfXuYarES/okJWyv71L9/n1dXRo7ycPa79tsdExJgxYygtLaVixIjg8jx3rozxdu3yeVqD02s2deZM9yTayXPHjh3p3Lkzq/bulXs7mMnVmWd63QrmhpwcUWZOSWH//v2sXr2aY51erSCrk2VlZewbPFjODybPCQmyEu0D+Rs3MgRIcK3YMOi3Tz31VD45eBDHihXBVYi3ASIJajgQiIcZEL13L2Xt25OQkCArLgO7s/HsC4Gt7KATAD1x7yDaVNJmRvXMpXPuz1YykdHUurps9+OaBl27cuzwIuLjhzAAaCSKwWziN/FftH5lw0+M9fX1VBSsYz+JwDFNn1dXwwffuj+k9f1f8VPGUk0CMxF14jYjAJ7z8/Pp169fUyzfr06mE1LOpieo0B9QdO++TRLU+vqWJW+BxgcmVXz30sl5rx0gjQqkY/zi3Up27IBSJOHqxMKm7xQX1rT8HwU5RiP1a9hNf8qoc3Zn93M/AA9yD3V1TwIJ7NlzLRdeqPj979seoqfAgXFMAN+jW3HfNs+ZHKSk0DO1isbYeDKTU4Boemh7KInpzm/vkQR1zTs+KhnMxuf8t7yfUkFSdTV1cXHuwXt6wTnRo0cPlFIUeZa09e4t2WqgEycmRZL09vHQQ1vRtN68+25skwXO+68eondvWL58BCWNBWy57d90chzg3LTvAovFV4wuPLvt4XUq+EoxbC8A8mt6MCJhi9hupaQ0/Y19+vShXbt2rHPuQ+3TzjhpCbgPN9Fvb9++naO6dZPZOtcE1QvP2vTptAd2+5qsDARmxbByciAqis1xcTQ0NDSvoLr+P5woGz6cqcCOYK2imhCmWbx4MSOBKH0vmA7P0k+AESOoT0xkGgRn76TZa7hpE9TXsz01FcB9BdX5/5gyZQrt2rXjzZ07RUciWF7lZpVTc3IgOpr3N25k8uTJkrx4uReZNg1++omxY8awatWqtq/qmxWayslhf8+elJWVSXkvGE5EqOHDqQDqdauStiIAnmOVotx1e4TBCipAbqdOweXZ5Bhi95df0gCMcN037XEvZmdns3nz5iaeg+aHalIJWd9SALBw4UKUUhybkdF0Hw51ljGvVUr+f8FKok22laqVK4kDol11Ggzayr333suGtDSiGhtp+B/bhxpJUMMBsx0jotzVoaKCRqcKLqNHw4ABXHGF3KRnXCcJiq5YqaNN1jMmOp16F4WwAWxhNKvZRQ/20IOfmeyu/tm1K33i9/Kvfw0mG/iUQeyJ7sm/BzzV+pUN1xVaA7z44oukc5h9jEFMUZqx8mBf8Y9qbHQTtKkjjp+YxEzg9dfXSoluW5TQTHrV1dfXk5+fz7Zt2Vx0kcSymMkccCaEO50DXpDV6fPP39okPtWmMt+AbHD2kuZMSvUE9UtOJLe0O5mZcACZoezE5wCcyqeU0UH2+7YFfu5FI/XrE05YxgBgF535gN+whx58zQmMZxnQDXgAWACs49lng1CK7CNxccf3jCKG3XRn9W7nHpJjj4WpU4nulMq151fTp/couqkKCuq2UclcCslkywfr2hajifa8bds2ugB1zsFsEzp0EAEH3fPPiZ7OPcG7PGfOe/eWfy/QiRM/7Rk8BbG20NDQn6uugn37obZdJ266WXMeGwE4OO/JZOoT2sP8+YHF4g0G7VlfPc5kJ+2pYgPVQPN+6aZV0NNPb1qtiYqKYujQoU1KvpP67wuOPZMJngsLC5mo73VwTVA7dJCVQw+xk3TnSmLNt98GGIwX6H2OD54BGSxmZ7POWco9bNgwefbdcEOTpYIONXkynYGDS5cGL0Y/g8WcxYsZACRNmuR+4LzzpLLHFdHRVI8cyVSCnKCaSf6A1c6B/vDhw4XnP/0JnKv48fHxXHLJJTzxyy84gFX+VusCjdEfz2vWUN+/P5t37JDyXpBKirvuarY80jF1Khw4wKwePdi/f3/LvidQmElcqqpgyxZWNzYSFxfHcccdJ59fdplbNQVA1x49WAw4wpy46KuTDa77QFNTpYLLKUI0YsQIoqKiWFhbKw/KYK7+mYix+uef2QQc7RTmAmRV87HHxJEAlwTVybPPLWaBwMx428mz3ifOnz+flJQUxt12W1N11BDn/t7cTZvEjzlY19Bke07Ur4drv92xo4jOufhDJycnc/7TT4th4jPPBCdGmyCSoIYDZmd0gK2bNtFVKRKcNfo8+SS88ALjxo0jJiaGkpilOLQoBia6J6htsp4xkbhscXaKIAnqNH7kR6ZRSwJzsn6WB7WOQYNg7VquuqwdfYHoYVF0/92pdNuzquX/2CwqK2UU5zFY0fHII4+QTgz7nQJJrsjNOlkGrV27thC0WcSxjAD2ffCddKBtUV40uYK6bds26uvrWb16UNPC0508Sg6jKKUjh6OT0TTo2VOERXr1yg9OgmqyY5R9U0WkIbZIB0ijlgRO5ktWZ53Jww9DVbwkMGlIMnBt1PPEU9f2fRoVFcKzvlfOAJ7KwaNG/cIAYD1jmc0H7KML+fSjD9vQcACnOL+5FKWCUIps8ADUY3JPUhcxikRyGNm8OnbPPSKQkJoK5eWofWOJQ7GHn4C7yWEEQxtz2hajiUHEtm3b6Azu5b0gpUfvvis+OS7QE9SbbrqJ/v37s18vwdZn8U3sa24Ro4/2DK7iUwrYyjwKuK36PnbvcPBL41h2HtYnxWQPUVXdYr6qmUnBC/ODU87toz1P7SJl2JuohqYJJZdV0JtvFtN3J4YPH86KFetYsKEr5TnbSEwUfbk2ibP5WXGpra1l7969jNA7Gde9kwkJ8OKLMnHngq6jR7MzJgbHkiUBBuMjxsREnzwDTQq+ubm5REdHM3DgQOmP//UvGZS5oL0zaXAES23YRL99ePlyogDNueLShOuuE8VQD0RNmcJQoDgYasNmJxZzciA+np9KSkhNTaVHjx6SDDzxRFPZMcC///1vVm7ZQl5UFLGr2vBMdoWf57NrjHudfc4kPdkfP176xA4d3M91Hh/vTLhXt1VIx8zzef16UIrPd+1ixowZJOvnX3aZTOi4oFu3biwB4rZsMbe31Ux84H9lbfFiaoAk13sxPh7uv79JpTspKYlBgwaxZMMGGDJEJt+DAZ1nH89ngNQdOyjq0oUU13t29GjZHuP8bODAgRQVFXFIty0MZoz+2oqTZ9cE9eijjybmggua1LK7dOlCWloaGzZskHsxNze4PPuIsaGhgc579lAfHQ16LgAyiXPzzU0rvzpO+u1v2RQVRUKwfXktRiRBDQcCKP3cMH8+0UBnj1KiTp06cc455/DCK69At65kRbXcI9TqfYAmOsZNy5Y1/X4M39GT3fzEVOOZ/wkTJGNeuJBYYNWhQ2IfUlraeoVSH0n+gQMH2LNrF51opCymi9sxz/g886fvEX+peQ3fS8bTlgTL5Ep5XtNMobviYSY72EkvHA49lHSSk5NFICaYK6h+7sUDBw4ADWREy0znfiQR0K/lnDlw/b2y2pvGFoZk/MSJmtPzz0P9NWAEWA4PsGzpUvprUWyPab6e+fQjnjqnhUs/IA2QMqc2ax34uBeby31L0NhINofZHDO0ZRtJTYWyMlKqxCZgDycCpeTQg4HkUVJoLBJlCiYegAUFBXQB4ryoJXuiVy9JwpYuXUp+fj45ugJiaxNUEzw383SARMo5l3xu5nG61W2nsKYLkrgC9AWOBu5nPqPo27CFB68sbHuS6oPn358pe+1kfUyuYYu+0KVkrbZ2OJWV+/m4ZhJD2EjnAxs5fBjeeKMN9kx+2rO+r75vZaXw5JkAKNVULq1D0zRKs7PpU1zMvmD4tZqpKikrk2Vyp0BSdnY28c5VFmprpUTRBZ2mTKEcaB8stWE/MTY0NNBeFy7zVLpvbDQctCYdcwxRQFQwxH3MrqCuWQPDhpGTm8uwYcOa9/5VVbmVp2qaRv/+/dnSuTOZe/e2TddAh5lJ+NJS2LmTdVFRxMfHN5Wh0tgo4kA1HltEBg2CDh3I2rsXTdPanqCauRedA/yv9u5tjg/kGnqshusJqqaUoUtAwDBZ4utYtYr1QC+PKheKiprdFIDx48ezdOlS1MSJkvyFiec969fTrb6eWOdqbhNqa0Ukyyn2pQslbQLpm8JYEdEkkDRyJBs3bqSgoIBjjjnGbSVX0zSGDBlCbm6uJKjB4tnEOGzz5s0MbWykvFevlpM+W7e2GMRomsam1FQy9+wJDs82QSRBDQd++MGUjD1AobOMoPuECfLBk082PRRvvPFGKioqKI6Lo2OVsYhFqwbf48eLwbfn/hoXbFu7FoDq1G7M4AcACrpNlZn/10+AW25pPlm3MXnjDQB+2LsXh16y3Noyndtvh48/NjyUl5dHJyAKxXEXpLuVfz7/PMwZuR769oVvv22xz2s546gmhm5OMac2lah+/jlcf73f05rtB5oTqtt5hJP5gs1kN8WoDySClqCOGSM+Wq4rKQbQLWZOnSSzpKWkkZUF23tMZs7i6wA4+aI0ADpHRfHA8AeIanRev/Ly1scH4vcXQGZRU1PDzl9+IVE5mHVyPAei0jmRr9if3BeAfuQjnrgTAXkAttmC5J13pFzBAHq5b3r69/QAEmhg0kX9mxOQBx4QIYwOHaCsjNFd5CG1h8sByMFBNA5mdd3Q+vhGjBAhLE9vQRcUFBTQRdOI7dat5cHhw1usFnTs2JHPPvuMb775Bmj28W1aMg40Qb3qKr+iL808bWUMEIOD9lSRQQnn8yYn84XzuAa8BkQzn08BmFzzXdtXyl94QcxsDTC5r/QT0hp7tVwFveMOtwHIN99IKe27DKWRKM7nrbYLiw0ZAq+84tWTULeY6VJUZGwh1rev4X2cfuqpZAJfBUP9+pJL/IqBoFvGuCr4gjyTEhLAec/piI6NJSchga6B3nPe8Pjj7hVAHtiyZQuDGxqoS0hoaYv05z8bWp9FO1f/UoNhNZOdLSvJHp6wLbBuHcrpuasLcwFyn9xwQ4vTDwwYQIeGBjel6lbj3HP9W7g4eV586FCTVycgNnVduojbgSuiomDCBGJXrmTgwIGsautq7/33+7eBW7cOR/v2bK6vp7cr1/fd576ShSSoTdP2wUiu+vSRleS+fX2elrB1K2tpnjRswoQJcNttTW+nTp3KgQMHKOrdW7ZgBIPnU091+zeMsPPLLwFI1z1adaxZI3ZT338PNCeoK1evltiDlaDefLNYEvrCunXSP/fuzYMPPkhSUhLnnnuu+Ic7xTOBZiVfXYk4GDH26iXX0IfFWk5ODsOBKKN++5hjDEVX92ZlkVxfHxyebYJIghoODBtmelRc6lyZiNZv3ooKWLsWGhoYP348kyZNYvW+ffSJMU5QWzX4TkkBXUrdAEop9jjN05OmHtX0nS93DpMB2Z49YlCvY+hQaNdOFByBtbW1PO/stFqdoPbpI52YATZt2oReqDjupM5u5Z9z5iDlKNu2wf79LVay6onjB7LZDyxgsn+1SV+YNKnFQ8wIeXl5REV1AZpL18azjBgaeZEr3WLs37+/JANpafJ3tCVB7dRJ9kB67jv0gJ6gju2jICaGMkcK27dD57iK5uvj9NebMmgQPb7/HqX77bV1BXXIkBZlh17R2Miy+fPp4Zx5H3Z6Pzo5DvDlW2W8v1r27/ajwHnyBGAjUN62/dogewtdB4AemDMHzjvve4Y7JfQnzHHxgNQ0WS1wJqjXnirteA/jgK7kINf3rtNyWh9fly6yL07nxADbtm2jo6ahderU8qBShntKTznlFGbNmkVcXFxzgtqxo/QbgSYLRx3ld7DYvBq9Fb3lb9XkWsbgID3OVbSkF/BvNpDDXjpwLPPbvlJ+9tlNe7paoKiI+oQEqoDHH5eB4kUXuXgCJyZKtYhz9a+kRPqFIg6wkKM5n7cA1bYYu3eHSy9tWabtRGFhIbFA0u7dxr6F7dq1VKAFujv3VG6dO7cNwTkxZYqop/qCM4k73Ls3+fn5TeIkXsVzgILOnel58KA56xV/uPxyn6qfa9euZRDQ0K+ftF9XJCeLrYXHKi+pqWxLTKR7MNSQMzMlwfTiAQ5Iey0poaxbN8rLy90TVCOlYcDhHHRXBUPk59hjvU7aNcHJ87e7drnH58XaCpDJ7vXrmTRsWNtXUP/4R//Plk2bqHImflmu+zWSk93aM0BaWhrVsbEUp6UFJ3Hp109mrHr08H7OwYMkVlSwEYME1YPnKc57erFeyRGMGE8/HW66yecpDc6JiBTP8ZqHkFN2djZDhgzhhhtuYE1iokxgGNynAePuu/0nqJs2waBB5Kxdy1tvvcWNN94oln8pKcKzUyl+6NChHDx4kKKaGhg8ODjXcNAgcfbw5M8Fm3/5hQwMriEYC7MB1c6Fh6BtfbABIglqqHHoEDz9dFPn7BWvvkrj0UfTqA/89JtXb9TOB/HVV1/NpqoqMrUdJCW6L+W32v9vzRp46aUW5V46Nm/eTJQuX60rik2Z4u6p59pgYmJkYFddjerQgePPP58n3n0XgJvP3UlUlMtAziw++USsZlygK3xecUUe6TjLIFzFmnS4qMfNmdNy3H4l9zAV2JmY1voV1KoqeO018avzg7y8PLKzBzUJpWg4mORc3Rt22Xi3cr9+/fqxbds2GhwOGYi2JUHdsAHee8+vz9oep1VASn29JLUuVjhND5DERIiP54SEBCbV15M/c6Z83tYV1PnzwWwH+/e/c9S55zJZj09fMayokEFddDQ3nZHv5HsiUhK6vG37taurxY/Xz8Bz0aJFHKfPhPd3SVD19pyUBGVlTEhaR31CMlGZmcA0tketoT6+HZMS25Cgbt0qvsueg2YX7MjPJ8nhMJ6s8DKgBYiOjqZPnz7NCaqmSSMMVFF18eJmo3QfEH0fSVB3RGWy/4rbm45de1Glx57fOcAEFlDHTBaS2asNpU41NdLfeGtve/dS0U72aN99dw8KC3HzBF652X0wlpmZCcQBm3mL8xnAVsayom2r+Tt2yHX0wvP27dvpr2lojY0wcGDLE4w8PAFt9GgaoqNJzs1tqdocKHJy/M/ob9oE8fFsrKpCKdW8gupFxRegqE8foqHtJXe1tbJS68OyZu3atQwE4o0qT/Rni0GiXJCRwcCDB9tecldUJIN3X96OzrLErc5ywBYJoAHPnadPpxw4FAxBrK1bW5TAGsWoEhNZUVLSzDH45JlJk8Dh4IS0NHbu3Nm89z1Q1NfLfeZvQiMvj/3OAYLbCqoBz5qm0bVrV/I6dgxOCW1pqbRpX2q2Tp73JieT5Km05sHzwIEDSUtL44tt2+RYMPaV79njVxAvOj+faqCzy0pkU3zQxHNsbCw//vgj06ZN4/aPP5a/u63tuaFBYvTnM5qXBwMHcv/999OhQwdu0SsAPe7FJqGk3FyZLAkGz4cOyUS+j/9PmVN1Oca1nejw8nxuN3Ys5cDhYKlK2wCRBDXUKCoSEQV/De/nn4letIirGxqoT0pqbswes4szZsxgJxBbX8Or/zzIn9JeZwo/t15oA8R78sorvTaYn376iRRAaVpzqdjUqc0nGM3oOMt8texs5r35JmNOvxOAhANb3QZyepKgJ5tek9f77pNyZ5rPb1b43EQ6Uqr4xTKDBNWj03nqKXdnjd1MIg9IHaTEf9NLou4Te/fKaoYJme+cnE3s2jWQ6mrJ8U/ga7o6iwUfv9+94+nfvz8NDQ3s2LFDynzbkqB+9JGUYvkxsdZXUNvV1Lhn8648axqkpZGxahVlwGsZGUJeW1dQb7tNlP7MYOtW2h0+zN2aJuIBeqljZSXExkJmJsOSCpzCks4SHec+1FaXV+7ZI6uTixYZH29ooOLf/2Zjbi4T09MlLtd9nvq9mJgo12rVKmLHjmRbYRQXXzyNBscuVtRms/S5nNav8r77Lpx4otfExeFwUOqseFi+NbVlu3OdiDBAv379mhNUaLaaCQTXXSeCUV6gt28R1d7GBKJZpk1k2+Q5shICTBxcwfbtYs0n7VkD/sYSDtOdIp68qQ3Lk7t2yaqQR3lpE4qKKI2NJSqqM4cPJ7gdqq6Gd79073MeeSQaTesPbOYDzsKBxhmxbbDdArlIU6b4TFAn6SvkRgmqt4mIuDhqhg5lImK/0CZceql/b+i8PBgwgPXOKp2m5MXHylqNM1lUbR1079ghlTmff+49vFWr6AVEG5XM+1jl3de3L50aG2XfXVvwyitSseFjwklPXFY5J5JbJIAGPA8cPJhfgNhg7JM95xy49lrf5+TlUdWjBwparvCC8QqqU/TnKOekaqtXUQsLZQXsww+9n1NVBbt2scOpet1iBRVaXMdu3bqxKi5Oxg1t5fnZZ2XLhK8JZCfPVUarbx48a5rGlClT+PHnn4NXQnvKKV63Pehot2sX+dHRJHgm0AY8d+rUieeeey54pdLbt8sK9HvveT/HybMaOJD58+dzwQUX0FEXYvPgWa/maBJKCgbPuvCbjyTa4ewLA5lY7Nu/P78AKlil0jZAJEENNcwKHDjP6wnO1RTcv+c8npWVRaVz1eOcLt/zxIFL+ImpbJ98AXN+6zvx8IqKChnQ68IUHli2bBld4uOlYUyeLEmqq7F5Sgrluyrp3VvylpgY+M1fpTRhW6yUti1cOpN9QC+aHzB6kuCabBolr01/v4t4gLsa7yY6O4V8HnjGoNxNl753NmpPq5LMzF7ExsZTn+7sMFqTBJrk+dlnD1BZuZ9Dh6TjaWyEk2Lm0xgT5/7/caK/c/UtPz+/7Qmqnrh54VnH3r17SUlJIaaszH1F2nOg40xe3+jalRUFBVK22tYV1AAUr+uc1yLJ4ZB9O7oIjB5jv36Qn09J4WHu4Bm+ph1P80LT91tVXulPyGLhQlJuuIEzgOyoKInLVfFQ/158vDygVq2C0aOZNw/efVeUNnPoyMDaHK76nWpdkuqH56KiIhKdkzDPv92hRbvbcdC4hEiHnqA2+RK2xgvVj0iSa/vuSh5ZNLK4cQJ3POBicO7kwr09T2dVnOz/O71zGzzh/AlZ7N1LEeBwGItMbS91Xy2YMwfGjMkmNnYz5VpHiqO7c/7Eba233dJj9MFzfn4+Y/U2EcBAByBp1iyOAn5oq2WPGeE452rG+vXriYuLo18/Kc9v6rcNkqu07GzygLoffmh7fODzXqzWBVWM9vr6WP3TS+4OtzXJ98MzINcwJoaf9+yhV69epLpWRniZcOrbty/LNI3UnTtl0N7WGP3123l57HXeC24Jqg+e6dQJBg4U8RfakKCaUULeLMrceUB6ejrtnBUSbt/zaC89e/Zkgd5RtTUxMPN8zsujHoh2rcrRYbBQMGXKFLZs2ULV8OGyVSwMPKft389u12unwwvP/fr1IyUri13t27f9GpoRgnTyXNG9O4cOHRLFcB0eq7xdunShU6dOzSuoEHKe9+3bR0Z5OY1RUS3s3gCvE059+/ZlKZC0dWvbebYJIglqqGFWIr6yknpnqWJ0795NK4oTz8tiUcKJfPKVJDCappGuS0w/+6z8PP98eOstERtoDfwMFrdv30739u3RUlIkSVqzRmYjnVgZN5H/Fk9tqvJrbISlSGN+ffkg5s2DkpJx7AJ64V7utWOHZ7IpaLHC5dExNicX9UAB6U7PzpzdBiuoUVEyw+siMuFqVVJYGMWAAf3I05Or1pS1meT5/vt1Bd/mwU6fhs3sIFNWN3XPQif0wVqTUFJbE9Tk5Jb7qDywd+9eunXrJstXriuoRx/tvrcjIwMyMlgzY4Z04M59lW1CACq+FQUF5AGNcXGy9zcqSvaT6asHfftCQQF/TXmYR7iLQcD1FHIssirWqvJKfw9AZwnacTExdCwtdS/vBYnziiuaE/+aGhg9mrvugpqa4UAaOVTQkTLSDu9s3Sqv3la88FxQUICu51pcl+p2rLoa/p1/krQXL+jXrx+VlZXuVjMVFYFx7ydxcZ08mIDMWP/CBPk8KkpWUV32h7q25xteuIZqoOijj8zHYxQfeI+xqIgd9fUkJhrvIzrYbYjs1erQoakvX7kym/r6rbz2WiPdJmTRLzrAsmijGH3wnJ+fz9CYGNmTbFTK/ZvfSHsxQNTkySQCJW0t//Q3oK2rk20RgwaxYcMGBg0aRIyuWhkVJQ8Bg/2hvXr1YikQtXx520ru/PB88OBBUvTngVGSP2KEiO8Y7OVOPOooKoCaYCSo/vrETZugXz/W5Oa6J38g4wMDkaTY2Fh2dO9OlFKtHzvo8DcRUVsLBQVsBlJTU+muiyaCTOA99pj3/aETJxK3ciUZXbq4KOC3Ij7wfR1dVqF7ewrYjB4tE2Me+70HDBjAN7t2oZKTg5O4+Bk/qI0bKdA0MvVJHFdccQXceafbR1OdlW45iYnSOQaDZ1/XsLaWjKqqpjJpN0RHwzPPyCqsCzRN45hjjuGH2lpZ/QtGe/YVo3O73XanSFc/12s5bpyI4zlFKTVNaxJKYsgQSbKDkUSnpHjtt3NychgE1PToIYmsJ667znAvX1ZWFr9AcNqzTRBJUEMNs96TZWUsBjb07cvKtOObVhR/YQJH13zJ+fcOaFpNydLLa7/5Rh6azpI3Wrs/w+9gcQfp8fFe/4bZP9/MFY3Pu31WRDeO52uerL+Ou+6CrKxUdtKOnrgnf5mZ3ley3D736Bibk4t8oIHOxFNBMl2zvMw+vvsuXHih179xwIABrNVtFVojlGSS5+LilhYzA9jCyoaRog7roeDXvXt3EhISZAW1a1dJUFvbgZuR2cdHgnrddaJ4qePpp2H+fPqPHMnOnTtpTE4OzgqqiRgBavfsIS86Gscnn8Ajj8iHL70k4jYgK6j793OV4//4PPo0BvAY+cAT3EByYkPryiv98ezcn3NyfDxR+fktE9RRo8R/0vWhOGqU816PBn7DVkRkIpMdrV/ldYnPs3x+7twCUp3Hypp+a8Y/Dl4hasNe0Nd5jzaV+bbGasbPoLu5fTcwlgM0oLGKMSjlLEUe96QoSnpg3jz4891nsByNPf/9sfVl0r54rq6Gigryq6qYOrUXnpVsSUlwyd+HweOPM+/7ni5bEbKBeq66qpDtKqt5325NTesmdny0laqqKoqLi+lTW2ucWIGIF7mqr7vCqULbfedOdvvbW+gL/ga0BQUyozlwIBs3bmSwy8QnIKqmTt9TV/Ts2ZMlQGxpqbtAX6DwM+G0fv16BuLc3mK0ajV4sGw/MVDD7t6rF8uA6FAnfwB5eTgGDGDTpk3u5b0gWxKuucbwa9XB8qD0x3N+PjgcrKisZPjw4c0WODr+/Gc3r1Y3TJoE+/YxvWdP960FgcDMylpeHmgaS/btcy/vBZnc/tOfZLLHBdnZ2dQ2NHB4+PC27/E0MRFRv349m5Rq2hvphpNOajHGOeqoo4iKimLRYadtWTBi9HUv5ucTDVS6TkC44tprJQn0wLHHHsv39fVo+/aZ0vHwGR/4jtHJ80ZnKXVf1zFXnz6y3c1l3KNbzaioKCk5b+s19NNWcnJyGAjEGAnbgSwUnHlmi4/j4+PZofdDwfKxthiRBDXUMOk9WV1cTJlSFDz1FLN/+pPPFcWRxx9P0y6FU05pXo1pbYLq7BiN9oEqpdixYwedYmK8Nnpvg+hvOZ4yOrJjh0z47NZ60ItKdP9CXdTJ20pW0+f19TKIc/n3mxU+JeFLJ4oDWnqr93QNGDCAFfpArC0Jqp+BRErKJkQspTcA0TTQj3xKUowtBKKioujbt2/zCmptbevNok2uTu7du5duXbu2TFA9MWgQDBvWtE/jUExM21ZQdZ5NxFhTU0NUeTkpffoQe8IJ7iqlegLvTALjD5WScMv1pHWbxm3AcDbz1UXzWlde6Yfnauc9lFVVJWU2RjPdSjX/jbGxMHSoSxs4hxJElTiD4tat8roMaI3K519+eVuTfnR501pqMzIzkfvMy0SIPuP8+uv59O4Nk2bLYGThWyYrDxoa/PLc3L530RdFIenUINUFhYVw7e8aePtl905S/1t37uzAEvowwlHE9Vcebl2S6jHQce0bpw2Qv3NbTQ2zZvV02y7QpAVwgYLKSv5yZ41LXy7bHWpqNvNFbpYIbTU2igWZLjIWCHy05wLnIK/zwYPeE9S6OlGUNuK5Z0/qunRhIiL41SoY9Nst4Fy1qsnKYtu2bS0T1PJyfSOyG/QVVKBtyZWfCaft27czEGjo3r1FdQsg/O3ZYyi+06NHD5aCeKi21v8b/CcujY2wdSulnTtTX1/fcgX10CFJEA147jFiBJtpo/JnADwv3LOnZQINcg29Cc85SytnJSW1PkE183zetAmVlcXmnTtbrqDqIkseAkG6VcrezEwRBGsLz/6ez42NRG/fTh7NeyPdcOAArF7txnN8fDxZWVms37tXqnfa0lbq6+W54CNG5VydbDB67oEIpjlLbF0xa9assLRnQO7FrCy2OB0l+riW0dbUiGiai5+sruRbXFwskyXB4NnHfbh29Wr6A/HenAL27BHrSoP23GnAANlD/T+yDzWSoIYaZ54pCnd+vK3qDxygEinJcE34urGHQjI5nzebPh8zbhxNc9qnntpcdtLaBPX//o+PL/vIcB/oc8+VUl1dTYqmeW1Ut3d8jn2k0w5jhbzMTCnBSx89kE4okshzE3VqHow2w02RODpaHg4uMvb6vrPUVOkQeybUk9y3s/ek46STYPZsr5dgwIAB7NTFkVpT4nvyybKf0Ie3FUDv3mvRtMHgVB3OopBYGphwSrqU4b32WovvtPBCba2y5uOP+5WufeONRrZt28XHb3eD2lpW73BJUP/1LxH98RiM6Q/Lg0q1bQU1KkoeDpde6vfUzz/7jE5KkaWrSuuYPr15ZU1vcwMGcMwjx7Jjx1C+SkykJjaWye2cCrL79/tX2HbFsceKQJKXzHHPBg//Us9Vl8JC2aStz3AOHQpxcS5t4GiKnUljr9ji1k24PPSQlClhXD5fX7+NVC0VgNqEVLdjSUnwweR/iP+kl4ew/kB/8cV8Cgthn3P/97yn9ptLBjVN1Jp92I/o7TsjYztZQCHu1gvfHZ5El+vdy5Bd/9YlnEgcMKTmndaVSc+cKcrhvXq1SPIb90j724skSq7lxU3WVtu3Q0oKU3a85fI/1S2oNrO2onez4uTixfKMCBR33ukmHOeK/Px8UoGEigrvCeqTT8qKkBeeY6dOZUpUVOuFkjRNrMZ89Lt64rJZ01BGK0PHHCP+PR7o3Lkzm2NjqY2NbdtgbMoU6RNdhcxcUFhYyEAgyjNx1rFzp4iyvP9+i0N6ghrlcMDKla2P8U9/8i3Pv3071NVR4CwHbJGgPvOM9EMGPA8aNIglQONPP7WttPK11+C007wfdymfbREfiH3J1Vcbf9dpWzemro7du3dT47QVCwjjxsH//Z9YM/mIsa5PH2pqalquoO7aJavlHl7seoKam5wsEwVt4fmqq1qU6Lph+3aiGxrIA+MV1JdeEg9PD56bxg9tVaFVSqqmTjjB6yn6fu0Ybx7cF1wAN97Y4uOMjAyihg3jcHR029rzyJFi4eLLksm55z0/P58ePXqQ6DrxtHevCEp98UXTRy2UfNvK84UXGl4DHftXrCAevPpbM3cuzJhh2J779u0rMpDBUBu2ASIJaqiRlCSrKLoptRdEHz6MlpJCamqq29i3lngy2Uk6+5s+T0hIoCw5mQrgxvff52BDg6zEtDZB7dqVPz7V13DV9i9/kay4XWOj1wT1zNMdpHOAZFpu3HZNNI86Q/aMvf/k180DOVqKFrVQJI6KkkGWnqDR/L3Zs7eQkZHBzCEHSR9osP9UR12d26yYJ/r37089UNehQ+tWUDt0kH0qfgSISkrWMHXqqKa/dVoXmU086sLBktwZrED279+fgoICHPrDtbVesn37+vTvlIH4LqCedKSU6fkP0pqTjrg4mUX12KDfp08fEhMT2VpSy67cstbZCIFMRIwb59MfTMf7r71GPJCl78fWERPTvPo1YIDwcuutEBVFTEwM48aPp0zTmmfCH3hASsvMduadO8vDwWg1BSjfto29IHuSoGWC2r69ZDL6vzd6NODaBmLZz5k4gEtP2t26Vd6hQ5s8g42rG3aRoqQt/+VfqS3a3Zjp7qJinkhMTCQ6ugf19bKacQCZxEiu228uGYyOlsTD2yy7E3PmwGOPbac3UIj7uZUkE3vYPT7Xv3UJvwdgksvEXkDo3l0G3ElJLZL8rs5tCkUYeBHqcPaVmR1d20oXoAOQx+EuzgFwQYHYP1VViZ9mIBg3DmbNMjyUn5/fvInAW4LqIQjiCW3yZHo7HOS1VogoJkb2uXpL7kAGixkZ5Dr7tBYrqF6EnKKioujasyf5usVHa5GVJYNmXcDFAzsKCxmkacYKvuBTgTYxMZG9+v3RlpK7GTNMJX9rDh8mOjqaQZ4DWx9CTmeccQY5CQlSKh2oVZSO2Fi4+OJmhX8vMdZ06kQlXpIrX8rhMTEwbhz99u1DKcW21pR0DxggZc7eVtaUgs2bOeic7G+xguqlrXTu3JkOHTqwWFfGb8u9eNJJ8Nvfej/u5Pmg899sAS/3oluCWlzcep7j4uD665uUlY1Qu3Yte4A0I3EfPUYvPJ946qn80thIw08/tS4+kGffbbc1CyZ6wsmznqD283wGGbQVNyVf3Ze0LTzPng2XXWZ4qK6ujmh9stJbv+2jPfft25cFhw+3jWcbIZKghhrffQd//7vf0+Lr6ohxCi24rihWIjdjWmyF2yRq6n33MXfUKJ5+9lkeefRRKfNtbYL67LMMKfzS8NDevTK6S6ir85qgjj9WPh/UXRqMLlrqmWj2cu5r2rl4cYvGZbgKoaO4WAQKDPYmFBcXy37J/fuNPVB1eDE31jHAKaBU2a5d61Yof/oJnnvO5ylFRUUUFRVx1lmjmv7WV+90lrvoHnsGnU6/fv04fPgwJfpN0do9V3PnerdHAadQj1zjdOcq3p669Oakw0vHGBUVRUbGYDbsOUT7xnLvSsz+sG+f7M/04zFaWlrKsq++kn/bQ7TCbUDbvr3cO7/7XdPhCRMmUFJXR6PeVvbskXvH7P7J5cvhzTe9Hq7Zu5fKhAS06dOlIXjOxLsOkGJjRRXbCb0NfPDxWewHujj3ogaMDz+UlWi8LfTupHNMO9A0zr0iuWW78+VL6ERjYz9wiheV04EGoknjgLlksLRU9oSbaGc78/PpBmzHfVBbSTLpse7t2fVv3cdQ9hLLIHJaVya9di189hnQMsnvhkxgFQEjvQ3KndfwzGMrXapDNCCbqKg8zr7ZeV8sXChlZRB4//3tt7BuneGh/Px8Ruv/cHa24Tk+7T2gqbSy+44dzYrNgaCsTCzMfP1dmzbBwIFs2LCB6Ojopn7YLUYv92GvXr3E4mP16sCTex15eVIu5wXVW7bQTqlWDRYBeo0ZQ2FbV3kXL/btJetMXH4oLmbgwIHEe06S+rDr6dSpE0OcQllb5s5tXXyVlWKv5mt7h4u/aAuOwe/zmUmT6LhjBwnQujLf7dtF3NEbdu+Gqip2OycqWiSoXtqKpmlkZ2ezaudOmYxsC89r1/qefHbyHGtUIu0ao4ETwMGDBynXJ39aG2NVlfQ3PhRiozZvJg/cRbBc4WMi4txzz2UxELVuXevb8969vqtRnDwzcCAFBQXu+0/BkOeMjAw6duwoK6idO8vEalt4Ligw3LYAsHHjRvrpkx3+JhYN2kv//v2bS6X/B/ahmkpQNU07UdO0PE3TtmqadrvB8UGapi3RNK1W07RbPI5t1zRtnaZpazRN+9+QlgoEn30GDz7o+5y6OuKVIsE52HZdUWzQ4qglnrNPqHRL2nrffDO/X72aiRMnsmTJkrYlqA89xCXtWpYoAXTsKLMwMdXV3uvmnY164ccVKCWVa0q1TDRjnZ3BrK++knJWs6bM+fnipWewd2Hfvn10Tk+X5MYzWfGM0ceAu0ePHiQkJLA/NrZ1K6jvvy8rdT6QkyNlpaNcV/22bJHZvh49ZPXVIEbdaiavqkqSnkA9J3XcfrskqV4gA3F5+PdDOslt9GkeoPvoGPftG0YZB0mhAg0xGg/Ya3TLFkkmPctkPbBixQpSnJ6Av7kyzX211pNnj8HaxIkTOQhU6fuN9ZVUX4MXV7z5plfBEaUUqrQUlZoKd9whpUaeKnxxcfJqbJS/02Amdfz48RQDVa2diLj+eulAMCqfV8BOBvdw2kZFGTwC/KysAbRvPwCcityKKA6Q5lbl4RObNsF558leHj+oyM0lCiiKcx9IVEen0DPVPT7Pv3UrXelPCXfeWdbi/+vXd/mVV5pKkD3/pq4U0QiUxQwyXskA4Tg+nlF9KtyqQ5KTJxAd/TMzLkqV81z9NwPtvy+91GeJ77iUFFl98ra9xF+COmYMjVFRjKqtpdLHveAVGzbI1gdf5XDOcrv/Z++846Mqs///vjPpPZAQQiqh915FsKCg2PuKvfe1rmvZ1V1F167r6torrHXtihQVVFB6JwQIISGFQAJJCKkzc35/PHOTmcm9M3cm8fvV78/P65WXMnPnzpl77vPc5zznnM8nPz+fPn36GAdXJt+dk5PDd01N6oGzdm3w9oEq+/STnYzQx6DZYtHtZzMbR4wYwQ+trcjy5aGX3J19tppLzFBQAN26saygwLh8NkAQfd6cORwGtrzySmj2bdqkdNFXrDB+XwS2baM4Opro6Gi1oeyLANrLTJyIzelkDG5G+2Dx9NOq/cMM7uBvh3t3vUOJrz5vG+nJDhig2IUnTlRBQah+PuEExQhtAte2bVQDmb5VQzpM5u229UNEhJogQw1cNmxQG+lmWu8iRJeUsA2MfQx+NyJGjhxJcXo6ts6U0D7yiCpzNoPbz829e1NeXt4xgxoZ2cHPXky+0Hk/H3mkIgUzgE6Q5EhMNE+4+BnPRx99NJuAls5uiv1KEDBA1TTNDjwHnAAMBv6gaZpvjcYB4CbgcZPTHC0iI0VkrMn7/3dhgZmtzr1YjvMY1J4ZxciUeIZkGg/qiRMnsmbNGlzdu3eKxXf4kQmGfaCTJpUQHRmJrb4+YIDq9wEDKggD+tbVqR/2+eeW7QMMv7+qqoqMpCS14+bDsOeFAA9Am81G7969KXe5QidJCkCQpAeoXlmX7dtV+ZFavZruigEUFher8tdQAxdLzKm7gDD6cwCAnfRtX6D78fPhw0OooR4b4lXqHVR5pUUm5P/+txy9M7aabt7Z2vh4mvbXmQYfEyZM4CDQpGfvDqjfiVV9PT9+LioqIt7hICItTfW23Xab8Tn0e7FvX2+NVDd69uxJbWQkEsp9qNvovoa+5fOZmQeBRvqnhhlLj0DgwAU4+eSBwD5A7QRXkUKavcpaz6xF4jgApztbcvbtOV6lyGOOiife5W2f728tixpCXyA11buH0pLusgdbpW/gm045+7AxftIE/8a7N0s85/L588+jtbWJz775Ri1APBleg52//dyLhYWFDLHbVXBqJFUAgTcioqOpyc1lIoTG5BuImKa6Wv25JWY6lPeC3wVtXl4eX+rXLNTFmB9iGhEhUZ8nzPrBAtg4YsQIfgK0ysoQhZcJvIbYto3WvDx2FxczdqzBEivAeI5LSqIiM5OMkhIc7o2/oBDIz1VVcPAg+U4nffr06cjgq382QIAKMC0yMrQMaqDnsztwWVNfT7du3UgwOtak3Lx///6UlJTQMnq0WjsEqADya6MfPzetX08BMNSsTcdPiS/Azt27VVtAqGPFgsRa5OHDFBAgQDVrKdA0cs45B4D6UPWXA/lZl5hxb4R1CFDB0M99+vRpI55j0qTO+9nExg0bNjBY07D7a4vwM2/37NmTsRMmsCkq6v+PABUYD+wUkV0i0gK8C5zqeYCI7BORVdBOLvs73LAQuLz9nNqZefuzLOPd/LPPhpEjDXf9J0yYQFNTEzVhYSqL6EbADIEOUWyTg8bFG/aBxsaWMFAnkDD7HVlZanVooAXnhagoNo0axc2AY+xYRZRiBX4mxv3799NbF4X2F6BOmaJ0Rv0gLy+PoqYmVXoY7O6YBYbc9evXk5OTQ3JycvuLO3a0l+BdckmbvIMnfvwxG02L5vLL17C8ojf7V+0OzjZQq+MANs6ZA3b7LiCH/uykhCy0mJj2oCMnR9HE+/QCA6SmDkGnR0qipu31oMorLWrJvv9+Ofqdpvc/6tna78OP5fmmy02Dj169emFLTsZRVaXKFoPNoPpZLK5atYpkID7Qj77hBkUV7wfOlBQiQyGcMvCzZ4D0xRfqoZoI5n06eXlqh9eEOAbgggvUHmVaWj6aBvWRKUzuV2WtZ9Yi4zWA3R0YTb8i16sUuf8ts5TOqA88f+tZd00iE1jiQXgB7WRKp/ExizmWCJo7Zvv9BPm5kbvZi4vzzjPvxQJUFt1H82/SpElkZ2fzzjvvtJd/6wGkx/wdEH7Gs8PhoLi4mBx/EjOgNkgefLBjGboHGkeMYDxQEcpiLNCC1h0UOPr0YceOHca9iWecoWRcDJCXl0cl0JqZ2blFt4l9Bw4cILelhZbISP/kOg8+2C5t5YMRI0Z0jp3U5VKkdAFYSSvcY2mSwfODgQMVwZ2RTI4bTSNHMkKEAgtVDR1g0c+r6uqMAwJQWq2Pm+U3UM/2vDyO1iXXQrExELNrXBxfrV/PhAkmG09PP20oVacTJRXr90iofg6wVrTt2GHO4AtKp/PNNztspuTl5aFpWnsf6rp17W0FwSDQBrLbz6UxMcT4Zjt0XHqp31aoWZdeSiGwz2rywhcW/Vzg/i0dSnxBtRldcYXXSzk5OZSXl9PS0tK2WdIpP5vYuGHDBgaHhaH52xAbNky18ZjcByeffDKLDh1CQvXzrwhWAtQMwPPpVOp+zSoEWKhp2hpN064yO0jTtKs0TVutadrq/cE8qH/tCBAUzJsHrz2jBvYhco13859/nnlxVxvu+ldUqMFS1tzctgNvKUOg4/DhNtkLoz7QkpISBui7YWaTZ9++qnTUH0mCG28e83eeAR5ePRTHTyt5/2ULi3CTibG5uZm6ujoydAIqfwHqH/4Azz3n92vy8vIoqKtTREB6Zs0qLAaoXuW9TU3KOXpPzmOPKbIJD8ybB9deG4bIdOArtjXn4NhZFDwBkd434sfG2bMhO7uQqKg8BlBAcdQAb7Kq3r0VI6TBQvLuu4e0haWJ7lDVi4nZCixmUGtqyuiOegBWt+VSVYLiok/P5DaHdzmcb/DRd9w44lpbWbx4cWgZVD8Bajcg2YwgQsd996lNJz+IzMoiubU1+NLKAH7eu2WLetvhMM+gZmfDP/7Rfl8aQM92PfBAPi4XTJilMqiWEMDP+uaapjmIrz6AE61jsDxrln/GSyDMHZztWLDA63U9kTWFHzmWb7mcV71eb7PRJMgfnbGbClQptl/cemuHANVms3HuueeycOFCmvUFrb7gCSaD6sfPe/bsweVwkFJT4z9AzcxUA8MPw7z9yCOJBQ6blW/6g8UF7e7ISBwOh3EGdfp0uPFGw4/ri8uqvn1DL1v0M55LSkoYABzOyFA7E2a4+mpTsqrevXuzKzaWlrCw0Ba0gebtujrYu5ctTifh4eGMNipvTE9X19AP+Vzi8ccTAZT4sNRagkU/f19ZaR6gTpkCF1/s/3smTmRUS0voGdQAgYujTx+25udzxBFHGB8ze7YXZ4AOPUDdBIo87xfyc9TBg+YMvqA2ji+6qIMmb1RUFJmZme0Bamur9eedJyz6udYfg+64cWrTyQTDhw9nY3Q0ifn5wdun2xgoQO3fn13uKjTD+/HUUzuUCefm5iIilJaWqjLnUDOUfvwsIhSuW0dKa6v/io3u3ZU6iElL28knn8zPgNbaGnrrw68EVgJUo5k5mPTSESIyGlUifL2maYaNACLykoiMFZGxqf56CX9rqK01z1Sg1gdRDjXhHkI9cI1694zkIhoa4Mkns0hPT2dnTY1abDudpsca9gPqWRoTG0tKSuij+yNQxsMk69i+4IQnnlAN/ovpThhOPrhhaeBgy8TGanejea8wJdniN0AFb/ZUA+Tl5bG7uVn9I9jyygB+bmhooKCgwDtA3b1b2aPvbIsotmEPtPvyJGA3RcSRLhX8/e4gd8YC+Ln9sF1ccnEeE5K2c+Rl/TtmxBwOpYXmg5tuyqYxPAqAZGo6MjF3oY3R0eV0R5FZHKA9a5+dDSXFQhyHsLl7aHV4Bh/9x48nAfjX44+r7ERSkiKnsBIg+PHz2hUriAPs/si6QF2/AHqxSQMGkABsCPYh6O8a/vwzx11wAQNwk56ZBah6ZtlPcJyTk0N0dDT5+kIimB54PzZ6bq5BKTkI5SQx732fMtXmZkV44a8k0T2uIvbs8WL+1BPcein63TxEJE3e2X4/frbv28c+m43hOrGZGQ4eVDb64A9/+AMOh4Pt+u72lCmq1CWYANXPNdy1axc5QJjD4T9AdbnUwPCzGZd4/PEAhIey0Ak0ngsKIDyc1e7fbdg/WV8P+fkd5kVoD1ALU1PVdQ6F3dyPn/UA1eVnowZQ321CYmSz2Rg0fDj5MTGhLWitXENg2f79jBw50lsyQ4fTqfpE/ZCS9XIHDc1Ll/4iNkpkJNtbWtrKTTvgwAHVw2rwbGnDxIl0b2ykddcunE6n+XFmNvp7rhQUUOl+f8qUKcbH7NhhWGmjkz5t2b4dxo4NbbPEop+runUjzoRxGodD9YcasLd6MfnCL2Zjs6Yh/iqIKitV5ZxJZk/TNA4MGED3xsbQSmgt+Fln8E1ISKC7kc77hg2KmMwDek/y7t27VcXLL+DniooKUvS52N+83dqqyOdM5pxhw4ZRpm/o/sbLfK0EqKWA59ZbJlBu9QtEpNz9333Ax6iS4f9/sHixYqw0QUkJJKAmlDp6eb3ehtmzeb/Y+LLt2aMxceJENlVUtC0szVpdDF9PT1fyKwaahM3NzVRUVJDrLt295KYE45Lh5maIjYWHH+5wDu8FJ0A2EMvPNHKYGI5sWRyYSOeaa9QJfAa1nmlvC0v9BajvvqsIQ/zsvubl5VGg/8OEHdMUn34Kb7xh+vbmzZtxuVzeAapeKaDvOJ5xRjuNuRvtPjsRgN0oqRytJEgK8Z491W/3U+ZcU1PDgQMHGJKWpgIoX/bP5mYID+fRnk90uA9sNhup/dSCcelntR2ZmK3g0kvVdQ+wEdKrVzndieIQcbSisud6tvaP3edyiATy8GZ89nxmhrk3XAoWLgTg45qjAPjmifWBbfzPfxSxig9aWloo0hfxniXcRjj77IAlvunuaoSgJT569FC746ef3vG9/HxsIozSNMIPHzZ/kDc3q3L9f/3L9GtsNhsD3OQ2QHuAaqU0fvZstZAy8LP35tpOcoDdZHScI95/X2UA/fVju3fH+wIrPDKAek9pAnW0EE4mZVwX/op3tv/llxVzuC9cLmIPH0ZLSyMigHQYF1/crsnrgZEjR5KamspmfQNgxAh1vYOpHEpJgaVLDc+vB1aA/4VOS4sq7/VTchczeDD7NI3kYLSCdZx1Fnz9tfl4LiiAvn1ZtW4dUVFRxqWLH32kKjYMHl49e/YkKipKMflCaIuxp59WJboGKNup7r+oQBsR11zjd14dMWIES5qakLVr/QdgRujWTXE1mGlPugOXrwoLjct7QS1ohw9XxF8msGdkUB4ZGVrm6uST1Xj04+eG9HRcmGSsQJFJTpzoPyhxB1djHA6VyQoGc+aYM/Y1NkJxMVudTiVFNm6c8XG33mpIahcXF8ewYcP44YcflI2h+DkpST1bzJ4Lbj83+JNgczjUZpfBjn9bgNqzp3pwhzJWZsxQ5a9+Mqi7w8JI81cOv3AhHHec382kSDeZVY2bqT8o3HWX0g02QmOjmkc8JGYM+6HvvVe14XhAD1CL9YXspEmh+TkhAV54QREl+WDz5s3W5m2nU5HPffCB4duapjHxtNPYrWk4zAitfiOwEqCuAvppmtZb07QI4DzgMysn1zQtVtO0eP3/geMhVO2E3yhiYvwuWLOzIR41WHVJGf31NthspNuNFy/Z2YooKV/ffa8yZ9I0fN1mU6UCBrtyOjFGfUUSADv2JRiXDEdGqkFj0DPXMZtrA4bQwja+ZyrTWRyYOyI6Whnvwzha5f7NyXoWxV/mPSZGLZ799PXl5eWxGWiNjAx+dyw1tY0Eygjr3TuvXgRJ+m6Z3rsbF9fBvnafZQIjKUItFMf32B2cfTqbp1nWDNpIAIbqPXE+Aeq8DyNpJgKpMZaSSdfLUgJkB02RlARDhxozy3qgubmcQT3CqbV376Cbe+pFKuhKpP06dig1dl8DvbDxO9Si4Jsn1gfO5ufmGvZyLV26lAj9Rg/Ui52Y6Pc+BEh0X/sSq0zXOiIiYORI47FQWQnAyIQEtJoa83shKkqdJ4AfBw0a5B2gmswBHdCjhyqVM/Cz91ywxq2BOrDjHKEH1/6+LykJSUlhgM3GGg9WSL2ntEf0ITYzlB3hg7htyNfeGypDhhhqBrsOHCBMhNgAGq5tNhrYp2kaw4cPZ3FtrZrbJk5U/gomgxoVpVhJDRaDpaWl1hY6up/9XUNNY1NsLJmhZCezstSi1mw8u7MZq1atYuTIkYQbkTnp96jBvagT2y07fFg9g0JZdE+Y0GFTUEfDxo3YgBi3VrEpkpL8XsMRI0awpKUFraUl+NLKmBi1CWHWJ1xQgNhsbGluNg9QrfgZKMvKom9VFS6XKzgb+/ZVm25+/LzfPSeaBqi6n/3ZOGIEzogIJkLwWqjHHANHHWX83s6dIMKyqirGjBlj3j/pZ94+6qijWLZsGa3jxqmNH6ucBjri4lQbklmGuaBA1QT5m3f8+Llv377s37+f2tpaNd+EMlYGD4bLLzck9gOQggK2Op3mEjNgad7OO/10GoFqT4ZzqzjlFBW8GWHHDrUGNJOY8bTRZ77JyspC07T2AHXixND8nJCgWgIMSnjLysoYAIjdHrKfdZx88sn8JEJrqBrWvxIEDFBFxAHcACwA8oH3RWSLpmnXaJp2DYCmaT01TSsFbgXu1TStVNO0BCAN+FHTtA3ASuBLEQlhW+Q3jDvvBJ8eKE/MmQMJbuH3OtQOZIcFdWIiPaJqDVl258xRvVBtS5uqKgNpCT/9gFu3qiiyvGNSfLdbzmTTj7Fe9oFBybDJ5G0cfA4FtrCMIxhMPgMz640OascHHxhmc/QMamJTk5rgjcqbdPhZ6Ojo3bs3TqC8V6/gJ/AHH1QZDROsX7+ehIQEb301PUDVNzAMJkZvX57EbtXpwg2zgnxAFxQoCvZ9+wzfnjcPZsxQAepnj7sDfp/F7T33QA1JXsGf532Q7c401IfC+AkqU+AnCw3gcrlUVj8eMkd076Cbe9Sp6gHYv0dth+C1De7rrT+edtCPXfTmyNZvuPjiANqtzzxjKKfw+eef01PP5ATKoFoIUOevVURU6xZs9k9y5ovCQpXhNQp23L4fHBmpetf8bFZYsXHQoEEUFxdz+PBh1RcDpvpuXli0SMkyGcBzE83OajKBYvp33FyzEqACWt++jIiNZa1Piers2XDM2EOMnpZAvyPTyYit8f7g66/z1UPrOxDNVborK5IClX3qNprYN3z4cN7ZvRtnba26SYOVCSsuVn3/OsmXB8rKyhgRFaX8G6hdxmDO8UVRz55k1Ndb860nfvxRZVCN4HDAzp24+vVj7dq15lmrAH7Oy8tj++7dMGZMaCV3H3ygSogNoLlL6PwSlug2+rkPR48eTduMEexzpawMPvvMnFG7oIDabt1owYQgSUdSUkA/t44ZQ5YIJcFexzVrlK8NT9oKhYXsjooiLCyso3yLDt3P/myMiKB56FAmQvAZ1AULzKst3NUB83ftMu8/Bb8bEUcffTQNDQ2sDzWbX1mpNMpNNEaloIDdmkZPP4RmgOm9qG8MFBYWtmeqg31Ob9liHpC5/ZzvcpHlL8trYd4eNWECa4EwT4Zzq1i+3Lw9y52FdvbtS1FRkflmicE1jIiIoFevXm1r4pCJkqqrVebVoMS5srJSBai5uSoA9YcAc860adNYFxFBdFVV8H7+FcGSDqqIfCUi/UWkj4jMcb/2goi84P7/vSKSKSIJIpLk/v86N/PvCPffEP2z/9/A4YBHH/V7E593npMkm1qY1BNvvKBOTCSyqY6XXpQOLLuzZ8OoUaO8AlQ9Q+BZXm8au23cCA89ZHizr1y5EgCpU7ufngEq+ASfJgPGOJs7FKhkE+rNJy8PkFR/5x3DMjQ9QI1taAjcf2phYoyNjSUtLY0tCQnBib87HPCXvwQMUEeOHOldUqIvLvWMW2KiWoh4lEl6MojCDCoQHLaw4DOo69YpHVSDRaZehl1VpQLUHrW1tBDOf5Z5PwxLSqCWRC+WXv11gD5uYoH9/kTl/eH11/0zOaJ87nQ6SXS5jDOV7qDrP/+u7RC8+h6T5+5jPUgy/+F8jmchac4yc0IxhwNuvrnDoltE+PzzzzlaL9+2GqD66dn+40MqQO1BOcXFTeY2+WLVKrjuOuNyUXcGdXBrq/puf706AbJC0E7WUVBQwHebVN/txL5VgQPqf//bVO/Pc0OmFysJA8ojcjturlnJuAD07UsfEdauXatYmz2hE2okJXkHeg4HXHYZa+7/rAPR3GevqEA31YxJ0xMmfp43D956aziNjY1k57oJz4INUJcvhwsvNOwrLC0tZUhYmNpg8kfu42mjH+zXMw3BEiU9+STcfrvxe0VF0NpKRWIihw8fNpZH0e0DvwHqrl27kAkTVKBk0KtqCodDleaalMrF6eWmvq0ORjb6Gc8jRoygKjycgwkJwQfR33+vSFsMNpAB2LaN3ZGR9OzZk2x/vX8W/Jw8cyYAFR9/HJyNc+Yodncj7NoFDgdbHA5ycnII0/kijOyDgDaGT5nCGKA8GC1whwNmzoS33zZ+3x24bG5t9R+g+vHz1KlT0TSNhZs3q0VPsH7+9ltV3mtSTubcsoV8Ef/BH5jO221SM559qMEGV3/5i5pzjLBrF5rDwTYg0w/7uxU/R0dHU5SWRnpFRfDj+YgjVHuGEdwbEeVxcbS0tPjP5hv4OScnpz2D2quXqhAJ1s8LF6rNNIPNkr179zLYZsMWaEPM00YTREZGYnf3UkuoBHK/AlgKUH9HiNB3Pf1kKsrLy4lxqYb/g61x5gtqp5PZpx3uwLILkJiYSJy+s+axMPWMr6qrTZh8/TRtL126lMGDB5ObrAaqb4Dq9Tw0eQAaZXNBZdrKuykDZ/YK0O9p0vheVVWFpmlKjqOTAapO5FRZ2ZvXtrqCE3/X/Wyy4Hc6nWzcuNG7/xRUBtVub+/dcfvZdxdVZxBtbByLPTycmoS44LVQ9Z1pAxvby7B3Ad0YwG520pe7/+JdypOdrQJUzwyq/jrA4JEjaQDqiooUC95LLwVnYyCCA9R4AYhrbvbegdFhZaHTlkFVpE4H6MYbXIIdFxfxljmhmMl43rJlC7t372bq0KFe5zeFiZ913HMPFDep+zkNAQrMbfKFHz+LO0DNsTAvWcms6ayrL7+8lfueVQFqd6r8s4aD8o3Jd+sbMllZNeSgFmtn3pzdcU60uKClb1+6HT5MQ01Nu46dDj1ATU72/q3u61PV6n0NGxrgp08VC3KmPzF4TxudTq8eB30zqLraPQeWb+Sqq2BHTWpwPaj67za4jqWlpfRpbfVf3qvDQmatadgwHIAE28/kx896ULDBnUkwzaAG2IjIy8ujrq6O+mHDVD9YMCW0Aebt7tXVVMfGKn4FfzDwsyciIyMZOXIk6yMj1cZCMBJm/ohpXC7YsYNNLS2MGDHCuJ/O08YAY6X3GWfQBDiCLQusqQlI7rOyrs6cIAksbziFT51KFKAF42cL5D6Hu3enARjoLzjQ/Wwwb3fv3p3hw4fz3Xffqf5EH5KdTtnocmErLKSAAMGf/nk/GdSdO3fCqFGqJD4UGwP4OaCNVjLlQNOoUUS4XDiDaXGxQjSVlUWhe1PPb4mvgZ9zc3PbA1TonJ8N5sXKigr6ivhn8PW0McBYGTJ7Nk1A5WeWOjJ/lfg9QP0l4WexqKOoqIgEwBkZqfoEjTBmjMqK+Hmw5YwZo/7HvQtvmcnXxEaHw8GPP/7I1KlTOfUY9SD37JHtUDJ8/vkdJBWgo4ZgTg688cZUevToQdaR89XDPxAhkcnEuH//frp164a2f3/gADUlBW66yXDR5k3klMcPrTUAfHSHxZ2nAKyk2dmFHD58mO/eyvZetB84oCYqfWExaZLKcpogKiqKMWPGUCSiItZg4MfG9k3bMiCL/mxnO/07bObOmQNvh1/O+7QTgnjeB5mZmdRpGhlr1qiFYiiTt7+gifYANcqzrNQTqamK5MAfsYn7O/qgeq0OkkQhfVnKVC7ldUCMN7JNruEXX3wBgL2uNwBpA5P9ZxGnTVNVCyY9WyUl0EIkNcSj8qib214PCD8PQKf72oXpDJj+rvWNNxoSgniib9++hIWF8Z//bKW0WQWoKe5aDr8BdYCNiNmz4Y031qKLJRxzgUFPU48eqjrFLPPWbiSaCH3Bqw8VaNcd9A3S3P9fS0cbYw7vBKCblUXEccfBs896+bl9Xh6MevxupKEBFqwJgmQK/I7nmj176B5IA1XHnXfC9df7PSQ1N5e1QOu331qzrc2QmoAL2qV79xIXF9cm1dEBaWmKVMRA3gPaF5k7dWmNYFho/Tyfm5qayG5spNZA87kDTjxR6U+a9OaBasP5vLZWkcMEM3f7W3SXlEBTEz8dOBCYUfrvf4c77vB7SFRCAlvi40kJlijJQuCypLzcPCAARd7zn/+Y94nqcJPLpAZjo4XApcpdjeO3f/K005T+pFGvNKoPdfny5bROnqxKaEPxs9GcXFKCrbnZWoD6+OOGusFxcXH07NlTBagRESqLGuxGRFcEqOnpqpXHzQ5uhqSTTwag4r33grMP/G+KuQmSwE8/9NlnwzffqCDeAzk5OezZs6edQXrq1ND9bLSBXFxMlLtHNiCef149//xg5imncKGm8X4A2b5fM34PUH9JWJDN2LNnD/GA+LuJjjlGaXj6OWb4hAnUA43usiSzxWxxMV59VZuX1aoHq0+ac/369dTX1zNt2jRG5NbhiIwhMyfMvK/vlltMFzq++qoXXxzOJZdcwmdffEHLgAEhB6hVVVWkpKSo3rpAAWpcnOofNFjoeAfzeeyjjF30xvXTz9bKKvWFjs/EqAe+5eXrmQRsrLmdFy5f1X7Ogwe9y1SnTFFMyGY08sARRxzBmkOHkG3b1AX1+T7fnrk21Br7GTwz4WVAL3pTRCF9OpRnz54NE16/hu9yLjW8DzRNoykqihQ9MxFs74PFDKoGhB06ZFziGxsLDzygNnXM4M5w9gtTvc8HUWVEr3Mp/dnBeFYal6abLGi///57MjOHsvRTFVwcINl/FnH8eMU2aELGoX93JT1JQwO2eL3uF7W1aqPLoKZf9u7Fa0/Y37W+6CK/zKSg+nIGDx5MXd06qvAOUMFPQO0vcHFjzZo1bQGqr64foK7dHXcYEhmBuu4pKZB3gerLm4WNt9/2qYjQRd2TktQEoJeTuedtowC1l13Nr5oVKbRRoxQbpIcv2q9JFDAA2AjArrogSKZ0Gw383NjYSHcrUgU6zjrLkAnYExkZGSwBwtasMc0Smtrob0GbksLSTZsYM2YMdrPgLjpakYqY/BY96NleW6syD8EEqH6ez7uLihgAtPoLqnQMHarGS1SU6SHjx49ngX5/LVkSnI0m41kPCrY4ncYSPZ444YSAzOEA1UOG0L++niZ3tYVlG/0EBa7UVErq6vwHqFFRiiQokIZ0jx6UxMXRN5hni7/ARQQKCtgTE0N0dDSJ/ual/v1VkOoTuOiYMWMGjY2NvKUHLF3sZ0sB6rRppqRfbUy++nFr11qfb0DN2378XB8TQ73dTpq/TZ2oKDXf+CGUBJh29tlsBQ4HQ5Tkb73t9rMeoIaFhZmXS/furdbcPhsROTk5OByOtk1ypk1T/w3GzzU1pn6O0+9pK/P2uHFq3vGDlJQURs+Zw/AAmuu/ZvweoP6S0GUE/GQqysrKiAdsARZstLb61fwbPXo0VcBBd/+f2WJW0/Dqq/pxfh3N0YkdepWWuh/006ZNg8JCwtJSDMuL2+ByKc06i7jssstwOp3k2+0qQNUzB0uXqpN7ZhI8FjqeQdhnn+1HXCmqNM7KgrGpydBG74V0HuDiJ4YyiZ+slVUaTIzz5imVCbWeW89491Ab1ryq/ZwHDngHWS6Xes2Aulz/3U88cQTLXS60ujrYutVLY/bCC+nQM9cWIOkPF4MysPYy7DK60Z0YGqkMzzIk1Zp9RiO7f95reh94bbQEG6BaCFzKy8tJBDSXyziDCup+8NfPFxMDYWFEOVqoA8Ii1Y7qj6iejRER24wJxUwegBs3buTgwVHEtR6knlgcqAebaRaxpUVdPJMSX90fKkCNBjabk5wZ2ZjYcTzjdBJWU4NXwZS/DOrBg7B9e8CvGzt2LDbbag4RRwvhXgGqaUBtIVO+Zs0aBiYkqEWCmZ937TKUpZg3TyV/q6uhiDyWM4kLiODLL3/m7bfdu98Oh5oP9ABVt8vjv82R3n6OiYGe9koO+at28URjo5rbPAhuvK/JcPQAVbq7tXOtlvma+Lm8vJy23K6VhU55ecBWhl69erEEsLW2Bte35s/P+fm4Bg5k/fr15v2nOjZuVEyrBujtDmiee+45KgYOhB9+8K+N62sfGM45ZatXkwiEBwr8QD3nly0zJKzSMX78eLYCTXFxwQcuRuMZ2sid8iFwBnXXLksZs9hZs7ADO998M3gbjZCfz2F3INA7UPC5bBlsDizysCs7m5GHDln3s79KtooKqKtju91ORkaG/zLpgwfhq69Mny0zZ87krLPO4upnnqE1KSn4wCWAnws0jZ66JJ0Ztm4Fk6DOK0A96ii13jAjtzJCAD+XxsfTq1cv880mHV9/DQEIkFJTUynMyiKjqAhpbbVuHxjbWF6uxumgQRQWFvrvh66qgvfea+Ns0NFBambwYLULGux4NlmHper3lZXqnLVrlY0BcNddd3FUoKqEXzNE5Ff3N2bMGPk/A4dD/ZngxhtvlPlhYSKjR5uf4+efRUDkq69MD6murpZVIDsHDBARkblzRWJi1Mf8/7mkf1ZDh/O9PGSInJKdLbJ/v0h4uMjNN/v/nbfeKhIb6/8YHxx55JFyS3i4CMgfjjpK/vjHP0rDjTcqw/btaz+wuVnk8GGD3zRUuttOVP946qnAX5iZKXLppR1ezsnxPOdGAeSPnCoCkk554PM6nSI1NcpOMbr2J8hLdBMB+RfXiaa5Pzd2rMgJJ7SfZ/lyQz97n2+v9HWfeO60lwL6OCfHfZLGRpHKStOf8MYbLQLIcK4WAVl60wfGB95yi0hcnOl5yoYNEwFpzMsTSUgIcOF8UFUlUl3t95CrrrpKxndT11Leesv4IBM/eyE1VQSkCOTSS1+QnByRWOpFQNae87DxZ5qbRUpKRBrax0tVVZUAAo/Ja1wixWR5Xf82X3vCxM+emDtX5IuYs6SSSDnL1kPmvdHi//foOHBApLCw4+t794qAPORp3I4d5ucJ4Gcdzz33nAASFVUsZaTLS1whoO7XuXNNPlRUJFLuf1z17dtXvs3OFsnKMj8oM1Pkkks6vOw9nkWu418iIMNAbLY0effdd9V1ApEnnxR5+231/wUF6gSHD4ts3izvvnJIcnKUD3NyRF588aB8ALK/R4+A10VERH76qYOfvcfyHAFE00bJ9X0mqBeXL7d27vJykQ0bOry8ZMkSeQDEZbOJNDUFPo8FP+/Zs0fiQZyaJvKXv1izT0Rk40aRXbuM3+veXfaedpoA8uGHH/o/T0aG3/H82GOPSVJSkpyrO3zlSmv21daq611T0+GtT9zPoer33w98Hgvj2el0SkJCgqzOyxPJzrZmn4gay8uWGb931VVyODpawux2aQrka4vjuWrPHmkC+WnKFOs2/vijSH5+x9ddLpHkZCmcMUMAWb16tf/zBPCzjg/POUcEpOn7763ZV10tsmCBGvO+WLxYBOSPw4bJ1KlT/Z9H9/P8+aaHHDx4UHr37i2fRETI4dRUa/aJiGzZomw0wlVXyaHISOmVnh74PH78/OCDDwog9fX16hkWESFy++3WbZw/X2Tduo6vu/38aUaGTJo0KfB5LPr5u2uvFQHZ/Npr1uyrrBT54AO1ZvXFokXKd998I2PHjpXjjz/e/Dwmfs7PzxdA3n777fYXzzzTY5FlAatXi/z3vx1ebmxslBdADsfEqOsZCBbH828BwGoxiQV/z6D+0rDb/famlJWV0T0iwm/5bhuJjp/G8m7dunE4KgqXewfeiMnXGBo7Sr3LDRoOHeKKLVt4saYGXntNZW8vu8z/aRITVUbI6q4m8OSTT9Jz+nQAkvbs4ZlnnmnXffTMvkVEQEyMQV/tfrq73AQWgUp8dRtNiJzaN7SGAVNYg2Iwnpm6psPxHWCzqXO7qcE72rmBwah7YAhb2rMoBw96E+qYEEV4ny+NneSxnwhavv8pYMVdW3Y4KsrvNTr6aEXN/ugNKvs39XyT8pfERJWFNvFz/IABVADrhwxRmaMgsup07+5XQ3TePHj77XI4oG7q7zaYHGuBQEC/1jWaRlJSAbt3Q73EQkICo9JMGDMjIhRzn0d5ziZ3eXqPHsNJ5iAH8SZIMswiWiD4mT0bZr39B6LjwvnAtY+ztlhJ5aPuJ6NSOvdu8DpAdAp7f9nqAH7WoWe/rr56NbXhKaRQZdwC4IncXOOyXTdaWlrYtWsXWWFhqjfNn40WpK3e5xxaCWM2J+Ny9eLqq6+mWi/D00mSoH1+jYmBIUM49/I4r6qRESMK6AHW5hrdPvCy0ZuV+yjATnLyfn4udDPkWmXyTU837LMuLS1lENCalWVaitjBxgB+TktLo17TKE9PDy5bMGyYccnm/v1QXe1WdA4gjwIBiZxuv/12Nm7cSJtlVm1MSFB9/wbjwOnO5CX7Y3X1tA/8jmebzca4ceNY1NKiblCrfWt5eab9t+TnszsqigEDBxIZyNcWx3P3zEw2xsTQbeNGa/aBYk41yvrs2wcHD1Lsni8DZlAtMIcDqscTqLda/tmtm+p5NCKv27oVgBV1dWQEKDu1QvCTlJTE/Pnzye/Rg5j9+3nn4Yet2Th4sHlfZn4+u6OjyQzE4KvbWF+v2gV8oJNU7dq1C0d4ODJxYnDjeeZMpbHtC7efN7a0BGYZ1m204OdRN9+s7H39dWv29eihWhZSUjq+p/csuzOopv2nun3Qwc/Z2dlomsYOT5WCo45S5WpWx/OYMXDGGR1erqysZBBQl5ERmHldt9HEz/+X8HuA+ktiwQK45hq/fTulpaUkezK5GsEqY2WPHsT6LIb8tDMC8Cce4e7kf3u99sJjjwHQs64Ox513syFiLPM2Bih10m0002szwNixY/mTm/r9uWuuISUlhWZd30z/78GDqo9rxQqfhacLqKIH7gez1QDV4OEye7ZyU/u8cBPrqMCFxs1HWghQv/sO/vSnNtpkbzv3AeUMQZV7D2FLe6mmb4mvycTYsZdvCj8DEyUwiVNbgPTPfyoiDxOUuTcEMvS+VrMHjb4YM/Fz3L/+xVlpaazRSxWtlvnW1MDdd5uycOr9vI2N5fRB9W7e8VyucY+nlQege7HSHBtLgbvHB1D08WY6asuWKb1bDw2zje6F3F//OpwU2wGvANWoLHfePBh/fBIAd19f67/H+YwzWPzaaxQA9b4EP2Z49VVj2Qx3gFobFYWmLxQDBagQcDwPHz6csLAwYmJWM2hKCqcfWc3uj9cx+xiTa1hXB//4h9LUM0FJSQkul4tuLS1+A1mr0lZVpLKAGZzHBnqlz6W+vp5/6QtHnSQJ2sfdypWqX13vGdy9Gy64gB0bNtADiLSyCNPtgw426j35IpNxOlv48ceFXjJhlvDOO6rc0Ad6gKpZkcHxtNGPn8PDw8nIyGBDcrKSmrHSh3rokCLyMCoTdy8Wlx04QHZ2tn9iGt3GAOM5KyuLqJwcSuPjrfehrl+vpK0MSgijd++mzmZD83f/edoHAW086qijmKs/16wGBp99pp4vRsjPZ0Nra+DyXk8bLTyf9w0aRJ+6OhxWdG/r65V8i9EC3e3nLS4XCQkJJFuR3wrA7gqQMmQIW8G6n7duhY8+Mg7O8/ORxETW790b+D60yDQ8YMAAbvv8cwAOfPSRNRsXLzaXccrPJx+sB39g6Gc9QN2wYQN5eXksDw+33ofa0ACffmr8PHf7eUVdXeAeWbC8EZHYvz974uKIXrkSh5XEx86dSmPbxM8kJnIwMpKDBw9aC1B9bIyJiWHMmDF888037S/q5bNWx/NPPxmWse/du5dBQIuVnndPG4NYb/8W8XuA+kti1Sql32nC+gbtPah+M6gWH4CtY8bQy+lkv0dfQSDmzwu1eVzde2Hbv6urq3nx0acAqCGRMJy82HJpYB1Gq0G0G229pKnd2Wfvya7PtzJ+/Hjs+gJNnwgrKxVBVGGhz8KzFnDSw52Z7EwGFdRa6u239czGaTTZMymKjGF4iwWx6B9/hMcea+tL87ZzA72AJJrYQV9SqWL2cftUWqamxjhA9bGxYxZuHD/RwiC2kcwBU7O8AqRXXoFPPjE9Vg9QU5qb1e8wIzoI4GctLY2so45iqd7rYjVA3btXEUSZsDO2Z5HLGISGAzsbm/oZ93hakM7QFxuupCTyPb+zVy9zzcFvv1VacB4VERs3biQ1NZXrrktjaK+DNEcnmxKJ6UH2ljJ1DR0HagOOqyEjRrAbcFrdoX3mGcWGiXe/9s1/UAGqo3t3lZWJifEvBm5xMRYVFcXQoUMVQ2737mrOGz3aXP+yvFwRRG3YYHrOIreEUtyhQ/4DVJOFzpw5HafcBcwghxKeuzOWG264ga/1IN6zB1W/ZxYsUHq3+o7VF1/AvHk0ffstPYDYQJkgHRbmRJvNxsCBA4nWF59We1AfeshQ76+ipIR+WOydtGgjKMbL71wuFbRbYecuL1ekeUa9Zu6s1Wc7dgTOnuo2WniuTJ48mW+dTuT77w2Dzg74/HPTyqCUffsoT0iwns2AgDaefvrpbAUa4+IUS6gV3HOP2lz0hbvPfmV9fWCCpCBsBIicMQM7UGymG+qJ0lJFEGV0T7j9vPrwYXJzc/33d+o2WrAvKyuLJUDC+vXW/Pzf/8KZZxozZOfn4+zfn6bmZmsbJWDJxvARI6iJiCDXV9rKDLfcojbufOH289rGRmvBn58srx6U/e1vf2PPnj18Wlur1iFWAv2SEkUQZXSs28/rmput22hxneiYMoUJzc189emngQ9+5x2VhTby89atMHgwu9zPFr+EXX6efTNmzODnn3+mVn9P70O1Op6vukqtIXxwoKCAVEBza4sHhO8z6/8ofg9Qf0nU1KiFoEmA6nA4qKioINbl8h+gukldAg3qbhddBMBeD/1JPbi5nn9xOa8A7YM3Jwd6d6sla2h7JuWxxx4jolmRt9zNQzzKHbzFRYF1GIOYvD1lXURglzOH4h/3EBk5jng9O6XvNHs0vntqqmpU0g9It7sfep0MUMEzsxHOLbecx0+tjYiVzFVtrSr7dPvZW/t1PXouo/kUNyvqli3tQtCeu8omfu6oJTsWPXd6ZJg3aYm+BugQIAVgyNWZ6ZLq6lSQZlaWbsHPU6ZMYb2+0WAW7PkiAOO12mipBioZjINC+tBKhPEGTBAZ1LisLIqKitrLdtLTzW2ure0wnjdu3Mjw4cPRNI0kOciM85JNCaT0ILuBGBzYSaIm4Ljq06cPFXY74VZZNd1kG75jzFa9D4AD4WmqJC9Q1sWiXh3AmDFjWL16NZKaqrLL0dHmepQWmM2LiooIAyJqa0Mq8Z09WyXGPNsbtiSqUs3TUpdx7733kqRLvxgFqL5+di9q7GvW0A2wBSIq0RETo8ZRgHtR0zSOnjWLRsBhlr33hQkBkXP7dkXR5daoDQiLGxF9+vTh4+pqdU0WLvR7LGDKbA4ogqSYGFZUVDBx4kRrNlp4rkyaNIlPGhrQDh2yRuZkMJ5B8XJkNzRQYyV7Cpb9PHjwYPr268dPcXEq0+PDwm5qo9FYCYYgCYJ6Pvc66ywOA475863Z53l+Xxvj41ldURG4vBcs+zkjI4NFQHhTk8pIWbHRbB2Wn88hd1AVsMTXop8B0DR25OQw9uBBa9JRAfwcVPCnn88HSUlJpKSktBElzSsqQmJi1L1oxT51EkMbnbGxlGGBZVi30WJglX355cQDP7qr+vzC33o7Px8GDWK3e6PX7/2o+9nAxhkzZuB0OtuzqDYbTJ+urmEn/NzqrsSKtqKvDUEnhH6r+D1A/SXhJyhQ2Y1KXC4X9sMtbC31U+KraSrrMHWq6SHz5sHpfzyRdWgc+s83bVmZOXOgd/RenuZmXuFKXuMyEqNbmDtXLaJjW2u8bFy8eDEJqEGyk77cyaMcRtUJ+83GDhmidoaM6v994NujWUYGPV1lLPtxHG1hpp5585gYPfu3ZvIF24G/x7kfooGbbZVsxo03Bj4OGDZsGCtdLrSKisBBls9i0bvPbD1DNfXe0L97BKi6FIRnBlXTlMOOO87r9B37iUewCjtONCa4fqJ793aN2bffVvNkhwApAENuWVkZERERRO7fD/4eMiNGqGyxHyr5KVOm0HbFrGZQA2iYqY0WlXUbRB1bGezxug8uukiVC/uD+3uyR4wA4BM9u6yX+Bo9bHzGs9PpZPPmzWqBWFcXkE26ffxo3MizfM7JPq93hN1ux56TQ8Lhw9ayBe570XeMpVFJMxoFe9PVAAy0sBs9WlV/BFq0oUr1Dxw4QOlZZ6ns7S23qNJOAzbqgFp1qB6pTJ1h0V+QcNVVKutugNmz22VFReDbquGq32HZMlJSUjjCvaiXuLh2W3QWVt+xou+669kQqz2omgZvvKH6ogLgxFmz2AzUW1ksgumzJUrPtFsNUMePVz4LUD7Yp08fdu3bh2PiRGsBaoDApdYd5FvKoN50k9KTDYDJkyfzLeCy2awH0Qb2HSwsJE2EVndJZEBomsrSXXBBgMM0Tj/9dObu26cqgwLJq4GlAHX8+PGBzzN5sqoEsBAo5g0axBIgJQDTapt9YBq4yMCBFO3ebS1AvfNONV4CIC4ujrWJiTg1rVN+5sABqKxkn/vBGjCDqmmquuKKKwJ/J1A1ejRpItRZYco1Y7z28LOl4G/qVMXWbHLv6mW+M2bMoLy6mqaJE9VvsmIfmN6Lh9zPCUs23n8/fPhh4OMA+3HH4dQ0ElesaGfP9Wej0TU8cED1yQ4axB4367vfcmlNUxUBN9zQ4a2JEycSHx/PAs9rNmOGGs9W+rZNbLS524wSrWzYgZKMWr/eGlP7bxi/B6i/JEweLnp2o6ysFDsQTSsfLoz3X0L797+rJnUD6OcrKYngM7KY4CznriurmDdPLdT+e8qbhOHkJa7iUt7gqwvfUcHL4cNqYe220eFwsGXLFtKj1arfVwfQrw5j//7KRgsTlO+CvIwMMiijcf8g2pTk3IHND1+oiXHYlERyc9VbRUXCtVNVj0e32koV5Pkpo27D6aerxU4AzJsHd945GD13uuSJAFlUgwegno0dPHg9M7ISVOA+fLianMwCVFC9rAZ6dd79xNEcZhj5xDDMtZ64OD/yP6DePHQoYIDaq1cvtNJS/4vVvDxVvukncBg2bBi2+HgaIyKCD1BNbFRlmxsIA/pRTj6DzKVXZs5UOiP+4M6gJubmMnr0aD7++GNEhKrISBVYGUlG+Pi5sLCQxsZGFaC+9ZYqf/QTjHiOnxe4lp+Z1OF1Iy3bzAkTsAGFy5b5/00efvYdY2lUUomNxiY/GnWeyMlRk4qFYGyym7RkYVGR0jIcNkyRN3j29urwJ/ngRlFREaP0LKW/APWooywFf4CqTJg4UfURA0e5dXI37t7dvuvumUH1tM8dmE7SM15WA1RQQcuoUQEPO/roo1lst5OwdatfuRLA73hO1jPtVqQKQG1A/OEPATf49PLA/aNGqfLsvXv9nzfAgnZXVBSRkZGMsnBtmDjR9NnnieHDh9MSHc3utDTri24D+yrd/WThVjKTOk491dKmwOmnn87X+n0UyEbdzyaBS6PNRsrIkaRakVjr2RNmzQoo4wWqbH9VUpLS03VvzpjC33jOz6e5d28aGhrI1R/e/jBihKrusIDE7GwKkpM75Wc9+NvjfrAGzKACHHuspSAfaNtorgsUjPl7Pufn44iMZI9V+1JS4MgjTclHjjjiCMaOHctf//pXAHbk5sKOHZ328z73OsZSgDpggPK1FSQm0jpmDMcDrwciSwrgZwYNorS0lKioKLr5IWME1MadwYZFeHg4xx57LAsWLED0TWyd3CrQZonT6bXe9kRMcTGHgXCrPahJSeoaGunm/h/C7wFqCDBaRJrCINPUnt0oRS/sPdAa77+E9vBhJexnAM9syWccix04qvFj7rxzD4gwas0rMG0aVzn/Dd26Mdn5gzr4tNPUws39ANy5cydNTU3MnKwWh3W0Z3UD6jC6XGoXyULTtm+gW0YGidQxJd3js6WlzJsHb73YiAM7NSRSXAxXXinMmHETJd9/z+GICOTxxy3vaNLQoCZiP8xnerC/d+8g1gNONJb/c7V/Hzc2Gk46jY2NbNu2jUEul8owa5r675Yt7YtQX+KIffsMtR3BN7Afy0ZaGc7GgH3G1NerNJLBQke/l+fNK6eiPB1HcYAA1eFQDzQ/BBp2u53JkydTrmldFqDOng0TJqynvy2VcBzs7z7InCm2pkbtZvojVtCve7dunH766fz0009cf/31XP/gg+p1o6y5zwNws5vs4K4/DyX/xudYHzGeedvHmX6lZ6l2LkX0p8BrXPmW5epatrXxMwD4OdBC59Ah9cHExA5jTAWoLhISLCxmQWVr16wJHIigNiRycnLas9C6gLiRpqGFDGpRURHD9EoMfwHqvn2q/9sqc/gRR6isVW0to/v1A+C/CxeqcenZt+zpZxEoKsIFtHXsBhOgbt5sXu7sgdjYWHb1749NJHA/k4efPdHU1ETmoUPUxcf7J93zRHOzIvgwmXN06JmXfP3GCpTpNSvxPXQISkvZ0NzMsGHDiPDXB62jtFQRQgWoIAgPD2f8+PEsEEFWrw5MOGWyoK13M8knm7HnGmHFirbND38YP3484dnZFMbEIIEWtCZ+BnBs3ky+y8V0M+ZXXzQ1KcKlwkJLhxfrGxyBbDSbt2trobyc/e7g2VIGtbAQ3n23nZzMDzIzM1kaGanmKCt+9pOd3O5uZ0m3UtL97bfWSmKBXmPHshEINyO50lFXZ+pn8vM5mJaGgLUgv6EB5s6FbdsM33788cdZsWIFI0eOxGazsURnf+6kn3fHxGCz2QLrtIK67i+9ZMnPAFGnnMIYYEugXlkLAeqePXvIysoK3A/9+edqvBhgxowZFBcXt7cF9eqlnnmBNksOKaJMo3sxubKS3VFRKqiwgvp6RZxipQrjtwwz/Zn/zb9fsw6qP33R7t39aP95QNP0zzwj2e4PX8qrxpqJOo46SsREm6z9fCLwhVSDPE9PAWTlo4+qN3TtplmzRAYNUhpwdrvIiBFtukvvvvuuAFJyzz0iIOMyyto0AAP+rv371fc880zA3+97DWejdAiXX/maCEhhWJhIYqKHnqHL/ScCnwggW3NyxOVPO9YIzz+vTlhRYXqIt4ZiruwgTv7DeYGlrlpbO7y0cuVKAaQ5Lk7k2mvVi1ddJZKcLPKf/6gv2brV+0N+/Oxt2wtyp/sfQ7NqlBargQ1tcDhEWry1NL390F+6c4oIyKoLnjY/j+7nf/7T/BgReeCBB2QhSKvVsexyKf1Jp9P0kBEjRsjfR45U379qlfm5LPhZXnxRHfPBB7Jp0yZBNWfL0WFhIiDOr7/u+JmWFjVuRL92Twggx/CxCMiFvOlf/9P9uZwckW85SlZETvE61le/U/87Pn2jCMgfwgb4H48ul7Kvvr7DGFvDcPkC5PzznzA3zhMW/azjpptukqioKKWx19ystJPvuqvjgc3Nyi8G2tD6tYHucmPkker7S0rMv/S55wL72eO801FaeN/86WuROXNEQPpmZYnL5RLp10/kvPPUBw4ebD9ndbUIyNr4+PaLuX27pWsiIn7Hsy+uueIKOahp4rrsMv8HOp0ie/YoOz2wefNmWQlSPnSodfss+vngwYMCyGOPPKI0hGfP9n/eQ4eUrqzvnLRypQjIJUlJcomBhq0hdD/v3Rvw0Kefflom6H56913/B5eVGWoGr5gyRRpADhnoo5oiCD8/++yz8hiIMzxcpL7e/MDWVqWPaaBf3ZCaKm+BLFq0yJp9QY7na66+WvZomsgZZ/g/sLpaaTv6PFt07fbvb79dANm4cWPgL7U4nkVErrvuOjkqOlod/847/g/evl1k06aOr996q0h0tFx/zTWSnJwc2D4R5ecjj7R0aF1dnTwG0mq3q2ebGVpalGbynj0d38vKkjVDhkh4eLg4DObMDgjCz0OHDpVZJ56otKYD+bmiQuTbb9u03tvg9vOjU6ZIRkZGYPtEgvKz53dck5Tk/7j160VWrOj4utvP4nDIpEmT5Jhjjgn8nX78rK8XvPRQb7tN6cr683Nzs8jChYba0BUREbKwZ8/AdunYty+o8fxrBr/roHYdOmpctqO6WpEC+s224ZlBLCUe1Wt1iHj/JbR+mEm9PzeZCqAHe4Ewqt96S+nhnXmm++3Jakfp449VJrGqqo1ZZ+PGjYSFhZEeq7RFV25L8F866okgmrY9ezQ1DZxpqnRlUpTKNKx0OKC2lupiXUNTc/81AjcDQxgYGdkul2EVFmz0zkYOoRQhk9LAWUq9Z84D69evJwKIqK9v7+UbN05lT3VKed9SEz9EEd5kSWp3FuCJSzbBI4/470ew2zuUQbffywKUkeXuNX55gZ8MqkXynCOOOIJyoDVQ34gOTVM/zmQHsaWlha1btzJeJxPzV8Jo5V70yKAOGTKEGTNmcO2113KTm0lxgxFBSHg4JCS0ZTobGvYAsVzO+1TRnfc5JyDpkV76ffSpiYzvX+s1rszusRUVyh89HQWI7G/LrHaYZzRNZc5iYzuMsXTbXiqBE04IXcPTH0477TSamppYuHChYgceMMB4dzciQpUb+pBwtWePDwHVJDernf13vvVTkmzBRs+s9M9MwImNFU8uY8tPdTjtdnbu2aOIMzzn16SkdnImd+nbW556vsFkUINgrBwxZgwLRXB+9ZV/wg2bTbVS+OzEF+TnMxCwW5WY0e2DgDYmJSXRrVs3CouKVEnbwoX+Nfji4lTbh++86M6qL6upYYhVO4NgrLzhhhuImTqVA0Dde+/5P7hXL0PN4LiiInaGhRFnoRzWy0aLfr788stZlZyMrbXVvzxFWJhiCfW932pqiN6/n+1hYUyZMsWafUGO5379+zNfBNeiRf4z1926KW1H3xYb99jf6v6npeyfRcIugDPOOIPvGxtpjo2Fr7/2f3C/fu1VHb42DhxI2d691spnISiCn/j4eFYkJhLmdJpLBYG6dhMndmyPqqmBPXsosNnIycnBbkZc6GsfWLqGo0ePZu26daqHcvFi/37u2VO1HvlWPLj9/OaqVcyaNSuwfUHaCMDYsTRFRzOhpoYqf9nyESNUaa4v3H7GbmfPnj2dZhoeOHAgMTExrPbs0Z4xQ2WE/Y3niAhV9u27bq2poWdLCwf88HoY2ge/kyT9Dm8EClRaWjwWqJdequgkfdAeaJSRgCqBaYlM8F9CazJg5s1T2f52JFNFb3poA5k06WzqduxAevVqr1XXy5Yeekj9t6KirQRi48aNDBw4kG0rDuPEhi0+NnAJs47wcPWjLA4YfaHucsE7P7gnDHcpnF4QN65XGZfyGk/zR/crjwO76dnjGbTiYuu9IDosBFfewf5gymgkgzL/mwc33KAozn2wfv168vReEL1PSCcF0TUMfUt8/UyM3uRLw9ik+Do5vudG5aRdu1QpuC+2bYOrr1Y6YR5ov5frgMNkuYsY1+33E6Ba9PP48eOp0DQiqqutiUn/5z9w772mb+fn59Pa2soAl0uVIPsT+LUyeY8bpx5mw4ahaRpff/01zz//PCddeSUAK4wkee66Cz75xCOw34NGJsezkC+ZRbO7gzrgZgYYLmjN7rF6WyL1RKNGiSrPNwyEd+yAO+5oC6raxpjDRZpWTSVY61cD5efoaMuLsSOPPJLk5GQ+1eUAhg41LvH96CO1meKD9muqbE8H9pPCXfd1TgrHc0Oxnni2059+jq2sWXJIESQBP//8szqXXnY/Z077otd9Lb8ToTU+Xi0yrJbPQlAB6qhRo/gaCNu71/ja6di1Cx54oMONtu/nn4kHEo480rp9Qfi5T58+igH0pJMUIdjKleYHf/WVKkHzxdq1OKKj2QnWA9QgFmN2u503585lUVgY2vz5/ueef/6zo2yGCOmVlZRYIPvrYKNFP0dHRzP5z3/mELDfX19dcTE8/XTHdoP16wFwDh9OVFRUh48ZIsjx3K9fP74AbIcOwQ8/mB/4zTeKmc8X69ZBQgJLSkro3r078f5UCnQE4eejjz6ajKwsliUmwpdf+vfzq6921BgVUTaOHt3Gv2AJQWxEAOzt358Gu12VjJqhtFStE/ft837d7eefmputlUhDu58tBqgVFRUcmDxZlRn78/OyZSqp4Yt162iJjmZrczOXmUg2dUAQGxEA2O0cnDSJWcAm9zUxxPvvd5Qv8/CzrpphWU/WZKyEhYUxevRo7wB16lS1JvHn5717FZmazj+im+he99b602b1RUSEZT//lvF7gBok/AYqbrStG957r00jyhN6oBEZWUoSKoN27V2J/rOUBg9APTvg2w5YGzGa4ekat9xyOonNzRzyfIiNG6eyF7qAusvVNjFu2LCBhIThfP9lHXUkIGjm2RqLNlqCvnvpnnz0APXui8uYbl/CqXyKyvK9jM02k+f+Mkj1TlltKPe0D/za6J2lHEIpLjIoZc6DfjIar76qBK99sH37dsboN4weGAwapOzYsQNiYzvuSAbYoW2Xwomg95QJ1NntSkB7yxZ1gJGO4s6d6obzIV9pv5fVAkjfV5SMADuMFvwcGxuLPTsbu4g1bcevv1a9MybY4H7wpB08qLIKgewD/4ux3Fy1aPEJ2MISEmiKiqKluLiNkl6H44mnefHiZbQnhUsYQRIpVLOY6W3HWZkjjK5hRzkh9W+nS6OUTLd/trS91yEQLiiAxx/v2JO1fz82p5MyoEcw2b8gFmNhYWHMmjWLL7/8UpFHDB2qblS970bHp5/Cv//d4fPtv0UREqXTQgXp/oN9C372/fwu8uhDIdQfwp6cTExMTHuAqp/nwQdVrxm0BaiSk4N9zBh1v1jRxtQRxDUcNmwYC/Rzm/Q/AeqZ8te/qp5/DzjdC6YoK8y4nrA4b/fp04fCwkLW9+yJy273b+N778Gjj3Z8fe1a9vfqhfDLBKigGDq39eunJMt8AxNP3HmnCm480FxYSLLDQatRxi2QjUE8+86+4AK+BqIXLzaXm9m4UTFi+/Tx17jvzcyTT/7FbOzXrx+LAUd4uH8/v/mmoa4ja9dSnZ3Nu++/z8UXX2zdPrAURNtsNi6++GJeqqhQ850/WaEbblCBgSdKS9XnRo+mvLzceoAapJ+z+vZlSVSUClzM/LxunSq98602cq8pFldXWw9QdRstXMMJEyYAqMaHqCj/fn7xRXUv+mLtWjaHhzNo8GBrbNK6fRDUdYw+91xSgf3+AsCLL+64UPXw8969e3E6ndYC1ADz9tixY1m7di0Onf8gMlIRuX32mXn1y6pVitTPpw+81p1dD7d6/XQEkc3/reL3ADVIGC0ifZGdjUqlmpDngAo0MjPLOHW8KqedeXGA5vKkJLXY85jkzMqN6yJSSWzZzwknnECaplGia4uCCopGjlT/rweGTicHDx5kz549bN06nBhHnReDb0ANVB2hBqgxMer31dfjSkx051Bg+qAyjhxRS2N4IrAe2MPll5/DGSPdcg+/QImvd5ZyCGVAJK3MnmFSWtLSoggoDPxcVFTEQH0nXg+EbDZwPxg6lPeCoZ/NMP2441jndHoTHBgFgyYEB56ZfIAsWmghnJsfDlBqYtHPKW6mvhYrYuUBdFrXr19Pn6goonbsCMwA2MnyFy0jg17A/Pnz20ikIrQWwlqbKKlL8jhyD8ehdu6/4VjAApmYp411dV5+9i3L1bVsc3KglGwyicQzQPVl//3jJer3Hn1aovdz2r3ALSXIANWCnz0J4776agpVVVWUlJS0l9T5btDV1BiSRLT/FjX6e1LPXnr6D/Yt+Nn387vII49dpEUfQouPZ9y4cSpATU5WtjU3e43niuXLOQBcefvt2O6916JzfWz08bMnPK/f4MExkD5QsZMaZfB1mDBqxu/YgUMnYgsGFoPoPn36UFxczDFnnMG3TifN/ki7jKQ9nE7YsIFtsbHEx8dbWyjq9unntIgDEybQCuaLbpN5e7c7S5R41FGWv0t9wL+ffdGrVy9+SEwkrrbWcHMTMJ23qxctohQ44vTTg7fR4pyYl5dHk81GYW6u/0W30bztdCIbNvBBYSHDhw9njtUxE2Rm7eKLL2a+CE5/myVmz2f3Nd8YFkZZWRnDhg2zZmOQfs7Ly+O9hgaVBQ/Sz6xdiysjg/zqamsl0p42WriG48ePp1evXrz3xRdKyzOQn33nbacT1/r1LKmr47LLLgtMPORpHwQ1nhPPOYcWIN6sVNpn3m6Dfs1HjWqTmLFc4uvHz2PHjqWxsZF8nYAJ4JRTQvJzw48/sgfo8wttLP6W8XuAGiQ6alJ6IyLCvYYJwErqdDopLS0lW2dRC1R/PmOG0p/0KGUxyy4U1adCdTVx0dFkRUSwef9+RKRtMfTsGlXmW5o6Sn2gtZWNbg2nmprhJFLrxeDr77u88Oc/Kw3KUOAOlrW0NA7oGd/SUrLiaxk0MZG//vUTbDYbc+acxPJ5ahE78ITe1kuQQZWGPv10wABHz1IeOjSQUv3F0lLjg01YSZ1OJyUlJfTR/e+ZqdMnIt/yXoCTT1a7lRYegMcee2xbH2pbD5BeJvTll+0seSb3Yvu9rAKYftENtHZPZ/aFAaaFBx5QJcNumLFa93JLQ5R98EHA32LKtOjGli1buD8hAc3l8vpuQ+TkwGuvwdixgb/XABE5OfSOjOTll79q619MRF3D9o2bFqCS6RxgM0OooBfdu2POLOwLXTPUZ0HgWfqu937PmQN77ZlkoaF3dRmx/zqqawDYWp7oXfXgvnfLgJRgSheffNJ41xzv79VZhw8cUPrJQ4euYeBpqkd4+RvbvT9kshHRvllSBCSQzn7229P9x4O5uUpPzw/bqu+GYiF9SKSOcT12Q3w8EydOZN26dTji4nAeqGFMX+Xnvz6hgvzy5cspsdu59NJLlcSE1WyQjvPPV/qTBgs/I9bmysqRvNfsgtWrA885PtcxY/9+Krp1U7v5weDFFy3tQPbt2xeXy4WI8KXNRuTOnR3aBrxs9PXzjh1w+DArWloYMmSI9QVt796KIXPaNGvHA7nDh7MEcBiVJer2QQcba779FhfQ/+yzLX8XAJdcovQng0D1hAlqe8ssuDKxMTI/ny0REdaDKh1z51reYImIiCAnJ4fvk5JUFcGWLcYHGs3bBQVojY0sa2zkjTfesF6G3KeP0meePj3wsaj7cepJJ7FUhBbfDKmnfdDxXly3DrHZuPX11+nZsydXB3qm6Lj66rZKLyvIy8vjCxHEZgvsZ9/ruG4d9W628aAyqB9/rObuALDZbJx55pnMnz+fpuOPD+xn32tYUICtqYn1wGxLDz03+vdX33PCCZY/oiUlsSk5mYE6c66RfWDoZ2w2GD7cmgaqjhtvVJlOkzlqrHtt4VXme+KJ6ruC9HPE1q2sI4iKEh0LF8ILLwT3md8Yfg9Qg4C+EL/wQlVufu217YFqDrt5J/Jillz8mlqgBpBT2L17N83NzWTrPU2B9IwmT4bbbvMiIzDLLjiSU9WKp7qapNZWdtXX89RTu9oWQ89xHfdzH19vcmdQm5tZ6e4nysgYSQJ1HQJUS2WLF1+s+pNCgR6g9uhBWu/eHAoPV5kf9wPwk08+4YgjjmDhwlS+eVUFqLvJCa4EOSkJ/vhHNUFaQFxcHC6dLMVMLsUkm1FeXk5rayvZ+sPZMzDQF9RGGdSxY+HKKw1Jl3wxfvx4tuuL0VNOUf/dt0/1FJ90UnvJrB8Ns9mz4dZb1W87fVIdsX0tUO2fdZZarGMujTJvHow680y2A2JEOIR3YLtleS2lhxIN3xuQ3Ujhyk2cdeCA0mwMVNqdkKD6v4PNsLuh9epFTkQE69d/S0ODqj5IogbwDFDLiEQ4kj18w3SuvVZVEll+Tg8fDued14EsyAizZ8OIk7JIp5k0tnFS2k9egbBeSeEZRHtVPbjv3br4eCKDCV5OOKF9M8UAHSs4hgFh1NevpRQ1nr9+tcx7bJoEqPpmSXR0CZBFGpWMPKGn/+sZH6/I3/wQnPhmpetT1b3TrWJrW4Da2trKkvUN2FubaSpVGzxFBxO54IL9xO7bx+G0fsS6ieOCxsCBauFi4GejChincxT/aXA/O4IIXKr272dYayt1wbY9gOqfsqBLOGHCBFJTU3nvvfdodW8+tZhlUY0CF3ev1fy9e4NbjMXGKmKmILL/AwYM4DMgbPt2FRgb2Qcd7sWwzZvZGRZGL3dgYBl5eTBlinWZCKD/5MksA5xBBNGuQ4dIr63l8IAB2IL4LkA9W4L4Xf369ePD5mb1D7233BdGmXJ3Bqk0NZWRerWWFURHK7Igo41bEzz//PPMj4ggorAQl5G0itmzb+1aDvXqxTc//8zf//536+M7I0PN3Rav/eDBgzkAbIyPp9GMtMvoXjx8GLZto8K9/ggqQB00yJIePcDZZ59NU1MTX+vrjRD8zOjR1uRldERGqjYdfzwSBigeMYLeTU04PbOWOszW22vXKsK+2FhK3Rt+lgLU1FS1fjAJUPv160dCQoJ3gNq9u5Iy83cNoYOfu+3bx/bYWLoH0KLugOxs4zXk/yH8HqBahNFC/M034ZlnQF57nd3Rgzmv+S0mFbnJclpa1KrIhJRELw1IE2lnjPSHxkbVN+qxojHrWTvufPd37tiB3eViHzBnzndtHy1gIH/jfg443UFoXR2LFi1i8ODBPPJIOsm2Wq8SX8tli/v2mepvBYS+yOzRg9zcXCrtdpVBiIlhV2wsGzdu5LTTTuOeeyCztYgyerWR0lguQQYVvAXQ/PNEjB7MmmUzGhvVA9XnoVrk7l1LDwtTi1PP9ydMUBOf0eRy6JDKnvj27vlg3jzo1y+cRc0TOYzGokE3qTf27WsX3dZ3ep1ONSma7GSXl5eTlJSEff9+a/dicbGyEeNFtu6PHj16sCIpiYydO1X5jY/9nuPJ2erk+41JzJvn/d6RspSCPTFsqqkgyuFQWXorWLnSPLsTCL16kdzYCNIAqKxIHPW0EuYxLvZwBBBNK4uY3sZ5ZRkHDypmR6v9iSdkEoawjlY+PTSd2ee3Z+T06oZYDtNEZEeyptJSHJqGFgxLIKix7IeVsGNVRRQwBFjDYeKoIZHU1jLvsVlXZ7ppN3s2DBlSxpnHpBFJC0OOtmDv4sXmu/4e59Wz0q986w7gWlogIaGtD2v+z6o0PtNdM1FLItEsIRf4uXKU9SoNX+zbpxYsPsQYYFaVMpoCoD4z07zMt7ZWLfI8xnPRsmX0ABg9Ongb163r0ItphEGDBlFZWcnxxx/P2X/6ExuAg6++anywyYJWIiNZXlPD0GB7PD/+2Lx0zgADBw6kbZlolF0zCVx67d1LRc+e1rO7OsrLFVlQIE1OD4wZM4ZPAPvmzeZBtI+fd370EXYg6eijg7MPYPly1RtsEQMGDGBZYSGuCROMr6Fuo4GfGzWN9KOOCv46vvmmyqJaRFZWFqPvvx+A7Q8/bGwfGAYu6zSNrKwsVR1hFSUl8NxzHfq/zTBx4kT+/e9/80FLC9Hbt9NkxGxeU6P87Ll5uHEjuFxsdwdxQQWo33yjeDEs4IgjjiA9PZ23Fy9WmwNB+Lnm229pAMacf75123Q8+6x/ZmMDtJ54IgAHX3nF2D4wDqLdc+KePXuIjY0lyU+lVht27YJ//EORiBrAZrMxZsyYtsROG047TRE1Ga099PHs42ebCHVunemg8MUXKgD5vwwz/Zn/zb9fow6qmUbhA8mPq/+ZPl1kwgSRUaMsne/RRx8VQFomTxaZOjXwBxYuVN/zww9eL+saf176iIuU3p+u9XhtYqLA7A62J3FABKTl0UclKipK/vjHP4qISG3PfvJpzHnWNVB1XHmlSFqaxYN9cO+9yqhrrpFrr71WFoSHt13Lxx9/XADZuXOnaJrIEqbKDxzh9Vv8ash6IilJ5MYbLZt10/XXSyuI6557gvo5b7zxhgBSc+65Ij16dDzgzDNFnnyy4+u6n7//3vTc3hqXTwogUVHF0hoZozS/XnhBvTltmiVbTzvtNBkyZIjSN7z66sAfuPJKEbdml7cGb0d/PH3ccSIGuqLG48klOTne7z3APdKKXV4A+RMXWr8fg/SzF9zjJptIgZu87NNwuv9/rjwG0kS4xHLI+v2nw4KfvfDFF14Xa1Tmvrbx2b17+1thtLT9f5t270UXyd7ISJk8eXJwNnr42QjGPrxUIFXAJZsZLP/ldO9r43SKNDWZnjM9PV3uPvNMdTJPnTkzJCYG5+f6+nZj3Xqjubm5ch65IiAD2SJRNEgsdfIVvcUJcjRfBdZBNoMfPxtfv0bRtAT5YtgwkbAwpWvoi9ZWpT/p+TU33SQCsieQJqQRAvjZCC6XSx5JTFRGFxd3PKCuroNOqxxzjNQOGCCALFy4MDgbExNFbrrJ8uEOh0MiIyNld69eSuvbF62tSle1oaHtpQMFBSIg35x4YnC2iQQ/nkWkvLxcMtsmugc6HnDoUIdru/C000RAKoz0HgMhSD9/9NFH6rl7ww3KxoKCjgeVl3fQs2ycOFF+Ann22WeDtzFIP4uINDU1yU+aJqUpKUZvKh3Uurr21yorRUCezMiQE044ITj7TNZhgbB07lwRkK3nny8iIsXFxeLUNb/37xfZvNn7A26t0Psvv1xiYmKUVrNVBOnnm266SSIiIuTAX/9q7ueCApGiIq+XivPy5CeQ3bt3W7dNR7DztoisX79eloHsN9JbPXxY6fF6zjluP8vjj4uIyJlnnikDBgyw9mUW/PzAAw8IIEWe16WkRH3uwQc7fmDPHqV36wHnv/4l+U7WrAAAZYtJREFUAnJfIO1rI4Qwb/8awe86qJ2H0W73OFZy78Hb4eyz1Q70wIGWd1Dz8/NJS0sjvLo6cP8pmBJFGPWstWVt3ZmFjFGjsNu/QzHhtqOWRBzYKV2/nqamJqa7ez8SXLWccmGidQ1UHZ1p2vbJoO5sbUXcLKoffPABo0aNok+fPmRnQ2+K2IV3KZulEuQQbOw/aBB7gfef2tGhx9IfioqK0DSNuOZm4yz6hx8a9/dZIH7xzloeA0BT01IqHD1UxkbP9m7c6F9P0Y2ysjKy09PVvWslg+rBHufvumsa3L3oDJqBNXO8ZXiMs0caJSXe741nJZvI4BrgUe61XtLdiXtx0R7VPzmQ0cC7qH5TZZ+aMgXYw0nAEqZymDjr95+nfWDdxkmTcJx5Jve7/+kqLWur5KirayeDdrilh7yqHsrKqLDZgiNI0m20zHitYzSwHyinjAwyKfW+NjabaY9ka2sre/fupY9e+mV1XgzGz7Gx7ed1S188+eSTHETddElsoYlo/skfOYEiriSP7zjBWg++Efz42bgCJoopU07n4aIicDjUPOGLsLCO1Rdr1+ICes6YEZqNQY4VTdPYrJfpvv9+xwPi472zViKwbh3bY2Pbsg9BwY8OuBHsdjt9+/ZlYbduKqPhW9kTFqbuA4/Wmu3vvqu+6phjgrMNQiJmS09Px9WrFwWpqcaZzbg4rwnW5XJR//33HLTb6TluXGg2BmHfMcccQ1hYGB+AmsyNbExP935muFzYNm5kLVjXaPW1MUhm0sjISFb360dGVVWbZJ7Hm6qs2VPmxp2JX3roENnBTtwhEPwATDrnHH4KCyPuq6/48ccfyc3N5TO9hD8lpSOx2Zo1kJLCuv376d27d3CZ6CD9fNtttwHwyK5d5n7u318tfnS4XCQXF7MnNZUcxSgZHEKYc4YPH87yrCxSyspw+VbNxMQoPV7POcejBBlUBtUyMZuF8XzRRRehaRpvvvlm+4tZWarU3+gaZmaqLLUH6pcuZT+Q6fO6ZRt/J0n6HWC8ED+NT3BgV01OERGqBl3XfPniC9U3YyKxsXXrVgYPHqy0kawGBWDthvQJUPtPmYLTWU5UlHfZwWNhd0NEJJVbtxIWFsY0nYSiri44rT9PG5ua2sl5goFHgJqTk0MxoB08SPGUKaxYsYJ+/c4hNxdai8vIpJSdtJdEWC5B1m0MYlCXlg6gFEhuKOzQYwko8o6zzuqg9VNUVERGRgb26mrTMm9T+yAI6YyhQCLwI+VOd4CqlzAfPKj6D//+d3CXQRmhvLycgd26qUVkuoUeVA8/m7Fa63FxA8fwPRD9w6K2azZvnncLTzQNvMN5HMdCsrPbx5qGi3GsYiXJQAS4NyUslXR3YvL+8xt6gDoM2Ad8ygl8yZccT5/sE7Hbz6MPmxkIfMGpwd1/nvaBdRu7dSPsww9ZbFf+yaC9J7q1Va2/5iQ9xh081sb+27axVFpKicsVWoDa2Gg6nn37O7t3h7AwPfBYo6RxtLL2a9PQoAaPSdnw3r17ERGyrBLH6TYG62e9T9O9aG1oOJ1DNmVkEudwBmlcxuv8AzuvcRoQxAaYkX1gaKMZa/Ndd53Lsvp6DmVmGuor89xzHTRGY7dtozgigrAg+ve8bPTjZzNEDBrEurCwjouxxka4/XbvUs3Nm+HgQeYfPMj48ePpFmzvVAh+HjhwIG83Nhovun/+WUn11NW1vbTr9ddpBQZdcEFwtun2QdA2jhkzhtcbG2HzZn7wJTx5/XVV8urG+++/z7ADB2gYPjw4qSNPG4Pwc2JiIpMnT+aD5cvhyCPBHcC3obFRPVvWrGl/bcMGIhoaWB8VFTyJk25jCPO287TTcAENvrqya9cq6S1PsfilS5GwML6pqws+uArRz+Hh4RSOGUNWTQ3/vuEGRIR17p5s3nuv40bU0qUwaRK7i4uDK+/VbQzCz9nZ2Vx11VU88e67NI4b19HPTU2KXNKjPLnx55+JdzqxHXFEcLZ52hjCpljfP/8ZF7DT94G7aZOaPD37jZYuVRtRbkKj0tLS4ANUP+uw7Oxsjj32WN58801cnqSW556r7PFlsP/sM/Dh47D/8AM/AUNDHSshzNu/JfweoFqE0UL8ZO1LqgdOad+16d5dDRC9X3TRIi9SIx0iQn5+PsP69VOD1EqAqn+Hj5alIXRCHvcAGe0mtJg9e4nXYuii3KWEhWsc3r2bSZMmKTFtP7Iplm0MRZtJFynOyiI3N5di98vfLVsGwGefnU1xMdzNQzix8zaKLbjDYtyKjVauoRtvvz2AMiDTIyDwCpC2bFF9Gz4kKLt371bU8Pv3exMkWbEPAkyMnv+yA5OBHzkU7RGg6ov8TZvUpOi+jr5wOp3s3buXvnrWKph7saamwyK7IxdMPxYQy1DK+dede9r6Sz111btTzXm8R/+I3cyZ0z7W+rKTZGpQXR79gXbiqIAZrSD97Il1pakcIJmBaEA28BJ/4jFOZBG1JfNxOt/nFNsCANb3mhXc/edpHwQ9VoqdSgO2l1u7VseBA3D3wI94dPpC76oHEaS0lF3Nzbz3XnpQVQBWbPSs4KiqghdeGI56rKylPjGDnuxFczrIzYXs2Gp4+WV+nmvMxFjmJnNK1xffVjOowfrZJ0C95x6odp0GwIXkchP7qCScOTiBI0LbgPC0D0yvoVEFzPTp0+nWrRv/jYqC77+nyJcddu5c1ZPpxu6dOxlaVcWBYPs6LdpohpycHN52OFQ/umfPVVUVPPGECkp1LFoEwEtFRZwQBHunl41B+nnAgAH8VFyMSw+uPKtJli9XbOTuheWKFSvou3s3lbm5RAfbq63bB0Ffw7POOosvIiNxAoW+N9mLL7YR3bW2tvLSn/9MXyA9WCbpTtg4c+ZM1q5dS90JJ6j1hGcPZVUV3Hefd2+wW/KsfuJE7BYI4AxtDGHeHnfqqSwFnPPmeft5yRK44w5VjeBhY+Pw4dRD8AFqJ9Y4addfjxMY6Nb0LigoUG889ZTytY5du6CwEJk+naKiouAkZkK08e677yYsLIzPo6M7+nn/flXt5aE1W+cOqG3HHRecbZ42huDnWVdeyc+RkUR98om3nxctUgzLnsHawoUqYxkfT21tLeXl5fTR15lW7IOA1/CSSy6hqKiI7z3n6LPOUjvwvoH+Qw8pX+vYtYvYvXtZhCLTChqdWW//RvB7gGoRvgvxiRl7GCYbSbtsVvtBeiBSXa3+7HbDQK+iooK6ujpG61lDK0GBvuPsk6kzRESE+l53g3eeW+9q377PvRZDka59FLpc2GtqOP7449Vn9R3lUDKonr8/WAwerIKok04iNzeX3e6XNwApYX1oaupDNsVcycu8yuXsJpecnCBLkME7y20BZWUZlBJGBt4kJ20Bkomfi4qK1M7n/v3BZVAt+LnjZskUYCsZoxLbA1Q9G75xozqXSZBcWVmJ0+kkRw9ordyLPn72XGR3VMfR+BpVvjKk7GtDUqXuqPOcd0V7wNDQAJO0FQCsoBoY5PWZgBmtIP3sde4cjW0MZCAFwJVEspgR/ADAFTNmEBMTwwmuKkri4vihLC/44BSCG88eaIgfhQvIwDtCz87G2M91dWiHD7MHqK09wrgKwAwhjOfLL49l8OCBnHTSGm76RwY2cXHf1XspLoZubj8//XaK4XfrAWqKy6UmWSsbO6H4WQ9Q3XNcSQnspC8LOY7z2c004H5aqQcyMiaFtgGhIwQ/h4eHc8455/CgO+hbes013gf4+HnRnDkkANlXXBGajSHO27m5ubwHSkLDM3Oln8fTfwsXUturF6WooCdohODnAQMG4HA42Dd9uirx9Vhg+87bT//lL4wBUkPJnkLI4/miiy5ic1UVO3NzOba0lObDh71tTEnhnXfeYfz48fQrVtu2tlDKuCEkP+u++jo+Xm22v/aat32e5wUcX3/NJmBgKCRO+rlCmLfHjRvHhxERxJeXe2fufZ/PVVWwbh2l7oAg6AA1RD8DTD3nHJbY7Vxut3Pc0Ue3B6i+87Z7M6d2/Hjq6uqCz6DqbLBB2Jiens748eN5u6nJkp/t337LRqDnqFHB2aYjRD+Hh4dTf8opZDc2suLpp71tNPAz7nWtzrY7zmppvEU/n3766cTHx/Of//yn/cWePZVU0htveO/Em/h5S3o6CaGst0Pw828NvweoQcBzIf7TX9y0nbM8AlT9hqmqUn8pKYalODqD72B9EFjZsQ0LU7tsVmVc9KCoe3e08HCuvPJKPv/8czZ77GqfU1LC+sZG+icnc4veD6kHqKFkUCdOVAuVUHaggXlFk8nNs9GzZw9KUAFTMxDvULt0t/M4gsYcVPoypL6wm24CI7Y/E+Tk2CijB4m0EEc7s25bgGTg55aWFkpLS8nLyVGprWAC1PBwpY951lmmh/hulqSlqV6fsPSm9h7UYcOUkRs3KhtNKMz1oCBD3+22EqBOmaKyxr16dXjLKHDcwgWUAqdGzjX02ZFuptzuu1a2sfcCjJWV1BNLPqVA+w6jpYzWnXfCv/7V4WUzzVbP94qLFdP1QLYBl3M68SSjIu/7r76ay2fPZhpQYHU31gjh4arkJ0Dk42vvyHHD2Qdk0N5T13Y99HvRE27/lrVl2hUslUkfdZTahbZaFuXGmDFjWLt2bZvUQbcmd+CJ6s8vb+nOxRd3DJD1ezGxuVn9DisZmPvuUwuBYKD7zZ1Bzc4GJ2HMYAELOI69RPMK0YSF9eaRR9K55x7j+8USwsNVFufyy4P62KOPPsprS5eyLSmJI3fs8M4WePjZ4XBQ+9//4gJSzzknSOPcmD5dBW9BZmpycnIoB/ZPmKBYQ/Xshc7DoN+LTU3w/ff8HB9PSkpKm4ZgUPjHP8wZRk2gMwV/HhenfO1ZQusxb1dVVeFctAgbEOn5PA8G4eGq1PW660L6+MFzziEL2PXcc142rnY6Of/882ltbeWuMWOQzEwlmxEKZs5U2bEg5q0RI0aQlpbG5z//rCSd3nhDVYi57QPa/dzYiG35chai+gVDwjPPwNdfB/2x8PBwyqdO5ZDN1tHP3bu3P5+/+QZE2OJ+dgUdoIaHq+o4P/rQZoiMjKT7PffQy+nk7Lg4tm/frkpDfeftRYsgK4tCt/RL0AHqSSepNUCQUkkDBw7k58JCS35O2rKFRaHYpuOll0yrugJh2r//zSGbjYr776fFc87xXIe5/Yw7w6sHqJZ738PDVYLnrrv8HhYTE8Nxxx3HggULEM85+uqrVaLAk97fdx22aBEV4eHEhsK8DnD66Wq9PnBgaJ//DeD3ADVUfPmleqAP8sjs+GZQTYICPUDto2tvWdWQuuoq1QhuBbot7r6zm266ibi4OOa4V/ZVe/eyyOEgu2dPekVEtOuA6X0Boezo5OYqwfIQtJk8pUVAYy+5NAMnATk9rwJgBBv4iUmUohbMIfWFHXUUnHyy5cPnzIFyTX3RESwjj0LvAMkg+CspKUFEGJCq9GhX7U41DYoM8Yc/dCRN8IHnZklR0TjCw8PZduCAKmVqbFTBwfDhiiDk4EHTbFR5uSoVTdV3+qxsLmRmwhlnGG5izJljVNV+Ll8TyVGOn0hNdnT4zAWoC1LwfaVXdnU8K1nNQFyApqlxZrmke8IE5WsP+NNs9b7/IJ+BpLOXRKK5MXIsLrv6UZHV1dx85plEAI7OPhhOPtnvYtHI3uXLB1MG9A4v9OpbnH2uQ/k5OVltbujZIjdhVimDAW+tv4AbPD17qgd8kHp1o0ePpry8nCp3Vl7vl9Uz5VWk4HR2zOKWlpYSGRlJVG2t9U2uESPaeowsQ1+4ueep9ooEjXriqaY3toh3mD79KdP7JShMm+ZXq9UI8fHxTJ06le3HHksfh4OGL75QbziUnxsSEhg0aBApKSlMOHSI2j59TJ83AZGSosZLIC1uH+iL+7XjxinZDV3/T9/R1+1ZvhwaG3mrooLjjz8+eP1OUCQtQQZmo0aNYuLEifz9ySdxnH++6vXT5X485u21a9dyPNAaGxv8veSJ0aODa+fwQO8bb6QMiNQz0Q4H1NTwTEEB8fHxLP/hB3ILC9GOPz60/lNQJYGDBrUzqlmAzWZj6tSpqoTxmmtUOaFOiqUHLrqff/gBW0sLiyA4nVtPZGVZ1vD0xVEnncSbLheu995rvweNgr+kJNZoGmFhYaRb4VzwhS/pUhAYee+90KsXx+/aRUNDA2XFxeqa6jY6nSq4Ou44itwkkUEHgfHxar6xoKXuiYEDB1JVVUXNeecF9HOYw8GS8HDSQkxGkJISWhIEiOzeneoTTmBmXR2vPvpou40GftbH86pVq8jLywtOa7RnT8MWPV/MmDGDkpIStnkSsZ18suLz0DdL3OPZ08/yzTfMdzgYGWoWOipK+TrU+eA3gN8D1FDQ1KQmkVmzvG8Oz5R7z56mmnT5+fkkJCSQrItgWw1Qd+5UAYcV6Fk7d4DarVs3rr/+et577z0KCgr44qOPcAFZffuqwa3v/nQmg+pwqIVxCKlN39JP4Qn2kcRULZbr/5JBTIzKwOxH/a6Q+8L27VO+0699AMyeDblTVCDyNSewQRvJy8+3tgdICQltO1giwkMPPcTtt98OQF/3NfzXuynBLXI3bgxKCy46OpqxY8eyxlPfNStLBagFBSqKMVkg61mrJF3P1UQr1QutrSqzVljY4a3Zs1US3fM5YLNFs4AZxDtb6X/wc6/j8yhkHKuUDQ3tfZURNDOS9axQ6o6IDG3zuaVyy9JS1afnob/qT7PV971tKJ/e0O0dJjd/h22AO6ipqCDP/dA6OtReMB0//6x0PE1gZG9T0yDKgKHdyr1Ztmtr1UW32VSm6eWXAWh06yuWMbXD+QNu8DQ3q3MZCaP7wWj3vLfeTRCnB6jRNNJIFNWom8M3i1tWVkavXr3QKiutB6i7dikiGX233womTVL3hnt33bMiIYomDkWm8tprp5Kff6rp/RIUvvlGZctDgHbuuewHmp54Qr1QUwPh4fxYW8u2bds45eijmWyzkXjmmSGdH1Bj5LXXrD9b3MjIyMBut7MsNlbtvP373+02QvtibNEinDYbn9XVcdlll4Vm47ZtSjvR1yF+oGkaDz74IKWlpbyflKTuZz3b7rFpt3bNGo4D5Jhjgl7Ue+Hzzzv2nVlEWmYmHyUnk7ttm9KxPnCACuC9LVu49NJLSdi+XV3XUHv+QI2RZ55p07C2iiOPPJKSkhJKcnPVs073s29mbeFCHHY7KyIiyNPL6IPFxo2qV8+z1NkiLrjgAt6IiMDW0tLuZ8+yShH13DrmGIr27CEzMzO0Ptl33/UuaQ8G4eFwxRVkb91KLlCg+0J/YK5e3eZnXUs96AD18GHVXx3EGgJUgAqwuVu3gH5utdnYk5sbvM6tjtWrlaa5J3lVEMh9+GGigJaXXlIvmPhZH8+rVq2yXt6r49VXDauwfDHDXXK/YMGC9hfdfmb+/LbxDLTbuHo1Wk0NC0UYOXJkcHbpqK9X/dVLl4b2+d8CzPRn/jf/fo06qF6YP19pHX31lffrFRUiIPd0e86vhuj06dNl3LhxIn/7mzpPS4u17501y7LOqlx2mTr32We3vVRZWSlxcXFy2mmnyamnnipZWVnieuIJdZyuH/Xpp+rfq1db+x5PHD6sPvvww5Y/ouu4GmlpLmS6/MSEtuP221Ll31wTnDarL958U518xw7LH3nnrbfkHpADp5yiPrt9u6H+7O7duwWQhIQE6d+/v9R9/rkIyDEs7vDb/OoqBuNnN+655x453lOUdMUKkW++Uf//wQemn7v77rvFbreL64wzRAYNsvZlFv3sqdeaxDpxgDzAZK/r8CzXSzPhIsccI3vsOW2vj2OFCMgZTBHoIbj1Ry3rUep+3rmz7SV/mq2+7/VDaSI2EKX0YWtqRLp1E7n2WpE33gj6HjJEAD+b2fs88VIbEaEOKioS8dTI+/JLdVBWlojLJdtmzxYBiY+Y73WOmBgLYyiE8SwiUldXJ4A88Le/icMeLk+E/cnju10ef976xdOmTZMpU6aI5OWJuPUCA0L3hYefOw23PmEgjV/LCGE86ygsLJSHQZyapjT2RERcLrnzjjskLCxMGt95Rxn1zTchnV9EQvaziEh2drZccMEFIv/4hzrHjz+qN5qb1X3Z3CzNaWmyWNPkoosuCt3GEP3scrlk2rRpkp6eLs4jjxRJT1f6oi6X+t0i8vepU9W5X3stdPtElJ9Hjw75438880xpBnFdeqmIiPz17rtF0zTZsWOHyBVXiERGilRVhW5fiH5et26dADJ37lwRt26jzJ8v4nAoe5xOpSebliYrUlNlhJHurFV0cjxffPHF8oPNJs60NOXnw4fbtYQXLFDnfv11OeKII2SaRZ3wDuikn2XPHnGFh8srIP969lmRfftEamvVex5+vvbaayU5OTn484fo56KiIgHk5Zdf9vZzQ4N6znj4+YeEBJk5c2bwtunognm7MDNTykGaqqrUNdTnRw8/i6h1LyCPu/VQLSMIPw8cOLDj9SgpEQkPV2vx1lb1W3X96iuukNawMOkGanyHgk7M278m8LsOahfjyy9VOZRPCeE7C1TJmHag2m+2bOfOnfTt21dJzHTvbqmMAFC7LxZ1Vn0zqOp/e3DXXXfxySef8OWXX3Lqqaei6cfp5+1MBjUmRv1ZtNG3rNIXxeSQZ1dvzv6DixSquebelOCJkTwRAlHE8DFjmAN87u5bWfJigWHp3z//uRGA+fPnU1BQQLw7e6dnfT3hN8kcjJ/duOOOO7B5ZOLHnZFF2LHT2G9Lo/gxA00uN8rLy0lPT1dZK6uZfIt+9swA1jCS70jjApZjQ2Ve+7CTq3hJMTJPm0aGq4Ru0SoTNt7N3buSfOBY9GIPy8l53c8eNpplDD2lbXQU0ZsWwommSaVtExNVz21FRbsRIZaiedno5xqa2bsvrBcJLS2wfr0qEf7kk/Y39az2nj2wYwfVGzZQCTzzwrQOciYBx1CQ41lHfHw8/fv3Z826ddizMjh9fJlHO6nGebxLGRnEU+f1G8vKysjIyFDlolYlcQz8bAZ//cdecJeg+rtfgkII41lHbm4ub0RF4dI0+Nvf1IuaxrdLljBx4kSiXnxR3ZehaE7qiIlRz7MQbMzJyaG4uBhuuEFVadxyi+o7iIhQN9tbbxFRWcmL8fE8+eSTodsYIpGTpmn86U9/oqKigqUnnKDG72OPKdvcTHMzVq6kOjoazj8/dPt0G0P0M8Cg447jn6Cyf+vX88HHH3PsscfSNzJSVQlccUXoZdwQ8ngeNmwYCQkJqsz3yiuhb18lIyTSXrXx6qtQWckTNlvo5b3QOaJF4LrrruN2lwtbZSU8+qj6vfo5H3xQ3aN/+APFxcWh6XfqNnbCz2Rmwo03cilQv2yZWqslJKg528PPbUSLwSJEP2dnZxMVFaVKVT39HB7ePnG6/fyISPDswp4IYt42Q8n115MO7L/jDnUNda4EDz9DCARJnjZatG/GjBksWbKERs9KnqwsxXny+uuK0bxPH9VW4vbz8kGDaImLC73aQPfz/+8kSZqmzdQ0rUDTtJ2apv3Z4P2Bmqb9pGlas6Zptwfz2d8cRFSAeuyxHXp27rovgloSSGE/6xjJFbzcoSSspaWFkpKS9gDValAAwTGfGQSoALfccgvZ2dk4HA5OXbxYlWtCxwA1lB5U3UaLg9qohNETA23b6eHcq0rQamrUwifEHp82eBJZWcTgwYM58cQTud+tSfjDa9vddgtLmcqFvEVDA7z6qiqRa9N/c3+HUYDqd5EbAsNdYmIi97kJNlqxsaYsDSd2fnRNJHPlR3zxyBbDz+lllSHdiwGuoW8w+SL3kQucwIUAPMYdtGCnJLoJfvwRTYQ3/1pITo4KUMtJpZRqoL2szXJwYMBwZyQVpZcN+77nIJx8bQgHckbCpZe2l/OXl6sHTGqqtXJofwjgZzN7k4aovlXnCy+oMbFuHfzwgyK32LABl6am9VsHPEv65s2Uxadw6aXRHeRMLNsYwiKijSgpI4PeEWW8+SbcE/4oT3IzT3ELvahgdOTWtjJ9EaGsrIzePXqoEjWrJb4WF7T++o/bIALnndfWS+nvfgkKITJWguoBTBg2jI8yM1UZ7uuvUzN7NmvWrOGifv0UAdPttwfVV2hqY2cC1NhYVZq5ahVcdJEqMXQ4kIcfZq3dTvK55wbX/2VkH4Rk44wZM8jMzOTR779XGoWPPab+u2AB9fPnM76pibXHHNMuzdUZGzux4D7iiCN4EGiOjaX10kvZkZ/P1NGjlb0i8Kc/dc4+UPNikDba7XaOOOIIfvjhB3WfPfqokle78EIlm9HSAo88gnPSJN6vrAxNMkNHJwOXcePG4Rgzhq8SEpDHH1fkZEuWwPffqznyT3+i1WajvLz8fy9ABbS//IU6u52ZX30Fd9+t2P59/NwmVRcKQvCzzWZjwIABKkCNiIBHHlF+vuwytaPp9rNj0iS+OHSoawLUTgRX/S+6iHeAtLlzVSD4009eftbH86pVq9A0jVHB9noG4eeZM2fS1NTEt99+6/3GvfeqoPSqqxTR24EDbX5+JjKSESNGhNaTryMEP/+mYJZa1f9QQouFQB4QgVL+GOxzTA9gHDAHuD2Yzxr9/apLfLduVWn1f/+7w1uaJlJIb3mXc0RAbuGJDiVhjz1WIIDAm7IqcrJUDD7G+nc//LD6bndpkl/oJY4Gds6fP19OHDZMWkDEXYYqn3+u3nzoIfXvxkbrdnli1ChVGmEBZiV0einnwYwh6h8FBeoPOlHb68bOneo8b7wR1MfWrl0rgNRHR8sLXC0gkkCNl5/hbMnLy2v/0N//LgKSEN0SXHml7gMrfvZES4sISBHhbd/1CHeIgPw1+Z+GHxk8eLCcftppyqhbbrH+XRb87Fu6HUaLlBMnX4CczyQRkLtA+kTEiGvoUHXQf/8rJSUlUpXaWz7VhrjHSon1slQdup/ffNPrZaPSbLP3/vvMHlUeVqP8LGPHqtLZmTNFumKOsuBnI3sX/+lPIiCOuDj1+XPOEXnpJRGQ8iHHykZtuBSRKYfdF35mxCehD5vRo0VOOinojz322GMCSNOpp4r07SsiIuVDp0uFrVfbDbHsmrfajq+urhZAXr3nnuDKLU387AuzNgKvknHdz0880faSv/vFMkIdz25cdtll0iclRaRHD5G8PPkCBJCqSZNU2fmhQyGd1wujRoXk53vvvVfsdru0traqEsAJE9TFyspS9yXIqSBvvfVW4JP5g0U/m+Gvf/2raJompT/+KJKQoM41a5Y0pqVJJciCjz/unH0iwT2fDeB0OiUlJUVenThRBOQ7kF0nndReJtgVCNHPDz30kACyf/9+VR59/PHqt6ant/3/tmeeEUA+7sy13LGjU34WEXn11VclG6RV7y858USR7Gw1fg4fbitlfeWVV0L7gk6OZx0vjRvXPhFdfbWXn10ul0RFRcltt90W2smDWId54txzz21bw7icTpHjjuvg513//rcA8t5774Vmm0iX+FlEZGJ6uhwOCzP0s4hIY2Oj9O3bV0aHUpKt+7mhIeChzc3NkpycrNodfOF+NguIXHONSHi4uC67TOLj4+W6664L3i5PhDief02gkyW+44GdIrJLRFqAd4FTfYLcfSKyCmgN9rO/Nay47z4Azn79dd57z7t0MjtbMVSmo/RHdTIQPeszbx7ce69OLNOH5Oa9LC3oaZ0VMphdJx8WX0/MnDmTL88/n3Bo1wT0zKBGRISeHQpi18ksG6brmyZFu4mMios7NuqHiiCuoWdJ4Omnj2L8+LPZ3NzMsEilX6bLZuh+DgvbwIgRI9pPsH8/JCby/Mvh6Ju1dns70Yqp30PdXQwPp5po9tAKqNR0DapUe+zBhYa/Lz+/jEWf9ICGBtZWBMFoaMHPRlnJl7mRWcA8fmINMH/gVApbGtigsyJu385V55xD9/1FbIwqJSxsAJqWZb0s1dM+6GCjJ/uxbyZx9mxlc3a2yv7e+mQm8xZ4/M60NJVpLikJWnrFr41+/Gxkb7qbmdCuE0xs395m4+GCMnZIHxbTixjgY47h65ZTgyf20RHiDq1OlFQKSupGhHStkp7shbPPBpuNyak72o7Xybqy9Xkn2AxqkNl8w9cN5hh/94tldDJbMHToUAqrqqi9/34oKmIM8I3NRvefflIltUGyLJvaGGIG1el0Kv/ZbEoiJD5eVRl8/jmrZ87kM1R2sNP2QcjX8NJLLwXg5UWL4IMPaAb48kuqnE7OAEZMmtQ5+6DTuoQ2m42jjz6a+8vK+HTIECYAuV9+Ceeco7JZXYEQ/XzkkUcCsHz5clVJ8sknKjNUUaGy5k88wXL3fdglJb6dyAqdd9551CUlcade0vnVV8rW//4XYmJUxp8QJGa60EaAipNO4kLUbhMvvaSy+m4/7927l6amptBlXEKs2hg0aBBFRUXcfPPNDB02jOb33+/g501u5uMuyaDq5EEhIvOIIzhFH3c+fgZ46KGH2LlzJ4+EMn5SUtScZsHGiIgIzjzzTD755BMafMsCr7xSPfNASUWeey7F117LoUOHQidI8rQxBEKx3wzMIlf9DzgLeMXj3xcC/zI59n68M6jBfPYqYDWwOjs7+5cN2TuB76ZMkXXR0ZKamip9+/YVlwdBydy5IgtsM2ULg0RATuQLr6yP2sX/pzsrVCGHiZbHudU68UtRkchHH1nbMd+/X2TGDJHycuP3b7tNpaQaGkTCwkTuvFO9fu21IikpFg0ywLJlIj/8YOlQTxIdw+xierp68eWXO0fe5AmXS52rqCho2yIiPpTXQWrjUyUmRmQ8P7f5OTr6sGiaJmeccX9bxmV+9OlS27O/td/qiT17RBYvtrRz54vl4YPlGRD4UUDkMW6TFsKknhj5z+tNXr8vOvqgANLXnWW9POIt6xmitWvVXwDMnev9m9Mpk58ZL7fzoIRRIgcOHJBwkFsHDxZJT5em2bPbyJ6OAbnhhhuCvgYiovz8zTfm97+JrUY+mn//z+273CBit4vceGNodnli716RlStFmpoCH+uBw6Wl7QYOH66MvPVWkehoaSBKHuM2mc40qcAmeewU3yqOoJCfL7J9e9Afa2xslJ49e8pTAwcqOwsL1bwCIt9+K5KbK/KHP4iIyJ49e+Sqq64SQLbqWSir49zlUsfq5BMmsJRB/dnt5y+/DPr3+kVVlbqOVsnwfLBw4UIBZPHixeI880zZB1IbHi7yz38q8o2uwO7dQY0VX9uWLFnS/mJmpsjRR4uUlckf/vAHSU9P93pOhgSXS2Vd6utDPsVRRx0lw4YNE/n5Z7kVZCqIBpKRkdE523TU1oqUlSnyoBDx/PPPCyCDu3eXGSCybVvX2KajsrKdkCcI6MRnDz74YPuLmZmqmqSmRkREbr/9domMjBRHJ36/uFxqXgxxrOi45ZZbJDwsTPaCyCOPtBGfiYg8/fTTAsiuXbtCO3lDQzvRViewevVqAWReWJiqEPPAsmXLBJAvQ52LDh0K6T5899133etT9ffdd9918PMz7kx5ZWVlaLaJeJGUdQZ6pc4+Az/n5+dLeHi4zJ49O7STt7R4nS8Qvv32W/PM8q23ikRFtfn5gw8+EEBWrlwZmm06OjPWfiXATwbVSoB6tkGQ+azJsb4BquXPev79qkt8RURcLnnzzTcFkO+//97rrV1HXCCVtjQRkDPSfvRa8Kt1900CcZLKXhGQG3km9MVjZ3DxxaocQkQqBxwpGyLGiKaJfBQ7W+p69PkfM8NvCV10tHrj3ntFXn1V3a67d/+P2GW8oK2Qu9z/ePeVQ3JxD8WYemrPn+Vvf1shgEREfOQ+1iV76SHz7Bf6ZSq2vDlhEc89WSR2EHhKQOR1LpZKVGAwu8dCn9+nHpBTmCMCMp2FXW5P+3eZ//ZT7XbpFRcnrqlTZd+AAXK3+4CP3nhD9u3b1/UGBWmn7ue2kh8Qeeyx/zG7OsDlkgZNkwa7XeTpp5U9Z53VtqFzDc8L5Amc9YvdZ1bw6KOPynDdgLlz1UYYiNTViRx3nDQMGSJnnnmm2O120TRNzjnnHGl9/nl1jM7I2EWwtEH0xRfqjRUruvS7O4sDBw5IdHS0XHbZZfLt8cdLHMi7oZYndjHKy8slLCysbSPpnXfekXfDw9UGqCiW37M9mOT/N/Hoo48KIHveeEP6gEwdNUquuOIKefTRR/+3TWvDtm3b2oKDi2Nj/7fN8UJ2drb8wb2pJCLq+exRgjp58mQZFSJbdVejoEC1Us0xGM+TJ0+W4cOH/y9Z1g6XyyXDkpJkvM7I7oG5c+eqDbutW/9HbdLvv0svvVRsNpvce++9aqL08PMtt9wiMTExnd906gL88MMPAsjHPn7W2buTkpJk7969/yO2OBwOSU9Pl6lTp8q7774rZWVl7W96rLdFRM4//3xJTk6W5ubm/xHbfs3wF6BaKfEtBTzr2TKBcpNju/Kzv15oGmeeeSbx8fG89tprXm/1HtudHlGHYNAg/nt4JrOHrG97T5W0FgJ9yEWVmewm1zrxS1MTLFigas06i9xcmDaNefPgxV3TGdqylm5SxdDDK1hdlRu8GL2O3btViYXDYelw0xK61lYYN05pc3ZliS+oJvolS/weYlwS2JPtqNLDc0fv4I15ETBmDJ/8lEZ6uiJIamkZAcBAtpHGPhY7j+KeeyyWGOpoaIAPPoAdOwze9I/rbsnFSSa4WXD30YPlTKaJSMbu+8rne9X5M1FaYeX0ss6Su327Ypu04Ge/ZDMtLZyfmUl5fT3zVsYQUbCLq7BRkzGY0y++mFSd7CsUfP210iGzCLPfvm+fBv37K1ZDHV1R4ltfr1gRg9QZRdOoTEhgSWQkiysVIdenH7awvlqxCpdGpAK7AFUKHLJmMMCmTfDPf1oez5645pprKEtKosFup2juXJrDwpR4eXw8rj59aM3P55vFi7n11lspLCzkvffeI0wf51ZZfEHNN//9r99DPLVOTZmMW1sVUVhXzDGeqK1VZDIbN4b08eTkZC6//HLefvttHty0iTC7nVM6yzjri9WrFftlq2+Xjn+kp6dzySWX8NJLL/HOO+8we/Zszmtt5Ybly1mzZg0lJSWdL+/V8dZbMHduyB+fOXMmAM998gmFwDmnnMLLL7/MHXfc0TX2HTyomJbXrAn5FP379yfdXUI5oTOkUmZYtkwRyIQwnocMGcKWLW6yvaYmcDrbxsr69etZvnw5s0Om1/fA88+rwdkJ9O/fn2MGD+ZlwJWc3PZ6cXExy5cv57zzzgv95NXVcNttSse6E9A0jUt79WJlSwtbt271ek/XQA25jPa77+Daa4P284ABAyguLubVV19l/PjxLF64UK1H3H52uVysWLGC3M5ooOp49FH1bOkExo0bR7fYWN4B6N6dqqoqNm/ezKuvvsrSpUt55JFHSLPaLuKL/fsVudGPP1o63G63c9FFF/H9999z3nnncfnll7e/WVXVdg3r6+v55JNPOPvss4noLLnd/PmKfTyE8fybgFnkqv8BYajVTm/aiY6GmBx7P94ZVMuf9fz71WdQ3bjyyislJiZGaj1LZh54QO3CH3OM+m9ubpt22dy5Ipo2QOBMOZv3REDGRW20Xla5b58657PPdtlvyMkRmchyEZBnuV4E5ELeDD3joutnddWu1ZFHqr877lAlEl2xazdtmsjUqX4PMcumjY8+WQTE9c47IiLy9V/+IovtdhmYlycQL7pe5zWoTFAeO9uyw5YzqJ30c3T06QJ9vb7nK2bKzrD+Pr/vAQHkTpQebyyHrPs9SD/7y5S/9lqDaFqO3E6yCEgRsTIt8qdO82FZ8bMnAvqosLD9xWXLOmmctPv5X/8K+qP/uusuSQLpE7VJBORanpNLeE0E5PKjXnNnYb7pnGawSKfH8xNPPCGLQNaAVGmaFE+fLiIiGy69VATk45df9v7ADTeIJCUF9yVB+vl/HJWVnZ63i4qKxG63C3Si7N0fOuHn3bt3S3h4uADSp08fufnmm9uygICs7mxbho5O+tnlcklGRoZERkYKIDs7q2Psiy7ws4jI7NmzBZA1XXXdPKH7OYTyzNtvv10iIiIUIZaIeha7Swwvu+wyiYmJkQMHDnTexi4az++9954AMt+jTPaRRx4RQAoLC0M/cRf5WURkX2WlhIWFye233+71+mWXXSZpaWmhn7gTftZx7733is1mk5rKyrZ2o3/84x8CyL9CeGZ1wLRp6q+TuOXmmyU8PFxKiopkwIABbfPOpEmTxBlEiW4HhODn1tZWyc/Pl2uvvVbCwsLax0NDQ5ser54dX7p0aei26egCP/9vg85kUEXEAdwALADygfdFZIumaddomnYNgKZpPTVNKwVuBe7VNK1U07QEs8+GFEn/CnHppZfS0NDAZ5991v6ivuv57bcs5Diad5dTdMofATjvPCc22y4SEvqSh9ohu+2fOdaJN/SdwC6klS4pgVWMo4ZEbuA5akngQ86ynknzRRfQh3shJ6c9g5qSotIfnYUF4hezrN/oc2YAcODnn2ltbWXv009zrNNJbGkpUVGT0ZWbprGUUjLYRR7Z2UFKVnTSzyefPB7YCbQ39y8OP5E+ju2wc2fb77PbdwIZ5FBBNd2QmDjrmbYg/eyPbOZvf4tG5D1eo45bgOE8xdLmiaET+3jaGMQ1DOijdA8Sqa7IoHbCzwOOOYYaoLCpnHpi6c92+lCIAztvLdnjNnE0c+Z0QjMYOj2eb731VsbdeCOjge4iPLh4MbfddhtvLlsGwEkDBnh/YN0670y1FXSCat+yNmpn0E3pY3dmTszNzeXcc88F8N6Z7yp0ws85OTlcffXVhIWFMW/ePJ566ilWrFjBU089xUMPPRS8vIMZOimpoGkaM2fOpLm5mb59+9In2PssELrAzwCXXXYZs2bNYtjw4V1glA9CkFnTMWTIEFpaWijUtZY1Dex2qqqqmDdvHhdeeCHJHtnKTtnYBWuc0047jdTUVJ58+mnefvttnnrqKV599VUmTJgQuvYkdJmfAVJ79OCYY45hwYIFXq8XFBTQr1+/0E/cCT/rmD59Oi6XiyU//QTR0axevZp77rmHs88+m+uuuy502zxt7AI/X3nVVbS2tnLMccdRUFDAQw89xH333cfcuXM7J+ESgp/DwsIYOHAgl156KQ6Hoz02iI5um2PnzZtHVlYWUzqjXa2jiwi7frUwi1z/N/9+KxlUp9MpaWlpcu6557a99v2N77dlWaayRN7lHNmu9ZO5c9VOMyAvvfSSopvu1i34L01OFrn++s4bP3SoyMMPt2WNPuI0EZB/uyVUQs6gLlqkTtjZ3aGlS0UGDBC58kpFSnPCCSIjR3bunDquukpRkQeAUdZvy5Ytshtk58SJ8uZJJ8lyt68Pv/GGvPLKIXefm0vK6SlvM9urzy0oyYpO+Hnx4sUCSI8eX8tyJsrfkp+STx5307p7yA7173+EREZOky85QTZFjAou09ZVfv7xR1nBOBnCJoFnBboJ7BfoBLGPjquuEglyF9rQR3/7m+rxFBFJTFT3Y1eR0yQnq6xhkNBlWeBhWcMo2U93WcE4KaS3wKkC/Y37LIPF4sUh+dnzOrb18II8dMIJAsgAPRPtKT9SU6Ou7d13B2djCH7WbfTsS72dR+Ut+yWdz9wbIUQ/e6KyslLeHz8+aIksSwjRzzocDoeUlJSIrFolcvrpIRFrBYTFedsfPvzwQwHk+mHDusgoH3SBn0VE5KKLRN59t/Pn8UUn5u2VK1cKIP/9739F1q1TfXW7dsn9998vgGzevLlrbOwCP4uIyIsvyp0TJ3pl8wF58cUXO3/upKSu8fN118m9Z58tdrtdGtxZSpfLJYmJiXLttdeGft4ueD43NTVJTFSU3DB8uEhJifz5z3+WsLAwqXGTJXUaIc7bHfDWWzK1d28B5MILL+z8+TwRop9dLpdkZ2fLySefrF64806Rr7+WLVu2iN1ulzt1UtLOQvezDxfObwl0sgf1d5jAZrMxa9YsFixYQKu7d+f599TOlQM7yziCYnLIkhLuvdvFTnf2qm/fviqNFEp/QSdE39vgcMDmzdDc3JY1ms8JALzCFZ3rWeuCHZ158+DGM8uhoIAn3s9SvS4bNnRdb5h+DV0uv4cZZf0GDhzI+vBwYlav5r7Fi9FzAzF79nD55XG89BIc3Ws76exlc7dpXn1uQUlWdMLP48ePJzw8nEsuWswkfuavf6zl1Fv7QGwsFBS0HVdbu5MLLujLiYOLGXpiEJl83T7o/M7dnj2MZxVO7Khii/2AOrfl3mwz6BlU1W5gCYY+Wr++vU80PR169YKwsE4a52NjkOjWrRthYb2BNeygHylUM4p1rGcksAq9/1SXNAoZIezEz5unWneKi9Wl/2zfxLb37nrkET788EMmz56N2GzefdbffKPG+owZwdkYgp9BXRdPRYBJ/MQo56rOZ+6NEKKfPdEjOZmzV65UF7ar0cmMi91uJysrS1VofPzxL9MTpc+JQfrZE8cffzzTU1O57JeSZugCP9PaqvptPebqLkMn5u1BgwYBqD7UbdvgzTc5WFnJk08+yemnn945eRlfGzvpZwC+/pp7a2r49NNP2bp1KwcPHqS2tparrrqqa2zsCj8//zyj7XacTiebNm0CYM+ePdTW1jJs2LDO2QedsjEyMpIp/fqxZONGqK9n1apVDBs2jMTExNDt8rUxhHm7Az7+mD+7XIwdO5Ynn3yya2zTEaKfNU3jjDPOYOHChdRVV8Mjj9C6fDkXX3wxSUlJ3HLLLV1nH/yfzaD+HqB2ErNmzaKmpkbpgwFb96kbporuOAmjhGyiaKaxZD+LFy/GbrczdOhQKCqCUDSuuqIsQtd1SklpIw/5JvsyxrCGqpyxwelN+qKTJYH64lbcv/Hn2oHqjfLyrg1QnU5FXhIkbDYb3c49l3SHg6Obm2lTi922jXnz1KJ3QvnHAEy655jOXccQ/RwfH8+UKVOY/+WX7efSNOjTp63E99ChQ1RWVtK3Tx+14A1WE66rSrndv7EhWvetmpI6tUmioxN+9kJ1dfvvHTgQumohBp3y8+jRY9C0NZSgIvld5HEVf0Hx0I1vOy7kcn3dPgjKRt/A7yDdqKCn+kfPnpx55pm8NncuWk4O7NjRVmb74pkLOaTF85+iIDUpu3cPyc++16U71VSR0rnrZYauWNDq8/YvQZ7TVQudriSz84Xu55qakE8RHx/PokGDGN0VJfpG6IoN5P8JPx88GPRH4+LiyM3NVQGq289PfvABdXV13H///V1no/676+o6d56qKuLS0jjllFMYNGgQSUlJJCQkdN4+UNfRV+8yWLj9PHrwYADWrl0L0BaodjpADQ/vtEbm1OxsNgNVmsbq1asZp2vLdgVSUiAhAQ4d6tx5qqs5oXdvVq1aRUpXzzuZmSF/9KyzzqK5uZl33ESq/1i7ltWrV/PCCy+ETtzki5QUNV5aWrrmfL82mKVW/zf/fislviJKHyw8PLytyX1wVp00ESFLOFJA5GSUfudJaT9Jr169ZNasWYpcICrKi7rbMlatEtm0yfRtS2WkW7aosoBfooSopUVkyZKQm7b1kuP7uE8EZCBb2mvwuoocpKxMXccgtNY8r+sRvXYpeyIj1X/79pWq3mMkJkYkjBbZQ4YsZHrnyiu3bBGxqNNm5HNdUqEU5PqUd0XTRL6KOUNqeg0UEZF169YJIJ++poh15Mkng7OvtVXpoB48GNznfHH//SKaJvPebLVe/mwV+/Yp3bHOaoUNHixy5pnq/2trO/+bPbFrV8hEU+ec87AAMivlc2kAOZ95Av92l7Jt9U/EZRUOh8jOnUFp1rllbL3+nuU6cYJ3afTMmVLbs5/ERLsEXLKLXPmYU4MfNwcPilRUBKVZJ9KRFGszg+VDzvhlJHkqK63pV/vD5s2/3LztcKjx0tnS9fvuUzZ2VQm8Jw4f7hLtRK/x3NWoq+v8fPNL+tnpFGlsDPnjs2bNkqFDh4rcd58cBImLi+t6GaGWlq4hQ/wl/dwV+pNuP7veeUe6desmV155pYiIPPywmtc7RTjlcnXJNVx6ySUCyOPu9cTLvqR2nUFXydT8kn7uBFwul0yePFnSuneXpSBhdrucf/75/9tm/erA7yW+vxzi4+OZNm0an3/+OQB3PxxPLUlsQ5XD6NmNSRlfUl5ezpdfXsK47EpF0x5Kie/YsTB0qOFbvqV1xcXq3x2IP37JXe7wcJg2LTiZCA/o2YvuVHOAZIrwIDPoKnt79VLXMTzc0uG+13VZeW8KtT7Q3AyRkWzLO4GIogIaGoSz+JBMyniamztXXjl4sKUMu5nPnU4lqfA1kF+VgghsbOhLVPku/vO2s63cfECUOwccbAY1LAxGjYKkpOA+54uqKkhK4vyLwqyXP1tFaqqSh7HbO2+jvqufkND53+yJ3r3Bwm6qkZ8//VSV8S44eBppwKk3hGO3fwXkAqryoNOZaLtdZd592aP8wLg0W6OGZOa951Eafe65JOzdwfjGJfRnO73ZzQJmBD9ukpKUPEyQhBi+pFgpVFETltL5zL0RevSAuLjOnUPPzP0S87bdrsZLZ0vXq6oU+VdXlcB7IiYmqPvQFB6SD12O+PjOzze/pJ9tNoiKCnycCYYOHUpBQQE1ZWXMi46mvr6eO++8swsNRD2Xu4IM8Zf0c2d9DG1+1lJTGT16tFcGNTMzs3OEU5rWJddwfGQkEcAzzz4L0LUZ1K7wMfyyfu4ENE3jySefpLK6mulAalISz7qv4++wht8D1C7AKaecQkFBAdu2bWP2bDh05Ils7z4ZTQNXplr4H1j3BdANOBl76W4AvtsdQonvli1Kf9IAvqV1YNKDFh8Pp53WBU1+Jvj8c1i0KKSP6iZtpz+fcQrNRLWXB3bVJHTwILzySlu5ayAYXdcFcjwAtd3zeOG7gcRTTwZl3MzTFNC/rac35HLBNWssaYSZ+fzf/x5KlC2VN0mlFFWmspO+RNLCv+4qawtQs/X+j2ADVIB33gFPButQkJVFcb9jfxkm1epqePJJ1S/VGQwfbrop1Gn89JOlCNLIz83NRxAbO5srTz6ZemDFoS8JC/uGuLgT0TTNWOszFLz8Mrz/vuXD58zpuPaoIoUVTPCei849l2q6cT3P8Qh30kwEX3ASEOS42bcP7r9f9dUHAS9tVISKiFxGnd2vazZHfPHdd/DnP3fuHC4XDBhgaUMjJDz1lOp97AxiY3+5sVJRAbfeqnrCQ4WIYuf8pZ598+fD9dd37hwtLarXvTMa0P7wwAPw4oshffS8886jtbWVf27axMvAqFGjGDNmTNfaV1oKV1yhtHlDhYjaJPmlxsonn8CFF3buHIcPq/HSvTujR49m06ZNtLS0sGnTps6V9+r405/g6ac7dYooh4Px0dHs2bOH6OjoruszBrXLes45ndOTFfHSae1yvPsunH56yB+fMGEC50+dSivwyv33001nBu5KXHcd/OMfXX/eXwPMUqv/m3+/pRJfEZHS0lIB5O9//3vHN10uOaTFyVPYBW4QEDmP/4iATE8PgfXuH/9Q5T8GpU5GpXWB2FCDYpa1itGjRU48MaSP+jJrgsgK24SuLXnS9SwtsmEaXdfT+EgE5NmEu+VovhEB+Rt/EUFpUna6vNKPnwPZpvscrhBIEKgW/l97Zx5eVXW18XcLCRBARplCbhCVwYEgDQkoKojiWKFFq5IKDgXhEwQRVMQiDtRWPtRSFVtxQINosaWiFaX6acEBUsCCqCAgIQlEgkIImYTkru+PfU9ycnNP7jn7jIH1e548uWfKXdnvWfucPa0FqrFzGO6ktLQ0mWftySflBZEcXZawobNGLL1tR57VsKizL9jUWdM6KWk0CSEIAL3zzjvO2jhgANFVV1m6pCFb9Sw6eWbNwal4Us1vGoPOjz1mSmdfUdDZU1hnZ7Cp88iRI6l58+YEgJ599lkHDYtwoukcDtPrr79OAGj9+vWUkJBA99xzj/2/65A/3z9rFgGg8847z75NepzU2Ykp17FwQOeysjL6fO1ay0tQTBP0ejsO4Cm+7pKcnIzzzz8fb775puzl1kalAEAI7KGTEUI1gF8DAHogFwCwrlBh1EqbOrt/f71DRp3C9fZH7DM9JVjFxhj2maHOqIaQvzsPjJSTU71kWs+0SRtjlesHuAT/h4vxYslobItMp7wPv8d+dMJLuAWAzemVDegczzZtf5cutwOoBHAtgKPYCZn37zQsRGFhIcaPHy9FT0pSC8hhQ2cN06P+KljU2Rds6gxoncgzQURISGiGYcOGOWgglHQ2GpCP/j+6zJ2EKjTBalyKhbgTgILfHEc6+4oD/uwqrLMz2NR5zpw5qKysRFJSEsaMGeOgYRFONJ2FwIABAwAAM2bMwLFjx5wZQXXIny+48EIAMjuAozipsxNTrmOh6VxUpPwnkpKSMGjIEMtLUEwT9HrbBtxAdYjrrrsOW7ZswbdLlsi1Rjk5NccKTvoJISRCi6zZA7k4gI7okKqwJkmLPpifX+9Q9JoqwOBlb9IkHEpNw7hxLjUOUlJi2meWrCwgt6o7wg8+hNxcIPVChxuorVvLdWsmbYxVrhnIQV98DQGgEF1RgtZIxDE8ibtQiRZo0sTm9EotelwcGxvS/KO0bMwRqQA+AjADBUhGJQQy2nfH/v378cgjj8gGao8eautBbOoMAO/t6YOZeLzefkciqbZuDbRpY8/Gjz+W61i3bHHAoBjY0Fnj97gX72IugCuRkPALJDmxTk+Pgs7R9v4H6bg7YWG9umjUXafi/ce+wNSUFYA4SW1askV/jsmaNcDAgXIJhRs0UG+bZs4cOSXOLRzwZwwdKqeEu4ETOn/2GXDxxe6kcAGc0fl3vwNuu80Ze2JhU+cBAwZgSo8euPfyy51LOaLHiXp7/Xq5jGnXLsfMqoMTOj/xBDBtGgCZenD27NlYF5nu2q9fP5sGQj5b7PrzjTdiyIEDGDRoEEaPHm3fJj1O6LxhAzB2rAxc4QZO6Pzss8ADDzhjTyycqLcDCjdQHUJz3uVvvy1beZHeoaKiIuSGDyKEpgBkIyAVe5B/Uqra6JrmMDHe4GONPsZ62dv3WS52FySgujr2V9huHIRCssepslLt+iNHgL17gRYt5HbfvrKHrFs3m4bpSEkx/Y9q5arvpEvFHnTF9ziIdhBCYBv64DBOxiJMQlISsGSJzbV/2lBTHBsb0ryP2I47e7RB69aTATyDdu1fxncgXNJDF8BKJcWMRkqK1LmiQu36I0fQB7FfFB1bIhYK2buhv/tO5up0Kj1BNIo660nDZnTEDwDeQUXFMudtTEmRPbQW/Flv78koQTo2Imt0ZT2fWLoUuOO5c7C9oCVCIdmwVfIbuzrv2CFfdpxu3GuY1LlBcnJkejK3CIUs61yHkhLg3/9WSmFiGgv1dky2bZPrgZs1c84mPU7ovHatex1igJI/16GkBAtzczFn0KD456pi15+/+gp46y33RtYaeA8zzerVwKefApABdR599FF8/fXXyM7OdmYE1Ql/fv11tCosxOeff44hQ4bYtykauzpv3gy8+qr9XKpGOOHPK1cC77/vjD2xsOvPAYYbqA7RvXt3pKen4/2NG+UbZHIyAGD58uXYA0InlKN3SrlMR5mQh44/S1V7EYtTMWZlIW401LJtecgNG7cAbDcOtD9QUKB2vdYbpP2dm26SgTGcDBphsWLMypJlWnM58hCGwF4kgwh4ovPjuAFvoF1qG2cC01jouTPUPC8PHc4NITf3IbRr1wbFxROw+6STEPrpJ3mcSF6g2kB1SOf9iXVvOEdyoGrYfQDm5dXxZ8dR1FkvWQryI9HChTuxX7Q/unevpcs0ew9vlf/budfUzT3p6BKDlBSZK1mV/HxvdLYxVQx5ebV/xw1SUoDEROD779Wuj6633SAUspcf0wt/Tky0l3s5L8/9MuzQQf1e1HR28148/XQY9qCbwQud27e31yiIofPpp5+OrKwsCCci3PbsKaPEq+bl9cKfzzmndiBCBS90PvXUui9/VnHbn3v3BtLSbOWHDixGi1P9/GlsQZI07rzzTkpq2pSOdelCRERVVVXUr18/uq97d7nQets2mfupZUuiqVPVv+iLL4iKi9WuDYepBK3oSUyNGcTEkQA1Bw8S7dihngtv1SppzCef2DSkAfLyLAcG0udNXIxbqQDd7AVCisfOnUSVlWrXhsNErVrV3GdPPPEEAaB/9uol779wuLacX3pJ7TtKSmTuRNV8ZpHvf2/Op84H6tIoKiIqL1e//pZbiLp1c86eWOzfb7kMa4NLSX9+AtOcCy4VTXm5vTJ8992Y/hydh9RWYLEjR+wFofBCZztl6MRzIx5Hj9orQ03nTz91zqZo7AZDufVW93W2U4ZavT1tmnP2xPoOO2jPDTd1tosX/mwHL3S2i0G9HSgag85u19uNHHCQJG/IyMhAeVUVvo6M9GVnZ2PLli24VFtPkpcnpz+VldnrUenfX87dV6G4GK1RWpOfVY/tdZMa7drJHlDVXHjaiJebvU4pKZbXtOrX1YWQhzyEnB3ti+a009Snoh0+DJSW1pThHXfcgYkTJ6LfL38p77/PPpPpBkIhQDXQRevWclRbtbc3ovNl40PO50DVOOUUez20+fk4kBRyJw2ORqdOlstQm0J7Tnfpz6XtUpzx3Vi0aGG7DAEAoRCWLkVNWe7ZE/t0pQHvVq3sBaFwe3QSsFeGxcX2nxvxSEiwX4aAu+Vod8qm26MZgL0yLC6W9babZWh3dM6L57NdvNDZDprOQbaRdbaPF/X2cQw3UB0kMzMTAJBz9tmoqKjAAw88gIEDB2LYuHHyhLw8Z6ZNfPABoJrwt7oa2y+djM3NMuvsdmTdpAaRzKmnOu++Z0+58L1rVweMMWDXLuDBBy1NW9Svq/sYw/BR21+61ygA5NqFP/xB7dqjR4Fx44BIjrrExEQsWrQI3adPl+U7YoRspN57r5ySpgIR8NBD6rlQk5NljjE3dd62DbjrLuUgAltbDMSiPVc6H+laz+uvKwVRyMoCtuRUAr/4BX67PM29+5AIuPtu4M031a7v2BEYPhyvfdS1zpReI5Sqxi+/lIFljFq98TjzTBk8x01eeknm8VShrAwYPhxwMg9hNETA+PHqN3fr1kBGhrv+vGkTcN116kFRUlIAN9dOAjIoyu23q1175IgM1tW7t7M26QmHgeuvl/ejCgkJMi6EmzqvXw9cfrl6kKP27WVHvpvMnw/8+tdq1x46JDU+7TRnbdITDgNXXAE895z69cnJ7uq8di0weLDpnPT1SEhw11cA4OGH1XOh/vCDLD/VZVRmqK4GhgxRbxMEGaOhVT9/GuMU3+xsolAoTEB7atXqNzRmzP8SAPr444/lVNfERKKZM4lWrpTTJtavV/+yKVOITj7Ztr2uTaskIurSheg3v3H4jzrImjVSh/ff99sSY6ZMIWrTxvE/u+LJ3bS3SXfKRzL1ClXY075zZ6LbbnPMNsexqbOj01CNmDzZtj+7TufOtv3ZqCwdWWJwAvuzozSWenv1ar8tMaYx6OyAP7tKY/DnE6TedpV//zv4OrM/uwoamOKrOAeT0aMF+zhaXoWmOBelpWuxbNk/ceaZF+Oiiy6SJ515pozMp/Wk2BlB1QJFHD5sfapvaSmQmIisrET3RlwAe8FpjhyRU/acCBRghFb+KiNr1dXyR3Xk0SyhkNRYReejR2XvYlQZLl0KTJjdA82qN6MFKrAvrzkmTJDHPI+eWl3tXpRFDTtR+IiQtwfQom/rcSQNjoYdfyZy10807AabQvzLbS0xcCLaotvY8WevsBsl120ag84pKVLjkhL3on/bJRQKdmoKJ6Lkuo2detsrGos/B/1eDHq9HXR/VoSn+DrA7Nkys0w/bMH9+BDAdhAV4ocfZtWelJYmQ2Ln5cmGTadOhn8vLnac+tFH5UPTTlQyM9ipGPv3B26+2Ulr6tOtm1wrpGLj5s1A8+b4aMY/3V2baCcH15w5cppT1FxK7V49hPbYBxn5zlbuWzsVY+/ewKRJil9skm7dZANORecvvkCZaIlL8K96hxxdUmLHn++/X3Z6NTRn1gns+PM55wDTp8cts3DYxnR5zZ9VynDTJqBLF5l+xE3s+PPcubIc3dbZjj8PGuRAEu042K23zzgD+OQT5+3SY8efH3sMOP98b3RW9efhw10MvBAhOVnW2ypl+OWXQHq6nCbsJnZ0XrBATr91Gzs6jxwpc7W6iaazio1btwLDhgEbNzpvlx47Oj/9tLu5qzUc6EAOItxAdYCa2BDIR+3KznQUFQ2vPalfPxm+f8MG+aJiJ5CCnd7FvLzah7ybaC86Vh+04bBMW+LmugdAji527apehkR44Jku7q5NtFMx5ufLBmrU6JrRv6tct2kVo4rOeXnu90gmJMj7XaUM8/LQgipQ3rxDnd2OB8ayMyq0Z48cenR7FNWOztu3A4mJdYKMGX2FMnb8ec8emUfO7dEuOzp/+63sSQqyzps22UsNYgY7Ou/eLde6uZXrVsOOzlu3yvcEt3XWOpxUdF67Vs7EchOt3lYpw127ZKMlIcF5u/TYeQ/buFH6tNvYeQ9btcpeWiwz2NF5xw7g448dN6kedt7DPvvM/QY0oF5vBxxuoDqAdv+GkIfzADRBbwC/Q2qq7iGTliZ/r1ljf/jFzgPQq6hnoZAM7GE1N1NRkZyeGhXx05URylBILXdipNy/raxbjrZGImOh6aSSl9BAZyPplW+JlBT5Umo179/+/cCxY97diyo5wiI63/VkCKmp8p0xNdWhSNd6tNyJhw5ZvzY/37syTEqS0++toNNZCzLWoUP90xxp9J9xhvwuq3iR70/7+x06yHrRKl5EGQZk0JbOna03QIqKvPPntDS16OZeRBkGZCXRs6d8jlnFq+dz377SX8rLrV2n+bMX9+LgwUDbttav8yr6bI8e8l5U6UzwSud+/WSgxIoKa9d5+XwePlwtj6mXOl9wgdqSLq90/tnP5GiyluP+eMFocaqfP40tSJKWk3A+7qZyNCcgXD/YR1FRbSSQcePsfWF1tXr+yVCI6Kab7H2/GcrKiCoqrF+3fj0RQB9NXxnJ8+hAABUjSkrUynDGjBqdo4O8COGgfeGwWhkSxdQ5O5uoQwcHA9MQydyJKmUY0Zneflvxiy2gmo/37ruJmje3nzcwHuGweu5Er/xZtQzWrZM6r1xZZ7crQdpUbfRKZzukpHijsype+rMqjUHnUIho7Fi/rTBG8+eg69yiBetsh8aic9D9Oej1dgAAB0lyF200pc2EPOSXpyA1VWDevKhRllNOkeucvv/efo/KSSfJv2eVqiqZVsWLHh3VaVSRXrE/LAvV69zVRigdG71q3Vrturw87GsaAqrq95w6WrRCAM2bW7+uurqezlogr+gy7dAB+OMfbZSp6jQqL3Osqebj1UYn3Z5uJ4Tad3jpz6plYDA6mZXlQnomO/l4U1K8CTalQlWVnOkR5Fx6Xo1O2sErf1ZFq7eDXoZA8O/FoPuzV/W2Ko3Bn7XRSdb5uIWn+DpEVhZw9dIx6LX4XuTmGrx8adN8nbhhX3pJBlSwQlWVvMaLxfmVlTL/5LvvWruuVy9g9mx8VnhqzMOOrgPPyQFuvVXmqrLCyJE4OGZyvTa442sTAeCZZ4Df/tbaNUePAvfdJ6fORNCCI0XTqpXNhkJFhcw/+dZb1q7r0QOYMkX+dptPPgGuvRY4cMDadZdcIv83L5g/X+YatcJPPwF33AFceKE7NukpK5P5J5cvt3Zdt24yH6+beeA0PvxQ5ve1qvPgwcCNN7pjUzRz51oPDFZRAdx0k7TTbUpLgcsuA157zdp1HTvKXIFe6PzeezIgk9X1cWlpMvCLF8ycKe97K5SVSfvS092xSU9Jibyfliyxdl3r1vK54sVL91tvyewHVnU+/XTg0kvdsSma//kfWS9aobRUTsfs188dm/QUF8vcyc8/b+265s1lTmMvdF6+XDaE9++3dl3XrjKgmBeMHQtcdZW1a0pKpC/37euOTXoOHZJluGiR+9/lJUZDq37+NLYpvqaZOdO5nE+3307Utq361EC3CYeJ2rVTzs3kSf7JDz6wpYfruWSJHNPZKO+k7SnJNnX2BJs6e8Jx7s+eoOkc5ByZrLN9GoPOEyawznZhne3DOjtDY9F5/Hi/LbEMGpjiyyOoTnHggIxi2FCQjvPOk9Nze/e2/30ZGbJ3bMcO89d8842ccuAFQkgbrYZ637gRqKiIGfHT8RHK9HRpZ06O+WsOHpSRIImQlQXk5sqAd4aj5nZR0Xn37jpBi5YuNZ4FY7uDVFXn7dvdj/ipoaJzSYn7EQz1qOhcWKgWiEUFTWcrZQjIqaleRRbURp6s2FhWpha0SBVN5507zV9z6JD7acE0VHUuKXHHnlio6FxZKWcQeYWKzlYD2dhBVWev6hugVmcrz5aqKm8jmaro7NVzD1DX2av6BlDT2etotSo6e2mj6ntYwOEGqlOsXCkjae3ebXzOyJHyuBPToDIy5G8rFc9dd1mfpmCHzEzgq6/MR4QsLpaV1YIFNRE/XY2e2qYN0KePtTJcsUJGP7TSkLCDis6TJgEXXVSzOXt27LpSCIca/Co69+kDPP64A19uAhWdly+X0Ux37XLPLj0qOt98s+z08orMTJkGw4rOycnu59LT0HS28pBetkyml8nNdc2sOmg6W7Hxhhu8mcatkZFhXee2bWXOPy9Q0Tk7W+pcUOCeXXoyIwnnrNg4ahRw+eWumBMTTWezHTTFxXKK7+LFrppVg0q9/fLLMsd8YaFrZtVB09mKjVdfLZeceIWKzu3bS5/xAhWdX3hBRhy3Oi1YFRWdR42Sz2ivsKpzI4AbqE6RkyMf0mecUbOrXpqU14Rzc/r79gVatjTvMETyXO0FyQsyMmrz45lhwwb5O1IZeDZCmZNjvrcrhs6u4oDORut2iRwqU1WdvVhrpaGqc8+erppVg6rOAwa4a5ceVZ21tfdekJlpXeeTT/Zm7SSgrvOZZ7prl57MTOs6E8mXTK9Q0blZM7V0Fir07SsX+FvV2cuAKprOZvM0btggR1C9iBugkZkpG/lWdK6qkgEpvUDT2WxHBBGwbp1sAHqFVm9b0fnwYe/KEFDz54MHZWeEF2j1thWd16xRS02jitXncyOAo/g6hdYoiMyljI6aumeP3AYcahQ0aSJHT8zmJdy5U04V87qBesop5qdKag/zgQPdsymawYNrK2QzOdfWr6+js+s0aSKDUpituGPoHArJ+y8ax97JMzJkQ85sLlQ/dL7gApkY/cgR2SCJhx86X3WVfAiaYedO2dPttT/37y+nS5pB09nLjohhw2Sk9LIy+eIYj6h623WaNJFBVcy+WPmh88CBcgaG2TpHe2nzUucRI+SU2IoKcxHj/dB57Fjg1NjB/urhlz///OfmI7H7ofNVV0n7KiuBFi3in++HzhMnmu+w1nTWRuS8IDNTvnSaqQ8Bf3QeNUqmFDh61FyOYz90nj7d/PI8v3SeNAlo186773Qbo8Wpfv40uiBJZWVETZoQPfBAzS5PgvxYyf+UnS0N2LLFQQNMYMXGa64h6t3bPVvsUlpaT+fAoem8eXOdXa7nlLUC62yfV1+tp3PgYJ3to+nsdb1tBdbZPn49n63AOtuHdbZPaSnRSScFW+fGUG8HBHCQJJfZtEkufNf1lhhNq3Q0TYqV3qP16+XojJdTxQDzNhLVjloFlS++qKdz4NB0Puusml2erOc1i986mxkV8ltnMzbm5NTT2TPMBNDwW2czAXH81Jmo4YB6GprOXtfbgExjFA+/dY6VOysaTWc/bKyqMhf8yE+di4vjn+OnzuEw8OOP8c/zU+fSUnOz2fx6DyMyt/7aT51/+slcEM9Nm+Q94Ue9XVQkZ6jFwy9/rq4Gvv7a2+90EW6gOkH//sDq1cCQITW7jJaSOLrEpLRUTsUyk/to+nTgb3+TUxW8ZNUquTZJS/DdEG++KQM5ec306cCVV8Y/76yzpI1e5d7SKCkBzj0XWLgw/rkTJwKvvFJPZ9fX8/7jHzLnZTydiYAXX5T5O71mwoQ6uWEN6dVL2uhlACJAvij27Ak89VT8c8eOlX7vtT+/8YacCh/vZYdI/h/jx3thVV3GjAGGDo1/Xo8e0kYv8ovq+fFHufThT3+Kf+7o0cCCBd7r/MorMiBOPJ3DYeChh6zn/HSCa64x58/JycDDD3uv84EDcjmBmefzFVdIG73W+fnn5ZTAeDpXV8s8zWPGeGOXnhEjZGCheJxyirRx0CD3bdLz/fcy0I+Z4FEXXQTMmuW9zs88I/NkxtP52DFZZ1vN7eoEw4ebCx7Vtq18lnvdiN67VwZOfPnl+OempwNTp3qv88KF8j3Vq2BwbmM0tOrnT6Ob4hsDT6ZVhsNEGRly3vBPPzn4hx1k50457WbqVL8tMWb+fCnQJ5/4bUlsWGdnaAw6DxzYOHSeNs1vS4xhne3DOtuHdXaGxx9vHDr36ME620HT+dNP/bYkNqyzK6CBKb6mGowALgewHcBOAPfFOC4ALIwc3wJggO5YLoAvAfy3IUP0P42qgfrcc0T33EN09Gi9Q9nZ8tkkhPztypq/VaukjM8+G/t4OEx0881EK1e68OUmufVWombNiPLzYx/fvZvo+uuJcnM9NauGsjKizp2Jhg0zPmfxYqJ584iqqryzS48ZnSdOJPrwQ2/t0mNG5/Hjifbt89SsGszo/PLLRE8/7V9Cbk3nRYtiHw+Hie66i2j9em/t0mNG5xkziH780VOzaigtJerUqWGds7PlOiEra+SdxIzOs2cTbd3qrV16zOj8yCNEJSWemlWDGZ3feIPo7beDrfO8ebIs/cKMzgsXElVWempWDWZ0/vvfidau9c6maMzo/NRTRPv3e2uXnng65+YSvfKKf+84ms4XX2x8zjvv+Bt3wYzOf/kLUXGxt3bpueWWhnUOGLYaqACaANgFoCeARACbAZwZdc6VAFZFGqqDAKzXHcsF0DHe9+h/Gk0Ddft2+cI7dKh/NoTDROedR9StG9GOHfWPvfBCww0bL9i9myghgeiGG2QlpKekhOjaa/13qKeekuX0yiv1X2Y0nRt6QLpNY9P5yJG6x0pKiEaPZp3joemcnNw4dI7lz5rOBQW+mEdERE8+2Xh03rmz/rHGpLOf/qzp/Oqr9Y8FTeddu+ofW7w4WDqXl9c9FjSdY/XyB03n776rfyxoOldU1D0WtHp72bL6xzSdG2rAuo1e5+gBFb3Of/6zP/YRyfuvaVOpc1BHenXYbaAOBvC+bnsWgFlR5/wZwI267e0AutLx2kAdP57oggvk0GhSkr+jGURySkTz5kSTJ8vt3buJrriCqE8fKXFamv836qxZ0pbPP5fbL79MdNllRO3ayf0PPuireVRRQXT22USnn0507Jjcd8stwdRZi1731VfB1Vkb+Vm0KJg6n3tubcPl+uuDqfP8+XJ7w4Zg6ty0ae1DesGC4Ol81lm1nYfhMNHPfx5MnZ9/Xm6vWVNX5/79g6FzUhJRUZHcfuSRYOo8apTcLi8nuvrqYOr817/K7ffeC6bO7drVjobff38wdR43Tm7/+GNwdV69Wm6vWBFMnZOTa0fDp00Lps7aUqH8/ODqvG6d3F66NHg633cfUa9e/o2GW8BuA/VaAIt12zcBeDrqnHcADNFtfwggPfJ5N4BNADYCmNDA90wAsAHAhlAo5E3JqDJ6NNHgwfImMDFlw5OpvoWFtbZs3UqUni57mpYsiTn92Be+/LL28/z5RJmZRL/6lf8VjsbRo0Tfflu7fckllnT2hMJCokOH5Od164Kp8/bttZ/nzg2mzvrez0GDgqmzNmr14YfB1Fk/UjBzptT5+uuJcnL8s0nP0aO1owHHjslOiSDqrL3MrFwZTJ3z8mo/T5oUTJ01PYuLg6uz9rL42mvB1LmwsPbz2LHB1FlbNlBQEEydi4pqOz6ffz6YOh84UPt59Ohg6nz4sPy8fXswddYvX3nqqWDqfPCg3xaYoqEGqpDHjRFCXAfgMiL6TWT7JgAZRDRFd84/ATxGRJ9Etj8EcA8RbRRCdCOifUKITgD+BWAKEa1p6DvT09Npw4YNDdrVWFi6VAYc00fDT0ryMc0HwzAMwzAMwzCMjwghNhJReqxjZtLMFABI0W13B7DP7DlEpP0uArACQIATXTrP7Nn1U7WVl8v9DMMwDMMwDMMwTC1mGqj/AXCGEOJUIUQigBsArIw6ZyWAsUIyCMBhIioUQrQUQrQGACFESwAjAGx10P7Ak5dnbT/DMAzDMAzDMMyJStN4JxBRlRBiMoD3ISP6vkhEXwkhJkaOPwfgXchIvjsBlAO4JXJ5ZwArhBDad71GRO85/l8EmFAI2LMn9n6GYRiGYRiGYRimlrgNVAAgonchG6H6fc/pPhOAO2Jc9x2ANJs2NmrmzYu9BnXePP9sYhiGYRiGYRiGCSJmpvgyNsjKkgGRUlMBIeRvDpDEMAzDMAzDMAxTH1MjqIw9srK4QcowDMMwDMMwDBMPHkFlGIZhGIZhGIZhAgE3UBmGYRiGYRiGYZhAwA1UhmEYhmEYhmEYJhBwA5VhGIZhGIZhGIYJBNxAZRiGYRiGYRiGYQKBkClMg4UQ4gCAPX7b0QAdAfzgtxFMPViX4MGaBBPWJZiwLsGDNQkmrEswYV2CR5A1SSWiU2IdCGQDNegIITYQUbrfdjB1YV2CB2sSTFiXYMK6BA/WJJiwLsGEdQkejVUTnuLLMAzDMAzDMAzDBAJuoDIMwzAMwzAMwzCBgBuoavzFbwOYmLAuwYM1CSasSzBhXYIHaxJMWJdgwroEj0apCa9BZRiGYRiGYRiGYQIBj6AyDMMwDMMwDMMwgYAbqAzDMAzDMAzDMEwg4AZqAwghLhdCbBdC7BRC3BfjuBBCLIwc3yKEGOCHnScSQogUIcRHQohvhBBfCSGmxjhnqBDisBDiv5GfOX7YeiIhhMgVQnwZKe8NMY6zr3iMEKK3zgf+K4QoEUJMizqHfcUDhBAvCiGKhBBbdfvaCyH+JYTYEfndzuDaBp9DjBoGmswXQmyL1FErhBBtDa5tsL5j1DHQZa4QYq+unrrS4Fr2FZcw0OUNnSa5Qoj/GlzL/uICRu/Dx8uzhdegGiCEaALgWwCXAigA8B8ANxLR17pzrgQwBcCVADIB/JGIMn0w94RBCNEVQFci2iSEaA1gI4BRUboMBTCDiK72x8oTDyFELoB0IoqZDJp9xV8i9dleAJlEtEe3fyjYV1xHCHEhgFIArxDR2ZF9jwM4SES/j7wctCOie6Oui/scYtQw0GQEgP8joiohxB8AIFqTyHm5aKC+Y9Qx0GUugFIi+t8GrmNfcZFYukQdXwDgMBE9HONYLthfHMfofRjAzTgOni08gmpMBoCdRPQdER0F8DqAkVHnjIR0ViKidQDaRm4YxiWIqJCINkU+HwHwDYBkf61iTMC+4i/DAezSN04Z7yCiNQAORu0eCWBJ5PMSyBeLaMw8hxgFYmlCRKuJqCqyuQ5Ad88NO8Ex8BUzsK+4SEO6CCEEgF8BWOapUSc4DbwPHxfPFm6gGpMMIF+3XYD6DSEz5zAuIYToAeBcAOtjHB4shNgshFglhDjLW8tOSAjAaiHERiHEhBjH2Vf85QYYvzywr/hDZyIqBOSLBoBOMc5hv/GPWwGsMjgWr75jnGdyZOr1iwZTFtlX/OMCAPuJaIfBcfYXl4l6Hz4uni3cQDVGxNgXPR/azDmMCwghWgH4G4BpRFQSdXgTgFQiSgPwJwD/8Ni8E5HziWgAgCsA3BGZDqSHfcUnhBCJAK4BsDzGYfaVYMN+4wNCiNkAqgAsNTglXn3HOMsiAKcB6A+gEMCCGOewr/jHjWh49JT9xUXivA8bXhZjX6D8hRuoxhQASNFtdwewT+EcxmGEEAmQzriUiP4efZyISoioNPL5XQAJQoiOHpt5QkFE+yK/iwCsgJw+ood9xT+uALCJiPZHH2Bf8ZX92jT3yO+iGOew33iMEGIcgKsBZJFBkA4T9R3jIES0n4iqiSgM4HnELm/2FR8QQjQF8EsAbxidw/7iHgbvw8fFs4UbqMb8B8AZQohTIyMQNwBYGXXOSgBjhWQQ5ALxQq8NPZGIrHV4AcA3RPSEwTldIudBCJEBeZ//6J2VJxZCiJaRBfoQQrQEMALA1qjT2Ff8w7B3m33FV1YCGBf5PA7AWzHOMfMcYhxCCHE5gHsBXENE5QbnmKnvGAeJilfwC8Qub/YVf7gEwDYiKoh1kP3FPRp4Hz4uni1N/TYgqESi+E0G8D6AJgBeJKKvhBATI8efA/AuZFTSnQDKAdzil70nEOcDuAnAl6I2pPn9AEJAjS7XApgkhKgCUAHgBqOecMYROgNYEWnnNAXwGhG9x77iP0KIJMgofbfr9ul1YV/xACHEMgBDAXQUQhQAeBDA7wH8VQhxG4A8ANdFzu0GYDERXWn0HPLjfzjeMNBkFoBmAP4Vqc/WEdFEvSYwqO98+BeOSwx0GSqE6A85BTEXkfqMfcU7YulCRC8gRnwD9hfPMHofPi6eLZxmhmEYhmEYhmEYhgkEPMWXYRiGYRiGYRiGCQTcQGUYhmEYhmEYhmECATdQGYZhGIZhGIZhmEDADVSGYRiGYRiGYRgmEHADlWEYhmEYhmEYhgkE3EBlGIZhGIZhGIZhAgE3UBmGYRiGYRiGYZhA8P8ehJWwdqXoYQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "DeltaE = 0.0 # bias\n", "kf_example(DeltaE)" @@ -285,9 +321,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAD4CAYAAADhJ8tCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOxddXwU19p+Jk5ChCgkJIFAcIK7S6kgVUqxuvut3brd+r11uS11CpeWCgUKlKKF4hoIkhAhASLEsyGePd8f7052dnZsk92d4es+v98SdmZ28+Y8c86873mNY4zBAw888MADDzzwwAMPPPDAAw/0hpfeAnjggQceeOCBBx544IEHHnjgAeAxUD3wwAMPPPDAAw888MADDzwwCDwGqgceeOCBBx544IEHHnjggQeGgMdA9cADDzzwwAMPPPDAAw888MAQ8BioHnjggQceeOCBBx544IEHHhgCPnoLIIXIyEjWpUsXvcXwwAMPPPDAAw888MADDzzwwMk4cOBACWMsSuqcIQ3ULl26YP/+/XqL4YEHHnjggQceeOCBBx544IGTwXFcrtw5T4ivBx544IEHHnjggQceeOCBB4aAx0D1wAMPPPDAAw888MADDzzwwBDwGKgeeOCBBx544IEHHnjggQceGAIeA9UDDzzwwAMPPPDAAw888MADQ8BjoHrggQceeOCBBx544IEHHnhgCGgyUDmOu4zjuHSO4zI5jntS4vyVHMcd4TjuMMdx+zmOG6v1sx544IEHHnjggQceeOCBBx54AGgwUDmO8wbwMYDLAfQBMJfjuD6iyzYBGMAYGwjgVgBfOPBZDzzwwAMPPPDAAw888MADDzzQ5EEdDiCTMZbNGGsA8D2AK4UXMMaqGWPM8jYIANP62b89GhqAzz8HGhv1lkQe6enAunV6S6GM334DMjP1lkIeHp6dAw/PbYeH57ajoQFYtMjDc1vh4bnt8PDcdnh4dg48PLcdFwPPboIWAzUOwBnB+7OWYzbgOO5qjuNOAlgD8qJq/qzl83dawoP3FxcXa5H9/wcKC4EPPgBWrdJbEnns2gXccQdQV6e3JPL45hvguef0lkIeZ88Cr7wCrFihtyTy2LIFmDvX2Dx/+CHwxBN6SyGP3FyS76ef9JZEHmvXAjNmGJvn114DHnpIbynkkZUF3H03sHy53pLI45dfgCuuMDbPTz5J42hUpKcDd90FLFumtyTyWLrU+Dzfcw9wyy16SyGPtDTieelSvSWRxxdfGJ/nBQuAefP0lkIehw8Tz999p7ck8vjgA+Pz7CZoMVA5iWPM7gBjKxhjvQBcBeBfjnzW8vlFjLGhjLGhUVFRGsT6f4LYWFJqN23SWxJ5REYC586RoWpUBAUBGzcCZrPekkgjPh4oKwO2btVbEnl07gxUVhqb544dgb/+Mi7PXboATU3A9u16SyKP5GQav9279ZZEHsnJwL59xuW5e3dac3bs0FsSefTvTz+NPJ+HDAGOHDEuz716Ae3bG3uuDB9OP40s46RJZOwblef+/YnnvXv1lkQeEybQTyPP51mzgNOnASap5uuPQYOI5/379ZZEHpdfTj+NPJ/dBC0G6lkA8YL3nQHky13MGNsGoBvHcZGOfvZviX//GwgOBjZv1lsSaWRkkAIBGFfGVauACxeAkhLg2DG9pZHGp58C0dHGHcOsLHqwAMaVcf16wMsLKC42Ls9LlgCJicYdw5wcoLyc/m9UGbduBUJDjc3zypVAz54UdWBEnDkDNDfT/40q4+7dtClmZJ43bQIGDDDuXMnPp40SwLgyHj4M9O5tbJ737gVGjDDuXCkqImeGl5dxZTx5Ehg61Ng8nzgBjB1r3DEsKQF69CCejTqf3QgtBuo+AMkcx3XlOM4PwA0AbOJROY7rznEcZ/n/YAB+AEq1fPZvjZwc4OmnAV9f2l08d05viezx66/AM88YW+l+5RXrjpgRZczJAR58kHaPjcrzL78ADzxAPBt18X72WatsRuX51luB6mriOd+Ae3E//gjceKOx5/Pjj1tTHowoY04OMHs2UFpKSpkRef7+e+Cqq4zN8wMPAP/7H/3fiGtOTg55M86eNe58XrIEmDzZ2DzfcQfw2Wf0fyPKmJNDRktWlnHn8+LFFG0QH2/MMQSAhQuB996j/xtRxpwc2mw6dcq4PH/1FW18GlkPcyNUDVTGWBOA+wGsB3ACwHLG2DGO4+7mOI5PHrkWQBrHcYdBVXvnMILkZ13wd1yc4G/AV16xfW8kbN4M9OlDeQV79wImk94S2aKiAjhwALj5ZqBbN2MujBcbz3v2kJFlJJSXAwcPEs/du3t4bi0uJp4987n1uJh49szn1uNi4fmWW4w7n3mZLgae5841Ns833WRcnnleX3rJ9r2RwPM8Zw5FmFy4oLdEusJHy0WMsbUA1oqOfSr4/5sA3tT6WQ8s2LwZiImhRWfVKsBoubcNDZRLd+utVFSlpIQmTHCw3pJZsW0beSYnTwZCQvSWRho8zzfcQCFj8fHqn3EneJ5vuQW48kqqcFdXR7kaRoGQ5+howEfT0uVeCOfzvn2UR2kkCOfzNdcA7doZr5qhkOeEBJLRaBDO5xMnrLmeRoFwPs+eTbIaLfdPyHNysjHXbuF8PnsWGDZMb4lsIZzPc+dSaCAnVfZDRwh57tcPiIjQWyJ7COdzZSUwbpzeEtlCOJ8XLqT70GjPPyHPw4bReBoNQp7NZmDqVL0lsoVwPt9yCzBlCuDnp7dUusJgd/nfDFu3UvEAb29jVoPcvx+oqSEZR4+ml9GwdSsQEED5I+PH6y2NNIQ8f/WV3tLY48AB2niYNInGccQIvSWyx8XG8/vv6y2NPYTzeehQehkNFxvPvNfFSBDO50GD6GU0bN1Kmw/DhxvPIOAh5PnJJ/WWxh7C+dy/v/E2SgBbnv399ZZGGkKe771Xb2nsIZzPffrQy2i42HheuFBvaewhnM89etDrbw4tOageuAKNjVTVtW9fes8YUFVlrJ3us2fpJy9jY6O1wIpRkJdHO/D+/jSGFRXGCn9paKCcU+EYnj1rLJ6zs+knL2NFhfHyZHNyrDw3NxPvRroX6+ttea6uBo4fNxbPOTn0k5fx3Dnj9awT8tzYSO0fzp/XWyorxDyXllIoFl+QyAgQz+eMDODoUf3kkUJ2tpXn+npg505jrTlingsKgD/+MBbP4vl88CCFfxoJQp5ra4Hff7cW4zMC6uspF5Efw9OnqUWYkXgWz+ft243XDUDI84ULVOvASM8W8XxOTydngZF4Fs/n33/39ENljBnuNWTIEPa3gNnMWGMj/f+TTxgDGCss1FcmMerrGWtupv9PmMDY+PG6imMHs5mx6mr6f1ERjeGHH+orkxj19YxduED///BD4/FsNjNWVma9F8ePZ2zcOH1lEqOujrHz5+n/RuTZbGaspISx8nJ6z/NcVKSrWDaor2fs9GnGGhro/fjxxpvPpaWM5eTQ/wsLjcdzczPJx/P60UfGm88mE2NHjhDfjBmT5zNnGDt2jP5vxPnc1MRYairJyZgx1+3SUsb++ovWRsZozTYaz+npjO3bR/83Is+NjYxt385Ydja9N+K6XVDA2Nq1jNXW0nsjzueDBxnbupX+b8R1u6GBsTVrGDt5kt4bkee8PMZ++IGxmhp6b0SeXQAA+5mMLegJ8dUTHGfNJeDzT4uKjBW/L4yBj44GUlP1k0UKHGctsx8RQeW5i4r0lUkMPz/rOHbsSD+NxDPHAR06WN/HxBiPZ39/6xwxIs8cZ5tfxfNcWEjzxgjw86PqgDxiYqwtpIyC8HB6AdR/2Wg8e3lRr1se/Bw20nxu39423NOIPHfubP2/EeeztzeQkmJ9b0Sew8OBMWOs7zt2NB7PwjBFI/Ls40MVfHkIeTbKut2xo7U3JmDM+SxMIzDiuu3rC1xxhfU9z7ORns/x8bb1SYzIs5vhCfHVC3v3UsWzM2fovXDCGAUffwy88IL1fceOxlp0GKMS9mstNbi8vWmxMZKMBw9SOwW+pLnwAWgUfPkl9ePlERNjLPkYAx55hApMAcRzVJSx5kpqKrVj4sfNiDwvXUr9eHkYcT6/+CKwYwe9NyLPx44Bb75JBeMAY/L8yy/UfoRHTIyxxpAx4O23ra3BeJ6NNIbp6cB//2tNIxBuLBoF69ZRGzgeRuR50SIK0weMyXN2Nq2LVVX03oh62JYtwIYN1vdGfD4vW0btWwBj8pyXR4VI+fQvI67bu3cDu3ZZ3xuNZx3gMVD1wtGj1NuKz1Ez4oRZvdpq/AEkY2UlVXg1Akwm4IsvbJtCG+0hffgw8NFH1mqpRnwA/vgjvXh07Gg8nt99Fzh0yHrMaIv3/v3Aa69RnhVgzPm8eLFtka6YGMo3NgrP1dXUAmDnTusxo/G8ezcVzOHL/xtxPi9aBHzwgfW9Edftxx6zbfPQsaOxxvCvv6hgjthwMdK9+P77tObwMOK6fdddlEvHw2jP5y1bgAULjL0R8cYbtPnJo2NHY63bJhO1OVq50nrMaOv2hg3UoaC0lN4bkecXXgAeesj63mjPZx3gMVD1gtjTYsQJU1RklQsw3kNaPIb8/40iH2B9GBudZ/EYAsYpTiPFs9G8f2IZjWi4GJ1n8VwBLh6ejSRjYaH9GALG4ZkfK/GzxUhjeDHybLT5fDE+n426bkvpYUbn2WhjCBh7Phv9+awDPDmoeqGoiHq/BQTQ++Bg4LnngJEj9ZVLiKIiYMgQ6/uRI4HXX7fmfOoNKUXnzjuN1dxYiue33gImTtRVLBsUFtryPG4chXcbpd+t1APwwQepMp9RwPPM9+0MCaEQQWGOmN4oKrLt5ThpEnlVw8J0E8kGUvP5n/8Empr0kUcKhYW28zkkhEIEjdSyp6jIVp5LLqFQUD63V29IzecXX9RFFFkUFQGhobY8r1wJDBigr1xCiOfz5ZdTr0ej9FOX2nB66y3KTzQKxM/nkBCqkNurl65i2UDM86xZlPNplFxoqfn84YeU92kUSK3bBw8CXbvqK5cQYp6vvRaYMAGIjdVPJp3hMVD1gnj3k+OAl1/WTx4xzGbauRHK2K8fvYwCqYXx2mv1kUUO4t1PjgMef1w/ecQwm4HiYtsx7NmTXkaBlKIzfbo+sshBaj7ffbd+8oghxXO3bvQyCqTm8+TJ+sgiB/EuN8dReJtRwPMsXHMSE22LY+kNqfk8apQ+sshBaj7PmqWfPGI0N9vP57g4ehkFUvN54EBdRJGF1PN5wgT95BFDiufoaOMU9gGs81k4jkbSHwBpno3UH7q52V7fFhYM/JvCQFtZfzP4+NgrhxUVlMxtBFRVUTU24e6N2Qzk5tKCaQTU1JA3VzipL1ygogwNDfrJJURdHdCpk+2xc+eAkyf1kUeMigqq7ipcvJubKUfaKH0JKyrop5Dn8nLKVTSKF7WszHYMASoaceCAPvKIUVZGvArHsKmJChIZpS+hlEJbVASsX2+cPByxogNQnvn27bqIY4fSUnueGxupoE5Ghn5yCSHlKT9zhvLg+RxuvSFVrXfnTroXjQApnuvrgR9+sK3JoCek5nNWFhXlq6nRRyYxpHjeuBFYsUIfecTgeRbOlbo64PPPbWsy6Akpnk+coLoRRuFZvOEEUETE0qX6yCNGaSnp10IZa2upmNzevfrJpTfk+s/o+frb9EEVY9YsxlJS9JZCHrW11DvqlVf0lsQWZrP1/999RzLy/a6MAKF8jDE2c6axeDabqe8fD57nf/1LP5nEaGiQ5jk9XT+ZhDCbrX3qeMycydiAAbqII4mGBlsZjcaz2Ux9ZPm+y4wxtnixsXiur6f+k0IYad3mexpXVVmPGW3drq+nnn9Cno02n8vKrD1QeRhp3W5qop7GwnvRaDxXVTGWlmb7bDEaz2fOMJaRYXvMSOt2QwP1NBb23zUazyUljO3YYcuz0dbtEycYO3zY9piReK6ro57GwjXHaDy7CFDog+rxoBoJRisgIEZAAOWrGSn5HaBwDR5GTH4XygcYr/ALx1FpeB48z0aS0dfX2DxznDW/hYfRKpP6+trKGBBAeXZGGsOwMNscNaMVFfPzsw+7MtK6zfc0FuaPG41nPz/q9yfk2WjFaTp0sO3VChiLZ29vCtsW3os8z0YZw+BgoG9f22eL0dbtzp2B5GTbY0Z6Pvv6Uk9joWfNaDxHRACjRxub51697PPHjVTIyd+f6lUI1xyjrds6wGOg6oGGBmDqVPswkpgYCp9tbtZHLiH++AO46ir7CmJGeki/+KJt+XXAWAptfT1wzTW2rXoAY/G8ZQtw443Wvo48jMTzm29ScS4hjKTQ1tcDN99s7dPKw0g8b98O3H8/hfoKYSRl7IMPbNujAMbiuaGBehr/9ZftcSPxvHs38PTT1rB4HkbaLPn8cwrzFMJICm19PT1XxKF1HTsah+cDB2hN5Nvg8DDSur10KYUcC2Eknhsa6NmSmmp7PCaG9B4j8JyaSgUL+f6dPIzE84oVwG+/2R4zkh7W0EAFC8VpVUaaz8ePA999Zx8SbSSedYDHQNUDRUWkzIpzOWNiKA5dbCzogbQ0itH387M9bqQJ8/vv9kqEkR6A58/T4i3O5eR55nty6YlDh2hh9BHVSzPS7uKKFVSdUgij8fztt9T0XYiOHY3D8969pOiIK2gaaT7/73/2io6ReC4qop7GJ07YHjfSur1zp/1mDmAsnr/8Evj+e9tjRlJoi4qov6iU4WKU+fznn7QRwfdR52GkDacPP5TfiDDCs6WoiHoaS+kQRuF540baWBRXMjcSz2++Kb+xaAQZi4qop7G4ToCReF63jhwFjY22x42kh+kAj4GqB6SKRADGmtSFhWSchobaHjfSTrxUgYOICFLCjTCGUsUDACvvRhjHoiJpno2k0EoVpomMND7PRlPGLgaexWPI82yUMQTkeTbCOMqt20bjWTyfL4Z122g8+/tL82yEuQIoz2ejjCEg/3w2gowXw7otVYDoYuDZaM9nf39qfyOEkXjWAZ42M3pA7gE4bBjwySf2D289wD9cxPmTd91ljB0nxqQVHW9v4KuvgJQUfeQSQm5hHDkSWLLEGC0BCgtpDMU8P/SQffiYHuB5Fo+htzewfDnQp48+cgkhx/OYMcCqVcZo8cHPFTHPTz5pjEqLSjyvXQv06KGPXELI8TxhAvVOTEpyu0h2kOP5hRfsd+f1gBLP27cboy+h3PN5yhQKre3e3f0yiSH3fH7jDRpjvaHE8+HD9vm9ekDOUTBtGlVgN/K6/d579lFPekCJ58xMY/RqlZvPV1xB5yIj3S+TGHLz+bPP7Gtb/I1ggDv8bwg5RadLF+Cee9wujiSkjD/AOH0Jq6upDLfUAnjTTe6XRwpyD8DOnYH5890vjxSkHi4AGVdGgMkkz7NRet7K8dypEzBzpvvlkYIcz4MHu18WKfA8S605l17qfnmkIKfoGKkvoRzPffu6XxYpKK3bo0e7Xx4pyM1nI/UllOPZCJskgPK63b+/++WRgtx8Dgmx92TpBTmehe3/9ITJRG1vpNZtI2w2AfLzOSiIXkaAlBcaMM56oxM8Ib56wN+fqoqJb0jGKO8lN1cfuYSIiAD69bM/XllJvRMvXHC/TEJUVVEzaKldzsxMYNcu98skhU6d7JVXxshbYIS+hAEB9v14AcqnW7eOHkB6oqKCHixSD+SjR+0LE+mB+nqqWCnm2Wwm719amj5yCdHUJD2G+flUyKSy0v0yCVFWZt/TmMeePeSJ1htVVbTDLZbRbKacSiP0vC0vlx7D3FwqTlRe7n6ZhCgupjGUUmi3bKE8ZL3B14YQj2NzM7BokTGeLXIbyJmZwDvv2BdDczfkjD8AWLMG+OIL98ojBTlHQVMT8J//UJ6v3pAzXE6coCKReue9K/H800/A+++7Vx4pKPH8/PPAhg3ul0kMuY2II0eARx6xL1b6d4Fc/xk9X3/bPqhmM2MBAYw99pjekshj1SrqzbRnj96SyGPhQsYSEvSWQh4XE8979+otiTwWLmQsMVFvKeRhNjPm728cnsX9eBkz3nwW9sbkYSSeGxvtjxmJZ7OZ+oyKYSSeGxulZTQKz2YzYxUV0seNwnNDg7SMRlm3+Z7GFy7Yn1uwwBg819czdvas/XEj8VxWxlhBgf1xo/Dc2MhYbi5jlZX254wyn6uqGDt+3P44z/Pjj7tfJjHy8hjLzrY/bqR120WAQh9UT4ivkcDvzht5t4Tf5TG6jEaWj+PI22ZkGY1UEEQORi8gYLT5LM5vAYw3n8VVhgFj8SyV92UknjnOvvI6YCye5XLnjDSG4qI0/HGjyOjrKy2jUdZtvqexFIwyhn5+0nUgjMRzhw7Sx43Cs48PkJAgfc4oOk5wMNC7t/1xnme9xxCgvtBSMNK6rQM8Ib564J57gDvukD4XFmbfw87dqK4Ghg8HfvzR/hy/YOot48qVwMSJ9q16AJKxro5CL/XEo48CDz8sfa5DB/3HsLqa+vGuXGl/jlcu9JZx7VrK45QqzGUUnp99ll5SMALPFy5QP97ff7c/ZxSeN24EFiyQDkE1Cs+vvSbdwgUwDs833WTfkgkwzrq9dSs9/6TkCAujvMWGBjcLJcJ778mHJhqB55oa6X68gHF43rGDCrBJFdrr0MEYPH/2mX0bHB5G0MNqaqgf77599ueMwvO+fcCrr9r3aQWMw/N339m3teJhBJ5ra6X78QLG4VkneAxUPXD4sHyeaViY/vlgFRW08EjJwe/a6j1hsrIoR8TX1/4cL6Pe47hzJzVgloIReC4vl+7HCxjHcDl5knpjenvbnzMKz5s22ffS4xEaqr98ZWXUS/bsWftzPM96y3j0KLB0qbQH1Sg8r15NeZJSMArPixfb9+MFjMPzwYPAp59Ke/ONIuMPP9DGmBRCQ/VfE0tLpfvxAsaZK3v2kNItVVHYKDx/8w1VgpeCEQyX0lLaFDt82P6cUXjevp02Z5ub7c8ZRcaPPwa+/lr6nBH0sJIS2syR2ogwyhjqBI+BqgcqK+XDX4ywMPK/XyqEyCgTprKSlBypantGMa6UeDaCosNzaGSeKyqMz3NFhbHnsxae9ZaR5zk42P6ch2dt0LJu6y0jv24bnWepMQSModDy4yN1L14MPBtFRg/PbcfFsG6r6dtG4Vlp3ZbyUP8N4MlB1QNKC+Njj5HLX08oLYz+/hT6q3ep+IoKMlqkPC4TJpC3o1Mnt4tlAyWen3tO/9AXNZ5//50qJeuJykp5nqdOJS+63j31lB6Ar70mvbvsTqjxvGOH/u0plObzZZcBhw7J5zq5C0oG6rvvulMSafCKlpSMfn7kpda797ISzzNmUGSMXD6Wu6DE86efSkdzuBNKPPv7U3SW3r0dlXi++mqK2tG7hYYSz99+K53L7U6ordvl5dKGoTtRWUk6jhTP118PzJ5NsuoJJT1s+XL9eVabz42Nxuh5qwP+nn+13lBaGMeOdack0lCaMABw3XVuE0UWSotO5876Gy2AMs9Dh7pTEmkoPQABY/SfVBrDmBhjNAJXuheN0H9SaYcWMEb/SSUjPyKCXnqDV8akoLeBD6jzLNU2zN1Qms+hofKyuxNK96Lem56AOs96b+QAyjwbpf+kWkSE3lDTw4wgo9KzT2/Dj4cSz3obz4C6HvY3NU4BT4iv+9HcTAqhVFUxAMjLo/6TZrN75RIiMBAYNQqIipI+v3s35Zjoifh4YMQI6XMXLpAHVc9+ss3NpBBK9RgFgFOnKNdJT579/EhGOeV/0yb5nDt3ISJC3sgzmShvMTPTvTIJ0dRECqHchsixY9R/Uk+eAZovch6LlSvlc+7chYAA+cbulZXAf/8rnXPnLjQ2UsEKca9bHgcPUv9JPXlubCQlR07R+d//gJ9/dqdE9mBMfgzLy4G33iJPr15obCQPqdwY7tpF/Sf15PnCBfJYycm4aBGwZIlbRbLDhQvy8pWWUt7iwYNuFckGDQ1UeE1Oxq1bqf+knjyrbUS88w5xrSeUjL/z54EHH5Svz+AO1Ncr87x+PXD77fryrJSCAwAvv2yMfrJ6QK7/jJ6vv20fVMYYe/tt6nsk1ePMKBg5krFLLtFbCnnk5dEYLlqktyTyeOcdD89txcXA88Uyn6dN01sKeXh4dg48PGuHVM9gxozDs9ksL+OIEcbguaFB+jjP8+efu1ceMZqapPvxMmYMns1mxqqrSU4pjBih//O5vp763UrBCDzzPY1NJunzRuC5vp6x/HzpHtuMGYNnFwIKfVA9HlSjwSiJ5UowQmK5EoxSJVAJRilyoAQPz23HxTCfjVCwSwkenp0Do/NslMJsgHSVYcA49yLHKctoBJ6lKuwDxpkr3t7yYahG4JnjKBRaLufZCM9nPz/1EGQ9eeZ7GrdvL33eCGuOnx+lDsiF8hqBZ53gMVDdjUOHKOzzzz+lzxthUr/+OjBsmPx5Iyg6U6cCL70kfa59ewqB0lPGI0eAQYOo1YwUjMDzO+8AU6bInzcCz1deSWF/UjACz2lpVJRLqkQ8YAyeP/6YCpPIwQgK7fz5wIcfSp8zAs8nTlA/3kOHpM8bQaH94gvgxhvlzxuB5zvvpJB3KRiB54wMuhflwoyNsLG4ZAlw//3y543A8yOPyIcZG4HnrCzqx3vypPR5I/D844/AU0/JnzcCz889B/z0k/Q5I/CckwM88YR8GpARns+rVlExRTkYQQ/TCR4D1d0oKaE+dVJVzwBjLIynT0v3TORhhIXxwAHKZZECv2ump4xFRdS/TK6CqxEU2pMn5fu0Asbgeds2+XuR51nPMSwoIBnr6qTPG2GHNjWV8sblYASe166VVyKMMJ/PnqV+vHLl/o2wbu/dC2zYIH/eCDvxy5fTpo4UvLz05zk3l3J15cbJCArttm3KucR6r4kA8NVX8pt2RpjPOTlUkbmkRPq8EXjesIF6tcrBCDx/+CHdj1IwwvM5MxP497+BwkLp80bg+bffqK+xHIywbusETQYqx3GXcRyXznFcJsdxT0qcn89x3BHLayfHcQME505zHHeU47jDHMftd6bwFyW0VmbT84ZUqswG6K/Qms3KlRYB/Se1WmU2Iyi0Rh9DrTzrOYZqPBvhAag2hnorETzPRl5ztK7bet+LajzrvW5XVanzbIR1W6k/pvA6PaDGs95zRQvPoaF0jV7QyrPJ5A5ppKGFZ7mNUXeA51lJxvBwKlSkF7Ss20FB+o6jmr4dFSUfLv//HKr1izmO8wbwMYBLAJwFsI/juFWMMaHrJQfABMZYOcdxlwNYBEBYYnUSY0xmq+pvBrWFsUcP6j85eLDbRLKD2sJ4++3A9OlUkVEuD8aVqK6m360k4/ff69tnTa0yW69eFP4rV83ZHVBbGO+9F5g7Vz+eTSZ1nlev1rfcvtoDsE8f8hglJrpNJDuo8fzII8Bddxmb582bqa+iXlDbiOjXjyqwy1WodQfUjPynngIef9zYPO/dq28LErX5nJJC1Yb1vBfVNpxeeIEqf+oFLTwfP06Vu/WC2nweNIgqtOvZ81ZND3v9deDNN90ljT208HzqlD5rDQ81fXvIEPmoGHdBjedXXqHX3xBaGuwMB5DJGMsGAI7jvgdwJYAWA5UxJky02w3AAE0oDQq1hTE4WP/+k2oPwO7d6aUX1BYdABg+3C2iyEKN56AgauWjJyoqqHWGHBIS9O2pp6YsAvr3GVW7F9u1M4aMSjzr3UtWba4AQJcubhBEAWoy+vtTKx89ocaz3n0TtazbkZFuEUUWajz7+hpjHJV4Dgx0myiS0MJzu3ZuEUUWajzLpWC5E5WVypvsesuohWc9jVNA27NFb6jx/DeGljs8DsAZwfuzlmNyuA3AOsF7BuAPjuMOcBx3p9yHOI67k+O4/RzH7S8uLtYg1kWKLl2AGTPkq4oBwC+/UP6iXhg+HBgzRv78uXNUAKGszH0yiXHZZUBSkvz5HTuoyIBe6NgRGD9enmfGKL9Ez36yffvSDqIcTp8GPvlEPk/H1TCbqWewkuK/caNyno6r0aED7bYr8fzBB/J5Ou5AYiJ5cuVw6hTwxhvUt04PNDWRB7JTJ/lrVq+mYk96ITCQNuWUeH71Vbof9UJEhHwvWYAKPT3zjHw+lqtRX08bXnL9tQHqDa2nV8jbm7zgSjw/8QSwZo175RLC35+eL3I4cgR44AEgP999MglRU0MGgZIR/c035OnVC01NNKeVeL7nHtLF9ALf11gOBw4AN92kXC/ElTCZlHsGA6Q/PPqo20SyQ3U1GfJyPJvNVBTt++/dK5cQapEvu3dTkcO8PPfJZBTI9Z/hXwBmA/hC8H4hgA9lrp0E4ASACMGxWMvPaACpAMar/c6/dR9UxhgLCmLs0Uf1lkIea9ZQ76hdu/SWRB4338xYfLzeUijDw3PbcTHwHBh4cfC8e7feksjDw3Pb4eHZOQgMZOyRR/SWQh4XC88JCXpLoQwj8CzX65YxY/BsNjPW3Cx/3gg819Upn9eb56Ymxmpq5M8bgWcXAm3sg3oWgNCF0RmA3dYcx3EpAL4AcCVjrKW8KmMs3/LzPIAVoJBhD5SgdzELNRihkJMa9C4UoQUentuOi4Fno8tohIJdatC7eI4WGJ1nIxT4UcPFwrORZbwYeDb6sw8wBs9KIbJG4JnjlEONjcCzv7/yeb2LBHp7K4e8Xwx6mIugxUDdByCZ47iuHMf5AbgBwCrhBRzHJQD4BcBCxliG4HgQx3HB/P8BTAMgU2P+b4I5c4Bp05Sv0VPRqaujEKz//lf+Gr0V2h9+oFAxpZCHsDAKQZFr8+Jq3Hyzcu9JQH+eu3WjdgBy0JvnFSso9FOt5ZGePN9zD7BwofI1evM8cKB8T0JAf0Vn9WoK5VYKSeSrfurF8yOPAHffrXyNngptXR2lFCxfLn+N3vP5998pNaOoSP4avXl+9lngsceUr9FT6a6roxShVavkr9Gb540bgdmzAaVUrbAwfXl+9VX1EGO9eZ43j+aMHPQ2XP78E7jtNvl2f4D+PL/zDrWZUYKez+f6eipQuGWL/DV6z2cdoWqgMsaaANwPYD0ofHc5Y+wYx3F3cxzHP7GfBxAB4BNRO5kYAH9xHJcKYC+ANYwxhRn3N0BBAeUWKEHPCVNZSTmHFJYtDb0V2vPngTNnlHed+EmtVyn77Gz18dFToa2oIBmVyqvrzfO5c8CxY8rVHvXm+dgx9RwgvXlOTVUeH715zs0Fdu0C/Pzkr+Fl1Ivn/fuB9HTla/RUaCsqgO3blfPF9VZoT50C1q9XroyqN8/btgEHDypfo/d8XrNGfdMO0E/GEyeAn37S5v3Tq43L+vU0X5SgN8/LltEzWg56Gy5HjtAGtxZdUS+eV6wA1q1TvkZPfbu8HFi0iHrSy0Hv57OO0FLFF4yxtQDWio59Kvj/7QBul/hcNoAB4uN/a1RWKhf3AeiG1KtgiZaqZ3pPGLUWLoCtjErFGlyFigryUCohNFR5l9mV0FIhV29FR0uVQA/PyvDw7Bxo4TksTD+etazbeiu0jqzblZXG5rmykjaaT56kiuyJie5pSaKVZ29voLaWNvlyc6nwk7sq72vhuUMHKlxjMgE5OTSWSUnuq+KshefoaCr4VFdHG1RBQVRYUGkjzZnyAerrdlgYeSfPnrXynJzsevkAbet2VBQQGwtcuKAPz5WV6jx36UJzRU+e1dbEhATAx8fKc0yMvp003ARNBqoHToRaT0IAePttt4giCS0TJjCQ+tUpVYx0JSoqSAalBWTWLPJuxSkVnHYh1Fr1ABRGrVefNS0PwMBA8hopVYx0JXielZpUX3MNMHWqfjJq4fmbb/RrtK11PhcU6GMQANp4njOHuA4OdptYNlDrVQdQeK1avpOroGUjIiiIFEW9Wnxo4XnBAgqZN5uBF18kT2qfPhRK6I6WFVp4XrWKlMXHHwf+8x86NmsWsHKlq6XTznNjI4UP9uhB0UYA8OmnFE7oamjh+aab6LV1KzBpEh0LDiavnDtaSmnh+ddf6ed991E1WgCYMgXYsMH196JWnsvLybAS8vzf/6qnIzgDlZUkgxLP8+fTy8g8/+9/9NPIPOfm6sezjjBAs6e/GbRMmF696KUHtBguHAcMG6ZfzzotRn54OCk27tgFk4IWGRMTgc46tQzW2sOsRw/9mtJrMf5CQmgMfXTaa9PCc3S0vsYfoD6fO3bUz7jSsia2a0dc69VXT8u92L69sTciOI4MB73GUAvPPj60affVV8BLL5FRdccdlKfsDmjh2ceH8qU/+ogM0/vvJ6N1wwbXy6eVZ46j0MEzZ4APP6S2cc89555QSy08AxQa+uyztIn8889kVD//vKulI2iV8fRp4PPPgRtuAJ58Eti0yT0thhzp3/nZZ8Tzxx8DY8fSGLqLZ7VnHyDNs7taDGmVMSfHw7MB4TFQ3QnGaAKMHq183eHDdBMqxfa7ClFRtOOl5nlcvhz47Tf3yCTG4MHAtdcqX1NWRv0nlWL7XQXGgCuuAIYOVb5uzx7q+acHz2FhwMyZyr0nAVIU9eon26sXcOmlytcUFwOvvAIcPeoemYRgjB4U/fsrX7dtG/Wf1IPnoCBgwgQKCVLChx8C333nHpnESEykcVRCURH1nzx0yD0yCcEYkJJCmzVK2LCB+k/qwbOfH/XjVeoxCgCvv06Gix6IjiYZlZCfTwbpCy8AI0eSwdijBymNTU2ulY8xigpKTFS+bvVqYPJkkue998iL2qULyWg2u1ZGjqPQvogI5eueeIKMgokTyYB+5x1aK995x7XyAbRRoxZmeuYMedR27CA5r7kGePBBKubm6rXcbKbNdbVn348/0vh5eVGhnZdfprF/6inXF/1pbta2sXnPPTR+kycD995r5dkdUXheXup64unTwIgR9jx/9517ePbzI2eFEpYsoQ0cPXiuq6MaG2pG9I03kg6hB896Qq7/jJ6vv30f1DfeoL5HFy7oLYk8hgxh7Ior9JZCHllZNIbffKO3JPLw8Nx28Dx//bXeksjjYuF5+nS9pZCHh2fn4GLhGWBs/Xo69vPP9H7RIn1l4/HMMyTPbbdZjy1eTMdWrNBNLBt07kzybN9uPXbNNYy1b89YVZV+cvHgeY6MZKy+no6VljIWFsbYddfpKxuPJ58kGe+913rs++/p2PLl+sklBM/zjh3WY9deSzxXVuonFw8Pz9qg1O+WMePz3AagjX1QPXAWzGZtO6x6FiHSuvtvhB5hStC7kJMWXCwyXgw8XwwyGplnI/SrU4KHZ+fgYuE5MRG45BL6/9VXU0rJ++/rJpYN+Aq6N9xgPTZvHnmv9Yo2EaOmhsLihZEJDz0EVFdTBVu9wetBQ4da03DCwykHec0akl9v8Dxff7312OzZlA7x00/6yCRGTQ2F7Quj8nie//hDP7l4eHjWBrW0iwsXjM2zi+AxUN2JI0coR0mphxmgb7XFZ5+l369mqOqp6PTrB9x5p/I1fN6kHgptaiqNj1p5cz15fuklID7e2DyPGAE8/LDyNTzPesh49CiN4caNytfpyfMbb1BFQjWe9Sy1P3kyhVMpQU+ejx2jMfzzT+Xr9DSi330XGDVK/To9eZ45k8LnlMCPXa9eVqWN44C5c4kHpbYbbcXJkzSGO3YoX5eTQz+FIaLe3tSfdO1a9TZybcEnn6inPTQ00DiKi2GNHk3GgZr+0VbMnavee/LwYfopDrOdNYsqqm7a5BLRAAAZGdSLfu9e5ev4e00YNu/lRTyvW0fj7Cp8+SUZSUqQ43nUKPfwfPvtlIetBD15zsykMVRLC9GT5yVLqACcEurrqVicXjzrCI+B6k5UVNCOUvv2ytfpqehUVJARrbajo6eic/68evVbHx8aZz1kLC+nBUWt6IyePJ8/Tw8II/Ock0OLsxJ4nvUYw9JS2n31UllG9eT5zBnK33SA56VLKaXOy4t+Ll3qYhnT0tTvMT15Li4Gjh9Xz0fScyMiM5P6jKpBGBFhNtPf5eq8SR67d1O1aCXwvSnFBfiuvJJ+ulIZKyoiGZUUUsZozAD7Xq2zZhH3f/3lMhFx7Bhw4IDyNXv20L0qnvM+PsD06WREuzKfd+NG9Y0EfrNHrAtNmEBVXl1ZFCs/n/LFL1yQv4Yx6ucK2K85s2ZRcRq1Dau24OBBYMsW5Wt275Zek9zF88qVdD8qgR8jcfV1d/B89ix5QJXWY7153rVLvfo3P5/FcBfPOsJjoLoTWkpKC8/roehoqWII6Ge4MKa9Ap9eMmrlWU+F1hGe9TAKLgaetVbgu1h4rqrC0qUUnJCbSxTk5tJ7lxmpjvJcXe0iQRSgleewMNo400NGR3hubqYiJd26kWf42WddLR3xrEXGzZtpZ0Rc2CQpiSJnXNnKRQvPmZlASQmF24k3zy65hDYlXWlEa5krmzeTcSpVYGfWLNpY27XLFdI5xnNwMI2jEH5+wGWXkeHiqo0TLc/n48dpozkiwt44mDKFvFlG4Tk+3v6cO3jWKmNYmP18NhrPcXH2GzpG47lPH/tzruZZZ3gMVHeCnzBqbTsGDKAwlIkTXS6SHSortbUVefJJfSrk1tdTCJUWGXftoiqL7oZWngcPBgoLqY+nu6GV5xdeoGbv7oYjPB89SiXY3Q3eg6Im47BhlGtz2WWul0kMrTy//jpQUYFnnrFPC6qpoQKCLoEjPOfk6FOBVivPw4fT38LnTroTWnn+z3/IY33nnWTAXHYZVRLfs8e18tXVqfPMGHmNrr6aKrCLMWsWeVjLylwjo5Z1mw9JPHzY/vkcFERK7cqVrqvkXFWlzvPmzcCQIdIe9UsvJePAVUq3Fp4LCsgweO45SkEQY9Ysei7u3+8aGbXwvHkz/dy/377CeGAgzfHVq43Bs1QIqzt4bmrSxvPTT0u3lTESz3/9RVXDhXAHz1rW7U2biOdt2+zPuZpnneExUN0JrYpOu3ZUpl2PhupVVfbhGFKIitKnh6fGMVy6FOgytjO8wkLcE6YohFae/f2p/YcevRO1PAABukaPPqhaxxCgHUi9xhBQl9HHh+ayHv0ntfLs5wd4eSEvT/q03PE2wxGe9ep1q1VGLy/9eoxq5ZnjgG+/JQXz66+B778n78HNN7s2d1LLGGZn0402ebL0+SuvJG+WWm5/a6FFxs2b6bnXvbv0+RkzaCNFS7h1a6DG84ULtDErN4bBwRRe+fvvrpMPUJaRD12Vk/Hyy+k+1VPGzZup5VCXLtLnZ8yg8JL0dKeLB0Abz7t304aIFDw8e3j+fwCPgepOpKRQDyi1nkeNjbTTvXOne+QS4qqrgOuuU78uLY0KXpSXu1wkG/j4UB+oAQNkL+HDFEfk/oC72H9dH6YoRs+epPCpKYx8Y3K1XBNX4JJLqFerGg4dAh57jMJI3AkvL6r0JxXWIsbXX9N8cTe6dKG+bmo8NzRQsSc9qmeOHk39BtWwdy9w110YEFcieTohwclyCTFrlnrfRIAKcrz0kgsFkUFsLEU5qPFcXw/ceqs+/aEHDLD3AEhh2zbyZgwbRp8JDaVeeidPWr0JroDZTB5HOUUQsK6D2dnUx1OMoUPJ6+uq9TIiggqzKW3Qbt8OjBtHFT9//tn+PO9VdVUeardupEfIYd8+eq6EhVF+WlGR/TUTJtDz2xWe6KYm6nWr1B/zr79oLq1aRT1axYiIoN7SrhrD4GCgd295nhmj3z12LHmoli2zv2bCBPrJ50w7GzEx8psggJXn9u3pfiwslJYxLc01OlpDA8mn1F+b5/n772ldFMPVPPv50X2ohedRo2jjTgxX8xwcrDxX9u6lORUQAAwcKJ3D70qe9YZc/xk9X3/7PqhNTdTz6IUX9JZEHj/8QDIeO6a3JHZITCTRfsS17Bh6t7TVS0zUWzIRmpuNzzPfD8yAPLfg2msZ69NHbynkcRHxvPqNNBYYaG1FCTAWGMjYkiV6C8iMzzO/br/4ot6SyOPpp0nGN96wHqutZSwkhLFbbtFPLsYYu/VWxiIiqF+nHM8zZzLWo4d75eJRWEhj9/bb8vPZbKaejzff7HbxGGOMvfceyfbpp/Lr9tatdG7VKvfLxxhjo0czNm6c8ny+7z7q8djY6F7ZGGPs7FkaH34s5XiOjmZs4UK3i8cYY+zdd9V5/vNPOrd6tdvFY4x5eHYGLgae2wh4+qAaBNXVFFqlBm9vymcRVwl0By5c0BZvz+9KuVvGpibVimV8OKIJwQiGye64y6FW7ZOHlxftgJpM6tc6G1pzKnivkR73olYEBxtbPi8vms968KwVFp6/fM+EmhprkezEREr7nD9fR9l4BAcbewwF67bbKyFrBd/2QdiSJiCAwmdXrHBtSwU1pKaSlyAkRJ7nceOoPoOUZ9DVSE2ln4MGyc9njiOPjKs8LmpITQWio62Fc6TWxeHDKSXCldWG5WA2W3lWms9jx5K+xN+v7gTP8+DB6jzrMYYAyRgTYw1tkZJx2DDiWY97Ucyz3PP5YuFZr/l8+DDxzM9no/HsYngMVHfivvuov5sWKD2kXYmoKOnwKjF4A9XdMq5fT5Nx3z7ZS/g1uwohNgaqS8MUhbj1Vm0hi4B+xlVwsLbKN3rxvGYNFSlQ62EG6DdXbr+dHsBaoJeMnToB//qX6mV/7CKeLxTSvdjcDEz334h9vqMw/zqVVj9twfr11BD9yBH1a0NC9Jkr999PhpEWBAcj82CVeyshA0CPHtrC3PnCduIKtHPmUEVJVzV937iR1sS0NOnzTU3UsmLAAGWeeR5cYRg8/rhy2gOv0A4YoK50Z2Wpt9RpDQYPVu49efiwdQwB6TWnXTtSal2h0G7dSqHYcgUUs7NpE1wrz66Q8fnnKURbDjzPKSnKRvS4cZRv7IoighMmKBeES0213oeA9Di6kuft2ym3VC7XWsiz2hjy3+dsvPaadGgxD0d4Pn2a2tY4GzNmAIsXy5/neVZyFLiSZ53hMVDdCZNJWwEiQB9vQVMT9cbUIqPSA9CV4Ceogoyvvkq2jdWDyhAYSMfdApNJe4ErvXi+cEG9Tyugnwe1qoruRS3jyBt/rqq0J4fSUu3ecj02IpqapHOTJPDuFzSfhBs6N9YvQlTmbteGHpSVkTfMz0/9Wn6uuJvnc+e0twgKCcGJvSb3VkJuaiJFsbZW+brKSlKoAft78ZJLKL9z+XLXyFhcTC1a5ApdnTpF0UVChVaK58GDaU2QqmjZVmRmUt9gOaSmUoGk8HBtSrezjeimJtqwk8s1a2y0NfIBZRn371e/ZxxFfr5yn1axkS/Hc1wcFa9xhdJ99KhyB4LUVAp7CA3Vx4hubKT7Wy5KQMiz2gayq3g+c4ZyweWef0KelZ7PruR53z7lCsGO8uzs+dzYSBvxubny548f15dnneExUN0Jk0l7RVQ9vAX8za9FRr1CfHkZFQzU+fNp89EnLBjeMKNXfI17wxS1VkIG9PGstYZnd/d21LAR0YLgYArFEVsFroYj8zk01P3NtDXMFYA8eycLQlCDdvADhXj6ogGXwVIZ0BWeILGMWsYxPJyKv2hJk3AmHOE5NhYVNdIVpV1m52vkGXv2kJIo1XfPz4+K6vz+u2s2ANQqagq9GR07UriL2MvLyzlqlGsUWjWeeW8GQAVi5IodDhpEO6TOllFtrqSnU4j2wIHEcffu8hsCY8eSAuzs9kJq92JqKsW99+1LHPfrJ80zQEr3X385/35UcxQIeR4wgKJQpDBgAKXouIpnORl5ngcMoDVx8GD7frI8xo1zLc9K85nnuVs3mrNy6QNG4Hn0aPmiVK7mWW4MT5608hwZSQXY5NYcV/GsM3Sq2/83RVWVdPNsKaxbR7lB7oQjymJCAnmQ3N2CRGPLh/nzAVz7EICHcMLfH3Bn9weTSTvP27Zp82Q6E44Yf4mJtEi6u42LI/fio49SeJ67W3w4wvOePe6XTwPPfMXrGnRFEKwG/nhsQwjvTc3P11XGFjzyCL3cjaoq+0bzctiyBc91ASCxKe6yFAOtbXB27CClMS9PerynTAGWLCHvTL9+zpVRTek+coSMqd69ycCSqu7KY9w4CluvrFSviO8IlHiuqwNOnKCK0wCwdq389/j6kkLubI+L2lwReq0SEpRb3YwZQz//+su5/da1GC49e5IX/M476SWHsWMp/PHUKQphdxaUeK6poRxnPgRYKaLAx8c1PKuNIZ+vOWAA5SYqeaxHj6afzuZZy73I83zLLfSSA89zRgZ9xlkwmbTz/PXX8t/jap61zOe4OOXq5a7iWWd4PKjuhCMhvpGRtGvjTjiiLHp70+R3d29CflIHBalfGxBALz0MF62Ge7t2pDS6E1o9LgDJpmePUS08e3sbu8cooI98Goz8Z56RdjzPwG9o5Pcv3eFB1cKzXnBk3YY1xUAIl6YYaJ3PO3da862kwLcjckW7GZOJ5oAcz6mpZJxq2awbM4aKsOzd63wZ5cbm+HEKZ1Rob2aDUaPI6L5wwbnyAcoKrZ+fNiW/Qwcab2d7XNTWbaHXSg280r17d9vlEkLp+ZyWRveWIzKmpTk3wsgVPLtiDAFj86wUyeYoz6NG0WecGe2mJapEb551hsdAdSfuu4+KUWjBr79Skrc7ER4OPPec9t3zF14AVq50rUxijB4NPPWUNqPu5EngoYcowd2duPFG6067GpYtA55+2rXyiBEaSuPSu7e26//xD+CHH1wrkxhDhtB80cJzWhrt0GZluV4uIa69Fpg2Tdu1X31FY+5OBAVRP16FfnrCsNMvcBsWYjEAhplYjfMDppHB4EoPat++wE03aeP58GHq0azkGXIFLr0UGD9e27Uff4z5m2/DokUUfMBxbqiEHBBA/XiVeow2N5PyMno0MHs28Pnn9tckJgJJSa4xULt1IxnleE5Ntfb33LeP5pVcnuDw4TSwzlbGRo+m75aTD7AWRfvPf5Sf5SNH0pgr5cA5Cj8/yhXmK3qKcfgwzSd+Q/Gyy5QLKo0cSWPozNDKzp1JRimeKyoo3443CnbtIhmOHZP+rt69SXnftct58gHUe7N/f+lzQq8VQJ766dPlv2vkSDJ0FIo2OgwvL+rHGxsrL6OQ5zFjqJexHEaNcj7PkZH0t2vheds26md+9Kj0d/E8O3s+d+0qX6xSzPPTTyv3Cx81inh25nwG6G+PipKXUchz//7Ku5yu4FlvyPWf0fP1t++Dyhhj99xD/dSMjMhIktOo2LyZ+kNt2aK3JPLw8Nx2bNni4bmV4HsGA4wVI4J9jHtYN5yiAx9/zFjXrozNn6+3mISLYT7ffbcheWapqTR2331H8t17r/R1t9/OWGgo9XR1F0pKSLa33qL3PM+bN8t/pm9fxi6/3D3yMcbYww8z1q6ddVzUeOb/JmG/WVejY0fGbrrJ+j4iQp5nxhhbtIhkPHXK5aIxxhjbto1+39q19F7LfJ46lbGBA90iHmOMsfvvp76czc30Xm3dLi2lv+G119wjH2OMxcTY9tn18Ow4pHiOipK/3ig8K+lh7ubZSYCnD6oBwBh58rSG/OhRPOfCBaocZ+TKpOXl2sNp9KhAyxhVJtVaEEePKr4NDZRTpXWnTQ8Z6+pox1IL9CjYxZhjRY/0mCtmsyrHwnBUvi3TOD9L6OSYMVQgxJUeVEd2ey+Gnrx6tRNSA++9GDRI+V6cPJlyO93Zl5BvPcN7ULW0tnK3t+DkSWoRxzcIVuM5IoK8N+4KuauspIrdffpYj6kVWhw5kn66S0beI85H7mhZt0eOdH6otBJ4nnnPoNqzLzycQjDdNYYVFaSjCaOf1J4tRuFZaRyNwLPSGBqFZ7UxBP5fhfl6DFR34cIFCjn45BNt1wcHU3U7dzZOX76cKihq7fekh+Eyb55yKIYQevTwvHCBlJN339V2fUiI+3leupRyX7WWFdWjovTVV1sXXDXoxbOvL/DOO9quDw4mjuUqVroC33xDYYEKPPMVrxMTqS1TTDsTnpi8j+6Pvn0pzMyVOagzZmgv6qAHz9XVZMF//LG26/VYtxcvpjVHad0+fpzqBSQnK6/brspDnT2buJYCr9DyPcK1tDAbOZI2KzMynCNfdTUQEyMd+gxQ5VRhLpiWdXvkSApPdZYRvWwZ6RBSG0bp6fRTKKPa87lPH6pz4UyF9sYb5UOf09MpHJ2vFqZ1I8KZoZXV1TQHvv1WXkZHeXb2ZslPP1HoqVSLMCme1TZL+vShsXZmqPRdd8n3GBXzrGVjkefZWaHS1dWUJvT99/IyiueKu+fzypVUIOr8eWn5AP151hkeA9VdcKQAkfA6dypjjsqoV4sUR1r1ALQzp9Ur3FY4UoBIeJ2RedZjI8LRVj2Ae2V0tLiPXjI2NakWW5s/n4I7BowNwbSRVeht2keeNh8f13tQKyutXik16OEp5/vxai0GpwfP5eUUtSHXagKgPL/kZNqwUFq3O3ak65xdsbKgQL5HX0YGbYjwuZVaeB41in46SxmrqiJFUSpqo66OJohYoQXUjauiIvk+h47i/HmSQ6q6P2/ki2VUGkNvb8q5daZCm51N1f2lkJ5O9xbvtdIyV0aMoJ/O5DkzU7pV1YUL1N/TUZ5HjiRu+B7DbcW5c6SzSPWGltuI0MKzMzci0tLk72sxz1rGkOfZWTJWVgIHD9JPMaR41nIvjhpF/ZydxfPp01RZXaoIpVF41hkeA9VdcNRw0VPpdsRwcVdIBg9HKqfyf8dbb2n3XLcVWls+8AgJIeXMnX1GHeU5IkKfSsiO3IchIdpDgp0BR4388HDy0AiU9KVLqa6Nlxf9XLpUZxk7dyaD+9AhYNgwOtapE32Pq+a5I/M5JIRkdGdVaUfnSkwMKWfu9JRr4fnYMfKIA9SyIyZG/tqxY0lxcmb4rBLPUoZL797KGyu9elGxN2cpY0o8Z2bSWAiVxfh48tA0Nsp/p7ND7pRkTE8nBTUpyXps4EAqTqWEUaOoGIuzekgrbSxKeSdHjFBu1eXsUGmlucIXXxPK2LUrRRUobXA7m2clGaV4HjXKGh6vJKMzeVZyFIh5Dg2lwlkdO8p/n7N5VporUjz36AFceaWyDqE3z1OmWDfmlGR0Js86w2OguguOGi7z59PDT6kyo7NhMtHurEYF8H83rEKXoj2uU7Cl4IjhEhgIbN1K/1fqc+VMOKrQ3nQTLSaJia6TSYyqKod4xq+/Aps2uVQkOzjiKQ8Kop3Se+91rUxCOMrzggUUsmXxEvH9R3NzSffNzaX3Tp1DDs5nLFuG71NSgJoaPLh4Mf766y9rJUlXhfk6Mp+DgrD0jTPo8srt7ltzHOnHC1B4Y0aGbQXOQ4eUDZm2wmSiastyPNfWkmeLN1C//BL43//kv2/MGPKC8bv4zpJRq+ESFEQhyQsXyn8fX+nUmZ41QJpnKW/G1VdT2KmS0t2/Pz2DnCmj3HxOTydlVuh1++gj+ZBlHny1YaVemo5AjueGBroHxTzv3q3e2cCZ1YbVjHzAVsaZMyncPTpa/jv79rX+Lc6A0rotxfO//w28957yd+rJc2Ag8McfwFVXqcvobJ61zufLLiM9R66iLuA6nqWic9LTaXNJyPNLL6n3KnM2zzrDY6C6C44qtL6+7u8x6kBY5dKlwB33+LhWwZaCI4YLx1HoG0BKolyZc2fCUa+VXv0xHejrqAscCfHVA44aLiJI9R+tqaHjToODPDPGsOuDDwAA68vLsXXrVvKgAq4zUB1cc1xu1EvJB7T+XiwsBIYOVTcU2gK1NTE9nTwDwgI6Shg7ln46M8xXzoPa0EAhcz16OP6dI0c6rzehFsPFURl9fCgSwZkKrVYjXyucHVopx3N2NinOfJ6xI3BmqLSa4cJx8q1J5ODj49zQSjUvdGvG0BWh0q7i2RltAdW8k63ledgw542hI15orXA2zzrDY6C6C927U+EcDQ+5pUuBUZ3P4BPuPlwem+oezyRAfepefFHTpc88A0yrWYH/4u6WY05XsKXw7LPqO3FCLFpk/b9cYQRnIjGRdroUek/aICeHPAXu3PG64grg8ce1X//991Scyp14+GHg8su1X3///eq7yM5EbCzw6KPaIxwyM6k37p49AOTrFmmtW6UJEycC99yj+fLC999Hr+pq1AcEoCY2FpmZma73oN5yi+aiZ888A3xcczOexOstx1y+5sTEkBXMF/xQQ3o6jfvOnfQ+K4uMwx07XCYiRoxQ9jYeP04/eQ/qp59StV459OhBfQ6dKfO110qHp/EKrVgZu/Za6rOtBGcWVomIAG64AYiLsz938iQdF4YcHz9OIb7btil/78iRtDkqlfPoKFJSyHMrRnMzhS2Kx/C992hzRAlRUeSpcZZCe+mlNC5iSHmtAOp3+89/Kn8nH1rpDBlDQuj5x2+8iWVMSLDN5T5yhAyZLVvUZTx0SD7P2hH06EEhsWLI8fzGG+rGTFQU6STOMqJHjQL69bM/Lsfz6NHqfcCdGUIbGEgbbVKebymeDx2itX7DBuXvHTWKKpw7g+f4eBoXMeR4fukl6fVJCGfzrDfk+s/o+fo790FdsoSxwEDG+iCNMYBdj+9ZYCAdNxI4jrEX8AJjAOPQ3NJLkeP0lkyE6GgSbNo06ivlzv5+WpBGPLPvv9dbEnm88ALJyPcMMyJ692bs2mv1lkIePM8//MAYs+0/KnwlJrpHnCVL6HdxHP1csoSxtfPmsd0AKx80iE2YMIGNHj3a2s/x3XfdI5gCOI6xY+jNfsS1NmNmqDVHxDNbupTe9+ihn0xPP82Yjw9j9fX0/vnn1efzlVcy1r2762X79VeSZc8e2+O9ezN23XXKny0ro8+++qrr5GOMseHDGZs82faYmGc5rFhB1+3c6TLxWHY2/Y5Fi2yPa+GZMcYWLKAeqmaz62R84w2SpbLS9rgWnhsbSSl68EHXyccYY0OGkJ4ghFaeV66k6/76y3XyZWXR7/j8c9vjHp4dw+DB9jwfPWp8nrXqYe7g2YmApw+qAXD+PHDihGo1WT70zwQKTQiGyT2eSYB2szV6ShISrDK2R7XNcZehsZF2lhwp2OLlRa+5cyl8JDPTdfIBVFHz3DnHe3i6sxhWUZF0dTs58DK6q5BTczPJ6EirDndXlL5wgcKIHOklC7SEHgn7j/IIDFRPMXEIJpNk7qNcqOyaY+WIBRCYnIzu3buTBzU8nPJgXOFBNZtpsdM4hvyaEwyT3XGXobHRseJb4uJ2vEs8I4N627kCavIJK/gCVhmV5vPYsbRWFhW1XT5+L0EKch4XLa2tOnSgUEJXhrMxJh1up3Xddqb3Tw78GIrDKrXwDJCMhYVU2dRVSE+nfF1xSKMWnp0dKi0FZ/HsShmV5gpgfJ7VxtBdPGdkyI+hmozODomXghzPWvUwd/DsJngMVHfh668pB0iluiOvz1SBJkwIqmyOuxSzZwO3367p0ldfBer8SMYIlOA9PIQ+AdnOVbDFOHOGwl9++kn7ZziOFr4BA+j9kSOukY3HZ59RpVGtIV2WhfHAVpNrK7oKMX06FeHSCndXlM7NpYfcsmXaP6NWgt3Z+PBDqk6oNdRHNIbC/qMcRz8XLXKMFlVMnCgZEiiX/7rp+HlEA/CLiEBycjLOnz+PKpPJda1mTp+mohOLF2u6/NVXgQteITYGqtONejHeeYeqKWqtiihukSLMm3NVGP+wYdKhnzyOH7fNP9WidPN5qM4I883OppoKUoWZ0tMptC401Pa41tZWzupB+e9/0xwVr9vnz9NmnpxCq7bmdOxIC7ozFNoxY6QXCDWFVk1GZxlXOTm0oSX1fJbLqdPKs7NCpd9/n57PYj2soIAU/9aOYXQ0FS9yBs/TpgF33GF/XI1nd22WnD5N9/SqVfbnlHjW8nx2Fs+ffEKVwMU85+e3jeeYGKrs7IwNp2uukQ57lttwMtKmmJugyUDlOO4yjuPSOY7L5DjuSYnz8zmOO2J57eQ4boDWz/5tUFVF1ke7doqX8d6AalC+C6+MudRLwENjAaKlS0nJLW2gCTMWO/AQPsAv4951roItJR/gUMGS2hqGugYvBAzug0b4IG1pqouEs8BkIoVWhecWWPKa1i2vcl/xF0cLELm7/2RrChC5u1drK3kWysj3HzWb6afT545MURW5za7KxrPwB4CgIHS35FBnZWVRHuq5c04WDg4XIJo/H+g+OBgRvlWuM+qlZHSQ5yUA+r3xBmpra2ky83nKzmpCL4bJJC9fYyMZDkJlR4txNXgwVZh0RqEkk4miIqT6d8optFo8awApYyUllOvbFlRU0CaEv7+9fIC9sigxnxVldIbhIten9eRJICzMvgKpVoU2JYXun7YqtFVVFEEk1ddYiWetY9jYSL0t24Lz58m7JO4xKtVHFnAswmnkSOcYBTk50l6y9HRpnrVulvA8t/VerKigdU0qGtAZGxHO4PncOYq2E/PcViOfl9EZ8zktje5HMdLTKTokMtL2uFZHgbN4NgBUDVSO47wBfAzgcgB9AMzlOE5cDjAHwATGWAqAfwFY5MBn/x7gjT+Vqq186F8zfFCGDvBBk+u9BDw0GC7C8MBKhKISIRjpsx8A0DN1OdDU5Dr5HDRcli4FqioZGuCLevjjJHohb7WLi07xRoHW6rw+Psj37ozaRtuKzS4N63awuuumwxHI9+6MAX0a3dPaozWVUxMSlEvEOxv8XHGAZ/TpQx5Dd0Fmw0l6s+sCAmAJ5+zQocVAPXXqFD3w9u93/txuxUZEwpQe6HlpV9cZ9WK0Yj5/FhyMY+fP45dffqHdgIEDybviKgNVad3OyyPehEXbYmNRPHgwziqF7/r5UWVSZxmogDTPGRnShQMHDKA2LWrgCy+1VRmT41lOofXxAaZOVS9aApBCe+ZM2zd55DaQeaNALHtCAnnj1NpM+fpSMaW2jqHcul1aSi8pw2XECPXejoDzvLxyepgSz1ddZduPUknGc+eAs2fbLqNc9VkpnpOSgOuuk94AEsJZPMs5CpR4njiR7kU1OItnvsqwIzwvXKit0vmoUc7hWa4SshzPPXoAt95qnxskhrN4NgC0eFCHA8hkjGUzxhoAfA/gSuEFjLGdjLFyy9vdADpr/ezfBhqNAmHoX18cx9mowa73EjggozA88HdcjjBUIrYpD2ZwtBv055+uk89Bw+WZZ4AqBGMNpgMAjiAF/cypWLDAhWG0Sg3pZdDZfAavwd4adVlYtwYZly6lMeI44JK3LkFc8xkcQYp7Wnu0wlOO995Tr7ToTLSmVc+xY1T5112QMVyk8l/9/Y+ixbwfOLDFQM3MzKSKryaT80NUW8PzG29g6Q2r3RcO72C0QWFhIXZYvB9fffkl7eQlJlIYris9qHIy8jn3QgN1/HjM8PFB/KRJGDx4MHJycqQ/O3Yshds5kvMvBbl1u7wcKC6WVmiff15biH+fPvS9bfVcKRl/AQHSuzobNgC33ab+3c42oqVklBrDMWOA9eu1VZQfOZK8ViopSIqQ41nOKACAJ56wrbQvB2eFSsvN5/R0WhSlNhxWrKA+1mpwFs9qhosYw4cDP/5IoadqcCbPYhmVeH7wQeDtt9W/21k8K80VOZ4XLyZDXw3O3CxxZD4PHkw9rLWEUzqDZwNAi4EaB0CYbXvWckwOtwFY5+hnOY67k+O4/RzH7S8uLtYg1kUGBwwXPvSv4JmP8FnxNZh/pRuK0zQ3k+UpkpE3VHhl0L4VGcNI7MbPuJbCnn74wXUyOuhxycsDIlGCElCoRCoGIAFnEIZy1xlarTBc5NYbl4R18zwryCj0kgP26V0uL9ol9wA0Ehzpx6sHFHiWyn+dN++w1UCNikJQUBA6depEBurEiQCAw+9sdq5h2Aqe3d4L1QGely4F+vb9FYwxBAbOwcEtWyhULyGBdrTPnKFwVGdCZt1ugYSByhhDWloaRo4cidTUVHzzzTfSnx0zhryve/e2TUa5jQglhVYrvL2d04NSyXBJTqabvrUYOJBCh9siY1OTNM8mE+XVtWUMAVJoGxqohUZrIfd8lguTdhTOCK1UMwrawnNKCm1mtJXn2lp7GXmenTGGzuJZbj4bhWclI1+OZy257AMGOG8+y/EsN58Z01a0j+f50KHWy2gAaJmNUrFNkixyHDcJZKDyja00f5YxtogxNpQxNjTKnaF67sL99wOvvOLYZ1aupJ+u6kEoBGPAV18BM2e2HJJSBoVRBxEowSrMRCcUIjV8EoXC/PSTZOVQp2DwYOCjj6y9GVXQNb4JHVCBS/AHAlCLVFBqdAqoUJJLDK3bbgOeftqhj6zt9wRe93nO5pjLwrrNZvI2Xnqp7CXiIjpROI81uAKX4veWYy4t2pWSArz+unSvOjn89BMZUs7oT6YFc+eq93UT47773OdBbW4GXn5ZtseoOP/V3z8ViXyImEV5SU5OphDf6GhUdO6H0p+2ONcw7NULeOop2jXXiD0P/w/bawYjAFaeXbphMmuWpsJx/FpZVvYzOiIET9f4IdFy7u7XEzHncdptWvOFk9fypibqaTxmjPT5zEwKK4+JaTl0PjUVNTU1WNCvH1JSUrCT79kqxqhRtOC3Ncy3Wze69wUyAFA2UL/+mgxDLfN55EggNbVtnt5LLqE5LYacNwMgb8vNN6t/t58fPbva4uVtagLuuos88UJkZNBPKRnPnqWdJC2bxs4orBIfT2GSYv0tPZ3GQKpn9Kef0n2hlee2hkqPGQNcKRHEp8TzZZcBc+aof7efH/WAbcsYNjbSfcgXdRTKB0jLmJtLxam0LMbO4DkmhsYwIsL2+MmT8jy//z7lRWopNucMngcOpBB8MU6elOd53Djpe0MMZ/Dc0EDFKnv3tj2uxHNODoXvLlmi/v3uqCrtDsj1n+FfAEYBWC94/xSApySuSwGQBaCHo58Vv/7OfVBtEBJCBfr//FOXXy/Xq5Hj6GckzrccHOF7JbsVrzEGsBXv5kj2WXQ3fvy4qEW+aBSyGBQwBrAH8L6xeihOnMgKe43Xfbx48PzyL57n+/BhyzFvb4P15v3oIxKssFBvSeQxYQJj48frLYUtSkoYmzCBXTdkCPskPp7G8D//YYwxduutt7LQ0I4sMZGx9/Agu4B2zA91uvRt5XEvPm6Zz4CZvYAX2H34UPd5TGtlKQO82TzEs60Yz2aiF2MAG4q9bAK2MAawy/03uXfezJjBWEqKzaEdv/3GALC1d9/N7rnnHhYcHMya5PpD9+/P2KWXukY2vj9rQ4P9uY+JZ1ZUpP49v/1G127d6lz56utpoXvmGenzjsznRx5hLCDA2ovWWeD77B49an/uvOX5/OGH2r4rPp6xOXOcKx9j1FO3Tx/pc/y6rYXn3bvp2p9+cqp4rLbW0tj9BenzjvD86KOM+fs7n+clS+hvT0uzP8fz/NFH2r4rIUE/nrU8n13Fc03NxcPzsWP254qKjMGzk4E29kHdByCZ47iuHMf5AbgBgE19aY7jEgD8AmAhYyzDkc/+bbB3r+OVBvn4cXd4UKurabdF0B9TzkvGGIUFmhCCEwBqAOxvXIlC0E77vx8rwq23uiAMLy+Pdso14rqJFE63FUAQ8lGEGJxHFO7EIizHbPTDUeeH0R475nhLjuBgxARUubaiK4+aGmo7oeBtEI+JsCdvEKoRgFo0N7swtLKoiHYLHYEerXDKy9WvE0JrZVJnoL6edqHVclAOHwb+/BMdjx9HcocOdMxS4r+6ujsqKwuRm1uOzZiMQNRiBPbYfLxNnvSKCiqq4QD8Iqz34l34DC/iJdyOL1xX5bykRJN3h8ZhL4Bm9EUcgmFCIqh1Si4SUWwJoA6uL3aut7exkdZsubCvzEy7HMRsS+XIpHbtMGrUKJhMJhw7dkz682PGADt3qvbvVkRdnXRUTXo6FXiRKuLjSOVwZ/QmrKuzD+/Lzqa/W87j4khrq5Ej6Xe0ts2Z2SzNcXo6hStK5Zk62mObb9nTWij1upUbQ4kKtI2Njdi7dy/qxWvXoEFtD62UQmYmye4MnkeNojXXAT1FE7Tw7Mi96ArPmhLPjtyLevHsSC/1kSNdy3O3btLyAfrz7EaoGqiMsSYA9wNYD+AEgOWMsWMcx93NcdzdlsueBxAB4BOO4w5zHLdf6bMu+DuMj+uucyzEt7bWvQZqWhotroK+d3JKX2IiGVGVdYAJwFH4oRnTUAgKFYtsLkRDg+1nnBKG9957kqFs4jxZ3miqsGwIvAKg17BXERjIYQ2mIxG5mI2fcIPPz84Po738cuDZZx37jDtbpBw5AvTtC2zbJnuJuIhOPfzRAF90RAGKEYVaBOIUuqOppt41oZVvvaWtgqcQji7ebcXYscAjj2i+fOlS4NdNwcg8bEJSYjOWfqchj6QtOHSIJvDmzcrXWYyVTrW1iOdblVRXY+lS4KefJlgu+h3bMB5mcJgE20JUbTIM//UvWkwcwFU3Es8jsAcf4gE0wRtdkYNXX2ljH0w5DBoE3Huv6mU0DqSsRKIzQlCFRHijFkAxglsM1Gicd254/IED1Hpi/Xr7c83NZGSJDdS8PHAAEr29MXr0aADALrlwtbFjaW06erT1Mj7zDIUgiqFBoc3PzsZitT65kZEUDtyWkLvkZPtQbrUcWUcVWqD1Mu7dS/m2Yp5PnqSHnlQFV39/Mv4dkTE3t/X6xqOP2od9NjXRxrxGw+Xzzz9Hx44dMWLECHz66ae21/Kh0m1RupOSKNxcCFfw3FoZ9+yhMRGv2+npxLO4DRJAx3x83MfzU0/ZVzVW49mRDWRn8JySAjz2mO0xNZ4d3XACWi/jvn2UqiYuKpqeTsWuZHgu8/bGkawspKen81GpyjK2hWcDQFNGOGNsLWOsB2OsG2PsVcuxTxljn1r+fztjrANjbKDlNVTps39LOFrdVajFOOqRaw0kChxIVfsU5kb+8ccf6AKgETEA7kEhKgAAHVEo+SvarJhJFDiQK5qyZAnDq//4BwCgC4D1B1bguefS8FLi1whFFQq84zB3ZI7zPZWO9hgFUNOuHdIkvHFyhneb5QMUZbQvosPBhGAkIRvtUIe/MAbdkYVOKHBNLmprChA56i1oKxwsnnPnnUBhTTA6oAy/5/VG0y13uL76LKB+L1oK0iUBiOI4wNsb6QdMuPNOwGweCSAGwK+oQAccxGBMhlVxanOedCsqXk+YQX/PVUEb4YsmfBL6FEJRhfnTK9ogiAI08vzqq4C3dyqABMSiBgnIxRU4DZoeuShFBMzgEIVi53p7lSohnztHuU4iAzUrOxtxXl4IqK1FUlISoqKilA1UwGbj0mFIrYnNzdSnUEWhff6DD3DTTTfhJN+nUg68t0BLkRM5GfnepjycqdB27kwKaWsVWp5nKRnl5OM49yrdJpO9Yp2TQ95zNQO1qgqMMTz77LNITExETEyMdG70yJHU8kq8A64VZWVkzAnB8yzV7oiXUetzJS6OuG7tRkRlJUWzSfXjVeLZkeictvJcUtISZdMCDTybADBBhJ6qjG3hOS/PPmrDmTx37kxct5bn8nIyHKXuRYkxNJlMePyJJ9C5uRkDvvwSvXr1Ut+4c1ZVaR3RhpJlHmgGY45Xdz192vp/d+yASCi0UtU+hS1vflm6FNEAmhEP4HKcBykVMXw/RRHarJhJKIvigj4AvX/88QMtHtR/x8YiJDAQW7Y8SmG0jEOnUV2RxDkYRqqG1vAM4MHUVAwsK6OCNBa4rFqpxkrI4iI66f4D0A70UPocdwAAIlDqmtDKVhj5iIqiwhJqPf+cAQd5fughuifr4I9QVKEHTqFbc7qt95lvcu8saG3hYvGgdgMQUl8PhIdj5b44y5zyAnUFWwugDpsxGaOwC+1QY7cWtFpGR3mOiQHGjcPIwVmo8vXFvYssnnZHQ8K1gOdZg4E6fz7QsWMq2rUbgBCY4Icm9EE+qIZuNszwRiki0Mmn2LlRG0qVkKVazADIzs5GN4vXkeM4jB49Wr5QUkICKWJtKZQkxTMffi6n0MbGouayy7B861YAwOrVq5V/x6hRlBogfG5qBWNkFEhVJY2JAUJDpT83dKi23o4APUBHjaJw6dZAasPJbKYiSUoVfK+9lrxJWjBoEHmvWiujFM9qRn58PHDDDUCHDkhLS8P58+fxwAMPYNy4cdi/f7/99aNGkXHUmiq0cvM5PZ3ucbHxz2PsWODaa3HkyBFs375d3XPVFp6l1m0Fnrdv344HHngA5htvtIa6q2Hw4LbxLPV8VuE5x9sbUd7emP/vf6NGS6EkPXieMgW45Rbtv8eNPD/33HN4++23cV3//vjxkUfQtWtXfPfdd8q/g5/PHgPVA0XU1NDN54gyxitcnTu7x0CVMVzEhgqvkNbW1uKQRWlY4ncXAH804RqUAOjEbYWvr23+iFOq0kosjHIevMLCr9HRsjvVITMTTz33HP744w8cP36cLuja1flKbW0tDZQDXqETJ07g64MH0QzglVdeARjD7ju+xD9uLJU0vNscUtua3pMAcr7cjFLvGOQhHlmg/IhY/zLXVBpujYHavz89zCwhiy4FP5818Lx0qTXNMg75KEM4dmAYQlFme+/eeSdw9dXOk1FrSyaLBzXZyws+ZWXApZfiycqnBBdcBaAawGZswST4oRGrn9zpnDzp1njKLeHpGceOIb+xERn8LnlrDBM1OLBu19XVobAwHdOmDQAX4I+9GIbp0b/jHgAdOmSD44AK3yhcOui8c6M2lOYzb6CK8pmys7ORNH16SxXq0aNH49SpUzhz5oz4G8iwGju2bQaqlKdczXDp1QsrFiyA6cIFhISEYPXq1WCMYcWKFSgrK7O/nk/92L7dcfnk5rOS1wqgkGAtFTV5jBtH92lrwk6keD57lp45SjIuWkRrixYEBFDLHoX0D0W0hucePajfbUoKNlvCWidPnoyhQ4ciOzsbpeIcdd6j3xoZ5eazGs8LFsD80UeYMWMGxo8fjwEDBih79MeNox1l+5586pBatxV4/uKLL/DRRx/hh+HDqYKyFvj7t43nVmxEbM7KQn1zM5atXYtJkyahWS2nXQ+eZ88G3nhD++9pC89SG4syPJvNZvz444+46qqrsPjIEVz39tuYP38+tmzZgqIiaWcQAOL5q6+09fA1KDwGqjugUVkUhnT+95+n0eztS+Ws3WmgajQMfv/9d0RYLKg5j8VbUsmeRBH8EcO2YNCghbKe1zbJKJJPyoM3ELtxP/c1RnTvDgQGYukv7fDhhzcC8MLo0T/g669r8dPBg2Dnzjm3kbHWsEoBnn32WQQFBeGmm27CkiVL8Mz8dzDyi9txl/klyevbHFLbyh6j8+cD02KP4lS7FJSD8sn+eXupa4o5Gb3HqANzhd9QaIcaXIG1+AnXIh3pCEOO7b178iQ11m5tiKIYWu9Fiwc1zGymB2RUlGhOTQbQHsAK7PIaC7O3D6Zwm8kQ4NtgtUVGRzciABw8eBDeZWU4D+Cvs2fpoAObTZpD5x3ou3zs2DE0Nzdj3boBiK87hVNIxtrz03AGgRgxIhtmM5A8OhoJAU7u8a3Ec2YmKSmdO7ccqq2tRX5+PpIEOWTXXnstAGCJnLE1dizdG61dfJQUWrlwOwDffPMNunTpggcffBA7duzAxx9/jGuuuQZffvml/cX9+lH+o8Xj6hDkxlBNoXUUln7CdnlnWiB1Lzqjj6wYEydSXnNrcvnleI6MlM5BFmHTpk3o1q0bEhMTMXQoZYkdOHDA9qJOnejvdRbPjCm3HrFg965dOHPmDG655Rbk5eXhGaWd4rbwLCUjbwxLyHjI0ufy+eefR6M47FYJbeVZvCaePKnI886dOxEeHo4P3n0Xe/fuxWE1z2hbeJZ6PmvhmTGrcasFzpjPGnjevXs38vPzaZ1uaABMJsyZMwdmsxk//fST8u+ZP9/xeh5Gglx5Xz1f/+/azNTUMLZyJWPZ2bKXLFnCWGCgtX3DMsxhZ7k4Vh0ez1hYmOtlPHWKsWXLGGtsVL3UbDaz8ePHs4dCQ0nYG26wnps8mZ2KimJBQUHyrQtai40b6SWAeNy80MSOcAmMAay6c2dWHRHPNntNYfPxHQMmM6AH8/V9m93EfyAjw3nyVVcz9t13jKWna7o8MzOTAWAvLFjACocOZe0CAtgEi1xr0FmyxU+b23ocO8bYokWaeGaMMWYyMXbiBLVJ4DjGnnySSsU7Uu7cUfz6K2OrVjn2mdpaxoYPZ+yrr1QvbXMLpKoqxj75RLrkvwh8y56r8TNjAFuFaPY2wKoA9t13ZuuFUVHObZNz8CC1i5Fq4SFA8+jRtjfYyJEsd9g1NnMKuJwBA1hEBGN/YTQ76x3Pmnz9GWvfXvX7FbF0KWM//ODYZ2pq2K2hoewYx7HV/v5s7ty5jIWGMnb//Zo+Ll4vAHoveQ9UVDD2xhuMHTok/4UNDYxVVbEvv/ySAWD+OMKawbFyhLDOyGNAP9au3ZV07XXXMdarl2N/rxp27WLs+eel2x1cfTVjvXszxhg7c+YMGz9+PPviiy8YALZ0wgTGLrus5dLx48ez5ORkZjab7b/n4EEaqKVLWyfj558z9s03tsfuvZd4k/p9jLGCrCzGAez5Sy9le/fuZaD+6QwAu/POO6V/zzXXMNa1q+PylZVRy5u9e63Hiovpb37nHfnPff89PZtzc7X9nuZmxjp0YOzWWx2X8c8/GXv4Ydv59v77JGNBgfzn5sxxrLXVxo30nWvXOi7ju+/SuijE2LGMjRsn/xmTibH27Vnjm2+ykJCQFm7Ly8sZAPbqq6/af+auu6gFn6P6RUkJrRM7dliP5efT3/vBB/Kf++479iDHMX8/P1ZZWcmefPJJxnEcy8zMlL6+uZmxiAjGbrnFMfkYY+yPPxi77Tbb+fzee5I819TUMG9vbzZ06FAGgH3siHLQFp5feaWlFVkLxoxR5LlncjKbAbBzzz7LALD/iD8vhdbyfP48YzfeaNt26tw5dZ6//JKucWQ+h4e3jufVqxmbPVuaZ5EO8MgjjzBfX19WUVFBLb+GDWOMMda3b182TmluXSSAQpsZ3Y1Rqdf/OwNVBkJF2dvbVmnajeHsMPq3HAhAre79MXls2rSJAWC7Lr+c5EtOtp6cN49VRUczACw1NdUt8gjH8R8R3zIGMEvTAHbEdzBrBsdewnMM+Myi5ASy8Zbz5t9/d4uMUli5ciUDwPa+Rv1jf3nvPbYQNzMGsDJwjEOtNkXahci57TbW6O3NzGPGkBD/+x8pSQBjL79siH63jDFSdDmO5T/8MPvuu++kFW3moIHiBPC9hJdiLqtEMLsaYM9ZfnEWv5FRV2cVZts21wgig7rERHZMOBhDhjDWq5cNr/7+dzEgkijHs4wBzIQgun7XLrfKW1ZSwgIAVunjw/5ISmKJiYmMDRjA2PTpmj4v19vZEd1OODbvhT7PGv3asc9mzGBAIOuNIy1f2g9HGDCTAf3pg/fcQwqNu5CSwtjMmYwxxp5//nkGgPn4+NDaPXmyjbH81VdfMQBsh1B559HUxFhwMGNyhmFrMHkyYyNGyJ5es3o1A8C233QTa25uZh07dmT+/v4sPj6eTZ06VfpDH3xAY3/6dNvl27aNvmvdOvlrfvyRrpHqQSqHq65irFu3tsvHGGN3300GssxaxxhjbPZsZu7Zk5lMJm3feeECY76+jD3xRNvlM5vpfle6b5qbGQPY7ltvZQDYD4INq+TkZHb11Vfbf2bZMhr3/fvbLuOmTfRdGzbIi/j996wTwK6eMoUxxti5c+eYr68vu19pU6y1myVSuOsuSZ737NnDALCff/6ZTYyKYr4AW7FihbbvdCPPxcXFDAB7HWDsuedYcnIym2lZlxThTJ55g1yBZ7Z8uePz+eqrnctzhw42PJvNZpaYmMiuuOIKOjB7dsu6/dJLLzEArKSkxDm/XycoGaieEF93oKgIWLOG+v5ZIC6CIw7J74LTOAdraFYMCp1XKEcKR45oyjNijOG5555D586dMbRjR6BdO9uemh07IsgSvrBnzx6Zb2kltmyhtgkitOTJ1tThnaDnkB4UhE8shUEKGiNgQjCohtw1AHwA1CAH8wAA59pSnVKM0lLKmdBYCS7TkiPWLTkZAHD1sGFICaV8sQ5g6IWvWq5N9srCFx/VtT2kNiPDocIDR9atg09zM2otoUTo358KEQUH4+SOUtcUctq3T3Pl6pZwTW8OJrTHkyv+xMKFC7FmzRrJ6+WKajmU21tZSWOo0h9z6VJLQUbUYQZ+w58YjJUAGpEIADjC58sVCqpeCwpltQl5eZJ9l8Xhrc2FxbadTTt0AEwmm9zzgIDOAEoA1OEb3IwfcR0mwBLWtGlT62U8edLhPqg//fILGgAENzUhuHt35ObmorZTJ805qHJRqpLHq6tpvRFUkhSv230rd8CnoRa3/fYb5nrHIhnW9YnWnCRwXDbtBkdHUxXRpibNf68qzp+n54sYjLX0QDWbzVi8eDF69+7dcrpbTIzNOjV79mwEBQXhm2++sf8ub28KZ1NrWSSHc+fs+y6fOAEI5BEjzVIroG+7dvDy8sInn3yCZcuWYcyYMciWeAYAaH3IXV0dVSYVPoT5WgUKMjrcfxIgGbOyqEiUIzCZ7Bcufgw5TvZjtx4+jHbp6QgODsaPP/6o/nsCAyk/sbUhtMIxLC6m+11pDL28gOBgrDx6FBzHYSLPIYChQ4dKF0qaMIF+OipjU5N9Ss+JE/SzTx/Zj+04exYFAK4fPx4AEBsbi7lz5+Krr75CdXW19IcmTqS0A0fzExsb7dM8Tpwg+UQ8Hzx4EAAwZMgQrJg2DYN9fTF79mz8qeX+Dwykokqt4VkcAqvCM1+AbXS7doDJhIkTJ2Lbtm3qeait5Vk8foAmnlvVCaC1PEtBYj6npaUhNzcX11xzjVVGi3yjLFV6j7S2t/JFAI+B6g7s2QPMmGEtWgFpRZlHO9QgBueRh/iWY51AeahOKZQjhX//G7jxRtXLDh8+jJ07d+LJJ5+Ez7lz9j3COnaEV20tEsPDsdvZ1cMuvxz47DP583v2AHl5eBVA5sSJQI8eKGyfDBOCEYIqAJEAbgRwExD7BhoAHPhpu/NauezcSYtqRoamyzMzM9GhQweEx8bSAZMJVw7OQxO8AQCjQGXE7/D7FidZD8wt/qANwlnwr38B/GKngtzcXNRbDMVA/mbl8yMiInD8LxcVcho7Fnj/fdXLxMZCJQvBH7mkvD722GNoFJeZh4MGihz+/JMq5PFKrIJspaXAMOxDCExYinMAgOkTpgAA0vkNHKExrvHeUcUzzwCXXCIpEz9e+bkNCKyvwWnOCywmhi4KD7dTuCsr+Y2yfGSjG67HjziIITiMAa03WgCquvzWWw59ZNmyZRjq5QUOQMd+/QAAZ318SEmQUkxEkKs6LXl882YqMCToASpet/vgOJbjOhyDF14IrERfX+sGQzBM8PVNAmMXUFxcTJWmAYeNckU88oi1nYAQhYUkaLdu2LZtG06fPo1nn30WH3zwASZMmIDI6Ggbntu3b49LLrkE2+SKkkyZQs+v1ihi3brRusOjspLqKvTqJfuRtLQ0xHl5oYNlc+Dqq6/G1VdfjW7duiE3NxdNUkZ+376ty0P94w/iRrhxd+IEKfHx8bIfa5VCyyvdjhrR99xDebZCqBj5ZWVlWJyZiXHe3oiPj7fvKyoHPj/R0ZZdUVG2iz9vFCgZqABqg4Ox6MgRzJo1C9HR0S3Hhw4dijNnztgXgunUiXKXHeV57VoqBCXMaz1xgnSYTp1kP/bznj3wBzBDUA358ssvR01NDXLl5kNreb71Vvu8bBmeDx48iPDwcCQkJCAsMhJ/+PsjLi4Ojz32GG2IqWHChNbloQYG2vZ6V+F5x44d8PX1xbCwsBYDtbKyEqmpqcq/p7U8r1pFPIvnswrPreql3lqeb7mFdAghJHg+duwYAGD48OFWGS3y9bfklh5tS49qg8NjoLoDEgUOlBTiRNCilw1rIYtOKEAPpMMLza7rPamhYAm/a3fppZfSLrDF49Kyq2ZRdC/p39+5HtSGBtr9VJBx+89U8OXQhQtY9nN/fP/EQfh89B6qOd6DCgBfIjDwG7z+VjzyffxQd+K48zyADhZJysrKQvfu3W124pP98lDZdSDK4I/ROICnO3yARQ03w4uZnVOp1IECREuWLEEkgCpLE/g6gLwpABARAf8LEtU00cZCTg0N9NJYgEhoLKTBH4WoREDAZUhPT5dUyBwyUOSgoUiSULaBFh/ln8jBVwDGjogEAOTwXmneQPXxcZ6BKlGASDxekSgBAJRwMeD4Sq+RkeQ5FOySR0fzBupZm+/bjMmo37wDy752oDgHj/p64tmBYlj5+fnYunUrbrT8XZ0HD4a/vz/SqqvpDyspUf0Otd7ONpDgWXhvh6EcsSjAPsRhKczoaSrGfX23oooLBQB0i6zCgw/SGp6dnW01UC2FqZwCufksaDHz7bffIjg4GFdddRXuuecebN26FVxICPEsUGT79OmDrKwsyY0dTKFNFYc95lLrNl8MRMmDmpaGvgEBdkZSUlISmpubkSe1yHh5kcK4ebOmzYoWSM3nEyfIgPZSUJH4cRfImJWVhSVLlsgbCCkp9Mx0dBzFz+fSUrqPFDxC69atQzNjeKW5Gbffdhu2bNkiPW5iTJxInlBHKqhKrdtavFYAvjObUVpfj0ceecTmOF8oSdKLOnEiySd1r8pB6vl8/LiiF5oxhtW7dmEKgPaCTZFOFkOnQK6AJV+0y9ENvKoqICjI+r60lDyUMgbqoEGDwFn6oIZcuIDnn30W+/fvx0otBex4nh2pfF1fT6927azHVHjesWMHBg8ejHahoUBVFSZYjLqtWgzP1vBsMpGMwoVeQ7RBqyIi+venTV1HeS4rs12jeJ5FY8i3HuzOtwoLDm5Zt2NiYhAVFeXxoHrQRkgsjHIKsbc3kGhp717YPhm7LOGA1+MlpKMX/oPHXNd7Uk1ZvOIKRCxejMDAQCR17UraWufOwMCB1tCZjh0BAGO6d8fx48dR1ZoqcVJQqai5dCnw86dUIbMYQHl5H9z2YBCYjy8CRg5CVXBnu4rCOawTuqAYgFXBaJMH0MFKyJmZmbTwhIcDw4ZRf668PEQMSkTd4L64AU14tfwh8r536yYdyucoNFZOZYxh8eLFSAgKgv/EifiO47AiMBBmvlJgeDhi/aQ9QW26Px2onCrWtb4FbY7U1X2IsWPH4sMPP7RTFB0yUOSgYSNCKNsgrEERgDp8jM6Y3LKJk3/iBMxms9VAHTbMeSG+EoaLeLyiQYZSgTkJ4Ku6DhkCTJ9uE9b66KNxlv/ZG6j+qMfie3Y5vqnTinZHy5cvB2MMMy27yT6dOmHo0KFYn0HzYkR0jmoUhFpvZ0kZBeMovLf7gDzox1CLVZZjcYfXIGRQN+Cqq/DJzzG49VYa16ysLArxBVpa+zgFchuLAgN1zZo1uOqqqxAovPEHDQLmzrVR/Hr16oWmpiaSVYy+fem+bY1hBUgbLjIGanNzM06cOIF+ffvatY3iqw/LhvlOnUo7jY7MI6nK5jJeq1mzZiEwMBBhYWF4b8UKsIULYe7UCYcPH8bzzz+Pfv36YeHChfjtt9+kf5eXF8m4YYNjRrT4+azBO7lq1SrEhIVh2J134sa5c8EYU++dCFAES0AAeZa1QmrdPnGCnmmCKtJimM1mvNfcjMEJCRg3bpzNucGDB4PjOGkDddo0GpO9e9suo8IYnjx5Etlnz2LmxInUms4CVQO1tTyL57MMzw0NDTh69CgGDx5MB8aNAx57DDfOn48ePXrgueeeo2eLEtrCs1hGGZ6Li4uxa9cuTJ06lXb/Z81CXFwcunfvri0U2U08AwBiY4GnnnKsKraLec7IyEB8fDza8RsCU6YAL78MNDeD4zikpKR4DFQP2giJSS2nKH/7LfD755SfMuQOH4zBBTQBuAF0Ez6ADxFbcdz5eahaPKh//YW4tDT07dsXXpWVlFd0+eXAoUPWHTWLgTqoUycwxrBv715qUeAM+QBZw+WZZ4CQRvKgkNnUp8XY7LLzf7i96h27Xq6nmnuhKxgA21CTVnsAHWjh0tDQgNOnT6Nbt27UPHrvXuCyy8grnZAANmoUggCcHTUK+OUXCjVzhoGq0VOelpaGjIwMdPT1hX9sLHJffhnzampw7yOP0IMvIgLdwsvabuyJ4YAX2tYQZghDJe5BNK7sWIp58+bh1KlTOMEv/BY4ZKDIQYMRLZRtIFJxGL6owO24LXETPdAA+F64AG/vLHzybD61lBo1igwLrWXu1WRUackUhdMAgLr2fcgQSEig0KPVq0lxseCee0jxCAuzncfbMB7N8MLI+q2Ob+q0wkD98ccfMWjQICTccQcdiI5GYOBA7MiniJMuyNEUBSHX29kOEvfiFVdYN+F5AzXd6wxKIhIAfpe7Tx9gxQpg/HgkJSXB29ub7kPeg+pMA1VuYzEzE/DxQXVEBIqLi9FH7N24+moaJD+/lkN8jqpkj0eOI+Vo0ybHDSvAVsaTJ+n3ChR+IbKzs1FXV4d+99wDPPywzTlVA/XSS+nn+vXaZRTfiyYTrcMiZbGiogKrV6/GqFGjMGLECPzj+ecx7PhxRMyYgUGDBuFf//oXZsyYga5du+Lll1+W96JOm0Z5uQopApIyOmDkNzQ0YN26dZh53XXw+uwzdOnRAxMmTMC3336rHv4ZEECeaEcMF6l1m/dCy3itzGYz7rrrLpwoLsbjb75JnkAB2rdvj969e0sbqJMnk3HQFp4rKigUXsHDy280TF+8mDbvLFA1UAHiOT8fsIRpaoJ4A1nGO3ny5Ek0NDRgEB8mesklwFtvwaddOzzyyCMtz29FtIZnOeNPhueVK1fCbDZTi5R//KOlJ+egQYOsPemV0BqexfdiebkqzwDI4/3aa0BKCpqbm7FhwwbUaWndc+mljvMs3kBWMFB7CEO+J0yg8GofHwBASkoK0tLS1PN5L1J4DFR3wGSiySsI3VBUlM+cAeM4fLnunwiPaIcikBXwOF6CCcF4qfIh3HkHc66RquZZM5sBkwmRlZUU+84XeRBrvRbvULLlu768ajGa4xNxZae9bZNXxXDJywOiUIwK+KEJIQA6tRyXQ2nIAEQDCMI+m+Ot9gCaTLSYiq02CeTm5sJsNltDNwB6YFZXAwkJaP/UU5gHYNnMmVSUKCbGeQaqBgP6tCWcuF1NDRARgWeeeQZPPvkkPvvsM0yaNAmlAEIaSttu7EnJByjei3yhn9xc6zNxIHbhvziOT3AevxaOxGxLXu+KFSvsPq/ZQJFDVZUdz+LiQ1dcQad9UYO+KMdh9EBgoDdefRVYsSUMAED/7kf7qnM4a47FnoqeVLDFGRs6EoaLeFMsGhRiPP66QcDdd9NgSCgZwcHBCAkJwcKFZ21OmxCCXCQiGacc39RxwFMOkEf/yJEjGD9+vDVENioKBw6kIAs1qEQw/ok3EYRq5+Xpi+bz0qW0gcjr931xDBcQiEK//bjs8vHAzJl0wlL0DAACAgKQnJxMeUKuCvGV86B26YLcc5T3nEiNqhXR0+I5EG/qtGDKFFqD0tIckw+wV7qTk1uULDHSLN/fr18/O2M4Li4Ofn5+8gZqUhJFmzhquAjns0wIMl9T4ZlnnsG6devw6quvwmw247prr8V3332H3Nxc/Pjjj3j66aexf/9+/P7779K/b9o0+umoYSBWaNu1A2R43bZtG0wmE2bOnElhnGYzFixYgFOnTrWMryKmTaNx0DqxpXjmw2dl8I9//ANffPEFnn3mGcy58krJa4YOHYp9+/bZG9UdOlCRH0eNaCHPGrzQv/32GwYMGID4mBibonjBwcEICgpSN1ABx+9FIc/Hj5O8IqUkx9L3OZlfa5qbSX9obMTIkSMBWHukKuLSS13K888//4ykpCQMHDiQxs+Sf9+jRw/k5OSgQRCpI4nW8CyezxpzoQEAJSXYvWEDhg0bhmnTpuGLL75Q/0xreBbr2xI8M8bsDdT6etK9LRGLKSkpqK2tlY56+X8Aj4HqDtx2G+08i5Q/WUX5zBlUBwfj6MmT+DohEiavUBwC8A5G4Q08iUuwEZG1eViwwAmFfXh88w3w9NPy5y3V6uKbm5HSu7d1QauspNBEPlE7MhLw8kLWThM4Lh7JF1LhDTPmF/6nbfmdXbpQkYMxYyRPJyRQTl0xvAH0AcC1HMcrr5B3UoTRt4wAAPSHNQejTR7ABQvI26mU52ABv6C0GKijRgEvvggAuOe1eHSIj8MPXpFYt+E0nXeWgfrhh3ZeCSkUFBQgEIBXQwMQEQFuxw689ssv+Pz553Hs2DEs+uknsPJyzL+huW3Gnhjx8cAPPwCWh6wYwkI/AOmvHAckgx4OP6IzznnHw/uB5zBmxAhJA7XNmD2bLBULz+LiQ7m5dPqmm4Ax4T/AH0BW8FQy3l/ri3PPU25sKPwA7EQs8nGOxeK9NRZlwxl5qK+/TkanAHabYoH04J730Cg6wHFUKTs2FrDkmvPo3Lkzzp49a7d5cxpd0AWnHd/UiY0FPv/cxiuhhPPnz6O6uprmCx+mGBGBsrIU1AK4Af9ACo7ge9wADmbn5OnPmAF89FELz1IFko4jCTV1xRSeeNVVlhN9aJAthUT69+9PRkFEBH1XcbHdhkar18VnnwVuvtn+eFYWYKlyDEgYqBs2UFjePuvmXHBwMOLi4qQ9qIBVEZMzvKQQHQ385z9UEIuHWgVfiwHV59NPbYx9APD29kaXLl3kDVSAlO4tW+wrtsrhkkuAN96wrtsyCu2uXbvg5eWF4cOHw8vLC08//TQO5uTg8/BwLFiwAAmWSXDjjTciISEB7777rvTvS0ggj5MjCu1DDwE33GB9r5Iju2HDBvj5+WFqUxNtBBw4gMsvvxwA5A1nIXhPtFbDIDISeP55ayGnqiryEsvw3NjYiC+++AILFizAv86eBSfj3Ro6dCiKiopwzrLRYoNp0+j+LZOuhWCH8eNpEvM8q1RqLisrw44dO8jIDw0FXnjB5nzHjh2VDdTOnWktcMS4uvVWQGisnzhBIacinvlcYv6ew9q1ZMwdPow+ffrAz89Pm4Hq6GZJWBh5QvkCZwo8l5eXY9OmTbj22mvJO37XXYAlr7hnz55obm5WnsdCGR3hefhw4MEHVeezGCaTCXd27IhR06ahqKgI7du31xY+2xqeZ8+2zjFeRhHPpaWlqKiosG5CALRuJyS06Nv/3wsleQxUd6BLF2DSJM2XN2Rn42R1NWbMmIGZ585hs3kcJgMw4zAOgUI6Eix5qk5r7TFqlK0SIYbFg+kDYFhkpNWDGh4O7N9v9Qp4ewPR0UjbVAjG+qAH6Lpr8TOia3Ja79kICaFwYksIsRivvgrEeJWgBE0gA1VgbBYW2ihiPCY8QzkvU7wPOscD2LOn7cNFAS0tZvjiNNnZyN+aDgA4UJIAxgCzuTv+/DOTuOXbQqi0NlHFJZfIGn9CFBQUIIJ/ExEBmM3gMjJw+4QJWLNmDQqbmsAxhgifSudtkgD0kL3+etm8Janq14wBySDvxkCYcH/z++hw5ijubIjCgQMHtBUGcQQDBrSEKsnJVFNDOsNdI6i1wzubF9B9VVwM36pSNMMLYYgF8BdikY98xGJ7kWWn1BkG6jXXWNtuCCDcFJvQKwuNAOItDzkA9IAsKLBpiQWQgXru3Dk7L+xpdEFX7rTjmzqRkcDtt9PaqAH8fOnevTulFnAc4OOD+HhSiH+HL/6JNzEDazAce52Tpz9iBFVPtUB8G5GBSrvg48ePJwV4yxYyVOvqWrwF/fv3R3Z2Nqpra4GICGTsLHZee6aFC+033/gWM5aKtwDQRTzOfn40jqIaAb169ZI3UDt3piI/Mi2cJNGxI/Doo9bw5/p6Mp4VKvgeO3YMSUlJCGrXjsLzREhKSlL2GFx6KU1AS3sLVYwfDzz+uPX9iRNk1AmjW0DtMgYMGID27dtbD/r62hVy8vPzw8SJE+XHkZfxzz/pPtGCe++1boDwMioo3EeOHEHv3r0RGGFZxU0mxMXFoX///toM1D59KPVEq9IdGwu89JI1f0+lENaRI0dQU1OD6dOn00aJTK2KYcOGAZAplHTppbSQac2LnjaN8vd4nDgB+PvLrkG///47mpubMWPGDPJ2iWTs1KmTsoHKy7htm/bn9j//SbnhQhklxjAvLw/+/v6I4qMyBAW7fH190b9//5aClopwlOeEBOCddygnHVDkefXq1WhsbMR1111nldEyhrxXUDUMGXCc51mzAOHmkArPPF5//XV82dyMR1NScPLkSQwePLiliq4qpk1zjOdXXqF0GqGMEuG9AGw9qKJCTn369IGXl9f/2zxUj4HqDmze7NBuaX1mJk6bzXjqqaeA4GDEBXqjAokADuCMpfVMvMXwA5zQ2sNsBpYtA9LT5a8RPIQ/fcwX79+XgVquHdamJdidR0wM2lcXAuiLZFTgKPqhGd74B95tvWfj9GnK6xL307Ng/nwgJbYQxWgEQBO9pdAc3ztKHCYUFYX88HBM5M6huZm13QO4ezegsa9qZmYmgoKCEMO39wgORvEJUmjzwGvX3WA2ZxK3/HVt8aKazcBvv2mqBlxQUICEwDAAwNV3RGL6DdaFMSNjGEotink4SpGbC/zr9lxkTrpDu9dCDufO0YNIZqGXu3+64yQKwKELLuBXXIldGIm+R0g5//LLL9smkxiHD9uUsJeTKTcXKFq/B7WcF9rzuUIhIYgJrEYVQhCGaACpiMU55CMWPgmxdK86kpsmBbOZHpYqylNjfj4qfX3B8ZWZLfIBsFPGeA+q2AtbEdoFnVgB5l/nIO/nz9Omkcb7xcZA5XsFMobXX28PjusG4Ai+xU0AgMt8N7UtD5pHRoZNsR2h0RuKCnTGORwHAxCGSy/tSQbmxIlk3AgUWn6X+9ixY0BUFLJ2nXdOeyazme5DsWehtJQiWyweVD8/P3QUb+zJtEjhDVTZPMXp06lfdmWlNhnLyui5whdj4nOsVTyo/fr1k123k5KSlD0vkyYRB1o9vWfP2s6VtDTy3Pr6thxqbm7G7t27MVpUtEmodAsRFxeHgoIC+UI106aRcaqlUIzZTP14+Z6bVVW0uCjk1B09epTuO9F8vuyyy7B9+3b5/p08OI5k3LBBW99ek4nGkM+F48OIeUNGhF27dgEAjaegt6MYAwYMgLe3t7SBOmwYefTWrVOXD6B5IeQqLY3uQ+H6J8Bvv/2G6OhoMpIlZOzUqRMKhT2speAIz4xRfjo/Vyor6eEiMYZ5eXlISEiw5u2K5vOgQYNw6NAh9XxjIc9aKuXW1ZEOxn+vAs+rVq1CXFxcyyaDcD47ZKA6ynNtrW0/XhWeeaxfvx5jAwLwn379EBwcjL59++L48ePaWvZceqljPAufezI88xV8JQ1UC8/t2rVDjx49cEDYOun/ETwGqjvw5pt24SGyYAz+58/jHMdRhbbgYAzpaYK39xAAB3AW5FkSGqhAG1t7VFcD8+aR8SIHwcLeobQEo7EDu9kIPPFaGB0ULt4JCejlmwWgN3qAYRsGYjVm4kqsbL1nY9Mm8gophHn4lOdbGmeQV6W0lDwTh7NDaPGVUIbL+vfHyKYmnD12jCpbaqlyKIcXXiBvgQbwFXxbHjAhIQhqLEc9/HAefC+47gDOIDe33jkGanU15cn9/LPqpfv2FaBdTQcAQAkikF5AC+PO9SY895wXykChOhGggi931b2H7lu/sIbTtBbr1lERIZmWIXL3TzIKcQaB8EUT/NGAVAxAYnM+/Pyux8svv4m4uAzneXn/+U+b8Fn5e7oQKeYyHEFnLP3e8nAMDsbQniZUcmEIQwgCwRCGKpT4xuLV1zjyUKn1h1NDdTUVU/jf/xQv8y4rQ604f1HGcOncuTMKCgrQ2Nho44V95IMudIGjC9CqVRSKpfF+zszMxJVeXuhSWGitMFxfj/nzgaFDB8DH5wjKuEik+Q3C3d03tj3UHAAeeIA8lBYIvce9QJ6D42gC0AV5eZytF1Sg0NqEYUVHo32NdA6qw2t4dTWtWd98Y3tcUME3NzcX8fHx8BKHgkq0SAGoUFJVVZW8Z+iKK0j50+px+eUX8pby36cSVtnQ0ID09HT07duXZJRYt5OSklBRUYEyuWdBcDB5RZWeZ0LcdhsVjeJx6BDAV0e1IC0tDdXV1Rgl7jkrY1zFxcWhqakJ5+XyjSdNoh3U1avV5TOZKK+W7wHOb46JZORRXl6Oc+fO0X0nms+XXXYZGhsbsWXLFvXfO2MGRVJo2XT94QfyovIVyQ8epN/NRwiJsHPnTsTFxSE+Pl6WZ4AU8H79+mGfRAQUfHwoeuC332wNEjnMm2cNaWWMZBT3orSgqakJ69atw/Tp02nuSGxEaPKgTpxIi4YWnquqKCT+gw/oPc+zhIy8gdoC0UbE4MGDUVZWpi16yBGelywhjzdfJ0GG58bGRmzYsAGXX365rRFt4blDhw6IiopCupJThIejPF91lTUVTIVnHiUlJTh06BCmWnq1AuSdrKioUOcYcJzngADyRAOyPGdkZLSkNLRAYt2eMWMG1q5d27Lp8/8JHgPVHdBYORUAUF4Ov8ZGNMfGIiAgAAgJQecQE665ZgiATFTDjAqE2hmobQpp01I5VbA4D8IhDMIh/IWxOF8n0Ttq2DB0bzqJ3n6hCAOQgXZIR0/E4Rxe+1crq42pyNjY0IB2F8pRjHAAU1qO19QAv2ywfUgL87/eOzwV7QH43nEHLRQaPaCScIDnrKwsdOvWrUWWPw9Rr9YziAdrmZbdATDExuY4x0B1oHJqWloBIkChbKWIQBVoYVy73IS8PKAUEwEA4dgDLzTjBnxPH9TqWWmljFLVr4FzSEYDzoPCnYJhQjaSEIlSBDS8DCAA+fn3YMEChnvvbZt4AOwKHEjLBAB/oi+AI2yQ1TsWEoLOIVUISQhDpwBfdLJwXeIfi4ULgcWpA9Bw4IhjlVKl5LP8LvlLqhDa0IDm8HDbEzK94OLi4sAYs/cY8A9PR3v0aiySxM+PV145ha/MwIU5d7TEU//0tQldugD79qWgqekUvviiBv0emoqOWTtlIy0cllHAs9B7zK+/p1EJWKJabLygISEtf2PXrl0RFBREBmpKCoZjH4Jh73VzeA2XWxMFBurp06elCyTJ8NzLEnorG546ciSF4a9dq01GMc+HDpHCKeP9y8jIQFNTk9WDKvwOC3iFTVH5njWLjGF+LNRk5OU7f56iOETK4k5LuLCdB1Ui9BOgDR0A0rmTABmn06bRRo3aXBePIR+6KaN08zm8Nh5Uy3eMGTMGQUFB+OKLL+SLYfGYNo1CwVetUr4OsL8XDx2i9nMyObI7d+7E6NGjyXhR6T85ZMgQHDx4UNqTNWsWeR21tCER8pyfT5+TMfJ37NiBiooKCu/l/y4JD6rJZMIFpbUmIIC8a63hmc8hlZDRzkCV8KDSV2jMQ9XKs/j5LMPzrl27UFVVhSuuuMJ6UHQv9ujRQ5sHFXCMZ+HzWYVnHlu2bAFjDFNjYlruw74Wj6amasOO8Cw1VwA7GTMyMpCUlARfQSSH1Fx5/vnnERcXhzvvvFO6h/VFDI+B6g5orJwKAMzy0G3P7zAPGgQkJ+O226iYyNNPH8Q5Lh6dRT0Jq6vbkAeowXBptOxW18Ib1+AX+KAZf2EsqhCCHRhNOWU8Ro4ExxgWT6MH6Sk0oiY8Hj5oxrwprTSweBmF+T8CfPvxx/AHQwlmAvC1OXegPIkqUDY32xW0WVVJhSc6Wio0Qi1kRwlaesmCdhezsrKQk9MDCxeSLDtBig8fwk2gXcm5czOdY6A61AanABGW6tG8gboOl+FYWSwSEoAyUIJ/BLZjIraiEyzjJspddBgq96JU9eurp2xFDIDT6I9fcDU4MGRZxi4JNQBeArAZwFF8+qkT8mUVDBchQvAHogFkYJTVOzZ1KjB2LMK7huGSYdUY2pEKIKRXbwJj/8Vf1QPgV1uFX9873Tb5AMX5nJOTg2gAXvx9xSM0lAo4iFqA8Ar3WXGF4bYaqDLzGbAtPpWMNITDjND8k0BRESo79cQjj3KWYlkpAMy4995j2OQ1lTysf/3lmDxSkJjPvPeYv98LUQzAmi/dwvOsWS3eGi8vL/Tt25cM1Llz4Y96zPH71eZ7W1WcTY7nzEyaHF27Ijc3V9pADQ0lz6EoF5Q3UGVzr3x8SBFbu1abN4Nfc3ieDx0i49TfX/Jymwq+gwaRF1tU7Tc+ntbIM3wdBCnMmkU/tRpXKsrivn37EB0dbZ/LO2cORfaIEBdHvYNlDVRexjNn1CMmpIyCTp1k6zEcFRZQCQ2lojYWL76/vz9uuukmrFq1Cn369MFXX30l/3vbt6fn5sqV2o2r9u3pvjh8WNYoyM/PR25urtXYHz6cdnYELY+EGDx4MEpKSuzXHoA8az4+jvOsYuT/9ttv8PPzwyWXXEIHbrnFJpoC0NhqBiCez561SQuRlQ+wlTE21vrst6ChoYFScIQGalgYRXBZihClpKTAy8tLWx4qz7OjxpUCz2vXroWPjw+mTLE6CzBmDBUjs8x9hwxUR3gW6tsqPPPYuHEjQkJCMOyJJ1qio/jWXJrzULXyLJ7PMjyfOnXKNrwXoM3B//zHpj90cHAwPv74Y6SlpWHx4sXaZL1I4DFQ3QG1Fi4CFFh2iDrycfvvvQd8/jmGDRsGHx8f1NauRlhKPLp62z6c+XDWVinfGgyXPIvikIokhMCEZnhhF0ahHgGYn7iDHtQ8hg8HOA5DT1CBmL5XVeCVbyxKnJJSoQSTibQ4mdYEX731FgCgBOPtzh1LvALYuBHo2NGuoE0xuiONN2gTE1Xz9lRl1MBzTk4OGhsbcehQr5bnwS+4BjE4j9WYCW9v0i87d6YiHfHxWRT6A7jFg0p5U4WIsIxLGcJRjwBcgXU4lHgVXn0VqG1HhlUE9mEe/gezpWpymz2oVVXEs0K+iLj69cTOGwAAWzAX1+IXFCMa2UgCAHRDFoDplk/uBmNOaEEiseHEyyS0BbphMwAgEz2s3rHnnqMCCWFhQEUFAitIznwsBvAsUkGK5NrX2xDmqyEiIicnB+EAAizteFoQEAAsX06hnALwBuojjzyC7t27o4QPwY6NpTnpqIHK8ywznwFh8SmGEaCcwwbLPflNzRycqeU3xVIAAPX12zDzzbGohx+Of7DRMXmkoDCfe4YUoBE+KEUFINhUauH50Uep6bsF/fv3x/79R5E4ZwRy0AU3sP+1FPVtdXE2OS90ZiYQH496kPIsaaAGBABffEGKqQCxsbHo1q0bViuFql15JXkatYSUmUzkLeR5PnRIUVk8duwYvL29qeXNmDEU7tihg801mgzUrl3JKNOq0IoN1IEDbS5JTU3FwIED7Xp14r77qGKoCLyBKmlU8Zg+nW4ANRnFz2eVkMWjR48iLCyMZPD3p1DCceNazn/00Uc4deoUOnTogD179ij/7lmzqKiVUsEnwPb5nJFBE1dGRj4UsSVcevhwWhNDQyWvV/QGduhAf5ujPB88SGMvUxjy999/x4QJExDMX3/LLbShI4BmA1Urz1KGi8QYnjt3DowxWwPV35+6AAwfDgAIDAxEr169tBmogJVnNa86z7O3tyLP69atw9ixYxEiXJsGDaL0GMuxnj17orCwEFUynnMbdOhAYfutMVAVeOaxceNGTJo0CT7z5rVUy46OjkZERIQ2DyrgOM8K87mpqQnp6ektrb9a4OdHzxbR+jRz5kyEhIQgta3pQQaDx0B1B7QYLidOAMuW4ZzFk9ddVPU3PDwcs2fPxpdffomowR0Rx+wfzq0ulqTBcMm17MqmelNsfyoGwIQQ6Z3/0FDamc/KQhPHYfuZM9Q+BGi9gapg5JeWlqLJ4vms8o+2OSeWTyoq7A30wTOIQXb8hLYbqBq8k9a8C+vi8yjeRgVC8TnugNlMxldeXiSCg4OpQExAAI2rMzyoKvdiaWkpgCZEeXmhAqFoshgF/FjOnw+8+VkYzOCQgLO4jvsR+YMsRqAzPKhaw+G3bAEeeAAVlk2dswHWIgO8gZqEbJAnOgIAKWNtLuqrcC9aw33PoztOAwDOBXS3nyMWAzWhLgFmAHm4E0AZ0uADMzjEFrfhQaMhfDY7MxOhAII1xpXyRsHu3buRlZVlfRD6+NDcbo0HVYVnK0+lGIFamOCPj3EfAOBUZTQAfrc/CcAkAC+iFgXYidFoWLep7Z5yBZ4vG1iI84iwSEDGu91aKCiQU1/fHyZTCfLOFGMZ5mJC40YE1RTju+/a0J5Jbj5bWszwBpxsD1TGrPm8FnAchzlz5mDz5s0oLi6W/tz06aQo/fKLNhn5+7CggNYvBeMqLS0NPXr0gD/vYa2vtyvSEx0dDR8fH2XjDyBD+q+/Wqopa5Lx4EEybgVGcVNTE44dO4aUlBT7zzY3S4amRkdHw9vbW9mDGhNDIdMrVyrLJ3w+19aSrqAQsnj06FH069fPakxfuGATnspxHLp3744+ffooVxoGKD8RUJdRgxeax549e+Dv799ieKK5mcIwZSoap6SkgOM4+XBVPpxbrRekkOdDh4AePSQjOMxmMzIyMqzyATSGIi41G6hRUeTx0spzSAgpczI827WY4VFYaNNjefjw4di9e7e2Ij88z1o2S1R4PnfuHI4cOWIb3gtYK3hbCnQ5VCgJcIxnoYwyPPM4ceIEsrOzydtbWtpSLJTjOPTp00e7B5XnWeuGU3CwLM8ZGRmoq6vDACnDOjPTTonhOE69eNxFCI+B6g5s22Zbxl4KH38MzJuHoK1b0QCg54QJdPy991p2fx5++GFUVVXhwPnziDQXwx91CEI1vGANtWqV8j18OMX2KygOhZZJO+CWsQCAHRhr3flffCnw2GO2H7C0MikLDcXREydgtuwoQ02pkMOTT8ou8Onp6eB9KXc8FWkT/rloETB/QBo1cN+wQTLPaymm4DVUYn1qDC3yrc3/W7MGuP9+1cusSgEZqIk4jeuxHAxANYJbZOQVCb6CaZt7oQ4eTNX6pBQtAfgH7shkMyp9IlrG8nTcaMzfSQbC/IVeQIcw3AUglJnQ+SOLt6itHtSHHtIeBvDzz8BHH2GmZTxf/ucFlHpF4jL8Dt+IUJQgwuJB5QCMBCytaNrcguSHHyhcQQLz5wOLPjUjMvJP8E0qHvkoyWqAvPQSecMtBuqYdgVIRy/UgNaHGhxAJrpjROCR1suXkkJjo1DlMz8jA94AAsQhvgB5nkTegg4dOuC3337DH5biODZtPrp0cdxAvfNOa9EXGVh5ysQIAPvRAx/iAZi4ELyDh3EF+DxIDsC3ALwBLMR2jEF/lopXn1KpVKqGzz+nZrYS6BZYANaR9/jE23tBLRXYefzxBx9Km4FlmAsfNOOy2l/a5s3v0wf4+mv7li2ZmTY9UO3CUnkkJUnex3PmzEFzczN+liumFhxM4cu//KK+Vt50k7UYCK/Qqhio/fhemnv30sacqCCTt7c34uLilD2oABmozc3qCuPbb1sjgCQKJJ06dQr19fXSBuo//ykZauvt7Y3Y2FhlA5WX8eBBICdH/poePciTnJxM/Q+bm2XHkDGGtLS0lsJcAOg+eeABu2t79uypXqSmc2eqoqpWWO/6660tXA4eJN4UWszwvToBUJu66GjqdiCB9u3bo2fPnvLeQL61m5qML75ovfbgQVkDurCwEA0NDbbz5oUXiAcBNBuovIyHDlE1Zjl07Uqe5KQk4tlsVjRQ+U3DFowYATzxRMvbsWPHorS0VFshIq08z5hh/R0yPPMh5nb52ocPU+smS6Vb3kDVXIFWK8+PPkotCXkZVfJP//WvfyEwMBDXX3899Q8XXO9QJV9eRrX5HB9PY9iliyzP/AawpIE6ZYpk0dWuXbt6DFQPWoF+/dS1Yoti3ycnByX+/vDhF++qKuDIEaCpCcOHD8eoUaPwi8Vj1BPpyEUiDmEQpoBC2lqlfIeE0OIk4y1gjKEsNxf13t4YefdAAMADv0yy7vzn59tPyBEjAAB1CQmoqanBP998EywgoPUe1K5dW75TjJMnT1rK4wCXLYiyCf+cPx8UjpKTA5SUyOR5JQOoQ7qpHVWZ09oQWoxRo+weYlJIT0+Hl1c0ANqlnw8yyDqgEj5ospGxe/fuVmOgrQZqeDjlQIaFKV7GP3C7hTUicVBEy1hG+VXZeJi9IiMRBGCtvz8ahw0DgoLa7kHt08cu7FAWFs/IIMZQGx6OS+eEIdxcinXLKlBSApiiu1k8qEAM+uA6HMdorG9bvjZAyrlQARTi+HHMvzMID0/9Bb18fMA6dcINtwVZz3MceQssRXTGBOzHUe9BIC9vRwDbkeY9AGPbt8GDGh1NeXF8D0QJFFs2PThR+CQAMjok+k9Onz4dkydPhp+fn62BmpjouIE6ZIhqz2DeGx2A4xgIYDdGoigwCVtf3wU/NCHST1i0JB7ARwB2YRcuwBtmdDwjUfnTEVx3XUtOlx0KC8FiqI/V22+TorhwIaw9gdu1o91xi/fv/Hl+XUhHGvqjAqHoj6Nt8+bHxgI330w79zwqKqgCtsBAlfWgBgVJVqDt378/evXqhR9++EH+d19zDSUHq4UQjhlD1VMBa26WKDyNR01NDbKyslqKkygVz4mPj1c3UIcMoeeG0t8BALfeSnJWVpJxLzL++B6DkgYq79WUaMUSFxenbqBefz39XL5c/pqEBDIwO3a0jreM0n3mzBlUVlbaGqgylYZ79uyJoqIiVKit2XPmkBGpVHBq6lTrZsfBg7Q+yoTvt7TA4SHT2koIvm2KJLp2pU32779X+ito83PKFJofZ87IjuFpy1pmM294b5eA54iICPj6+qq3mgGsPCvdi926UQhcXJxi7qSsgSrieYylku0OrYUftfA8axbwyCP0fxme8y2VnPkwdxv5AJsiSX369MEDDzyAb7/9Vl2+Ll208fzss2SgqvAMkCG4bNkyPPzww9Tyj/deW/Lr+/bti/Lycm0cA9p47tWLOnvEx8vynJqaCl9fX/SW2uSRKcyWlJSEnJwc+dZWFyE8BqqrUV0NfPihthwOC2qFBYf4SW0Ji7jrrrtwwBJ6dafP14hAGWKRj/W4FL0DclrX/+/wYeDLL+3CvXhkZGTAt7YWzUFB9NDfs8e2abjUhLF4UDuNH4958+bh7Xfewelm4LdPz8LLS6DIacWqVXaNmvkKn7fdlo5IWHIWhWPHQ1A9bv58Kb2d8ilrQy27ZK0plHThAvDtt8o7pBakp6ejR49eLZVfe+MEKhAGAHjw1mqbcL9u3bohJycHTU1NbTdQjx8HfvxRtd8Z/4AJrK21HSxBZVIAQEQEGMfh8fp6rF+/nkKQ2+pB3bgRsFTMVEVpKRosFe58e/e2U2i7TumGkVFZmBv8G87hbfwIYD2ugk9pYevztWtqqB+vnHJ88iRQV4egzZsxqH17cN27257nZbQ06Q0sz0f32YOQmMgBGAdv7+3odvUABJ/Pku0NqIrMTOq7rNC/sJzfUJLarFDoS+jt7Y2uXbvae1ALChzrgbtzp6Z2Ou3aAYOwA74Ajre/BIsWATMXkOfynoUmUWGq+QBGYDdIObgsrA1l9+vqaL2Rm2+FhSixKGbPPhvXUnQtN5f09AMZtsoYheP5AaBwtlwkIhG5bfPm5+XROAp55nmxVPD18vJqyR+2g0wPTz7M988//5RXzGbNoo0/NW9Gaqq1l+yhQ6SEy4Se8/1XWzyoMlV8AWtfXkVwHOWTbdxIm0JSqK8nT21ZmfV+FCm0R44cgY+PT0sBKRvwf4tEX9G4uDh1GfmNVyWFtrCQejk2N5NC26GDfUU2C2wKJAlllOCZ/3tUPWxajOjMTAqBZUzSC82jrKwM+fn5Vo4BRZ55DB48GGfOnLHmvosxZw79Xrlw0cZGWpurq1UL50hGHkjwzHEcOnbsqM2DmphIG9hKPJeV0Zw2m0nG8HBJj0NeXh4iIyMRKC4dL+K5Z8+eiIiI0G6gauE5P582LxV45sfDrveyqIqvr68vtm/fjnHjxuHmm2+2Roop4YYblHluaiIZ6+s1FUh68cUXERoaisf4CEDRvehwoSQtPFdX00Yi3wJHgufU1FTbKAMhZJ7PSUlJqKur025MXwTwGKiuRmEhFVGQ6uMlRFUVLnTpgkoAvsIHoWh3ccKECS31e2/3+xZVXAjm4nt4w4wPHs5uXS7TunXA7bfLhmv99ddfCAHgw3tbLEWQWiBloPbtC8yeDd/rr8fSpUtx1VXPI6exDuE1p20UOd5IELZ+kTReX3iBwp1hvZ6v8AmcRBQ6oAG+WLpaQvkRLTrvvy9uC0JGRNJoS/Wk1uShFhSQN0PDwyA19STOnu2JmhrS8ZJxCiU+tJi//YLtOHbv3h1NTU20a9pWA/XXX+khpFJ9k3/A+FVV2RqoYp7nz4f5hReQ5e+PrVu3toSttglPPEGV/rSgrAz7AwPxW3Q0fObOte8RlpSE4LI8PFH/L5xGAq4E4IdGvIJnW5+vnZ9P3qOtW6XPWzyPfc+fR5fmZgppEoK/FwUPnsG3DcLp08CNN45Dc/MZvPgTecTWva8xN0eM5cup6qGMgWo2m3HB4tnZtD/Uft6JNyJE6Natm72Byphj0RH33UcFo2TAz+/SUmAEyIO1s5nSC/gxHNm7CqdPU2s+ms8cgLdQgQKcRBTmdW2DgXr2LHmFpPp9NjcD588j32yGl1cUamsDbE7X1ADL19muOa+95g2O6w6hgdqVy23dhiKPpUvJ8yfkWdRiJjY21rZNgRAKGxEzZ84EY0y+X2ZEBHmjli2zybW1w803W3tDqxRIsqngCyh61uLj43H27Fn10LsbbiC+5AzpvDwyENesAbZvp2Mir/mRI0fQq1cva16sEApeXk0eVEDduPr6a/JUNTVReOTIkbbPXwF4A9XOAJTxoAIaDNT4eMqtU/JczZ4N3HMPRXtVVLRsUIth0wJHKB+g6kEFFNqmqHmucnMpFHXFChpDb2/Z6AhZDyog2WpGk4EKEM+pqfLOik8/JQOnsVGRZ7sWM0IZRbnGY8aMwV9aK5pr4Xn6dArb53kW9wUGbXB36NCB2iSK5QNseA4PD8dnllSPP7T0Vp49m37K8Xz6NHmgf/xRlWfGGDZu3Ih58+ahA6/binh2qNUMjzlzyOkjN6/4wm/19bI8p6amSof3ArIbTklJVHcjRym8+CKDx0B1NbT2njSZkO/jg1EAQj/5xHpcNGESExPRZMkb86+pQMi107AhjXIhpg6U2V1UQ1UV4OsrW/p/7969iPDxga+UdxIAQkJQeZZ6EnIcRXxwvj7osnc5luZR9cAdO8bgDIDOsE4e3kgQt34RG68tf79g5922Gu9JRKI9ShCJZ56VeHDzCfKWSS1uVZKQEA9fX3+gkyWssTUGqkaeP/20FCZTCaqrSTlobmbogQy079XZ9nss6G4xcLKysshArahwzFMlllGBZx4FBQUICQmBV1mZvYEqlO/+++H9wgvo1asX7TA6w4PqQMXr5uJiZFdWYt/dd5PBw/PMy9itG9DcjIENe/ERHsQq9MYHSMSt+AoDcLh14ZVqBYgsBupYAMEmk72Byn9OGBY1aBCWLgWWL6e5UgC6/z5/pah1Xl4VngsLC9HO4kV/8b0wu3mXVy4dQsSDN1BbjANeWXLEQFUpkiSc371xFsXwQXZtJ9pUEPFsO5/HIyDgMhzwrUbcmd2tzydXKihWXAyYzThdXw+zWdo7ebrMdrNk/nxg8OAe8PXNAMcBZcGJ6BGQSxuKy5dTWFprZBTzzBuoSUktvZZlIaPoAMDAgQMRGhoqb6ACFNN8+rRyxAO/bpeUkHd3yBDZS9PS0uDn52eVWTyfBYiPj0d9fb18ISce/ftTSJ2c0i1ctzdsIANaGDINMlAlw3v5z8nIGBcXB5PJBJNaJMT119ODSE5GnufCQjJi+dYnEjh69Cji4+MRJoyMkNlwSkpKgo+Pj3qhJIAM/aNHKQpHTkZ+DAFZGSU9vAo881A1UDt3pmq+338vPeeFlZA3bKBNCZmqwbm5uYiMjERQkCA1Q2azpHPnzsr9eIWYPVuZZ37dLiykqANLmyoxzpw5I2+giuQbM2YMTp06hfOC4kmKcJTnqVPtLikoKECsuDo8IMtzt27dkJiYiI0bNVRe18ozL6MCzyUlJaiurratlCva5I6OjkZ4eLh2DyrQZp6Li4tRUFAgb6AqeFAB/L/KQ/UYqK6G1t6TJhPOVlai3eDBCO3Ro8WjOHJOIrYGXIZVv5PHheM4DBozBmV8Y+QZM6xhrXLhL2pQURZPnz6NqIAAcDJ/wwG/kfi5aKzFm2l10AkNzfPnh+EMgFiU2hV1Erd+ASQqEosMF+szoRFANiLhhxJEShsdXl60aCQntxwStirJzfVCcnI3HOJDI1oTIqGR5xdf5HfVyEseiRJ0QAXW5PYjRcUS+smDV9YyMwW9ULU+bMTgeZbZfedRUFCA+I4d6W8SbkpMmmQtPiBAv379aAF3hgfVgSq+5uJilACYyj8kvbwon4z3HlgW7FquHb7BzQBG4BVUoAk+uB7LWxdeqVYJ2ZK/3MKi2EDt0YMKEPFtg+LjgYgIPPMMUFfXH0AEikChSaH1Ra3z8vJzRYbn7OxsS0A5UFgfZnOupgb4KOty6061BLp16waTyWQNt+MVekfWH5WK18J5nIgK5CDUetzLi/LJBDvjwvn85ZcL8WdjLbiSEuV8KjX5AGkZLetDZnU12rWLtz8PoLxTH8rVCg1tWcsPHOiBxsZMfPttM25+PhF+tVU0Xz7/nLwnrZFRzHNWFvXIDApSN1CvvprmiwS8vb0xfvx4ioyQw1VXkev6u+/kr+HvRb4Ajqg6vRDHjx9Hr1694MNv3nh50UPAkksnhKZWMwCNzdy5VKhQSnHjefb1JUNbZFiVl5cjLy9P3kBNSaHiO+Hhdqf40GpVL2pcHDBxIvDNN9LeaLFRIGO4ABL5nQD9/RJFknx9fdGtWzdtRXSuv5421b7+Wvo8P583bKA6AuL8Q4F8YWFhtgaMtzdFzSjUHggPD0dMTIyyrPPnk2FlqdFhJx9ARs3+/YpG/unTp+0Liw0aRMW+RJsXycnJyMrKQrOWnsCxscDkycSz1PXCMQQkZTSbzcjOzkZXUZ9qAPRcefppm0Njx1qKWjoS5uvjA8j1x+XXHAWeCwoKWgpI2cDbG/jkE/LCCsBxHKZMmYItW7ZoG0cn8cxHAdmskcOG0Xps0bU4jmsplKQZajzz1aR5g1wko2KBJIA24yVCbxITE8FxnMdA9cABaPSsscpK5JSWYtKkSTYexT0YgUl16zD3+eQWb8qoUaOQazaDcRwZDLyXqy0GqqKymIcO3t6y11y741Hc1rxI8hxvaCYmhuEsYuADMzrCagAmJMhXHrY5LjJcrMZFFoAmRIGhGFHyRsfy5cCCBTIn6UFzNCeHFC4XelCLimxbzCSD8rN+NU2lsBWLUcUjNjYWAQEBtJjyi74lR9RhCMvsK6CgoAA9eMNU6EG97z6qeClC3759cebMGTQEBjrHg6pBRjQ2wre2FiY/P4wQFs/68ksqbgO0GIfnJsxHQ2AHACNRiTKUIRTRPmW0xi9aRCG7WqHGc3k5ajkOLWqm2EAdOJD6T/Jh/BbPAN3r3gCuRpGlf2o0zrfeyyuQTxw+v2SJ1UCthP3u8n/Kb6NqwzLgd2pbwnxbs0Gm4im3zuMmJKIOuSCDnjFLKPKw96ytEQRYuhR48snp2AUycna+3cowXyWeLevD8bIyjB0bD3EqWGAgcNO/+wFvv42lf3YWpCL0ANCIO+/MxfY8S/hgbi7lF5aVqYbe20Fqrlgq+F64cAFFRUXKBuq8efbV1wWYOHEiTp06JW9gtW9Pc2f5cvmoDv5e3LiRPBkKHtQTJ07YFwV55RVJJZM3/lRzPAEywr28aK6LwW84ZWRQaKXI+JMMSRWid29KP5FQyDX1QuVx111UyI83ToQQGi6xsbLVuRsbG3Hy5Enb8F6AOLr7bsnP9OzZU5sHNSaGNiS+/lq6HQzf73bbNkWjgK8wbNdP9p//tOnVKgW71AIx5s2je1Jqs4fn+cQJWkQUjPzTp0/bFxZLTgb+8Q/rxqIFPXr0QGNjY0veqiruuovm/Pr10jIGB1NaQWysZBXknJwc1NbWtuRG2uDyy+10nCFDhsDLy0t7P1Q1nvn+1du2yY5hfn6+tIEKUBj4sGF2h6dOnYqKigptcmrh+eRJVZ75eylJqHN17UrpbgK9h281o7mSL0A8nz4tnSLCr4kyPKsaqJMm2daAscDf3x9xcXEeA9UDB6Cx92RzZSUqzGZMnDhR1aM4evRoHARQnJJCC6aPD8W0t9ZAtSyMUnmgjDHk5eUhmDFZw0FNic7Low2ffC+K548HfYDvGyhnVLYcb2ykxVLw+639Jsngi0Q9yr0jW53TlZycjKzsbLBOndpmoKoYVyEhJ0HFUroAAHpYctIuxCZLXu/l5YWkpCTyoPK7uo5WTBXKqME7WVBQgG58iJhCJVgefJ5GmdncNg8qz7MGGessRnrCwIH2hQT4B0lcHPDdd+i+/DUsWgR06kR5USZvX1wypJzCK7dupbwkrYa1Cs/1hYXIYwzn+Qe0lIHAmPVvtBio1jkwG7W4ABMCEIOi1nl5BRtOUuHzX32Vo2igJiSADA6ZBzJv9CxenIUuXQD/TuQ9St2kcf1palLl2Tq/zyARQC6snsrcXOCeO5rw/Ve2iyT/t545E4rjmIoL4HDgi4OtC5MWRUQI18bHF9IGW0Z1NSZP7myTLtDSbmYeA0wmvPx0nWAtp0q+dXUZ+PePXejQ/v3W1laOVg+Xms8WA5VXUhQN1IYGCleW4XmSxdup6EVdsIDmvFQLMOG6vXEjKVYylV1ra2uRk5Njb6BWVkr2MdXsQQUoLHDmTPIKiQ1pfj4fOkQtM0TeWj4fsbt4o4lHczNtGMoUSQI0eFAB8mZHRckr3e3b0xhOnSobGZGRkYHGxkZ7Y7q6mjzrEjz36tULmZmZVIRPDXffTVyI83l5nsvL6aeMgcq3wLEzoAEaQxUubSraSyE4mLxr339vX4VcyHNICNXRkJExNzfX3oPKF1kSfa/DvTyvvJKMQCmeTSbiedMmGkMJnvlQ05ZK10KUltLfJ+DZ398fiYmJyuMmxt1301r000+2xxsbaf6UlcnyzBhDYWGhdIgvQCGtEmM1efJkAMAmUSFMSWjh+eBBRZ4BayisjTe6ro48s4IoNb6Sb5Ej9T+uvJJ0czmeg4NleU5NTUVsbCwi5VLq8vNpg0BiPv9/64XqMVBdjauuIqVB5BmzgdkMn9pamEAhGUKDrxPykYsEzMX/Wo4PHjwY9/j44F3hAhEZ2XoD9b//xcpbfpXMA/3sszLU1NQgsKlJVil/ssNnKEYkgiDddzAhgdaTAdNpsZiFpfglaAG+fbsE8+cLlVErbJree3vTw0HQs4/POwsLo93fGK8qpEyKlC8SdfnlwLXXyg5BcnIy6uvrUR8e3roQ3yuuoEVRruegBV26HAHH9QYsHp5knEIjfPDwY94UIitRbr2lF2pbDdS331YtXfvdd83IyTmL1LWUL8LnNwOg5H4/PztljH9YFtXWWqvTtQZeXvRwuPlm1Uu3rVgBABgkDgsbP97Ws7ZgARAVhfnzgby8vggMDIRPFENiiOXBxj/gNFSUBUAK4tatsrsqladPoxxA3YwZVChMnP+Sm0tK+tatlHd4yy0AhHNgEoAOOA8fxHkXtW7D5ZVXKEwJ0uHzjY056MAFocmvHXwCbfNUAwOBX0b/h5R18Qct4B/oX3yRhdxcoAF+qEQI/lpZqs0Y5DhStvn2IxLg53ffyENoB+A0etqc31Q7CtH324YhC/9WM65BFhgSmw+3Lkx64kSqHB4fb2fk+5bSBlYRyFAShhe3tLY6fRoICcGYvGWCL+VbzWRgT6HFQ7NmjfW0o+v300/bFI5DVRVtrlnCDgGRd0CM994jJUqG55SUFISFhSnnoU6dSl6HDz+0P8dx1Ct1+HDyDiqEcKanp4MxZu8ZmjKFcl1FiIqKgt//sXfe8VWU2f9/T3pCGpAAAVLovfduQVFRsTds6IpdV9eyllXX3lfXVde1F+wdFQG79Ca9CYSEJBAI6SH9nt8fz51bZ+bO3ITv6v78vF55offOnXvunHmeec5zzvl8YmLsBaigFt0HDih7fDFhgpoTV6xQc0cAsYueGQuS9NCxZ4/aCAtczOMNUG3ZGBOjSjQ//zxYK/yGG9Q8UVoasrwXDLK9zz2nKjkM/Ny3b18aGhpYq0sAWeHII1Um8fnng9/Tn1vR0aBruAfAUAJHx8knq6yTBXr06EFhYSF1Rpk9HZdfroKMN97wf33UKHUdVqxQ5ZcmGyX79++nrq4uOINaUKAyXQEbMY4DVN3PX34ZvLM/e7bqAbXwsx6gGmZQX35ZseoG+NlPS90OdD8HBlciapy7XKZ+Li0tpaGhwTyDet558Oc/B73csWNHBg0axEKjCgIjmPl5yBBVLr58uaWfQWVQu3TpQrxvW9Xevapv9auvPC85ZvIFr5+/+CLYz+efr+ICEz9bEiSBYgWcMsVwPP8RoP4BZ0hIUFkUI7poHe4Ff0z79qSmpvqtfeuJJYs9pFHieT0uLo6Ro0bx75de4rrrrqOsrKxlAWqnTlz/dHfDrO2996rBFVtfbxqgnnKyizQOkkRw47ZvoHna9apX8Hae5dSaOZyhqZ3YQNKiINH7iAjo08fbg+nGzJlw+um/0qVDB1Jd5fSe6F9+44eGBsveTX2HvCIuLrwMakqKyoaFICDav38tEycO9fzWoQnbqe3UjVMudBMMGWQge7ozIq42bVRGM1yWtu7dzfU70TNQBUAjfdxTw+wn+niDjpgYtYsa0KDfrVs34uPjWb2rChobSYiocy4jBGojYtQo1ZcZAj+4F5oDJk/2fyMqypT4JSoqilGjRrFXD6TBm7Wys0ADleWYMiWoV1hHw/79lAPpTz6pyCYCkZioHvA1NXDffR65CO8YiAZOoZhaJvXZGx4r94ABHs1g4+qGApIlgah2KYbjbvhkf1KxQMTHxxMZ2YXGRu+ufAlppDSV2AsGIyNV4GGV3UNdk4evXAtAHv73bRVJRNf62+f/W2ewA+jJpvDKpDt3Vlm3hISgIL8T+6gggVosAhf3XJnV1nesdABSgG3EZ6Wre8h3QeZ0/h41Si3CdGzZov7t39+4v8rERitJoYkTJ7LEigQpMlL1Ny5aFKyJGhWlMoN6+aMBoYrXdGV7UAbVhMgpIiLCnoyLjmOOUffbo4/6l1JnZ6vAY9s2w/76/Px8OnTo4L+I9YUFA218fDw5OTmeMuGQmD1bDcSHHvJ/fcoUlQGNjg5JkBQZGRksh2NB5DRjxgxSUlK4//77Q9sXEQFXXaWY6n0zXdHRirl0wQIV3OhkOAHQfWwYXIVgDgd1L4uINUvpsGGKifaxx/wHba9eqq0iLy+oB9IXhhIzun0QZGN6ejopKSn2A1RQfo6IgAcf9H/9+OOVVE9MjKmfN23aRNeuXUkxIv4xuRcdB6hmfo6JgcsuU68deaTSUQ6ALlFnGqBaMIdPnz6dH3/8kYMGFRNBMPPzgAFqQyw/39LPgHGPvsFYCYvJF8z9fPrpaq438HNDQwNbtmyxDlAtxnP37t0pKiqy3sT5HeGPAPVw49tv1SCygvtGi3cHYL4ZxSrUzdg+utIvm/L8889z5JFH8uyzz/Lggw+qADUUo6EZ/v1v+ufNM3xr79584oCI5mbTAHX0VPV6387qd0RGqtcDA80BEydyACjs0EH17PiwthlmIXQUFyuCAoOdoeLiYvrpxAUdLAJUE3FjHb3cBErFkZHhZVAXLQI3XboZ9u3bx759+zjttKGe3zq9168kj+htOen06NGD2tpaRWffrVv4GdS33jKXRwE3UY+6xr2ppYJkdtd28AYdJjZGRETQsWM/Vv+qHiwplBszMYfCgQOqPzNExqG0tJRt7kVzZKDPLZhJAcaMGUN+ZSUuPTDVM6hm7JCBWLkS3n7b9G2tvBxXSgptEhONS/EsFrT6GPjss1MoppmU2t32bArEJ594CCSME717aB8ZA6mpxuPOhi5hc3MPVP+3QglppFFiLxgsLVV9izbGWa17UZvHcL/Xq0giLdr/Gvr/1g7soBM9OEhOpklvZ16euVzB+vVq95vgIL8T+9hLAqBZMy0Cp0yt8qkO0YDeRERs44EHNWWwbzWC0/l74UL/TRB9h3/AAHbu3ElqairtDMh7Am20Gi89e/YkPz/fuv9q1iy1WA3MopaXKwmzTz9VAX+fPkafBtTiLzIy0jMP+9loch9mZmbaz6BGRKgNobVr/bMu27apDGVysmHlhqmkh699YGrjkCFDPD1lIdGtm8r0vvCCP4vq55+refHiiy2fcRs2bKBPnz7BcjgWcj3t2rXj5ptv5rPPPmP58uWhbbziClXJ85e/eAP9qipVDVJUpGTCTKAHSUE+hpDPZ/ButoQsV334YRXo+fIl7N4Nf/0rdOpkyUWhl3QHBagmY0XTNHr37u0sQM3OVgHgiy+q/nMd33yjsqCzZgWRMenYtGmTcXmvr40GSgBlZWWUOmkhMPJzTY2qzrHwsy65Y1ria7ERcdZZZ9Hc3Mwn7uqokDDy8969aiETws+gSnyDKkwM/NyxY0fatm3rLIMK6voZ+XnpUlM/b9myhcbGRusA1WI864kWx8H0bxS2AlRN047TNG2bpmk7NE37q8H7fTVNW6ppWr2maTcFvLdb07QNmqat1TRtVWsZ/rvBF1+oB6MV3DdakntQ+2YUm7QY6onljGlVfkHbkCFD+Pjjjxk7dixLly5tWQb1/vu5qE1wiRJA27Z5eLqczPor3YP6+88qEVEtZiLBgWZMbCwz+/fnqqFDlU7jd9/ZIwbZuVNNlAYPgQMHDtBDn1RCBagWC+4uXboQFxfHnqYmlcmsrQ1tly8+/BBuvtnyEH2hMnToUPWCiOrJ6NVL7abFxhraqE86njLfcDOof/2rClJNoBbi6uHfm1K20xvQvAt0i4nxwIGBlIoKOFJQ/ZyOtUZ//VXt0IaYXFetWkWK+77pNqKdf7Y2hJ/Hjh1LqQjN+i6t0wzq22+bEo6ICPG1tcSZ7R6D8nNMjKWNo0ePphjC33C65hoPIUxw+bwAe8hJdZeUGyFEZg0gMbEXuAm+wBug2uqZ3brVqwkYAi73vX4g3r8H8FBkMl1T/e0L/K07GEYswn1XBt9Pc+bAvwb/B845h1MzlgVvpLz6qqcEOfA3ZbCXfbiIju5rnMkAz3ge2q3SL0udlDSGyMjFnHRSpSd77skkO52/L77Yv8R382ZVotqtW2gGX7AVoHbu3JmamhprqZTUVKWN+Pbbaq72teeEE+Drr9WDwII9fMuWLfTo0cM4uDL57uzsbE9AYQvnnKM0B2+/3bsx8MADSovw2msNx0PIANVi3gb1nN6+fTu1dp8nd9+tMpA33uhl9D3vPFW58tegpZcfDBl8IWQQff3115Oens4999wT2r64OHjkETV2X3pJvfbLL/D44ypD6ZvRD8DOnTuJj483zq7ZzKACobOBkyapLNXDD3t3l265RW3a3XxzUBm3Lww1UMFy3u7Tp489JmRf3HWX+s033OBdA51yivLzrbcafqS5uZmtW7eaB6gm87bf+sEu4uLU9Vu3ztMuwurVKkDt18/Uz3qAaplBtZC26tmzJ++//749G438fP31KgAM4efa2lqKioqC58jY2CA/h8Xkq8PIz8ccY+rnkARJYDmedd6Ar3xKlH/PCBmgapoWCTwLHA/0B87VNC2wRqMUuA543OQ0R4rIUBExVsz9X4YNXcdq96BO9SkX881sxKYlMaCr8aAeO3Ysq1evprldO7XACaf/r6qKwZOSDftAx43LJ10vTw4RoIZ6wAB0GDaMX7ZsUeVepaX2AgMLYpqSkhKy9InIKkAN8QCMiIigW7du5OrlIk7LfEMwIYPB5FNUpKI4dx+L2eTtp4XarZvK/BjJEYSCLebUXUAUfchnm7vvz7M+s/BzTc0AKigHINX9L4Qm0PKDTSbkjz4qQs8LldDeP1ublETdgcogsi8dY8aMoQyIrKxU17CsTB24aZMqA7djo4mfc3fuJEWElBB9yKHuxU6dOlGblER8TY1zZlfdRvc19N3s6sQ+Po8/lWRq6ZwgpvpwdgKXk07qC+wHVKBfQhrpWom9nlmbxHEAMXv3UhUZyeMvpviVIo84Iokkl799ga0CB9uq/p6sBv8deb2nVKssB+DyffcEZ/t9GHIDA99O7GMfNYwda07A4fl9VVV+c/m8eefQ2FjH559/7u0pP+II9a/TADXwXty0SQUJkZH2AlQbGxG2iX7uuEMt7q691vsM0s8bEWHYd+aLzZs3B5f3guWCtnv37hQUFNBgZ9yCuin+8Q9VkXP00SpjNX++et3APp0gMChYcWDjkCFDcLlc9st809MVg/b8+arE/L77VOaqTx9LHov9+/eze/duRo40WGKFGM+JiYmcf/75/PDDD/bIks48U5UdX3WVWoDrC+1LL7XchNDvySAGX7AVoKalpZGUlGSP8OeRR5QtY8eqTZyvv1b3YYg+119//ZV27dqRbDTHm1Tn9O7dm/z8fPubEKBade6/X92DJ5ygNiZqatT4NZKQQWX86urqjEmmwLLEFxwGqKAkZ6ZMUez9f/ubN2t6ySWmfm5Jia+maZx11ll89913ofWNdYTpZ0sSOQM/9+jRI7zeTjM/9+tn6Od169YRFxdnXGXgax8YXsdOnToxZswY5s6d69zW3yDsZFBHAztEZJeINADvAjN8DxCR/SKyEiVK+Qd8YSNw+XyOykQ8/Wo34969M8+EoUMNWXbHjBlDXV0dRTrDWk0NECwtYVpqKYptst+oJMN+tDZt8undqZM61mxBmZmpVodW5WRuDBw4kD179lCpU43bEWe2WNAeOHCArvquu1WAOnGimnAt0L17d9brvYlOJyMbDLlr164lOzubtm3bqhf0RZ++MXHxxTBuXNDnFi3KQtPiufTS1dz5co7ys9MyZJcrpI0PPACRkbuII5Ms8tlOb3+yquxsRRMf0AsMkJ4+wBOW6hlUMGdoNoRNLdn33y+iPdBANNWofic9W/tT9NE8V3dpENmXfv937tyZhM6diXC5kKIidV1GjFA7mnZ2SC2C/LU//0wk0CGwBywQ11xjqQcJkJCTQ4SI86DFwM96gLT3nR84qfYzxgNtmprMM6jdu6tFp1vKwwjnn6/2KDt23IKmQUNSGp1jSuz1zNpkvAZILiujNDk5qBS59w3TVZYpAL7HvbNCkWXl6xqcbug9pXrP/HHMZ/Chpf7ZfpMgX9MgQ9vLPuo555wQAepttwX1QY0bN46srCzeeecdbwZ15EiVNXOSMTcaz5s3Q//+NDU1kZeXZ02QBIo45/77vXYYQC/VKwolbdW5M9x7ryrp1QmD9PLbk05S75ugsbGRX3/91bg38bTT1KLOAN27d/ewrtrG2LHKvi1bVCajtFTNZwaMmaWlpdTU1FhnUEFdQ13aKgD6ZqTtMl+A665ThD4LF6oAEFTFkQWWLlVySuMMnh/07asI7syYiFHEi3V1dfYkZzRNVYadeaYKoPXfNm2a5cd27Nhhvmly7rkqC2v5tVpoqRkdPXooXduEBJW9AkVmZdA36YslS5b4y5b54qmnDMtGdaIkxwHg1VerieWHH9TYAcM+aB2WDL6g5Idef90rYeZG9+7d0TTNuX2apsiczjpL3ePr16vXLfy8d+9eUlJSSAjMduiYNcuyFcpxmW+PHipj6tDPliRyL72kpGZ8kJ2dTVFRkf3NMF8Y+dlkPK9bt46BAwd6taCNMGiQauMxuQ9OOukkVqxY4clm/55hJ0DtAvg2ehS4X7MLARZomrZa07TZZgdpmjZb07RVmqatsr178ntAiKBgzhz45A0VDFXSy7h377nnmJN4uSHL7t69Sjpju16yWFJiKC1h2g9YU+ORvTDqR8vPz6e7/vA2W1D27KlKR63KEtDNU7t/Kb1L2BI9iL1v2QhQTTJr9fX1VFZW0lHfzbMKUM89F5591vJrunfvzjydSMlOP06gjTYCVE95L3jLS3Upl8cegwsv9PvMnDlw5ZVRiEwFvmJ1aQ4A81/Y7cw+98aFlY0zZ0JW1k76x3QiAqEsrbc/WVW3bmrhZLCQvP32AZ6wVM+g+gW3dmAzg1peXkh7YiilHaqvTyE/Hy787HT+0vSI3/GBpcZj3A/YVXopkV6uZKcP1cLPW9x9sRkmOoUe3H23WtxZoJ07m1TjdKPEys/ue7s7EFtXZx6gZmWpsimLXVw923XffVtwueCy29KIrq+xVxofws/65pqmNdGhtpZ9sQb9WNOnB4nSByKme3caIiI4FBAc6Fn9JKrYSXdKaM/VPGupu+yZG6sPkSg1FKNKsS1x441BAWpERARnn302CxYsoEqfVwcNUpkzJ5sRgX6uqlI/zK1J3NTUFDqD2rWrGhgWgawjqZRrrlHkJeeeqxZleknq1VdbfkyXOTHMoE6dqrKyBtAXl44zG6edpuR9Hn9clQmaEF3lu2+IkAHq5Zebljx269aNxMREZwGqpqmNwFWr4Oef1WsWAT6oADU6Oprhw4cHv5mRoa6hBfmc/rlf7PbiJybCO+8oYiSd1Mliw8nlcrFr1y7ze3LiRFUmHgK2A1SAwYPVNZw/X2386hvtJigtLWXz5s1MCJAa8mDmTEXMEwDHTL6+uOwyRS6mE5FZtIdYMviC2mi58MKgc8TFxdG1a1fnASqoQO/tt5WfH35YvWbh571795pnT0ERu1nojg8ePJguXbpYS1sFYtAgVX5s088QIoM6Y4ZiQ/ZBTk4OImKflC0QNvwsIqEZfEGtF085xbRP+aSTTgLgS1+G+N8p7ASoRrl8J3WkE0RkOKpE+GpN0yYbHSQi/xGRkSIyMt3kwv8uUVFhXkqHWh/EN6kd4Cp3SaVR756ZNuqTT2aSkZHBOn0BUVISUkc1yD4wtTE/P59sPTMaKuNhUl7sXXDCE0/o5SkbWdB4JCkbF/P2myHKGE1s1Nne0kUUY6TZgluHy2VZAt29e3cKqqtp6t1b7co5QQg/Hzp0iG3bthkHqHpGVSSozNTryxOB3exGlWB99azDPtQQfvYetovLj1CL3mfm9w7OiDU1BWsJAtddl0VtjGK6TKUimIm5FW2Mjy+iHXEcpL3f61lZkJ8nJFJFBP73lG/wMcrNnPfTa6+pF0aPVg9iN7FQSBtN7Mt1s5hGhZq/6utD6sV2cT8gd1oxqJrZB8Y2unXcegDRNTXm11lElT5blNxlZ2cTHx/vYeb0ZKDsMDBa2Oi7uQZ7yAFW7s8M3lyrr1cVCFYliRERVKen07683I/5U483kqlkH53YQj86U+Sf7Tfzs3vztDQyksGDB1v/zrIyb5WED84991yampr4sLlZZTzGj3fOIRB4DXU/DBhgTwMV1HyYn2+pv2o7gwpqDv7uO5Vleu45r8TDiBGWH9MlTgz7J6ur1W8zyFyEHaCCaqv4y1/UhorFsw9sBKiFhap/3gAREREMGjSI9Xr2yQkGD/aWgYeYE5cuXcrQoUON2YabmxWZlkXVTZ8+fYiPj2dNIBOzFTRNZaH1dhMLG/fu3UtdXZ25nmxpqdoUNni2+KJnz57k5ubSbLf1ITVVSXlUVoa8hjpb9cSJE40P+PVXw5YkvRwzbGKaAQO8mwcWNm7fvp0uXbqQaMKSTFOTYt41qChwzOTrC93P+jW3sLGoqMg6QC0uVlVzJiyzmqYxbtw4li1b5szGlBTbfgaVQU1OTqa9kc77unXeQNINvczfUc97IEL4ee/evZSUlIQOUBsbVaWKyZwzaNAgsrOz/yfKfO0EqAWA79ZbV8DG00pBRIrc/+4HPkGVDP//g2++UYyVJsjPh2T35aykq9/rHsycyft5xpdtzx5NESXpN2uJOZOm4esZGSqzYqBJWF9fz969e+nq3qU/4uRk45Lh+nq1wA+kxydwwQmQBbQBNrKWoSRQy4t/DbEjesUV6gQBg1rPtLdtalK7SRb9L7z7rlowWey+6guesj59YNkyZ/28n30GesBjgI0bN+JyufwDVJ1BVt8AOO00jzyIDq/PTgBgN2qhk3Rwt33bQO0q7txpWeZcXl5OaWkpfSPc04LeG6ujvh6io3m00xNB90FERARZg9TO7guPlAczMdvBrFlqIRViI6Rz5yLaE+kXoOrZ2uvbv0UVyXTHf9Hqu8aMdmfaq90MqEec3p4v5Xjq5nwYug/17bcNdQAbGhrYpy9Q9A0HM5x5ZsgS317uRVKh3YyGjg4dVCb41FOD33MHqAMAraHBfEOnvl7dk//6l+nXRERE0KdPH2+Aqj/o7QSoM2eqhZSBn30319ryC0nALlev4M21999XGcAQhGGRffrQE/wYSvWe0iSqqCKJclJpp5X7Z/tffFExhwfCnYVO7N6dGCvpMFAZIV9NXjeGDh1Keno6i1evVhkPTXPOwp6Wpsh99PPrDJP9+3sCq5C9kw0NqrzXouSuTZs2pKSk2AtQQd1Tr72myo0XL1Y9YSHG86pVq4iLizMuXfz4Y1WxYfDw6tSpE3FxcS3T/XvqKVW+aADb1/GKKyznVZ3J15IJ2Qzt2sHcuZZllY2NjaxcudK4vFcdoILdV181PUeke8PFdgbVFyedpMajhZ/14Mh00+SLL1T5dQhW5h49etDY2Og8k/XAAyEZ+xYtWuSRIjPEjTd6dKt9kZiYyKBBg/hZz3aHg9RU9WyxeC4UFBRYb5Y0NalMtEGpXIsCVB3TpqnyV4sKp5AZ1AULVLBr4b+xY8eSm5tLsft55Qi33eYt9bWAZT/0nXeqahAf6HOAo3YCIyQnK33ZSZOC3tL71ENufDY3q37WDz4wfFvTNE466SQWLlzorC/6Nwg7AepKoJemad00TYsBzgE+t3NyTdPaaJqWpP83cCxgky3gfwQJCZYL1qwsSELtbFZ5+XL9d/MjIsiINF68ZGWpAb1W36k/cMC078/w9YgIFdwZ7MrpZV11+9V7W4qSjUuGY2PVoNF39X0QnM2NQC2RN7LBrW3YvmhD0Of8EB+vjI/wv11L3BmHpNpa6/JeUH4QMbRRhx6g7u7USS20nUzo6emq98EEepbAb3csMIOamBhkn9dnXYGh1LGAfXRkYKLDDGpUlCrls8gy6wu9rLo6VVIWcE/M+TCWemKQ8grD+6D7oEEqv1tRoYI4p1mD1FQYODDIz4Gory8iKwHq4tsF6ebOuFBtYvj2wQaVGruvgV7YeJB2/OvQJcRVlfDTLV9Y25iTY9jL9eOPPxKn7wqHClBTUizvQ4B0NxFGqR4A2kVMDAwdalz+437gj9Cvr9m9EBenzhMiy9uvX7/gDKqdLGCHDipraOBn3zgkmx8AyGNMcHyib1aFuI6Jw4bRE1i9yksgr/eUtotSAWpjm1R6pJX7b6gMGGCoGexyZ6E62WhnMPOzpmkMHjzYP6vmNIMaFweTJ3tLPzdvVvOwmzgILKQefM8RExPyGnbu3Nleia8v+vVT/WHTpoUczytXrmTo0KFER0cHv6nfowb3ok5s16IAdcyYoE1BHXl5ecTFxZFm0J8aZKPFNRwyZAgVFRXhLW4TEtQmhEWQvH79empra80DVJt+Hj58OL/88gsupwR8PXuqTTcLP4fU5dX9HMLGbm5iGUstVCMcdZSXjMwEixcvZsSIEeb9kxbz9hFHHMHixYvD61EE9aw991zLPuGCggK6WvACWPm5Z8+eHDhwgIoQ19cS/fsrIixdRzAAIkJRUZH1vGNj3h47VrWt2ZI9CsTJJ6vgLQQMJWZ0pKQEzTeZmZlomtY6Aerllwf1CYN3vR2yYsPGeD7ppJOora3lW18d298hQgaoItIEXAPMB7YA74vIJk3TrtA07QoATdM6aZpWANwI3KlpWoGmaclAR2CRpmnrgBXAlyLy9eH6Mb9J3Hqrqo03wQMPQDIHaUSjHkX2E7SgTkmhQ1yFIcvuAw+oXijP0qakxEBawqIfcPNmFUUa7JDr5Qy71qpMQSXeHdKgkmGTyds4mzsQ2MRm+uNCY2JKiAD1gw8Mszl6BjWhpiZ0gGqx0NGhP/zW6mVSTspM7r9fZTRMsHbtWpKTk/311UpL1YNJX5gZTIz+vjwRWEyelsmU7N32bQOl9/fII54MUCDmzIFp09RCr2RxKftSegcdc8cdUE6qX/Dnex8MGDiQCqBh2TLF8Pjvfzuzce5cyyw0qF6mvXv3khbZxLHntg/SzT1ihnoA9u5QERS8euAOIPXHUxltWcCxFNKZqqdfsdZuffppw/7kuXPn0kEvaWyFAHXO3GTqiaBgzW5rkrNA7NypNgeMgh13gJpmoyTPjo39+vUjLy+PmpoaZwHqwoVeIp0A+D6bu6CyOQX0C95csxmgRvbuTQKQFzCWZ86Enh2rOHNWEqfNSiWpscz/g6++ylcPrg0imit395l19q2EMIPFNRw8eDAbN270lio67UHNy1N9/3oVxvr1KiiMjKSwsJC0tDTiLGQW/GwMVW7epYv9DKovFi1SGVQLNDc3s2bNGvOsVQg/d+/evWUB6gcfeMujA6BLzBhmWQJttLgP9f7O1atXO7evsFDpoFowalsSJOlITQ3p52HDhlFZWek8+Fu9WvnaAjt37iQqKso8G637OYSNme4SSccZ1PnzLast6uvrWblypXn/KVhuRBx55JEcOnSIlStXOrNLR3GxItHRe8sDoPc/WgaoYHov2taQtcKmTZaqCwcPHqS+vt7jI1P7IOR4iYqKcl7mC6o0NwQ5UHNzM7m5ueabJQbXMCYmhs6dO7esxBdU4mPNGsMSZz1j3NGAhNKOjb6YMmUKiYmJv/syXzsZVETkKxHpLSI9ROQB92v/FpF/u/97n4h0FZFkEUl1/3elm/l3iPtvgP7Z/2/Q1ASPPmoZ6JxzTjMpWjlVWiyaphkvqFNSiK2r5D8vSBDL7syZ6sFSDrgiIqCkxJMh8C2vN2pNAdTC5sEHDW/2Fe6evIiaRBqJog7/BY9f8GkyYIw3gwYCxdRSw06tJ6f1DhGgvvOOYRmaHqDGlpeHDlBtTIxt2rShY8eOrKyuVmUsdvtQm5oUDbtFgLpnxQrmR0ai+QaIZWX+zMcpKWoh4lMK5ssgCtMAF9G948modliu88svirTEoARTL8MuKXFnUBuL+Gp7r6CgKD8fKkjxk5HRXwfFLlgORH//vXrBadbl1VdDMjkeOHCA5uZm2tTV+d/gOtwbEW8/XxEUvAYe0909/ZXSDheRvMGFHMc87rpsr3FA2NSk5CgCFt0iwty5cxml737bDVAterZnX65RTCIdKSUvr86c5CwQK1eqzQGjctHAkimrnu0QWSHwknVs27aND39QAeo155SEDqiffx7uucfwLd8NmQyUtmB5XEbw5prNjIvOdBj3yy/BJZY6w3rbtuo8euDe1ASXXMLqez4PIppbPleVcWeF6KsETP08Zw688cZgamtrycraqa5VWppanNotyVqyBC64QPUVulyqf9pN2mRrIRtoowXCyqCCKpG+6SbLQ7Zu3UpNTY2xPIpuH4QMUMMqn21qUqW5JqVyITVQfW20GM9DhgwhOjra8zx1hJ9+UqQtFhsEK1eupFOnTta22vDzsGHDAAdESToeeECROllgx44dZGdnm7OT2txw0u9rRwFqU5NiTX3zTdND1q5dS319vXWAauHnyZMno2maM3IfX3z3nSrvNenPKi8v59ChQ9bBH5jO22FLzfjib39Tc44JdJ9Yzj02/BwfH8/QoUOdB6hNTTBhgle31QSFhYU0NDRYZ/MN/Jydnd3yDOqCBaon32CzZN++fSQnJ5tn8I1sNEFsbCzHHXccX3zxRXhz428EtgLUPxAm9F1Pi4VgUVERbcRFdLs21gvq5mZmnlITxLILkJKSQs+ePamIjvbbhfdd6xw8aMLka0FY8uOPP9K/f3+yE+vc2VP/nWS/56HJA9Aomwuqxj49fQmxIweTVe4ToB48CIFlCSaEJSUlJWiaRsTBgy0OUHUip+Librz59m72Zo+xH6DqfjbJSDU3N5OxYQNjy8rUg0hHaal/gOr2c+Auqs4gWls7kujoaIo6RagVs0k21BD6zrSBjd4y7F3E0pYOlLCrOSuoZScrSwWovhlU/XVQAWoFoOkTotNFbQiiKVDjJR6Iamw0DlDtLHTcx2Tgog6NWtTuzYecQSQuhtcuMm5XMhnPmzZtYvfu3QzNyVHZ8BAU92Z+1qH7o5g01F29zZzkLBBmfhZB9u9nq282yCpAtZFZ01lXX3xxM5fcpO7j9pRYs4aD8o3Jd+sbMpmZ5WSggux7/t0peE60uaBlwgQOJSdzyqFD/pk2t7wWSUnKFv3/wePnkkb/a3joEOxatotqoLd7MW+JlBTlZ58eB30z6OBBNQcWFa1n9mxYttNBBhq8vzs1VZFllJd7SlUdBag2MmtdunRh7969zks/LfysY5W79No0gxpiI6J79+5UVlZSakH0ZIoQ87ajADXAz76IjY1l6NCh4QWoNojj1q9fz5AhQ6wzvTYCVF3ewnGmt7w85Ly9c+dOc4IksL3h1KZNG9q2bcueEL2qfrBxDfWscV8riTDdzwbzdvv27Rk8eDDf65uzThHCRlvBn/55iwxqiwLUEM9n3Se2AtQQc87YsWNZsWKFfTIs3T7f7zCB/hywLPE18HNOTk7LA1TfeTsA+/bto5MNBmKPjSHGykknnURRUZEz4rPfGP4IUA8nLIICHbm5uarz1EpaY8QIlRWx2AkZPnw4+10uzwLHNpOviY1NeXks+/lnpkycyKnRX7Aqwr9PJ6hk+LzzgiQVIFhDMDsbXnttMh06dGDChNfImj5I9Xrqxj73nOpb8p0cTCbGAwcO0LltW7Tq6tABalqa0pfr0yfoLX8ip+7U1e3i1Y2jaV63wV5GIwQraVbWTnq6e1M2vrfJ+2ZpqX+2bdw4rzSDAeLi4hgxYgRf6FlQJzuMFjZ6N20L6YoqL9lDZtBm7gMPwJvRl/I+XkIQ3/uga9euVOv9KW3aWO76m9oYYkFbVFSEJ6Q30t1NT1ckB1ZEA5GRNMSrcnXfws581GI0g73GG9km1/CLL1TfalRVGgea2xIRqVlnEadMUVULJj1b+ncX05VMIJJ1fq9bwuwBWFWFVlfHEt85xOpBfu21hoQgvujZsydRUVG8/fZmqmqjKKUtae5mA8uAOsRCZ+ZMeO21NWQADcnJnHuRARlRhw6qOsUs86YjKoqqE09kOrDet8LBR14rqPzf/W8FwTYm1xdREhFBh1DzDSgykGee8fOzd17uj3r8rufQIXjlc3fPsNMANSXFW3IeToB6660hZWA6d+5MU1MTjuXfbAQuq1atIjEx0SPVEYSOHVWrgIG8B7SQydfi+VxXV8fevXtDEySB6nl7/XXT3jxQbTirVq1ytuCGkIvupqYmNm/eHJpY5d574eabLQ+Ji4tj+PDhLF682LmNNgJUS13eTp0USVCIPlFQzxlHGVQbgYteIWDZP3nKKUp/0qhXGtWHumTJEupDMBFb2mjy/LMdoD7+uKFucGJiIp06dTqsAaotGzMyVCvPscdaftXYsWOpqanxcHfYtg9CriFC9kOfeaZKksTG+r2cnZ3Nnj17nI9hIxsNruO+ffvslfeCWic/+qjlISeccAIRERF8/rktyqDfJP4IUA8nbEyMe/bsIRmIsioLPOoopeFpEcSOGDGCvY2NNLrr780Ws3l5+PVVbVxcoR6svmlOERg8mH/U1HBW27YklBUSf80lhuXFHtxwg+lCJ1Bf9aKLorn44ouZO3cuZV27qu/TGVCLitTulW/2zSKD2kufjEJJeyQmqv5Bg4WOfzDfHchnJUOJlGa+ftQG0Y++0AmYGPXAt6hoLbpy2a4vNnkDl8AS34kTFROyGY08MGHCBN7etg2Jjg6iQtezwIZMyxUGfnbDmyQoJNO9KC+ga1B59syZMObVK/g+e5bhfaBpGpKcrAReLrxQlZRayYAEwmYG1ZM3NcqgtmmjxONDlGDGdFDjrRQBVOnrQdrTQHSw5IgOkwXtTz/9RNeuA9m+rJ6DrrahtYdHj1ZsgyalPPp3b2cog4ACrmI6X5iSn/mhokIRYgXW9LvLe/26Z60e5BdeaMlMCqovp3///lRWqpLAEtI8ASpYBNQ2ApfVq1fTCYgwWzAmJKgFt5E0Ceq6p6Wp+Wr629cQCxQ85cOm7qvFGhiguudtowA1QztAdUJC6L5EUJqg11zj5wvvNYkD+oCblXvLgTAyqLqfly9Xv6NvX2prazl48KD9APWMMwyZhn2ha6E67kO1MZ5XrlzJiBEjiDQL7uLjFamIwcYitDBAtXg+671mlkGVjoED1Xix6PkdPXo01dXVbN261bmNRuPZje3bt9PQ0GAs0eOL448PyRwOMGnSJFasWEGdiQyIqY0Wc0l5eTnl5eXW1zIuTpEEuXkgrJCZmRlegBqiki0+Pp4Uq/u1d28VpAYELjqmTZtGbW0tTz31lH3bfG208LOt7CSozU8T0q8WM/mWl1tew4KCAiIjI62DrLg4Nd9YEEoCHHvssURGRvLRRx/Zt89mBlXvhzYtl+7WTa25AzYisrOzaWpqCq8fX0d5uamfHWVQR41S844F0tLSuP/++znSxrj/reKPAPVwQl8EWQzqwsJCkoBoo8W2LxobLRf7w4cPpwSo9zCBGR+nafj1VS2aV0l9fIq/REttLVGVlVwMTPjkE2jfnsmPnmRYXuyBy6U062zikksuobm5mQ/0B7Zb8sNTtmoSoPoGYZ9/foB2Te6g3U5Go67O0Eb/hXR3wMVqdyZx8T9XBR0fBIOJcc4cpTKhAt+16AIKfZs3eTNLgSW+Lpd6zWAHVv/dTzwxgarGRgrTe8HSpX4asxdcQFDPnCdA0h8uBgtrbxl2IV3dfcYlcZmGpFozT6tl97J9pvfBpjFjuCs2FtegQer3WGjvBcFG4FJUVITn0WY2mR84EHqh7x6TZUBsrOp1FCLYSwaZkXuNCcVMHoDr16+nrGwYyc1llOHdaDLNIjY0qItnUuKr++NWHucUMomhgXMjPzC2ycjGlJRgP7sD1N1Ag05oZBWglpWBDeH5kSNHEhGxCpCgANU0oLaRKV+9ejU5MTFEWS3Idu0ylKWYM0clf/VCg9WMZSuxDNqwjDd1zWWjAFUnHHL7uT5W+TmSJibxEwkJ0FGrojFUj7GO2lo1r/kQ3Phfk8HoAWpMZ7dP7GYpff28bJlasERGehZPXUIsAD0oKlKkHRbQs0qO+1BD+LmhoYG1a9ea95/qWL/elFFdJ7Z79tlnw8v8geGcE7IM0BdVVUpSR79/DDDa3R/suMzXbDy7oTNBh8yg7tql+llDYNKkSR7CIMc2mkAvn+0WKvhcvBg2hhZ56Nq1q7MSXxuVbIWFhXTp0sV646msDL76yvTZctxxx3HGGWdwxx13eDRVHdlo4eeCggIiIiJCBzCbN8OXXxq+1eIA1UYGtXPnzuabTTq+/hpWWa+r0tPTmTp1Ku+++679HkoHAaplP3RJCbz3XhBnQ6tIzehzooGfi4uL7Qeoa9YoG0Pgtttu4wgbVQm/WYjIb+5vxIgR8j+Dpib1Z4Jrr71WtkZEiJx5pvk5li0TAZGvvjI95ODBg/IgSFNEhEh5ubz1lkhCgvqY9Z9Lemce8j9ZUZH/QddfH/p33nijSJs2oY/zwaRJk6RNXJwc0jT5KDtbrr/+emkYO1Z955tveg+srxepqTH4TQPlxAj38cuWhf7Crl1FZs0Kejk72/ec6wUQeEKKSZdXCD4+CM3NIuXlyk6RIDvbcIwISBVtpIkIiaNWxOUSiYkRueUW73mWLDH0s//59gkgT0dMlPqoeEmOb7D0b3a2+yS1tSLFxaY/4bXXGgSQ2zhKBOSdl2uMD7zhBpHERNPzvPnmmwLIzn/+075fdJSUiBw8aHnI7Nmz5a7ERHVus2NN/OyHI44QAfkMZNasf0t2toimiayJGSNFA6caf6a+XiQ/X+SQd7yUlJS475fHZCUj5EuO97v+mmZwHhM/++Ktt/T78ixZTKzs7X+U9e/RUVoqsnNn8OsffigCMgSkdtQokchIdQ+aIYSfdTz77LMCSFxcnnzGSbKbLFnGaLk9+lF56y2TD+XmqjnGAj179pT98fEiF1xgflDXriIXXxz0sv94Vn/3M0YaQZK0dHn33XdFVq1Sb3z2mciaNeq/P/lEnaCmRmTjRnn3pSrJzhY5l7dFQN6/a5EUgqwbNSrkdRERkaVLg/zsP5YfEEA0bZgcOehY9eLTT9s7d1GRyLp16l6MihK57TYREfnhhx8EkIULF9o7jw0/79mzRwB54YUX7J1Tx/r1Irt2mb69bNkyAeTDDz+0Pk+XLpbj+bHHHpPU1FTRNE3Wrl1r376KCjUWy8uD3vrXv/4lgOzduzf0eWyM5+bmZklOTpYrrrjCvn0iaiwvXmz69u233y5RUVFSV1dnfR6b41mfzx544AH7Ni5aJLJli+nbH3/8sQCyatUq6/OE8LOOe++9VwCpra21Z9/BgyLz56u50QSTJk2SyZMnW59H9/O8eaaHlJWVSbdu3aR9+/byiT6f2MGmTcpGE8yaNUs6d+4c+jwWfr7//vsFkOrqavt2+WLePJFffjF9+6ijjpJx48aFPo9NP7/66qsCyPLly+3ZV1ws8sEHIgcOWB42cuRIOfbYY80PMPHzli1bBJA3fdemTrFqlchHHwW9XFtb62zc2RzPvwcAq8QkFvwjg3q4ERlp2ZtSWFhISkSEdQ+qLoBt0Vjerl071nTqRKTLBfPnBzH5dmUP7THa+dP4tcC/3KDWvXO0uFcvtRs1e7a5bTpSUlRGyEFJ55NPPsnZ553H/qQk2paX8/TTT1Ojl2r5lvDExEBCgkFf7QHau9zlNnYyqBZETt4NrUHAROBZVjGCsdE2MqgREercMapXLtDOfm65jC84kUhcHJmxVWVXGhqCSZIgyEb/83UEerDYVUdMUy09a61LkD3Z4bg4y2t05JGqNPz8Kc3Qrh3nXGKhBVddberniRMnArBSz7Y4ybq0b2/cV+rGnDnw5ptFZFbHcCCiA3PmmRxrg0BAv9aVkZGkpm7zVAcMm96ZDJdJCU9MDGRm+pXnbHBn/jt0GExb/DOoYJJFtEHwo5fF33vvQPKpp0OjzYxB27ZK7zYQ7sqEYiCqTx91rUORqlj4WYee/br88lXUt2lPNvmMYQXXd/ssuMpCR06O6kUyQUNDA7t27qRtQ4PlcU6krRZxO1HASEnh8ssvp1zPwBiV+CYkwIABnH1pIrt3w9t3qwz7iOZ5pANxdvoSdfvAz0Z/Vu4jgEjatj3AjxsWIG4WdlvIyFB91mvWKB/59J+CjVJAXxtD+Lljx45omuY8gzpokGXJpi15FAhJ5HTTTTexfv16RITvfEnoQiE5WfX9m2RQ4+Pj7fWE2SD4iYiIYNSoUc61Hbt3N+2/BZVB7dOnD7EmZace2BzP7du3Z8CAAfxkI9vqwYQJhrqOOmxnUG0wh4NXasb2/diunep5tKh8KCoqCl11YIPgJzU1lXnz5pGVlcWpp57KiyEYZT3o39+yL9N2X7nuZ4M+SZ2kateuXTQ1NTlndz3uOKWxbWFjSJZh3UYbfj7llFOIiYnh3XfftWdfhw6qZSGEbvHOnTvN+091+yDIz7rk1K+//mrPHiOMGAGnnRb0siOJGd1GEz//L+GPAPVwYv58uOIKU3Y/UIM6JEmSTcZKbfx4SlXtK6AWQ4mJEEUjyxjLFvoxCf8Hzy08wu1tn/d77b3//AeA5w/8iYiKMnJO6B9a4kK30UKvLRAjR47k5ZdfJnvcOI7o1Yu0tDSi9UlBf/iUlak+ruXL/RaevdjK9xRzrJvp03aAavBwmTlTucm7Xr8O2MXaiGT6NG+29B8A338Pt9ziIVTyXyDvp797Y0AnF7rjlE2qlBeCZWYgyMbgBfcElqIe+uOwZhr2BEj//Kci8jCB/rBvX1urgjAz6IsxEz9nZ2fTpUsXvtu2TT+xpX0elJfD7bcrORwD6P28tbVF9EPY5Opn3uNp5wHoXqxI27Zs020F6NzZXEdt8WKld+vTn6WX2N31t0G056BfgGqkPTxnDow+NhWA26+uCDmuBgwYQAEg+fmWJGkevPyysWxGcTEu4FBCAlH33Qfvvx98jC9sjufBgwcTFRVFQsIqzvz30arPbcYMOhRvNLa3shIeflhp6pkgPz+fFBGimpvNy7h1G21KWy1lMi40jk86nurqat7WNXqNAtQVK1S/upvYTJcEkO++IxpI7dXL3KZA+yDIRn3zQWQ8zc0NLFq0ABdQkZYGH39sWOIfhHfeUeWGekDmDvL0ANV2ia8NP0dHR9OlSxdnGoBVVYrIw6JMfOnSpWRlZVkT0+g2hhjPmZmZZGdne4JeW1i7VklbNTYGvbVr1y66detmr9fY5vP5iCOO4JdffmFvCJ1GP3z+uXq+mGDDhg2hy3t9bbTxfJ40aRJLliyhyc5mc3W1km+xuDdyc3NJTk6mrR35rRDsrhCG1MzmzWpcmfweEaGwsDD0fWiTabhPnz4sW7aMnJwcFixYYM/Gb74x1NfW4Sj4A0M/6wHqunXr6N69O4899pg920CtgT77zPR5LmJTpxVsb0SkpqZy/PHH8+6779q7F3fsUBrbFseWlZVRVlZmL0ANsDEhIYERI0bwbaDKhBMsXWpYxr7P3QrliMUXHK23f4/4I0A9nFi5Uul3mrC+ARQWFBDf1OTNkhrB5gNw9LhxfO5y4fryS88gzc+H6XxJF1RW6FuOZrQPVcoF2hwu7+adRA8ePMgHL6tAJq98HIIWWjbCgY06fHtJ31vUhdodhYwfOZI2+qJQnwiLixVB1M6dfgvPI5nHEcB5bOaQlhBa2kO30cS+555Tz1mV2TiFyMiu7Ou6lQhXM6xbZ33eRYvgscdU8zuBC+R1DADqiWZBxPG4IqOYkBoiQA2wMXjBPYo9HGQv6YzCvFfIL0B66SX49FPTY/UANbm83DpADeFnTdOYOHEiX61YoYic7BIK7NunCKK2bDF825tFLqA/NWyhn3mPpw3pDH2xEdOxI1t8vzMjQ22KGLE3f/ed0oLzqYhYv3496enpXNV/C6lUkNt+lCmRmB5kbypU17CptCLkuBo4cCAFQGR9vWWPmwdPP63YMPEfY289UUxFVCztO3ZUL06ZYn0em4uxuLg4Bg4cqKQpzj9fXaNp09TnjBaQRUWKIMpiTOXm5uLJm1plUE0WOg88EDzlVpDKJm0gM3O2cc0117Bk/nz1RlJScIXK/PlK71YPTtwBage3ze3d8johYWNOjIiIoG/fvmRnZ/NM9+4qcL///tDnfvBBpff38ccqw+beoCssLCQlJYUkqw1PhzaCYrzU2S9toahIkeZZ9JotXbo0dPZUt9HGc2X8+PEsXrzYfmZo7ly45BLDt3Jzc0Nn/Hztg5A2nnrqqQB8ajEPB+GOO9TmogEqKirIy8sLTZDkwEZQAWpVVZWnOsQSBQWKIMqi53L37t3k5OSEDvZt+lkP1GwHqB99BKefbrrBV15eTl1dnb2NErBlY0xMDH379rVP3nXDDWrjzgSOMqhg+PzTg7K///3v7Nmzx1mglZ+vCKJMtN51nVbbNtpcJ86aNYu9e/fypUlfrR/eeUdloS3Gv63ecotn37Rp01i2bBkVNu0PwuzZag0RAMcBauCm6v8o/ghQDyfKy1WUYBKgNjU1Ubl3r3KC1YIiIUEFPyEGxcSJE/kciCgvV9keVHDzJ16ikM70RzHlnozKsN7R7nl6JRSSOdBb4vTYY48R16AW50r7VCGkDqODydtX1kUEttZ0Jba8mE7iw9SoP3x8Gt99NVW7sYUGYIOWSUMXG0QWuo02yipFornhhnP4Yq87cAmlC1dRoco+3X72135VBEnbtN688EY8Eb17qUWoHmz47iqb+DlYS1aVVW7QujBY819E6GuAoAApBMGBTq4Se+AAtFBoe+LEiRQUFdHcoYP9DGoIggOVRT5IR/bTlga20M/ndQMbbWZQO/TtS25urrdsR1+kGJE7VVQEjef169czePBgtGefhfbteWLPWaYEUnqQfYgEmogklfKQ46pHjx7s17/PzoLMTbYROMYSqospbIoiIiIE27UOm3p1oBjEV61a5Q0MdHZBI8ITm5qEtgJUEz/PnKkSY768c+3bQ+xRE+i8eyl33nabaqsAFZxGRqp/fUmSfP3sDlCT3JUUkVY2+SIhQZ07VOWLpnHCCSfw6MaNNJ9/vtqoCUWmo7Nyr13rVzLmSGIGbG9EOA5QTZjNdRQWFrJnzx7Gjh0b+lw2My7jxo2jqKjIPoGOwXgGlQ3atWuXPYIksO3n/v3706tXLz755BN759VtNBkregDpKINq4zoOGTIEwH/jzso+3/MbwHawb9PPenVAS/2swzaxmE0/6+jevbv9ANXCz5WVlVRVVTkLUA1sTE1NJS0tzUOUtGbNGucERC2VwdFttBlYTZ8+nc6dO/PCCy+EPjjEehu87NyW96PuZwMbp02bRnNzc/hZVBM/6yW+jjOo4QbKvxP8EaAeTlhMOiq7UUyie4JYscUiQNU0lXWYPNn0kDlz4Oyzh7OAWBqIYNMTXwPw5I0FHM88XmUWJaSzlqFMjFjCW2+4uD/iLmLr/G385ptvSEb1kwTKLFjqMA4YoHaGQtT/Q3CPZiFdiMTFoWXq+xqTkryBjc/E6Nu/1Y2d7Abe/vO/SF1vs1/mrLOUvqMNDBo0iNzGRpratg2dQQ1gq/TvM1tLfyJJHjtYBSwDBqgA1SiDqmkqGj3mGL/TB/YTwxAgirUSR3/ZRId2TZ6s3ZtvqoAkKEAKwZBbWFhISnQ0EWVl1hnUIUNUttiiV0LvQy1LSHAeoJo8AFUWeR167mqzW7jHsMfzwgtVubAV3N8zaNIkwCeroQeoRpnfgPHc3NzMxo0bmdytmyp/uvRSU5kA8B0/GtfyDHM5KeD1YERGRpKm9/3YCVDd92LgGOtIMfvRKCqyUQoPMHy4qv6wUSo6cuRISktLvSWgA9yc1VYBqgW7665du+iqZ6mtHtizZ6tgzgAzZ6p2Tp2OqKQEel88AaqqSNu3j2HuMl3RJZ18s+6+Y6W+HgoLEd+Fl512AlDj+bXXVF9UCJxwwglUV1ez6PTT1TU/91zrxUdFhZfx3J2ZA7VQtF3eC0ry6O23rcc8KkDdt28f1XaZ2kMELsvcGs62MqjXXaf0ZENgvLtX03aZr8mcWFpaSlVVlf0AVdNUlu7880McpnHqqafy/fffU2anGgIs1xA/urNZOkOwJcaPhy++sCXj0qNHD/u9diHGs4jYD1BvvVWNlxBITEwkNTXVfgbVxrMPQmiggvLz/Pnwpz/Z+tru3btTXl5uz9cWjNeOgr/JkxVbs7ucNxB6me+0adMoKSmxfw1DjGdHNt5zD3z4oa2vjYqK4tJLL+Xrr78OzZ5rgx1e39SwLJfWNFURcM01QW+NHTuWpKQk5usVOE5hYqOeQbWlrw2qlWbtWlP5rf8V/BGgHk6YPFz07EZhobv/FHh+TrJ1Ce2996omdQPo58vPj6GGMRQQzYav9jBnDpxW9zaRuJjf+RI0DTYmjWdC9Apm9lmlVm3NzR4bm5qa2LRpEx1i1aLQN4MKFrIRoDTC7r3XOvvmRuCCvNAtHNKtQvX2FXXsqDJYTU38/IWaGAdNTCEnRx2fmyuM67iJXOCci7ItyQ/8cOqparETAnPmwK23qgBoQ1U7ipaH2Kk1eADq2dgB/X4hi2ZyjnIvdoYOhZ071R8EkwLdcouhXp3eT6wQDwxkA9XE0sCg2O24Fi1h95/uNyamcblUT1iIh/RwfXK0mry7d4ebbrLMbA0aNIikpCT2BOrZWiHEA1CVbXoD1C30M+zxBNQ4mTXL+vvc90xa794MHz6cTz75RPXR6KQDRgFqgJ937txJbW0tM4qL1TW+8krLr/QdP//mSpYxLuh1Iy3b4SefDMC+UNIPPn4OHGMd2E8xzdTW2nwAZmerScXGA1MPDDwENe3aqUDfKEC1IfmQm5tLP/0hbpWtPOIIW8GfBxMmqH8XL2Zknz64gFV6lqhtW38dVN0+dwq60DcIsLuIABW0DBsW8rAjjzyS2NhYvlyyRJWq6X0VRhkO3c+7d6v5xCeQcpxB1YPhEDJnenmgo4wQWAaosbGxDLNxbRg71vTZ54vBgwcTHx9vX+LD5Pms/0bbJb4AM2aAjdLvU089laamJnsli7qfTRbdCxcuZNiwYaSH0gAHtdEzfXpICQ5QZfuZmZn2AtQQ47mkpIRDhw6Roz+8rTBkiHeMhkBmZqazDKqN6iFbGztHH20ryAcHGr0hns/677RlX1oaTJpkqqU+YcIERo4cyV133QUoOS9bCOFn2zqtoIIqd5beDv7k3hB49dVXrQ+0obtcUFBAXFwc7SzIGAG1cWewYREdHc3RRx/N/PnznZNMNTernlEDG/ft20f79u2Jtsj++iE1VV1Diw3x/wX8EaCGAaNFpCkMMk2+/XR6gFrSkGRdQltT4xX2Mz0fwEQOUE/b5n3ceuse+PVXyMjg58LuuFww68XxRNUfgscf957A/QDcsWMHdXV1TBik/t83QDUNBnS4XKpf1EbTdmCgqweoE+IVoca6iAhwufj4uX288UItTURSTgp5eXDZZcK0adeRUFxMbN++9sqbdBw6pMr1LJjP9GB/3z612MhriqZsY6G1j2trDSed2tpa9m/dSiR4F7V6xuBrleEOCq737zfUdoTAwH4k61EvpO9dr/rW7rrLmCCgulotdA0WOvq9PGdOETH73e9bPWSamtQ9ZXIvgsr6jR8/ni0VFa0WoM6cCWPGrGWAlkAlSURndQ7q8fSgvFxpJ1oRK+i/sWtXTj31VJYuXcrVV1/N0OnT1etGRCYBD8CN7gAset4WvpMjyDkix/I+8S3VziGX3mzzG1eBZbl6jFLZZiZNwK6ffzY/OahFjgikpASNsY4UU0w9yck2S3wbG1Vpuw0d20GDBpGdne3fWzdwYNgZ1NzcXHomJqqLZdX6sH+/6v+2yxyek6Pm45Ur6du5M9XAezpZlG8G1dfP7vLehbGxeKh0bFSJeLBxoynxly/atGnDkCFDWLVqlcp2PfCAIrIyyhDrfi4o8CvvraurY9++ffbIVHTU18MPP5jOOTr0zIvtMt8QJb5r165l0KBBxLiZzy1RUKAIoQzIjHwRHR3N6NGj+fnnn+0tHkMEqLYzqKAIbmzosI4ePZqsrCxeeOGF0Db6jOdAVFdXs2TJEo4JqLYxRV2dIlyy6b9evXo5y6CazNu2GXxB2fbuu15yMgt07drVWfbPYr7RA9QMO6X7332niHhswHaAWllp6mfwlqXaCvIPHYK33gJdXz4Ajz/+OMuXL2fo0KFERESwJoQGsgc2Mqi2dFpB8Uz85z+2/AyKPXfYsGGhKyNsBKh79uwhMzMzdD/03LkestFATJs2jby8POdsvrr2tkkG1XZ5L6g13XPPKZ3t/2WY6c/8N/9+yzqoVvqi7duLufafDzRN/8zTcpT7w5P5wVgzUccRR4hMnBjifCLwpcwFWU0bAaR47FiRIUO8B+fnewUa9Q+59Tvfffdd9ZkLLpDG2ASPNmR2to3fdeCAbR2/wGuYxn6lE5qWLQJybVqaCMiMTstE12pVfyLwqSS6P+h66KGQ3+WH555TX2ihbeevoZgjz9BLSkn16omaobEx6KUVK1ZIH/1kb7+tXqyqEomIEImOVvqFgVqUFn72t+3fEgPSQJS8knSdSGysemPfPmP7mppEGhr8XvL3Q2+5kFEiIJ8+/qv579T9/M9/mh8jIvfdd5/cohtbUWF5rIio61BTozRlTTBkyBD5pV07kdGjrc9lw8/icom4NRM3bNgggAASEx0tDSAuX31aHQ0Nnt+irt0T0tH9G2/lIQF1Pa3Giq5v+h1HyPLYiX7HGul36lq2hZHR8npEB+vx6HIp+6qr/XzbhioRkFtAzjvvCetrp8Omn3Vcd911EhcX59XYu/FGkbi4YA3o+nrlFwNtaK/2a3t5P6qHVHboYf2lzz4b2s8+59U0kWWxk2Rf38kil1wiJbGxkpWVJS6XS2TGDJHBg9UHysq853z+eRGQE4cOlV8TEtQk7wQW4zkQs2fPlrZt2yp7XC6RmTP95w4dTU0iY8eKtGvnpwW8ceNGAWTOnDn27bPp57KyMgHkscces3feqiqRbdsM50URkU6dOsnFBhq2htD9bDa3+eCpp54SQF577bXQ5y0sNNQMfuihhwSQqqoqe/aJOPLzM888I4B8//331gc2Nip9TAP96i+++EJwonfrcDxfccUV0rZt29AHHjyotB0Dni069DXF+vXrQ5/L5ngWEbnqqqskMTHRnhbq9u0iGzZYnsvWbxVRfp40ydahlZWVAsjDDz9sfWBDg9JM3rPH8O1bb71VoqOjpclgzgyCAz8PHDhQpk+fHvqcIson333nWSsG4uyzz5YuXbrYO5cDP+u46KKLJCMjw/qgtWtFQmimjhs3To46yoamuIWf9fWCYz3U+nqRBQsMtaHHjRsnRx99tP1z7d/vaDz/lsEfOqith2AtTi8OHlSkgKGkI7zZjQLSVX6N/XSwLqG1YCb1/9w4DgDp1ABRVO3c6V+SlpmpskciXvZKdz/k+vXriYqKon1UFFHtUjzakEaEL0Fw0LTt26OpadAmK43mqBgSS/JoioriJ7cWYNQ+fYdUc//VAn+mG6rcTLOiCg/TRv8s5QAKqaQt5ZTk1Vif283g64u1a9fiyVfpWZfERKVf2NioSiEDd/IsiCL8yZJG0gBs0zI4v/FVrzSF3pcWiMjIIPIA770sQCGZqN9wyz9tkCSFIDmYMGECnv1tO1lUTVM/LsJ4SmpoaGDbpk30rK0NXUpn517UNE+Z0YABA5g2bRpXXnklL7/yCkVAgVE5bXQ0JCd7Mp2HDu3hKJT+4DdMBUKTieml30fOSGF07wq/cWXWi5qXB/nNHclw7UfkgDmrtqapMd2mjd8Y64q6/gXA8cfbLE91SMJwyimnUFdX55VVGDRIZW0CMzYxMarcMEAb2ps9rgIOktYkbCjp1GLm8MCs9Jb67jRu20Xexioi2rYlPz9fZShSU70kSamp3t7X3FwkJoZ569axd8gQGDXK1vXws9HmNRw2bBhlZWXk5+crX770kuopmznTvwfz7bdh2TKVXfUpVdPlkvo46Uuy6efU1FTatWtnP4OamKjaPgzmxdLSUvbt28cAvVc5FBwwVl5zzTVMmTKFa665xkMGY4rOnQ01g3ft2kV6ejqJJmWSpjba9POll15Kp06duPfee60PjIpS+pgGJeULFy4kLi7O0+8fEg7Hc69evSgrK+OgRaUMoO6/ESNMiWkcZf9sEnYBnHbaaVRXV/PZZ5+FPm+vXl7iNgPY0kDV4YDgJykpifT09NAZ1OhoVcZuUrmUm5tLdnY2kQFzpql9YOsaDh8+3H4GtVMn1XpkUPFQWVnJ559/znS9+qgVbdQxePBg9u7dS4mVTvSQIao01wJ79uxpMdNw3759SUhIUNUuThATo/hFDKoJiouLnWVQ/yBJ+gNGsCQKQlUteBaos2YpOskAeAONQjq5iYiq4jtal9CaDJg5c1S234u2HGAK6UQzbuwZRBw8iCuwJE0X/j7qKPWvmzFy/fr19O3bl4LNNew8kGyvhFlHdLT6UTYHjL5Qd7lgd55GZFdV79+QkoIezgxsW8gsXuEprne/8jiwm+EpF6n/ddIjBLaCK/9gvz8Fbg3TUZ0tgqxrrlF9YwFYu3Yt2XqPgG+fkF7ma9Q7azEx+pMvDQJiOJCRSHRdlfcgowB161a4/HKlE+YD771cCdTQFaGE9vy6J87w+wHbfh49ejR79Afq5s2WxwJq0X3nnaZvb9myhdObmkisrTUUuvaDw8lb0zS+/vprnnvuOc455xwOxsSwz+jBfdtt8OmnPoH9Ho4hjoO04xe8vXSh5gjAcEFrtkEVGQl76IV6rKoyX8NA+Ndf4eabPWWp+hjb+o3aKigEe/1qoPwcH297MTZp0iTatm3rXTDqwUeg7z/+GB55JOjz3muqbM+gjkJXhnXbg40FbeCG4i6601kKKVxXQoy773LZsmX+G4APPOAtwc/Npbp9e5pFcD30EMybZ2GQARwGqKDmDQDi4tT3zZiheueHDlV9hBdeqHpHA8o79QC1d+/e9u1z4OcePXqEDvp0fPWVKkEzwCa3Bq7tANXBeI6MjOTNN98E4NFHH7U++J//NJTNWLt2Lf3797dnm6+NNv0cHx/PzTffzPfff28dIOTlwVNPGfbDL1y4kMmTJxMXZzFX+8LheO7lJhELWcb47beKmc8Ev/zyC+3bt7cne+TAz0ceeSSZmZm8bqHt7cHLL1tqjNrSQNXhYCMCbDL5FhSodaLJ5rIjySPdzzYD1L1799rT5V28GEzYp99//31qa2u5xESyKQgONiJ06FJKltJH779vSWjZ1NTE3r177evJmoyVqKgohg8f7jxA3bdPkanpBJluiAj79u2jowXxZBBiYmz7+feMPwJUh7DKcvZlCxkUeReo771nuDjXA43Y2AI6kUAD0Tzyn7bWWUqDB6CeHQjc5KxNOIE4Grn5yuNJc7koCuzdOflktXus66e5H4Dr1q0jOXkw21dWUNKU4tcHZytIdfCQDoJ7B1PS0ykBmqOiOHNCIVMjf2AGn6GyfC8SEXEc157o3tkON0C1sNE/SzmAAlS/6h0XWwSoL78MBguN7du3M0Df/TYKUI0a9UPs0HqlcGKYNGkMGzV3z6++Q7x/vyK/6trVq023Y4e64QLYBL33svJ/JxoporN1Jl+3MYSf27RpQ/OwYdRERoIdsfKvv1a9MyZY98sv3AbU9eoFJ54Y2j4ISyMsKiqKxN69Saio8LLSutH0xFO8cNFivGSCeUylju84Chfe3e2Q10+3MaSckPr/5mal/qoeq96+zqBAeNs21VseuMtc6M2g2mYJBEeLsaioKKZPn86XX36peuvULkpwb+Nnn8Hzzwd93vtb1GKuE5Xso5N1sG/Dz4Gf30V3IhB61W8gvkMHEhISVIDatq3qEWpqUv3cOuFTbi6bDh2iW7duTLBJ4OIHB9dw0KBBRERE8Itvz2pCgmK8fO459d+rVsF55ymfBvh527ZtdO7c2b4Gqg6b87YuNbN69WreeOMN64Pfew9MAkS9d/twBKigCHRGjBjB5lAbY7feCgFkRfX19axdu5YxY8bYs83XRgfPvnPOOQeARYsWmR+0fr3SxwyoQCkoKGDz5s32+0/DsNF2gPr664a6jgBffvkl7733HhdddJF9+8DWvB0REcFFF13E/PnzPT2kprjmGhUYmKCoqMh+gOrQz7YC1F9+UaV3Jiy1u3fvdkbYZTPLq9/j33//fehzvvCCuhcN8Morr9C/f397bNK6fRBWgLp+/Xrzgy66yHKhum/fPpqbm+0FqCHm7ZEjR7JmzRqa7PIfAKxcqUj9AqpQCgsLOXTokIeIzjYcZPN/r/gjQHUIo0VkHLU8wY1sYgBP8We1QG1oMCXPARVodO1ayLicKGIyOzHz/BBN26mpagHlcnleMis3ro5XwdC0fv1IAtYGTuAzZ6qHnv5DGhooKytjz549bN48mDauSmcaqDpakVKFjQAAb7ZJREFUIUCNcv9bnZLCgOQCJg2poDY6BVgL7OHSS89iRLtcRZ4SionNyD4IqYXqzVIO8GRzp/Y1IWRoaFCljAZ+zs3NpZu+WPTNYlsFqAZ+NsPUqVOZpy9eLr1U/bt/v9oUKSz0BoYmBAe+mXyAThziQEQn60y+fh4bfh47eTLfiCDz5lmKZ3tsNBore/fChRfS79FHGQDE3HWXaRmwn336OcNA+uDBdAbmzZvnIZGK0RqIaqwjvzLVc1xvdpNJvae8F2yQifnaWFnp5+fA0nddyzY7GwroRiLwPG/wE0oaJ5D99/qL1e898pQU/+d0gTeD6ihAteFnX8K4r76aSElJiSpRTUtTu/mB5d3l5YYkEd7fkksskEo1++hkHezb8HPg53ehSjrTKSEiOZlRo0Z5M6gABw74jefGX3/ll4oKbrzxRqIMylVDwsDPvvC9fv37J9CpUx//ABVUCv3KK9WGU3ExHH+899w+2L59u7PsqQ6bQXSPHj3Iy8vjmGOO4aKLLrLOplpIe2zatImkpCT7ZE5hiNL36dOHrSZEMYDpvL127VoaGxvtL7Z1hPBzIDp37kxGRoY1i6rJvP3NN98AHNYAtXv37kRERIQOUE3m7QMHDjBr1iwGDx7MA7YmRBxn1i666CJcLpc1u6vF8xlgyZIlFBYWegKgkHDo5+7du5OXl2cdyFgQEFVXV3PgwAF7JdK+Ntq4hqNHj6Zz5858aEfyxYRoasuWLSxdupRLLrkkNPGQr33gaDx37NiR9PR08wxqfb2ln8Eh03AIP48cOZLa2lp7WsE6TPysV5QMtChDN7XxjwzqH/BFoCZlDPV8wYncyD+ooQ1dtUK1QA3Betbc3ExBQQEdNc1SU9KDadOU/qQPA61ZdmHrQRWgJrgzQD9t3YqIBLEP/7LGHTTU1Xl2psrLB5NMpTMNVB1//asqPwsH7sA0pmtX4uPjKYmLgz17yEyqoN/YFO6661MiIiJ44IETKViUy5a6bkREavZLkEH13z71VEiKcz1LWVXV1xOgmvZRmrCSNjc3k5+fT9fYWNUXGBvrfbNHD9XTYdRzcNJJarfSxgPw6KOPZj6w4rrr4Kqr1ELWlwVY3200uRe997L6bV0jK+g2PiN0v/F996mSYTfMWK0nTpzIVy4X2p49KrtnBTOmxQ8+gDffZNjWreyKiyPCnXmwRHY2vPIKjBwZ+lgDpA4eTFvgnec/8/QvpqCuoXdcNDDNXf69ELVQbN8ec2bhQJxxhiprDgjc/Urfd6v/f+AB2B+jFvNXsJNJLKJ9/KEg9t+mg+UAbC5K8a96KCjgUHw8dUCaEwbaJ5803TX3/V69v7O0dDgAAweuJiIqggJXZ3J/DtjYMVnQejdLcumAqpAoj+lgHezn5Kjsot6yYIDADUU9QAUgOZmxY8fyyy+/0NCmDQAnD1dj564nUlhy+etEV1SQn5DArFCyRWY47zylP2mwQWPE2lxcPJTFi9dan9NkPG/bts1Z/6mOF16wtQPZs2dPXC4XIkJUVBT//ve/rW20CFAHDBhgf0HbrZvSn5wyxd7xqD6xgwcPmvesmVzDFe52F8cZ1IsvVvqTDjBixAjrMkETGxcuXEjHjh3tB1U63nrL5u4ZxMTEkJ2dbS9ANZi3P/jgAw4cOMBrr71mvwy5Rw9YuhSmTg19LOp+PPHEE3nwwQfNs5QW6zAR4ZZbbqFTp05c7vM8s8Tllyv9SZvo3r07zc3N1pI4FszmehWPowzqJ5+ouTsEIiIiOP3005k3b15ofWOT8fz++++jaRozbT303OjdW2nB6xttNqBpGoMGDTLPoIZYb4NNDVQd116rMp0mc9RI99rCUZmviZ8dV5ToWLAArObg/wH8EaA6gL4Qv+ACxQFx1RUuPoiZydF8x4W8zrcxJzCwY4laoIaQU9i9ezf19fWkNzVZi9HrGD8e/vIXPzIC0561Tu5yUvfOzJbSUv7xj11Bi6G5n7h39Q4d8jyYu3QZSgoVzjRQdVx0UejySzO4A1StQwdycnJU/2JenucB+OmnnzJhwgQWLEincu0utjV2c16CnJoK11+vJkgbSExMJD07m5roaE8WKggm+mBFRUU0NjbSMSIiWJZC01Tvzv33B59v5Ei47DJDcpFAjB49moTERF5rbFQ9CenpxgGqhYbZzJlw440qQO0SWUL38TbuxTPOUHpwmEujzJmjiJI8ctZ6T58PfAPbTUsqKKhKCXrvretXsC+yM11SO3PvaafZui4kJ6v+b6cl4G5obhKmhg0/cOiQ0uZNpRzwDVALORHYQga7te5ceaWquLT9nB48GM45J4gsyAgzZ8I5f1c2LUM9MF+5r9DzXXolhW8Q7Vf1UFhIWUICKSkpxPpulITC8cd7s/0GCK7gGAREUV29BhHY3dyV/GUBEk0mCx19syQ+Pp+OqCzvmVd3tL6eSUlw+umeucMIgVnpuKyONMUmeD4/duxYGhsb+egb1ScRsU+NhXZlvzLmP5ewENhx1LW0cQewjtG3L5xwgqGfjSpgmpuHcfBgvjU5jcFirKSkhNLS0vAC1MmTbekSjhkzhvT0dN577z1OO+00XnnlFQ6ZMQZaSHts3LjR2WKsTRs49lhH+rP6ddhmtjFmsqBdvnw5GRkZ9klzdHTvDhMnhq7u8MHIkSPZunWreXBgYKPL5eKbb75h6tSpRDj4LvcXKsIgm7AlNWOSKV+0aBGdO3dm6NCh9u2Lj1dkQXZ1zYHnnnuOqKgoLr30UlxGm7oWz77PPvuMxYsXc++999of3126qLnb5rXXe5lnzZrlCUSCYBFcOZLp0dGvny09eoAzzzyTuro6vvjiC+sDTfz88ccfM3HiRGcEP7GxivzLCQkZiihp06ZNNBvJBNqQL9NliWwFqOnpav1gEqD26tWL5ORkZwGqyb24ceNGOnXqRPsQWtRByMpyXkX4O8MfAapNGC3Ed7/6PSc3fAQPP8wbciGn/CmN5Eb3wqKhQa2KTEhJ9NKApEOH7AWotbWwfbvfisasZ23WLf4B6n7ggQe+D1oMVTfF4kKD8nIWLlxI//79eeSRjKAMqu2yxf37TfW3QkJfELgD1B0NDSprGR/PrjZtWL9+Paeccgp33d5Etuz2y4TYLkEGpcFlV+AbtdDZGxlpnkGtrVUP1ICHqv5gadvcbHwP9O9v7PeqKtVnpmtmmWDOHOjVK5rq6im8+OI3Kgjo0EGVKOq/b9cuxaDV3KwmRZOd7KKiIrKTk9EaGuzdi3l5ykaMF9m6Pzp06EBs794UJCYGBaiB46m5sZmf1qcyZ47/e2NYztLm4ewvK6S2yUEJzIoVQaRQttG3LwB9qAdUViSRahqJ8oyLRLZxBPAFExBRnDCOUFYG339vu0Rn+l8H8c7zz3MHKhN38gjv/ahXN7ShhjpiqSfO73UKCtgfE+OsvBfUWP7hB9O3g6sq4oABgCpbLKQLGa5C/7FZWWm6iJg5EwYMKOT4YeoaH3G2jcqSb77xzHNmCCRki+rlnjuSkjyZsjlfqh+TgSIMuYRXWUUPTgHmLjzRfpVGIPbvV323AcQYYFaVorLQyy1IXaioUIs8n/EcFoOvjl9+CerFNEK/fv0oLi7m2GOP5aqrrqKsrIx3333X+GCTBe3+/fspKSlxXs72ySeGff5m6Osew6YBqslicfny5YwZM8Z+dldHUZEiC7JiGQ3AiBEjcLlcXlKsQBj4ef369ezfv995eS+oEvH33rN9uF4m3WilP2uy4bRo0SImTZrk/Dq+/rrKotpEZmYmTzzxBD/88APzjAjMLAKXN998k8zMTGfVEfn58OyzqtTeBsaOHcvzzz/Phg0bmDx5MrW1tcEHlZcrPxtsHoYVoH77reLFsIEJEyaQkZHBBx98YH2ggZ937NjB+vXrOS0UaaERnnlGPf8cYNCgQRw6dMg4W24zg9qmTRtSLYJYD3btgocfNtZDR2WfR4wY4Uns2II+ngP8vHHjRufzIajKnKefdv653xPM9Gf+m3+/RR1UI43Ch7hVGohSmm8iIn/7mxLbs6FX9eijj0oEiCsyUuSOO0IbsGCB+tKff/Z72Vfjz6OPWFmpju3XTwRkVFqawMwg+0FkB92l6ZxzJC4uTq6//nqR5mZxaZo8lXKXfQ1UHZddJtKxo82DA/DTT8qg11+XK6+8Uq7TRRx375bHH39cANmxY4fM4hWlS8jnfr/DUkPWF6mpItdea9usa6+9VhZERopr5EhHP+e1114TQGr79RM58UT7H9T9/NNPpof465c+KYDExeVJ0cCpIuPGiZx8svfCLFsW8itPOeUUOalnT2PNRSNcdplIp04iEqjBG+yPSy65RJ6PixNXXJzIoUOeUxhrfrokO9v7XlsOujVGrxJA4BP796NDP/uhoUGaIqPlQSIFrhMQOYP3ZSfdJJ5qAZFTuF4EZAqvO7v/dNjwcyBWrlzp0dW9rv1bnvHZvr33GkbR4Plvj3Zvx44yNyNDxo8f78xGHz8bwdiHswTSBVzyBDdINQmi4aP129wsUldnes6MjAx5ZdIkdbLc3NA2pqQ497M+Pu6/X0REcnJyZBB9RUDO4D15nBulGU2GcJFAtMCh0DrIZrDws/H1qxVNS5ZZs2aZn7Ox0U//VETklVdeEUB+/dVCw9gMIfxsBJfLJVlZWXLmmWcaH1BZqfRkA/Dtt98KIAsWLHBmY0qKyHXX2T68qalJYmNj5RYjPWMRdQ337fObkw4ePCiAPORUX1skrPFcVFQkgDz11FPGB1RVieTl+b306KOPCiAFBQXObXTo548//lgA+fHHH80PKioK0rPMy8sTQJ555hnnNjr0s4hIXV2dd/0S/KbSQa2sDHpr+PDhcvzxxzuzz2QdFvpjCwSQTz/9VETUNWrWNb8PHBDZuNHwc3/+858lISFBaSPbhUM/X3fddRITEyP5+fnmB23bFjQf6/fi7t277dumI4x5e+3atQLIs88+G/xmTY3S4zWYc3Scfvrp0qdPH3tfZsPP9913nwCSa+c5JaJ0bpcu9XupublZEhISjO/dUAhj3v4tgj90UFsOo93uo/mWZYz1liqkpak1ho3m7y1bttAvPR2tudle1sqEKMKoZ43ERLVL4y7P6X/EEURGfg/u7IsvqmLSKN+xg7q6OqZOnQrV1WgiXP+3ZPsaqDpa0rQ9YoTq45k6lZycHDbrabm8PD744AOGDRtGj8xM/h55LysZyRf4lxLbKkEOw8Y+ffqQ19xM8Zo9jmR3cnNz0TSN2MpK0yy6qX3gQDpDSQXV1f3I8l0dvCW+ukyCFeudG4WFhfTV7y8796IPe5zVddc0eOWViXxaV4dWV+fXo2WcPdLIz/e+NwqlRboCvRSov/2S7hbci3Pej2a7qyd96QC8CzRwC4/SnVwyKQCEE1lMObCYkwEH95+vfeDIxn79+nl6omMPFnoqOSorvfJ0TagWAE/VQ0MDFBeT19zsPIMa4hoaVXCoDOABoIhCutCGQwzsWu59OyLCMFMA0NjYyL59+8jU2xjs2OtQ9gHwal+6CcyefPJJCthONRH8h8u4mmd5kwtYx05gBBBvrwffCBZ+Nq6AiWPixFP5+OOPqde1jQMRFRVU2rVt2zaio6Odkan42ujwGmqaRu/evckzYR4lKckwa/Xjjz96sg+OYKEDboTIyEh69uxpTpQUFaW4H3QZMBRhDuCcIAnCGs8ZGRl07tzZvEwwMdFvYnG5XMyZM4fBgwc7L0HWbXRg31FHHUVUVBRfG7RneJCREfTM0JmJbWu0BtrokJk0NjaWCRMmGLPRxsaqsmYDZuu8vDyynE7cYTLEH3HEEbRt25aPPvqIRYsWkZOTw+eff67eTEvzynIFQJeYcZSJdujnv/zlLwDWZFa9e6vFjw8+/vhjRowYQbbO2O4EYcw5gwcPZuTIkTz99NPB5dwJCWoNaZEd3bNnj31iNhvj+cILL0TTNHtSR6DKrseO9Xtp9+7dHDp0KLwM6h8kSX9AR+A8lkoZI1jNqhSfhn69hrykRKXfjz1WlVwaYPPmzYzVB7zdoADs3ZCapia9piZISGDc1Kk0NxcRF+df8vh41F/pkXKA2oICoqKimDJliq1SCUsb6+rUotgpEhKUFljnzmRnZ6Mvew7Mns3y5cvp1essbst4jczm3dzNvYDm91G7RIFOB3VBQR/FfuraT6Q0BgdI8+ernsyAnrHc3Fy6dO6MVlISXoBqWzpjIJACLGL3IZ8AdeJE9VBevx7uvRfuucf0fEVFRfTQV8oZGfZsdPvZOEjx5YSZwE9AHVFseUotdObM8W/hySSPcpK5mUfIyvKOtdGswIXGKuqBGHCXddsq6W7B5H3HHbBF+tKPSGA/Q3mKUahF5MgOFxIZcTbT2cTXRNNEqrP7z9c+cGRjmzZtqIvqRiVRdMbLzN3YqFz9QOpj3MxjHvbfmTPxlCjtqK0NL0CtrTUdz4H9ne3bQ1SUHnispsCt3Prg1e6w+tAhNXhMyob37duHiNAR1OLc6MYysjHcADU52W3WqVRGfsBYIlhGJbU08jBXACsBRcDkeAPC1z4wtNGMtfm2286moqKC+fPnB30GUCWGARqjq1atonfv3uEzDVv42QzZ2dnGAWptLdx0k2Gp5tdff83o0aNpFw4Du0M/9+3b17zEd9kyuOsutbvjxj//+U86dOjAOIu+a0v7wLGNI0aMYP78+Zx//vnBJaqvvqpKXt14//33WbduHbfeeqtz+3QbHfg5JSWF8ePHm9+HtbXq2RLARLxo0SKSkpKckzjpNoYxbx955JGsX78+mBRrzRolvRXQ51tTU8PBgwedB1dh+jk6OpoZM2bw+eefc8sttyAiXrbu995TZG8GcCwxo9vowM9ZWVnMnj2bl19+2bh8tq5OkUv6MOjW1NSwbNkypk+f7sw2XxvD2BS78cYb2b59O18F9tRs2KAmT7OeeFQPquMA1WIdlpWVxdFHH83rr79u3P8ciM8/D9LR1vuSww5Qw5i3f0/4I0C1icCF+BH8QATCgOuO9r6ok+EcPKj6RRcu9CM10iEibNmyhSE6e68dFl99ZyhAy9IUelDUoQNHHnkkADNn/uC3GLow50eSouqIKC1l3LhxSj9Pf2AnJ5uc2IaNLdRmysnJQY/B9AXG55+fyRGlH7GJ/szjOE/vut9i3K6Ndq8h8OabfSgAIhA6sQ8ICJA2bVIaawEkKLt376ZfZqaiP3fCnGrjGvovliNRi+hFNKR2UL2rJSXqoEGDVIA6b54S2jZAc3OzylrpKTiH2fzARXYwF0wvaknnR9KJ/uZrT3+pL8/B9TxNClUcHfEjDzzgHWtjWM4W+lHFLqA34F18h8xoOfSzL/LzYSt96cE+osjkMp7xvCf7V5Du+oBO1LKIdOf3n6994HisNDUNoJBIunj5pQHV4nh73495dOoCdr8wn5knu3uY3cQQW6qqee+9DEdVAHZs9K3gKCmBf/97MOqxsobmjirLk1BWSE4OZLU5CC++yLK3jIlXCt193u2amuzNibqNTv0ckEG94w5obj6NTezifo6jPS528DegHpgQ3gaEr31geg2NKmCmTp1Ku3btePbZZ3nllVeCiWreekv1ZLqxe/duvvvuO84444zDYqMZsrOzKS4upq6uzv+NkhJ44gkIIIU5cOAAK1eu5HgH7J1+Njr0c58+fdi5c6dxD+WSJYqN3L2wXL58OQsXLuSmm24i3ier6sg+cHwNzzjjDDRN46OPPuL+QNK8F17waEM3Njbyt7/9jUGDBnk0VP8vbDzuuONYs2YNxUY9lyUlcPfdQb3BixYtYvz48UTaIIAztDGMeVtf4/z444/+b/zwA9x8s9qs94G+seI4QG3BGuf000+noqKCpe6NG8/myT/+oXwdABEhNzfXeVVEGDbefvvtREVF8dRTTwW/eeCAYnNftszzks4urPd6O0aYfj7jjDPo2rUrTzzxhP8bCxcqhmWTYK2iokJtxNvVGrV5DS+++GJyc3P5yQ6D94MPKl/7QA9QdTItR2il9fZvGX8EqDYRuBA/JelbGmPbcOydPuVAvhnUgwfVat0gE7l3714qKyvpqxPr2AkK9B1nK3ZHX/gEqL169aJz587s3z/XbzEU69rPD3V1JDc0cOyxx6rj9QA1nAyqb4DeAuTk5FAP1LRpw0EgLaoHdXU9SOeAmxxJQ0T5wlEJMigfObCvsLALhaiSxE85hY85FRBvgGTi59zcXAbpfnWSQbXh5+Cs5URgM6NP9HkxM1OxDa5fr+5HkyC5uLiY5uZmMkCVQ9nxe4CffRfZwRuJGjCRr6mjZ9NWnrs1z2+TM45aZvEaAMO7lwN6CbMwmhWsYDSwGejnd9aQGS2Hfg4891b6Ek0TQzmBmRTwHYrl8YShQ+ntLlHtMLKz8/tPh9Px7EZy8gCKaKAL/qzSWVnuc7VpA8cdp7IG4AlQCxAqKiY4Y74OYzxfemkb+vfvy4knrubDpSpA/eCpAvLyoB3qPE+9mWb43XqAmlxXZz9ADcfP48crhmI3QZJ3syOTExjO2Wg08S0AXbqMC28DQkcYfo6Ojuass85iwYIFXHrppdx0003+Bxw86DeeX3nlFQAuueSS8GwMc97WF875gbtF+nkC5pyFCxciIhx33HHObQzDz3369KGpqck4KxQwb9933320b9+eK6+80rltEPZ4vvDCCykuLuaaa65h1apV/mXdbj+/8847jB49mh07dnD//fc7Z+/VEYafdV8t0DW1fWHg5+rqajZu3Mh4C+mnkDaGMW+PGjWKNm3a8N133wXbaPB8DjtADdPPoHRrk5KS6NatG0cffbQ3QA0YzzrKysqorKx0nkHV16EObMzIyGD06NHBGsy+5/GxUQ9Qw2op0M8VxjWMjo7mhhtu4IcffvDP7Fust8ErBzNq1Ch7X2TTz6eeeipJSUm8/fbboc9p4OdNmzaRlZVFcjgJoTD8/HvDHwGqA/guxC/q+h3RR032Nn+B/wNADwoMegd0Bt8cnZ3PToAaFaV22ezKuPgEqJqmcdlllzF37lw/qvOz8vNZUFZGInDDFVeoF/Wyi3AGzNixqizJ7uIyALq0SKdOHdC0OLbVNZAAJDUpxsI0SijBO8DD6gu77jp46CHbh2dnR7CWXuQTRyf2cSqfks4Bb4Bk4OeGhgYKCgroo09yTgLU6Gilj2mRDQncLOnYUfX6JOT4lDdlZsKoUWp3rbjYO5kFQA8K0nS5Izu9LhMnqqxx585BbxkHjjP4GrVbOrDQv1zsfN6infu9uMr9HvbebPLowAFWRwwFdgHeHUZbGa1bb4V//SvoZTPNVt/38vJgG2pn+EV+JgV4EKEBOHvKFM536zFGhvtwBuXnzz8PGfkE2jty5AAKEbrgLa30XI+SEm8Ke+FC9a/bvwVEoZergs0y6SOOUFprdsui3BgxYgRr1qzx3B/pDe57zK0bW9TQnosuCg6Q9XsxvrLS/hxy993w2muO7KNtW0W77JZi8L1n0yjhZtoDCURFdeORRzK44w7j+8UWoqNVFufSSx197NFHH+XHH3/kxBNPDNb+89lwampq4pVXXmHatGnO++l0TJ2qsiMO72d9cR9U5quXWQYsxubNm0daWppHQ9ARHn5YzTkOoJfNBQUtuo3uebukpIQvv/ySq6++mkSH0hceREerUterrgrr4+PHj6ehoYHVvuWyJSWsam7mvPPOo7GxkVdeeYWTTjopPPtAbVxt3qz0Rm1iyJAhdOzY0ThANfDzli1bEBEGDx4cno1PP20oSRYK0dHRTJo0KbgPtaREPfsCnmv6porjADU6WlXHWehDmyE2NpYPP/yQjz76iIEDB7J9+3ZVGmqygRwWgy+oNWJBgSNJIVDZUMOebQM/h6XP6ov//Me0qisUrr76anr27Mn1119Pg54xtVhvgzdAtd37Hh2t2mNuu83ysISEBI455hjmz5+PGGhd+0G/F32wbt268MfKqaeqhFK4WezfAf4IUMPBgQNKriRQODwwg2oSFOgBaoamqdWl3Yfi7NmqEdwOfAJUgOuuu47ExERPI3zJvn0sbGpidM+eALTRy7RakkHNyVFER2FoM/lKi6gMaQ6/NjcyGMjuNBsIDlDDWo8dcQQ4eMg/8ADsjxxINhlciqJuHxy73RsgGUw6+fn5iAjd3UH+16vTTYMiQ5x7rilpgg7fzZLc3FFER0ezwv3QANTie8YMtbFRVWWaQS0qUr2MybW19jZK9HOfdprhPfLAA0ZV7WexlXYUxSRwTrS31yaGem7lEXahHnLR+wupPaRSsKNR9O1LXB0BQdNUBtV2Se2YMcrXPrDSbPW//2ArSq5jKJv5sM1FvDLqOGKio4k+cIAZw5UUSGq4DxYdJ51kuVg0snfJkv4UAp3ZTyrlfBd3Au/evYWZZzepkik9hb1ihdpsKiigmggqGA34a/2F3ODp1AmOOcaxXt3w4cMpKipiX1kZ+0n3lCO3d2dQY6njzuZ7uPwyl99YKCgoIDY2lsiSEvual0OGKH3HFsC3IiGNEmLpQEzM20yd+g/T+8URpkyx1Go1QlJSEpMnT2bs2LHs3r2bKl12qkn5+VByMv369SMtLY3CwkIuu+wyh0b5IC1NjReHpa2mAaq+o+8zL9bV1TF//nyOPfbY8DKAvXuDQwmdYcOGMXbsWB588EHjMmS3fWvcJapHBMwXjjF8uLN2Dh/oGUedqImmJigv5+lt20hKSmLJkiXMmjXLuWyLL1JTlUam76Z6CERERDB58mTjEkY9cPHx8ya35JMjnVtfZGba1vAMxHHHHceWLVvY4NMraRb85eXlERUVRYYdzoVAmJAu2cGxxx7LsGHD6NOnD4cOHaIwL09tIrdmgJqUpOYbh/3offv2paSkJLiP18DPubm5xMXF0THMZARpaeGtMVGB/lNPPcW2bdt49tlnvTZajL2VK1fSvXt3Z1qjnToZtugFYtq0aeTn55sTsoFnPPvaWFtby9atW51pBfsiLk75uiVzwm8cfwSo4UB/iASy1CUmqsn/4EF1c7sXsoHYsmULycnJtKmpUZkCuzfYjh2wbp29YwMC1Hbt2nH11Vfz3nvvsW3bNr74+GNcwCDdRn0SakkGtalJ7cSHkdoM1tN8nAZG0AG4+o4M2scfIoFaT4Aadl/Y/v1KJ8yMITMAM2fCySf3AXazHbUgu/+Cbd4AKTnZs4MlIjz44IOekryu7lLQGx9Kd7bIXb/ekRZcfHw8I0eO5HtfPciuXdUDZcoU9aAyyHaCN2uVUFFhjyAJFCvPggWwc2fQWzNnqiS673MgIiIe+BP/bqjlyMaF9ECRdV3LM/RkJx9FnEVDXBJx1HmCmTEsp45YNqAW5iIDPT63VW5ZUKD69HwWplaarYHvVZJCERnUaG04Y/uDZOVEqvLZoiI61Nfjiotj1o032rpcpli2TOl4msDI3ro6xeQbTTNlT73OkXXzOCnyKzVu27f33tfNzfDDDzStXUsBLnS2Z1+E3OCpr1dZK/eGml0Md88pa9as4UB0F49P46mlllju4EHu4e9k1W71y+IWFhaSmZGBdvCg/Qzqrl2KSMZIX9AmfCsS4qijKjadV16ZwZYtM0zvF0f49luVLQ8DehZw8+bN6oXycoiOZlFFBVu3buXYY4/ljjvu4OSTTw7r/IAaI6+8Yv/Z4kaXLl2IjIz0ZFM80HuifBZj999/PwcOHAi/DHnrVqWdaEGCEghN07j//vspKCjgxRdf9H+zrMxjnx6gDhs2LDzbdMydC2a6sCHQsWNHevTowWI9q1Rayl7gvU2bmDVrVnglgIGorVUZSjPWYBNMmjSJ/Pz84FJug8zapk2biI2Npbve5+0U69erXr2aGscfPf/884mLi+P555/3vmhSPpuXl0fXrl3D65N99131kGsBdL3ibbovDAKnsAPUmhrVX+1gDQHeftKgQMskg5qdnR3+hsmqVfDXvwaRV9nF9OnTGTt2rFeH2cTPOlauXGm/vFfHyy8bVmEFYtq0aQDmZGLg1cEOGCvNzc3hB6jV1aq/OrDv+n8JZvoz/82/36IOqh9uukkkNtZQz68mNUPeSbzUUkN06tSpMmrUKJGjj1a6lXYxfbrIsGH2jv33v5WO05NPel4qLi6WxMREOeWUU2TGjBmSmZkprh9/VMctXKgOevxx9f8GumEhUVPjFoi1ryOn67gaaWleybPqP4qK5OOn8kRALuUlZ9qsgXj9dXVOB3qBb7/9tgCyYe1akZgYkVtuMdSf3b17twCSnJwsvXv3lpp77hEBSaQy6LdZ6io68bMbd9xxhyTqoqRpad43Xn3VUg/19ttvl8jISHGlpYlccYW9L7PpZ3+91l2SAdKIJo9yk6RTLOUky1ymS/v2IvLddyIgR/GNgMhPTJTFjBM4T6CDQHPo6+YL3c87dnhestJsNXrvT/xHzuR97znPOEOkTx+R009X/7YUIfxsZu8pdFT/MXCg+nf2bO+HzjtPpHNndeFHjRIBuQMkNvZbv3MkJNgYQ2GMZxGRyspKAeS+++6TgqHTZZ02xPO9JzDXY8RJfOanHztlyhQ5efRo9b6R1p0RXnstyM8thlufMJTGr22EMZ517Ny5UwB58cUXvS+6XHLrzTdLVFSUVFdXh3VeP4TpZxGRrKwsOf/884PfqK8XcWs3rlu3TqKiouTCCy8M38Yw/exyuWTKlCmSkZEh9fX1vm+o3y0iZ555pnTr1i1823RMny4yfHjYH7/wwgulQ4cOHs3Lu26/XTRNC0/b1ghh+vmXX34RQN4KnDCamkRKSjzjRUTk+OOPlyFDhoRvYwvH80UXXSSJiYlSUVGhXqipUTqjAZgwYYJMmTIlPBtb6GcRkYKCAgHkX888I7J/v4hurw+uvPJKadu2rfOTh+nn3Nzc4LlGRGkF5+b6+XnEiBFy3HHHObdNRyvM27fccovExMRIXV2duoYmOq7FxcUCyOOPP+7sCxz4uW/fvtbXo7FR/VYf/eqXXnpJCFe7WqRF8/ZvCfyhg9rKWLxYlZUF6PnNmQO7KtKIrT5omS3bsWMHPXv2hH377JdVgtp9CSy/MENABlX9Zwduu+02Pv30U7788ktmzJiBph/nm0HVNJUtcoqEBPVn08bAsspA5LkzluTlceokdc6XPk0Ln5gGwiKKGDJkCABfzJsHPXuy59vthqV///yn6hWbN28e27ZtI6GmhjpiqSa4RNIyyezEz27cfPPNtM/K4pCmUZLQxVNSPPiuU2iOijHd2S8qKiKzUyclh2P3XrTpZ/8MYDf2ci6fonEpL7KcMcRTy008rjYX3f0yA6O3E0kTI1jNckYD3wBHoxd72E7O6372sdEsY+grbeOLl7iMFdlnel/IyFB9KXv2OO7LNLXR4hqa2Xsw1t1bpPeT+0pp7NypyvgmT4aVKylNSuKZ6Gief35ckJxJyDHkcDzrSEpKonfv3qxevZouY7rSO7GQyEiIoJknuInd7nHdi1/9fmNhYSF9dGZCuxlUAz+bwar/2A/uElSr+8URwhjPOnJyckhISPDjDkDT+O6HHxg7dixtwpmnA5GQoMp7w7DRVGomJsZTGXTnnXeSmprKk08+Gb6NYRI5aZrGLbfcwt69e5k7d67vG5667jVr1niy/i1CC/wMqsx3//797HRXpnzwySccffTRaq3QGghzPA8aNIjk5OTgMt/ISJX58ynZ3rx5c/jlvdBiosWrrrqK6upq3nKzH5OQYJpBDUu/U7exBX4G6Ny5M4mJiWzbvl2t1Qwy5LoGqmOE6eesrCzi4uKCM6jx8d6J08e2sAmSwNG8bYaxY8fS0NCgiJ3S002fyY4JknxttGnftGnT+OGHH6g1q+SJilLtPD7tb2vXriUxMTH8agPdz/+/kyRpmnacpmnbNE3boWnaXw3e76tp2lJN0+o1TbvJyWd/d6itVeUJBiLUd9wBB6Q9aZTwC0P5Ey8GlYQ1NDSQn5/vDVCd1PA7YT7Te9sCHm433HADWVlZNDU1MeObb7ylNO5STyor1WTZEqZAm4PaqITRF2dEfqr+Y/duU+INx/DtE7aJ/v37c8IJJ/Doo4/S2K0bteu3u+0WfmQyF/AGhw7Byy+rEjmP/tuBA5RGpuOr2arDcpEbBsNdSkoKb7zxBvtEWLKnxhM8t9/zC2VNydS88aGvOKkHhYWFDNA3KVp5syQ4mHyEZ4mmHRXUEs/RfMs2crk+4XJV1pWQwBVH/8oxGZtIoJYVZAD7gWM8Z7AdHBgw3Blptuplw1bvIQLTp6vfW1mpSDLCFsb0QQg/m9nUfdIQ7wvJySpA/flnOP10+PVXfnX14L7l6ppdWXWIvsNmMGtWfJCciW0bw1hEeIiSsrKIqyphzvOVPBN1A33Zxl3cSylt6Rf1q6dMX0QoLCykh97varcH1eaC1qr/2AMROOcc+OwzIMQ94QRhMlaC6gEcMGCAN0BdupTymTNZvXo1Rx0VXLYdNsL0s2GA+swzqsQQJWP1008/cdpppznr/zKyD8Kycdq0aXTt2pWXXnpJvSACl10G8+dTUVHBzp07fxMB6oQJEwAl01L+/fds2bKFya1hly/at3dsY2RkJBMmTODnn3/2f+Oll/xkM6qrq8nLywtPMkNHCwOXUaNGMWLECJ577jnE5YK//CVId7mxsZGioqL/aoCqaRq9e/dWJb5/+5viNQnA7t27ww8Cw/BzREQEffr0CQ5Q58xRO5puVFZWUlpa2joBaguCqzFuFvbly5YpnXeTkuaVK1eiaZrzEn4Hfj7uuOOoq6szJmQDtZn82GPeUl9UgDpkyJDwWbkhLD//nhDyymiaFgk8CxyPotI8V9O0wBmoFLgOeDyMz/6+sHKl6sFzP0x8kZ8PJaSRzgGGso4kd/+c70L9n//cjcvl4vH7MuHgQdYedEAIkJamIjo7fThDhqiVqHsQ64iPj+eFF17ghEGDmLJ1qwqQu3VTC1zwBqjhwsGAscqGZWfD8b3dPY55ea0XoIb5ALz//vspKytjWWkp2Y07iKCZZCqZzM8edtKKivV0795d6ckCrFmD1q+v80Vu+/b2/eyDyZMnc130cO4Sb0Dckx2kUUKb0gL/TJsbhYWF9NWzVk4CVBt+Do7hMvmBvzEEGMpgFvECcAJzG99C1qyBXr3oF7mdOdcpMetfonQh76mAw+DAwM+B7Me+mUSr96isVKyveoBfXt46GdQQfjaz6ZjzR+GRkb3kErXR9csv8PHHUFrKG4u681DZDE4mhffpxoYN/3FO7KMjzOBq+PDh5OfnU+HOjJ/dbQUz0xWz8M9MJj+mF9P77PAEymVlZdTW1pKtM5u3cgbVqv/Yg8pKeO89T2+15T3hBGGOZx2DBg3yEr9s3MhPb7+Ny+Vq/QA1DD/n5ORQWFhIk6/O5Oefq/GC6rOqqKhgosGGrmP7IKzFWGRkJJdccgnz589XfZSVlSq42ryZtWvXArRegNoCP/fv35+0tDS+//57Vrp7lse0lIgtEGH6edKkSWzZssWfQOf999WfG3qfdIsyqGFsIPtC0zSuuuoqNm3axM/z5sGTT6q50QeFhYW4XK7wA9QWjmcdffr0Yfv27XD//X5cCaA27Hbv3h0+S26YQXTfvn09JJ6iP+9ef92v51bfkArbNmixn0FloTMzM1n288/w978bBqh1dXW89dZbDBs2zLsuc2LjoUO2+A2OOuoo2rZt6+2JDcTSpXDLLZ57xuVysW7dOk91Xthohc2S3zLshO6jgR0isktEGoB3gRm+B4jIfhFZCQQqYof87O8NK59+GoCTHnqI9957z++9rCw4SHvSUbthx7KAOGo9C/U5c+DOO9XiJxsVtTz9WTf7i0enu04mE/Bxxx3Hl+edRzSoQXjMMfD994rkaM8eJcMQLhwMGLMklK5v2imuXLGoHY4A1cY19C0JPPXUYYwefSbvrllDLA1kk+cJTA+iJtuoKJ8Jp7QUNmwg4+wpnkUuqKoofWFs6vcW7C5+2XgC69gFqIlQtxHwLBp9f9+WLYVs+0GVCX69zgGjoQ0/G2Wg4CbWcz2NzAPeoX//I9nZcIhfYmIUU+eWLWx59FFKgJLkN4mK6oOmZToPDkwWtL7sx4GZxJkzlc1ZWWrzxOMj/Ry+7JKtVeILln42srffoEEUA2XduqlSXvDbfNjS2INaPmEuFcCn1Na2dU7soyPMHVp9wb+kuVlFd0uWkFK/H2JiyHVlM/TMXmRU/eo5Xifr6qTvJrdygGq2Geb3usEcY3W/2EYLswUDBw5k//797N+/H0pK+A6Ii4tj7NixYZ3P1MYwM6jNzc0e/wF+hCWLFi0CvNnBFtmnnzsMzJo1C3BrxpaUsB249quv+Pjjj4FWIEiCFusSRkREcOSRR/L999+z3E14N/rII1tuly/C9POkSZMAH5ZhCGJObTGDr26ffu4wcc4555CamuolSwrI3IetgaqjFWwEFQzmlZYqkbUAG/ft20ddXV3LAtQw7sN+/fqRm5vLn//8ZwYOHKh0eQP8rJM3tUoG1SejGA7GjBnD8hUr/M/pgwcffJAdO3bwyCOPOD95Wppa/NmwMSYmhtNPP51PP/2UQ0YbFwFMyDoze9gESb42hkEo9ruBWXOq/gecAbzk8/8XAP8yOfYe4KYwPzsbWAWsysrKOowtuS3D95MmyS/x8ZKeni49e/b0EBqIKNKRh6PukEYiPYwab0ZeJG+9qY5RZED/FECOY44IyDgW2yd+yc0V+fhjkaqqlv+Qv/xFMaWIiHzwgbL3gw9EIiJEbr89/PMuXizy88+2DvUn0TEgb8nMFGnXTuSEE0T+9jdlW1NT+LaJKHKMzz5T19KhbTExH8pE9//MiJ0no1kmAnI/t0l8fI1omiannXaPZGeLzOBTEZD5f/vZ3m/1xZ49It98o8gJHCI9/TMBBBYJiDzGX6SaBNlIfykacLTf74uPLxNArmaGCEi3+L32yafWrFF/IfDWW8ZEM1AjsFdKS0slGuTG/v1F7rjDc8CTCQkCyDXXXOP4GoiI8vO334oUFdn+iJmP5t2zzEvco78xf354dvli3z6RFSsMydasUFNTI38CefO880Q2bnSzD52gCLxAhrJG4GyB7PCJfXRs2SKyfbvjj9XW1kqnTp1k6tSpiszpuONEoqJEunZVB9x9tzKqtlb27Nkjs2fPFkD2nHeeIqDzmVct4XKJrFrlRz5hBDMiNr+5d5nbz19+6fj3WqKkRF3HhoawPr5gwQIB5JtvvpHmG2+U7pomxx57bOvauHu3o7ESaNsPP/zgfTEzU+Sii0RE5Nxzz5WMjAy/52RYcLkUsV0LSKGOOOIIGTRokMiyZXI1uOdJpEuXLi2zTUdFhUhhYYueUc8995wA0r99e+kb9qC1QHGxISFPKOjEZ/fff7/3RR8/i4jcdNNNEhsbK00teUa7XGpeDHOs6LjhhhskOipK9hqM56eeekoA2bVrV3gnP3RIrcFaeE+vWrVKAHk+OjrovcWLFwsgX4Y7F1VVhXUfvvvuu55xAcj3338f5Oenn35aACkuLg7PNhE/krKW4LHHHlO2GPh5y5YtEh0dLTNnzgzv5A0NfsRQofDdd98JIO+9917wmzfe6F1vi8gHH3wggKxYsSI823S0dD38GwAWJEl2AtQzDYLMZ0yODQxQbX/W9+83z+Lrcsnrr78ugPz0009+b62a+aRn9VOtJar/fv55EdFZIa8TSJQr+ZcISAaF4S8eW4KLLhJxbwS8/++D0owmRXQSAfn0iVZkxAwBIzZcDxISRHr2FOnfX+TKK/3ZaQ8zjBe0eyXd/T8rL3haLurwpefNf9z4uQASE/OxgMiT/FkOESep8XWWTMW2Nyds4plnitwPl38IiLzKRZJHpjzKTVJPtGdzQ9mjHpCPMkNqiRWN5la3x/td5r99RmSkdE5MlKYffpDyzp3ldJAlS5bI+++/L/v37299gxza6fHzggXeF7ds+T+zywg9e/aU0047TQW3miYyZIhISooISBIVAt0Fzjhs95kdPProo2rxMGOGSKJ7LpwwQb3p3rm4/phjJDIyUjRNk7POOkuaTztNpDUYVQNga4Poiy/UG8uXt/r3twSlpaUSHx8vl1xyiXx37LECBoyq/yUUFRVJVFSUZyPpnXfekXejo9UGqCiW3zPPPPO/aaIH+v2457XXpAfI5GHD5E9/+pM8+uij/23TPNi6dasnOLioTZv/tjl+yMrKknPPPdf7Qny8x88iIuPHj5dhYbJVtza2bdsmgDxgMJ7Hjx8vgwcP/i9Z5oXL5ZJBqakyOiYm6L233npLANm8efP/qU36/Tdr1iyJiIiQO++8U02UPn6+4YYbJCEhoeWbTq2An3/+WQD5JMDPOnt3amqq7Nu37//ElqamJsnIyJDJkyfLu+++K4WFhd43fdbbIiLnnXeetG3b1p9Z/P9TtDRAHQfM9/n/24DbTI4NDFBtf9b37zcfoIpIdXW1JCUlycUXX+z/xhtveFdAjz0mMnq0R2JALYCnCwyRR7jZeVBQWyvy9dchs3+2cPfdIhdc4Fm4rWCkCMh3HGFPgsIMubkiH36oaLVbgoYGkcmTlRRPmzZK4qNv35adU8dPP4l8/73lIWYSE9BdqqOjRa6+WknzuIOCL//8Z/fCYqeAyGqGyTcc5QkOHElW1NSIvP9+WJkrERHoKnCugMgj3CwfcpocgZJxkU8/9fl976gdP46VbfRylmnbtk1J2Njws2VwUF8v72VnCyAdOnwtcIFERLSXN95ohZ3BefNEvvrK9uFmPjqer0R69xbZtcuTpWxJJseDqiqRl14SCWMRcuaZZ0pOTo689ZZIXlQ32UYvKYzsKpVxaRIfX+K+Fx82DsScYP16kaefDms8V1ZWStu2beXhPn28F/PKK0VEpGnJEhGQc9u0kZtvvlllM5qaVMWEUzmSDz9UfyFguRkmIvLJJyKdOons3Ons+0OhvFzJfa1bF/YprrnmGomOjpajMjIkNTJSDoVRXWGJlStF7rsvrMzVn/70J4mJiZG3335bIiIiBJCrx43zZIieeuqp1rHx9ddF3nwz7I+vX79eAPnrKacIIP+6++7WsUtHaanIPfeojH6YcLlckpGRIYA8dzgqyRYtErn55rDG8/HHH+8N7Gpr1VzolrjQpWgcS3kY4dlnRV54ocWnOap/f8kBafZ5jupScA8++GD4Jy4pURmxpUtbbOOT/fsLIJs2bfJ7/b777hMg/HH+3XdKNi4MP+fl5YnL5ZKxY8fKWF32y+3n5uZmGT9+vPTv3z88u3zxyCPq2dIC1NXVSbs2beQsENmxQw4cOCAbNmyQF198UQB5oSX30f79IpddZrsiUETk1ltv9Www+cnO+EjWVFVVSUJCgsz2lYcLF199JXLuuS1fb/8X0dIANQrYBXQDYoB1wACTYwMDVNuf9f37PQSoIiKXXXaZJCQkeDW3RFSZAahy1P371YKsXTsRUQsiTesjcLq8x5myld7OFo/796tzP/NMq/0GPWv0ALeJgMzkzZZlXP6lMsPSWrtWT7oz0oMHi0yc2DrnnDJFBb8WMMumtWlzoSyLihLXmDEiLpcccgeo96SlCSQJNEsqpdKMJn/j756gz1EGtYV+jo8/VaCn3/fEUCdNRIjcdZfP71MPwWWMlAVMdeZ3h362Cg5eeeWQaFq2QI5AusB5LQuqdNjwsy9s+SgrSyQcbToj6H7+178cf/Thhx8WQOLjS+QrjpNt9JKt9JYVEaNl+vSv3Q/Jb1umGSzS4vH8xBNPSB+fi/nV22+LiMhct07tL74amsuXq+PmzHH2JQ79/H+O4uIWz9u5ubkSGRkpLSp7t0IL/Lx7926Jjo4WQHr06CF/9mzWqb9VLQjY/NBCP7tcLunSpYvExsYKIDtaS19URyv4WURk5syZAsjq1rpuvtD9HEZ55k033SQxMTHSqC+GXS5PieEll1wiCQkJUlpa2nIbW2k8v/feewLIPJ/Sz0ceeUQA2dmSTahW8rOIyP7iYomKipKbbrrJ7/VLLrlEOnbsGP6JW+BnHXfeeadERERIeXGxp91If+78K4xnVhCmTFF/LcQNf/6zREdHS35urvTp08cz74wbN06aHZToBiEMPzc2NsqWLVvkyiuvlKioKO94OHTIo8erZ8d//PHH8G3T0Qp+/m/DKkANSZIkIk3ANcB8YAvwvohs0jTtCk3TrgDQNK2TpmkFwI3AnZqmFWialmz22VDf+XvBrFmzOHToEJ+7GfcATxP0yuhxRHRM55F3slSTdXU155zTTETELpKTe9KNXIrjcpwRv+jkRa3I2qWThLzIZTzHlXzIGX6vO0Yr0If7QW/E37Sp5QRJOmwQv5hJTJxzzkTmNzXBypU0rl1LfIVimu1YVkZc3HgggqP4jgiEH5kCKNIdR5IVLfTzSSeNBnagyLUVohJiqU3Pgh07PL8vMnIH0IVs9pBHdngsuTb9bEU28/e/xyPyHlAAHACOD2ZYDQcOCUFs+ahz59YhSIIW+XnEiBEA1NauYRt96M2vZLKHe1138tVXSvctM3M4DzzQAs1gaPF4vvHGG1mQm0tjcjK5sbGccN55/OUvf+H+556jLCKCwfHx3oMXLFCESsccY35CI7SAat+2NmpLoGvftWBOzMnJ4eyzzwbg0ksvbQ2r/NECP2dnZ3P55ZcTFRXFnDlz+Mc//sHy5cv5xz/+wYMPPtg6BETQYkkFTdM47rjjqK+vp2fPnvRoLX1RHa3gZ4BLLrmE6dOnM6i1GXyhReypAwYMoKGhwaPTiqZBZCQlJSXMmTOHCy64gLYtIVj0tbEV1jinnHIK6enpPPnUU7z55pv84x//4OWXX2bMmDHha09Cq/kZIL1DB4466ijmz5/v9/q2bdvo5WZADwutwJI7depUXC4XPyxdCvHxrFq1ijvuuIMzzzyTq666KnzbfG1sBT9fNns2jY2NHHXMMWzbto0HH3yQu+++m7feeqtlEi5h+DkqKoq+ffsya9YsmpqavLFBfLxnjp0zZw6ZmZktZzaHViPs+s3CLHL9b/79XjKozc3N0rFjRzn77LM9r338VJ4ISK6boORcNxnS549s9pSX/Oc//1H9lOGk+Nu2VeWlLcXAgSIPPdT6vZELF6oTtHR36McfRfr0EXnnHa9Rf/pTy86pY/ZskQ4dQh5mlPXbtGmTTHDbs6NLFxGQxthYaZwyRV56qUoSEkQWcrTsoYtE0eCXCQxZYuiLFvj5m2++8ZTMLmGs/L3tP9R3TZ0qMmaM57jevSdIcswkEZDHU+51lmlrLT8vWiTLGSUD2CDwjEA7gQPOyo3NMHu2iMNdaEMf/f3vqsRcRJUNf/55Cw3zQdu2ImFkxA4ePOjeKX5IpvC9lJIq93G7e6jMEOjd8vJeEUXWFYafA6/jlmOukYbeveXq887z7HDvzckROeII74cmThQJZ+4Pw8+6jb6l5zfxqLwReXHLM/dGCNPPviguLpb3R48Wee21VjLKB2H6WUdTU5Pk5+erUuFTTw27PcESNudtK3z44YeqBHnQoFYyKgCt4GcRUWXu777b8vMEogXz9ooVKwSQjz76SOSXX1Rf3a5dcs899wggGzdubB0bW8HPIiLywgty69ixftl8Wlr2qSM1tXX8fNVVcueZZ0qkT9m+y+WSlJQUudLdDhEWWuH5XFdXJwlxcXLN4MEi+fny17/+VaKioqS8vDx8u3wR5rwdhDfekMndugkgF1xwQcvP54sw/exyuSQrK0tOOukk9cKtt4p8/bVs2rRJIiMj5dZbb20d+3Q/B3Dh/J5ASzKof8AcERERTJ8+nfnz59PYqBR2bvhHFosYT41bRiYfpaXywRP57HBnr/p06aJ2PMKh6W6B6LsHTU1KOLi+vvXE6H3tgxbt6MyZA9eeXgTbtnHqDdnB524p9GvoclkeZpT169u3L7+2bUu1ppFdWEgjEHnyyUTt3Mmllyby/t82MJVv+RfX0iU72i9D7kiyogV+Hj16NNHR0Vx84TeMYxl3XV+hvqtnT08GFaCiYgfXnKzkPP7yz2xnmbbW2rnbs4fRrKSZSFSxxQFAndtMhsg29AyqajewBUMfrV0Lbm04jjsOTjqphYYZ2OgQ7dq1IyqqG7CaRUykLeU0EOt+dyUwEjDQ+nSKMHbi58yB2bOVOpSI+vehHycQvX07/7rzTj788EMuvPBC2p9yitJfLiiAigqlFTdtmnMbw/AzBGujjmMpw5pXtjxzb4RW0Kvr0LYtZ65YoS5oa6OFGZfIyEgyMzPV/PLJJ+oZ09rQ50SHfvbFsccey9T0dC45XNIMraFL2NgIb7xhqFvdYrRg3u7Xrx/glpPZuhVef52y4mKefPJJTj311JbJywTa2EI/A/D119xZXs5nn33G5s2bKSsro6KigtmzZ7eOja3h5+eeY3hkJM3NzR6t4z179lBRUcGgQYNaZh+0yMbY2Fgm9urFD+vXQ3U1K1euZNCgQaSkpIRvV6CNYczbQfjkE/7qcjFy5EiefPLJ1rFNR5h+1jSN0047jQULFlB58CA88giNS5Zw0UUXkZqayg033NB69sH/bAb1jwC1hZg+fTrl5eUefbD8fGgmigN0UP/vDlDj9ufzzTffEBkZycDERPXhcDSuWqMsQtd1SktrPTF6HS0sCdQXt+L+jYv3daeaNv7nbinS0qC5WS2KHSIiIoL7H3mEX1JTiQIOxcWhDRsGBQW891IV1fc/RQ0JzOt6WcvKK1vwAExKSmLixInM+/JL77kAevRQfikro6qqiuLiYgYlJ6v3nGrCtVYpt/s3HorXfaumpBZtkuhogZ/94KPr2OpogZ+HDx+Bpq2mnbuUW+nx5gFFKAlqhbDL9XX7wJGNgYEfQFKDV2P09NNP5/XXXyf62mvB5WLDtf/h7m5vQHMzZ758nPMy2/btw/Jz4HVpz0FKSGvZ9TJDayxo9Xk7QDOxVdBaC53W0qs2gu7n8vKwT5GUlMTCfv0Y3lpl+oFojQ3k/ws/l5U5/mhiYiI5OTkqQHX7+ckPPqCyspJ77rmn9WzUf3dlZcvOU1JCYseOnHzyyfTr14/U1FSS9eddS5GWFjzJOYXbz8P79wdgzZo1AJ5AtcUBanR0izUyJ2dlsREo0TRWrVrFqFGjWnQ+P6SlQXIyVFW17DwHD3J8t26sXLmStNaed3y1zx3ijDPOoL6+nndeeQWAh9esYdWqVfz73/+mo12d71BIS1PjpaGhdc73W4NZavW/+fd7KfEVUUyV0dHRnib37GyRjfSXDzhdQCSSRmkkUv6ZfJt07txZpk+fLjJ3rkrLh8MCt3KlyIYNpm/bKiPdtEl9/+EoIWpoEPnhh7CbtvWS47u5WwQkkkbZSH/1YmuVthUWquvogLEy8LquuPCfyqacHJGPPhIBOTX2S6klVp7jipaXV27apFhjw7Dtrbe8kgoFIFenvSuaJnJZ+ifK5pUrPayLK6+4Qr3mlBm6sVHpoJaVOftcIO65R0TTZM7rjfbLn+1i/37FNtxSrbD+/UVOP70VDDLArl1hE02dddZDAsikDj9JBcg52rsCz7tL2Ta3vFxfRF27HTscadYZsSHfzd3SjBbENlgw5AQ5QHupIV7mMU3A5XzclJWJ7N3rSLNOJJgUayP95UNOOzySPMXFLdev1jVvD8e83dSkxktL2SDvvlvZeDhYJWtqWkU78bCO58rKls83h9PPzc2KgTdMTJ8+XQYOHChy991SBpKYmNj6MkINDS3WGBWRw+vn1tCfdPvZ9c470q5dO7nssstEROShh9S83iLCKZerVa7hjxdfLIA87l5PvPjiiy0+pwetJVNzOP3cArhcLhk/frx0bN9efgSJioyU8847779t1m8O/FHie/iQlJTElClTmDt3LqCyPumUuLMZKptapHVhQNIKioqK+PLLi7nrwt3qw+GU+I4cCQMHGr5lVFo3e7YB8cfh3OWOjoYpU6BDh7A+rmcv2nOQUtrSTBS7yVEvtpa9nTur6xgdbetwo+t66fvHIQA5Oczd0ReAR+qvJ5pGnuAvQAvLK/v3t5VhN/N5c/NxAHwNbClJQwSWHFCkIIte3+kpN+/a1KQYYrp0cWZfVBQMGwapqc4+F4iSEkhN5bwLo+yXP9tFejr07g2RkS238XBkM0D52MZuqpGfP/tMlfEuPXgkXYFTr44gMvIrIAdQ92SLM9GRkSrzHtgHYAGj0uw0SignlTnvRfm9fsfea0jjIDW0YRavAprzcZOaCp06qfvYAQLbG9IooTwqreWZeyN06AB65Uy40DNzh2PejoxU4yUqKvSxVigpUeRfLT2PERISHN2HpigpOXwVEUlJLZ9vDqefIyIgLi7sjw8cOJBt27ZRXljInPh4qqurufXWW1vRQNRzWdNafp7D6eeW+hg8ftbS0xk+fLhfBrVr164tI5zStFa5hqNjY4kBnn7mGYDWzaC2ho/h8Pq5BdA0jSeffJLigweZCqSnpvKM+zr+AXv4I0BtBZx88sls27aNrVu3MnMmVE06ge3tx3tKZhs6ZhFZuB5oB5xESlkutcQx55sw0vybNsFrrxm+ZVRaZ7jYS0qCU05phSY/E8ydCwsXhvVR3aTt9OZzTgYgD3f5aWtNQmVl8NJLfv2YVjC6rhvqevFT3DEszzmbC+/pQROR9GIHH3AmO/GyQ4ZdLrh6Nfzzn2HZdugQPP/8QOIi0nmddApQZSq7UMyFS9/a4QlQ21dXq+DUZrDuh3feAV8G63CQmUler6MPD5PqwYPw5JOqX6olGDzYdFOoxVi61FYEaeTn+voJtGkzk8tOOolqYHnVl0RFfUti4glomtbycn0dL74I779v+/AHHghee5SQxnLGBM1Fb+6fxpPcwBl8yD4yPK87Gjf798M996i+egfwa29A2BuTw7Aze7XO5kggvv8e/vrXlp3D5YI+fWxtaISFf/xD9T62BG3aHL6xsncv3Hij6gkPFyKKnfNwPfvmzYOrr27ZORoaICNDbRgcDtx3H7zwQlgfPeecc2hsbOSfGzbwIjBs2DAPo3iroaAA/vQnWLUq/HOIqE2SwzVWPv0ULrigZeeoqVHjpX17hg8fzoYNG2hoaGDDhg0tK+/Vccst8NRTLTpFXFMTo+Pj2bNnD/Hx8a3XZwxql/Wss2DZsvDPIaIejIcrQH33XTj11LA/PmbMGM6bPJlG4KV77qGdzgzcmrjqKnj44dY/728BZqnV/+bf76nEV0SkoKBAALn33nsN3/844QzZCQLXCIh8wOmyhT7hlZI9/LAq/zEodTIqrQvFhuqIWdYuhg8XOeGEsD4ayKwJIndGu3/zjh2tYJyI7NzpqGTY6rrqZYLb6SkCMoRfWocN2cLPdm2DPwkkCxz0vF5AZ3mFsTJkyBClszZ5cvj6si3wsw4jf7eKBqqIYz//V9BCP+u+Tkg4XTRNE0C++OKL1rVx+HAlNO4AVrb6olVYxH8Pfn7oIVt+/q8iDD//n+IPP7cOWujnGTNmSFxcnADy3HPPtaJhbvz/5meXS959910BZPny5RIdHS233HJLy8/bSuP59ttuE0DGjx/fcpt80Zp+bo2SayO0gp9rampk6c8/O25BsY3f+rwdAvxR4nt40aVLFyZMmMCHH36odrlF/N7fcqiWTCCCcwHIIp88ssPLrumls8XFQW+ZbQoHve62z3ZJcDg2GthnB0akTSMeOQtuuCG8kmgj6DvTNm00u64REV5CzU85hVe5mHUM9bzfovJKCz/bsS0rCzp1uhyoA84AVBP9DmLoyTL27t3LZZddpn6AU4IkXxvD9LMO21n/cODQz/8VtNDPoG8i34yIEB0dy5FHHtmKBhKWn81uqcDf0Sos4v9Dfv6vohXG82HFH35uHbTQz3fddRd1dXUkJCRw3nnntaJhbvz/5mdNY/jw4QDcdNNNNDY2tk4GtZXG86TJkwGlDtCqaE0/t0bJtRF0P+/fH/YpEhISGDtxouMWFNv4rc/bLcAfAWor4cwzz2T9+vVsf/111Wu0YoXnvb1Ru4gGOrkZfbPIJ5+s8KqMdPbBPXuC3rK92LvySsqyh3DRRYcpOMjMNLTPLmbOhN1NXXHd/Xd274ZTbuimSjVbaxJKSlJ9azZtNLquR/Ete5ozGI7qG7mFx7iEVz3vR0a2sLxSZ48LYaOVz78f8hZ3adnA98BNgLCTMvpExlBcXMx9s2er84crWN9CPwN8ndeXm3k06PVWYVJNSoKUlJbZ+MMPqo91/fpWMMgALfCzjoe5la+4BziB6OhTSWiNPj1fhOHnQHtXMpK/RP8zaC5qFRZxh+PZED/9BKNGqRaKwwGLeds27rpLlcQdLrTCeOaII1RJ+OFAa/h5yRI46qjDI+ECrePnBx+ESy9tHXuM0EI/Dx8+nGtzcrj1uONaT3LEF60xby9frtqYdu5sNbP80Bp+fvJJ+POfAejZsyd33HEHy9zlroMHD26hgahnS0vH87nnMvHAAcaOHcvpp5/ecpt80Rp+XrUKLrxQEVccDrSGn597Du68s3XsMUJrzNu/UfwRoLYS9MH7wdy5Kspz7w7t37+f3Gb1MMxiD7HU0Yli9kVnhpdd0weMwQre7mKvaMlucguiaW42/ooWBwdZWWrHqa4uvM9XVUFhIcTHt9AQC2Rm2v6h+nX1jY+zySODfZTSNqjfLiEBXn+9hb1/+u5FCButfN5X28Z1OSkkJV0DPEu7dq/wKxV0aG5QkhyPPqp29WbNCs/GzEzl59ra/9feuYdXUZx//DtyEbkoCMol5ogURLwFbUjAasWiKHijooJEUVAQfkJF1BbFeqetUtRSLVbwhkG0aKloQVGqAlaggHJTkSAhIJEgEEIuGMJ5f3/M2WRzcjZnd3Z3dg+8n+fJk7NnZ7Nv5rvv7M7OzPuqHb9/P05D4gdFz5aIRSLuLujvvgM2bZLh8P1AUWczGViDNvgRwHuoqJjtvY3p6fINrQN/Ntt7LEqQiVXIGXigjk/MmiVfiBUUyKpQTs3kVudNm+TDjtedewObOtfLihXAli3e2JOISMSxzrUoKQE+/VQphYltHLTbCfnmG7ke+Oijk5dVwQudlyzx74UYoOTPtSgpwdT8fDzYs6e3dplx688bNgDvvOPfyFo9z2G2WbgQ+OwzADKgzuOPP46vvvoKubm53oygeuHPb7yB5oWF+Pzzz3H++ee7tyketzqvWQO89pr7XKpWeOHP8+YBH3zgjT2JcOvPIYY7qB5x0kknITMzEx+sWiWfIGNRUefMmYN8igIAft6mAOnYDgC4eFhE7UEsScOYk4Ok0VDLvilAftS6B+C6c2D8ge3b1Y433gb5FcjC+NsOGp2cHFmn1YejAFEIfI80EHmYR9bAwZs7S80LCtD6nAjy8x9Bq1bHobh4JJY3bgwSArjmGjnScfPN6lN8PdJ5Z+PaOnuSA9XA7Q2woKCWP3uOos5mydKxLZZvWfjjMsYf/f57R4cZ9u5bL/+3c66qnXvS0yUG6enAjh0KB8bYtk2Pzi6miqGgoObv+EF6OtC4MfDDD2rH62q33eTH1OHPjRu7y71svK3xi0hERiVXvRYNnf28Fjt3huUbdDvo0Pn44911ChLo3LlzZ+Tk5EB4EeG2UycZJV41L68Ofz7rLHcDETp0PuWU2g9/TvHbn7t2BTIyXOWHDi1Wi1OD/Em1IEkGv/nNb6hpw4Z0sF07IiKqqqqis88+m7JPj+Xx/MMfiP7zH/l50SL1E33xBVFxsdqx0SiVoDk9jTsTBifxJEDNnj1Emzap58JbsEAas3SpS0PqoaCAaNcuR4eYA7rMwHDajg7uAiElIy+P6MABtWOjUaLmzYnuvJOIiJ566ikCQIMHDyZ64QX5TzRo4C7wVEmJzJ2oms8spvP7D37mfaAug6IiovJy9eOHDSPq0ME7exKxc6fjOqwJLiX9+SmM8y64VDzl5e7qcP78hP7sSYAkg/373QWh0KGzmzqMRomaNav2Z1+orHRXh4bOn33mnU3xuA2GMny4/zq7qUOj3R43zjt7Ep3DDcb92U+d3aLDn92gQ2e3WLTboSIVdPa73U5xwEGS9JCVlYXyqip8FZvem5ubi7Vr1+KuBx+Ub2LWr68ZzXHzRqV7dzl3X4XiYrRAaWzEpTau100atGol34Cq5sLzoo6SkZ7uODS5eV2dsY7Y09G+eH72M/WpaPv2AaWl1XV4xx13YNSoUZgwYQIwYgSQmws8+6w8hyotWsip7Kpve2M6Xzoi4n0OVIMTTnD3hnbbNuxqGvEnDY7BiSc6rkNjCu1ZJ0l/Lm2V7o3vJuKYY1zXIQAgEsGsWaiuSyPAWDxKA97Nm7sLQuH36CTgrg6Li2VaCj/bxEaN3Nch4G89up2y6fdoBuCuDouLZbvtZx26HZ3TcX92iw6d3WDoHGYbWWf36Gi3D2O4g+oh2dnZAIAVZ56JiooKPPDAA+jRoweuv/56OQS/Zk2N0xvBUVT46CNANeHvoUPYeMkYrDk6u9bXnqybNCCSOfVU59136iQXvrdvn7ysKps3Aw895Gjaonld3Se4CB+3vMa/TgEg1y488YTasZWVcvpuLEdd48aNMW3aNGRkZMj9OTnAqFHu7CMCHnlEPRdqWprMMeanzt98IyNAKwYRWH9MD0zb2t/7SNdm3nhDKYhCTg6wdsUB4Ne/xu/nZPh3HRIBd98NvPWW2vFt2gB9+uD1j9vXmtJrhdK9fN06GVjGqtebjNNPl8Fz/OTll2UeTxXKyoA+fQAv8xDGQyRfXqle3C1aAFlZ/vrz6tXAddepB0VJTwf8XDsJyKAot9+uduz+/TJYV9eu3tpkJhoFBg2S16MKjRoB3br5q/Py5cBll6kHOTr+ePki308mTwZuvFHt2L17pcZuXhAnIxoF+vUDnn9e/fi0NH91XrIE6NXLdk76OjRq5K+vAMCjj6rnQv3xR1l/qsuo7HDoEHD++ep9gjBjNbQa5E8qTvHNzSWKRKIEHE/Nm99GQ4b8mQDQJ598Igvcf7+cUnnjjURt27o72dixRMce69pe36ZVEhG1a0d0220e/1EPWbxYTl/54IOgLbFm7Fii447z/M96qn3btkS33uqRZT7gUmdPp6FaMWaMa3/2nbZtXfuzVV16ssTgCPZnT0mVdnvhwqAtsSYVdPbAn30lFfz5CGm3feXTT8OvM/uzr4Cn+PqLEexjR0EVGuIclJYuwezZU3D66b/ChRdeKAtlZMg3HQsXuh/uNwJFqARiKC0FKittBVNybaNqcJr9+/2LymZgaKAysnbokByh9JtIRGqsonNlZcI69Dz3rRud3QTBsIubKHxEKNia+Dr0JA2OgRt/9ttPDNwGm0Lyw10tMfAi2qLfuPFnXbiNkus3qaBzerrU2E0wJ7+JRMKdmsKLKLl+46bd1kWq+HPYr8Wwt9th92dFuIPqARMnyswyZ2Mt7sciABtBVIgff7yvppCR16qoyJsOKqB2QT7+uEyZ4SYqmR3cNIzduwO33OKlNXXp0EGuFVKxcc0aoEkTfHzPv/1dm+gmB9eDD8ppTnEdGONaNeMq962bhrFrV2D0aMUT26RDB7nmSkXnL75AmWiGi/FhnV2eLilx48/33y+nD/ndUXXjz2edBYwfn7TOolEXL8oMf1apw9WrgXbtZPoRP3Hjzw8/LOtRx4s7VX/u2dODJNpJcNtud+kCLF3qvV1m3PjzH/8I/OIXenRW9ec+fXwMvBAjLU222yp1uG4dkJkppwn7iRudp0yR02/9xo3OV18tc7X6iaGzio3r1wMXXQSsWuW9XWbc6Pzss/7mrjbw4AVyGOEOqgdUx4bANtSs7MxEUVGfmkJdugBNmsjPbp9u3bxdLCioucn7ifGg4/RGG43KtCV+rnsA5NqF9u3V65AIDzzXzt+1iW4axm3bZAc1LiCG1b+r3LYZDaOKzgUF6sG+7NKokbzeVeqwoADHUAXKm7Su9bXngbHcjApt3SqHHr1IS1AfbnTeuBFo3LhWkDGrUyjjxp+3bpV55PzKdWvgRudvv5VvksKs8+rV/s+KcKPzli1yrZtfuW4N3Oi8fr1M8+O3zsYLJxWdlyyRM7H8xGi3Vepw82bZaWnUyHu7zLh5Dlu1Svq037h5DluwwF1aLDu40XnTJuCTTzw3qQ5unsP++1//O9CAersdcriD6gHG9RtBAc4D0ABdAfwBJ59susk0aACceWbtA9yeULVzpSOiWCQiA3s4zc1UVCSnp8ZF/PRlhDISUcudGKv3bw/UrkdXI5GJMHRSyUtoobOV9MqXRHq6fCh1Ov1l507g4EF916JKjrCYznc9HfE+z60ZI3fi3r3Oj922TV8dNm0qp987waSzEWSsdeu6xTzp9HfpIs/lFB35/oy/37q1bBedoiPKMCCDtrRt67wDUlSkz58zMtSim+uIMgzIRqJTJ7VlILruz926SX+Jn06TDMOfdVyLvXoBLVs6P05X9NmOHeW1qPIyQZfOZ58tAyVWVDg7Tuf9uU8ftTymOnW+4AJ5j3aKLp1//nM5mvzTT/6fSydWi1OD/Em1IElGTsLJuJvK0YSAaOJgH7feKheEv/22uxMeOqSefzISIbrpJnfnt0NZGVFFhfPjli8nAujj8fNieR49CKBiRUmJWh3ec0+1zvFBXoTw0L5oVK0OiRLqnJtL1Lq1h4FpiGTuRJU6jOlM776reGIHqObjvftuoiZN3OcNTEY0qp47UZc/q9bBsmVS53nzan3tS5A2VRt16eyG9HQ9Oqui059VSQWdIxGioUODtsIaw5/DrvMxx7DObkgVncPuz2Fvt0MA6gmSpJiokjFjjKYcN7IA28rTcfLJApMmJRhlMdahun37eNRRMr+jU6qqZFoVHW90VKdRxd6KPTE7YrlW0rPRqxYt1I4rKMCOhhGgqu6bU0+rVoiaaeFOOHSojs5GcKT4Om3dGvjLX1zUqeo0Kp051lTz8Rqjk35PtxNC7Rw6/Vm1DixGJ3NyfAjM5iYfb3q6/zqrUlUlZ3qEOZeertFJN+jyZ1WMdjvsdQiE/1oMuz/rardVSQV/NkYnWefDFp7i6xE5OcAVs4bg1Bm/s46KO2SIzL157rnuT/jyyzKgghOqquQxOhbnHzgg80/On+/suFNPBSZOxH8LT0m429N14CtWAMOHy1xVTrj6auwZMqZOH9zztYkA8NxzwO9/7+yYykpgwgQ5dSZGouBIANC8ucuOQkWFzD/5zjvOjuvYERg7Vv72m6VLgWuvBXbtcnbcxRfL/00HkyfLXKNO+Okn4I47gF/+0h+bzJSVyfyTc+Y4O65DB5mP1888cAaLFgF9+zrXuVcv4IYb/LEpnocfdh4YrKICuOkmaafflJYCl14KvP66s+PatJG5AnXo/P77MiCT0/VxGRky8IsO7r1XXvdOKCuT9mVm+mOTmZISeT29+qqz41q0kPcVHQ/d77wj8xM71blzZ+CSS/yxKZ7/+z/ZLjqhtFROxzQGLPykuFjmTp4+3dlxTZrInMY6dJ4zR3aEd+50dlz79jKgmA6GDgUuv9zZMSUl0pe7dfPHJjN798o6nDbN/3PpxGpoNcifVJviGwi3307UsqX61EC/iUaJWrVSzs2kJf/kRx+RmxxcvueSJfJMZ6u8k66nJLvUWQsuddbCYe7PWjB0DnOOTNbZPamg88iRrLNbWGf3sM7ekCo6jxgRtCWOAedB1cCuXTKKoUqQDhWysuTbsU2b7B/z9ddyyoEOhJA2Og31vmoVUFGRMOKn5yOUmZnSzhUr7B+zZ4+MBEnkfy5ZQE3nLVtqBS2aNct6FozrF6SqOm/cqCcPKqCmc0mJ/xEMzajoXFioJx8vUKOzkzoE5NRUXZEFjZEnJzaWlakFLVLF0Dkvz/4xe/f6nxbMQFVnnTk/VXQ+cEDOINKFis5OA9m4QVVnXe0NUKOzk3tLVZXeSKYqOuu67wHqOutqbwA1nXVHq1XRWaeNqs9hIYc7qF4xb56MpLVli57zZWXJ304anrvucj5NwQ3Z2cCGDfYjQhYXy8ZqypTqiJ++Rk897jjgtNOc1eHcuTL6oZOOhBtUdB49GrjwwurNiRMTt5VCeNThV9H5tNOAJ5/04OQ2UNF5zhwZzXTzZv/sMqOi8y23AOed54s5CcnOlmkwnOicluZ/Lj0DQ2cnN+nZs2V6mfx838yqhaGzExsHD9YzjdsgK8u5zi1bypx/OlDROTdX6rx9u392mcmOJZxzYuOAAcBll/liTkIMne2+oCkullN8Z8zw1axqVNrtV14BTjxRvrzTgaGzExuvuEIuOdGFis7HHy99RgcqOr/4oow47nRasCoqOg8YIO/RunCqcwrAHVSvWLFC3qS7dKn+ytc0Kd26Ac2a2XcYIlnWeEDSQVZWTX48O6xcKX/HGgNtI5QrVth/25VAZ1/xQGerdbtEHtWpqs461loZqOrcqZOvZlWjqrMX69ntoqpzRoZ/NsWTne1c52OP1bN2ElDX+fTT/bXLTHa2c52J5EOmLlR0PvpotXQWKnTrJhf4O9VZZ0AVQ2e7eRpXrpQjqDriBhhkZ8tOvhOdq6qAdu38tcvA0NnuiwgiYNky2QHUhdFuO9F53z59dQio+fOePfJlhA6MdtuJzosXq6WmUcXp/TkF4Ci+XmF0CmJzKeOjpm7dKrcBjzoFDRrI0RO7eQnz8uRUMd0d1BNOsD9V0riZ9+jhn03x9OpV0yDbybm2fHktnX2nQQMZlMJuw51A50hEXn/xePZMnpUlO3J2c6EGofMFF8jE6Pv3yw5JMoLQ+fLL5U3QDnl58k23bn/u3l1Ol7SDobPOFxEXXSTzBpeVyQfHZMS1277ToIEMqmL3wSoInXv0kDMw7LY5xkObTp379pVTYisq7EWMD0LnoUOBUxIH+6tDUP585ZX2I7EHofPll0v7DhwAjjkmefkgdB41yv4La0NnY0ROB9nZ8qHTTnsIBKPzgAEypUBlpb0cx0HoPH480LWrvfJB6Tx6NNCqlb5z+o3V4tQgf1IuSFJZGVGDBkQPPFD9lZYgP07yP+XmSgPWrvXQABs4sfGqq4i6dvXPFreUltbROXQYOq9ZU+sr33PKOoF1ds9rr9XROXSwzu4xdNbdbjuBdXZPUPdnJ7DO7mGd3VNaSnTUUeHWORXa7ZAADpLkM6tXy4XvprclVtMqPU2T4uTt0fLlcnRG51QxwL6NRDWjVmHliy/q6Bw6DJ3POKP6Ky3ree0StM52RoWC1tmOjStW1NFZG3YCaASts52AOEHqTGQvoJ6hs+52G5BpjJIRtM6JcmfFY+gchI1VVfaCHwWpc3Fx8jJB6hyNArt3Jy8XpM6lpfZmswX1HEZkb/11kDr/9JO9IJ6rV8trIoh2u6hIzlBLRlD+fOgQ8NVXes/pI9xB9YLu3YGFC4Hzz6/+ymopiadLTEpL5VQsO7mPxo8H3n5bTlXQyYIFcm2SkeC7Pt56SwZy0s348UD//snLnXGGtFFX7i2DkhLgnHOAqVOTlx01Cpg5s47Ovq/n/de/ZM7LZDoTAS+9JPN36mbkyFq5YS059VRpo84ARIB8UOzUCXjmmeRlhw6Vfq/bn998U06FT/awQyT/jxEjdFhVmyFDgN69k5fr2FHaqCO/qJndu+XSh7/+NXnZgQOBKVP06zxzpgyIk0znaBR45BHnOT+94Kqr7PlzWhrw6KP6dd61Sy4nsHN/7tdP2qhb5+nT5ZTAZDofOiTzNA8ZoscuM337ysBCyTjhBGljz57+22Tmhx9koB87waMuvBC47z79Oj/3nMyTmUzngwdlm+00t6sX9OljL3hUy5byXq67E/399zJw4iuvJC+bmQncead+nadOlc+puoLB+Y3V0GqQPyk3xTcBWqZVRqNEWVly3vBPP3n4hz0kL09Ou7nzzqAtsWbyZCnQ0qVBW5IY1tkbUkHnHj1SQ+dx44K2xBrW2T2ss3tYZ2948snU0LljR9bZDYbOn30WtCWJYZ19AfVM8bXVYQRwGYCNAPIATEiwXwCYGtu/FsC5pn35ANYB+LI+Q8w/KdVBff55ot/+lqiyss6u3Fx5bxJC/vZlzd+CBVLGv/0t8f5olOiWW4jmzfPh5DYZPpzo6KOJtm1LvH/LFqJBg4jy87WaVU1ZGVHbtkQXXWRdZsYMokmTiKqq9Nllxo7Oo0YRLVqk1y4zdnQeMYJoxw6tZlVjR+dXXiF69tngEnIbOk+blnh/NEp0111Ey5frtcuMHZ3vuYdo926tZlVTWkp04on165ybK9cJOVkj7yV2dJ44kWj9er12mbGj82OPEZWUaDWrGjs6v/km0bvvhlvnSZNkXQaFHZ2nTiU6cECrWdXY0fmf/yRaskSfTfHY0fmZZ4h27tRrl5lkOufnE82cGdwzjqHzr35lXea994KNu2BH5xdeICou1muXmWHD6tc5ZLjqoAJoAGAzgE4AGgNYA+D0uDL9ASyIdVR7Alhu2pcPoE2y85h/UqaDunGjfODt3Ts4G6JRovPOI+rQgWjTprr7Xnyx/o6NDrZsIWrUiGjwYNkImSkpIbr22uAd6plnZD3NnFn3YcbQub4bpN+kms7799feV1JCNHAg65wMQ+e0tNTQOZE/Gzpv3x6IeURE9PTTqaNzXl7dfamkc5D+bOj82mt194VN582b6+6bMSNcOpeX194XNp0TveUPm87ffVd3X9h0rqiovS9s7fbs2XX3GTrX14H1G7PO8QMqZp3//vdg7COS11/DhlLnsI70mnDbQe0F4APT9n0A7osr83cAN5i2NwJoT4drB3XECKILLpBDo02bBjuaQSSnRDRpQjRmjNzesoWoXz+i006TEmdkBH+h3neftOXzz+X2K68QXXopUatW8vuHHgrUPKqoIDrzTKLOnYkOHpTfDRsWTp2N6HUbNoRXZ2PkZ9q0cOp8zjk1HZdBg8Kp8+TJcnvlynDq3LBhzU16ypTw6XzGGTUvD6NRoiuvDKfO06fL7cWLa+vcvXs4dG7alKioSG4/9lg4dR4wQG6XlxNdcUU4df7HP+T2+++HU+dWrWpGw++/P5w633yz3N69O7w6L1wot+fODafOaWk1o+HjxoVTZ2Op0LZt4dV52TK5PWtW+HSeMIHo1FODGw13gNsO6rUAZpi2bwLwbFyZ9wCcb9peBCAz9nkLgNUAVgEYWc95RgJYCWBlJBLRUzOqDBxI1KuXvAhsTNnQMtW3sLDGlvXriTIz5ZumV19NOP04ENatq/k8eTJRdjbR9dcH3+AYVFYSffttzfbFFzvSWQuFhUR798rPy5aFU+eNG2s+P/xwOHU2v/3s2TOcOhujVosWhVNn80jBvfdKnQcNIlqxIjibzFRW1owGHDwoX0qEUWfjYWbevHDqXFBQ83n06HDqbOhZXBxenY2HxddfD6fOhYU1n4cODafOxrKB7dvDqXNRUc2Lz+nTw6nzrl01nwcODKfO+/bJzxs3hlNn8/KVZ54Jp8579gRtgS3q66AKud8aIcR1AC4lotti2zcByCKisaYy/wbwRyJaGtteBOC3RLRKCNGBiHYIIU4E8CGAsUS0uL5zZmZm0sqVK+u1K1WYNUsGHDNHw2/aNMA0HwzDMAzDMAzDMAEihFhFRJmJ9tlJM7MdQLpp+yQAO+yWISLjdxGAuQBCnOjSeyZOrJuqrbxcfs8wDMMwDMMwDMPUYKeD+j8AXYQQpwghGgMYDGBeXJl5AIYKSU8A+4ioUAjRTAjRAgCEEM0A9AWw3kP7Q09BgbPvGYZhGIZhGIZhjlQaJitARFVCiDEAPoCM6PsSEW0QQoyK7X8ewHzISL55AMoBDIsd3hbAXCGEca7Xieh9z/+LEBOJAFu3Jv6eYRiGYRiGYRiGqSFpBxUAiGg+ZCfU/N3zps8E4I4Ex30HIMOljSnNpEmJ16BOmhScTQzDMAzDMAzDMGHEzhRfxgU5OTIg0sknA0LI3xwgiWEYhmEYhmEYpi62RlAZd+TkcIeUYRiGYRiGYRgmGTyCyjAMwzAMwzAMw4QC7qAyDMMwDMMwDMMwoYA7qAzDMAzDMAzDMEwo4A4qwzAMwzAMwzAMEwq4g8owDMMwDMMwDMOEAiFTmIYLIcQuAFuDtqMe2gD4MWgjmDqwLuGDNQknrEs4YV3CB2sSTliXcMK6hI8wa3IyEZ2QaEcoO6hhRwixkogyg7aDqQ3rEj5Yk3DCuoQT1iV8sCbhhHUJJ6xL+EhVTXiKL8MwDMMwDMMwDBMKuIPKMAzDMAzDMAzDhALuoKrxQtAGMAlhXcIHaxJOWJdwwrqED9YknLAu4YR1CR8pqQmvQWUYhmEYhmEYhmFCAY+gMgzDMAzDMAzDMKGAO6gMwzAMwzAMwzBMKOAOaj0IIS4TQmwUQuQJISYk2C+EEFNj+9cKIc4Nws4jCSFEuhDiYyHE10KIDUKIOxOU6S2E2CeE+DL282AQth5JCCHyhRDrYvW9MsF+9hXNCCG6mnzgSyFEiRBiXFwZ9hUNCCFeEkIUCSHWm747XgjxoRBiU+x3K4tj670PMWpYaDJZCPFNrI2aK4RoaXFsve0do46FLg8LIb43tVP9LY5lX/EJC13eNGmSL4T40uJY9hcfsHoePlzuLbwG1QIhRAMA3wK4BMB2AP8DcAMRfWUq0x/AWAD9AWQD+AsRZQdg7hGDEKI9gPZEtFoI0QLAKgAD4nTpDeAeIroiGCuPPIQQ+QAyiShhMmj2lWCJtWffA8gmoq2m73uDfcV3hBC/BFAKYCYRnRn77kkAe4joT7GHg1ZE9Lu445Lehxg1LDTpC+A/RFQlhHgCAOI1iZXLRz3tHaOOhS4PAygloj/Xcxz7io8k0iVu/xQA+4jo0QT78sH+4jlWz8MAbsFhcG/hEVRrsgDkEdF3RFQJ4A0AV8eVuRrSWYmIlgFoGbtgGJ8gokIiWh37vB/A1wDSgrWKsQH7SrD0AbDZ3Dll9EFEiwHsifv6agCvxj6/CvlgEY+d+xCjQCJNiGghEVXFNpcBOEm7YUc4Fr5iB/YVH6lPFyGEAHA9gNlajTrCqed5+LC4t3AH1Zo0ANtM29tRtyNkpwzjE0KIjgDOAbA8we5eQog1QogFQogz9Fp2REIAFgohVgkhRibYz74SLINh/fDAvhIMbYmoEJAPGgBOTFCG/SY4hgNYYLEvWXvHeM+Y2NTrlyymLLKvBMcFAHYS0SaL/ewvPhP3PHxY3Fu4g2qNSPBd/HxoO2UYHxBCNAfwNoBxRFQSt3s1gJOJKAPAXwH8S7N5RyK/IKJzAfQDcEdsOpAZ9pWAEEI0BnAVgDkJdrOvhBv2mwAQQkwEUAVglkWRZO0d4y3TAPwMQHcAhQCmJCjDvhIcN6D+0VP2Fx9J8jxseViC70LlL9xBtWY7gHTT9kkAdiiUYTxGCNEI0hlnEdE/4/cTUQkRlcY+zwfQSAjRRrOZRxREtCP2uwjAXMjpI2bYV4KjH4DVRLQzfgf7SqDsNKa5x34XJSjDfqMZIcTNAK4AkEMWQTpstHeMhxDRTiI6RERRANORuL7ZVwJACNEQwDUA3rQqw/7iHxbPw4fFvYU7qNb8D0AXIcQpsRGIwQDmxZWZB2CokPSEXCBeqNvQI4nYWocXAXxNRE9ZlGkXKwchRBbkdb5bn5VHFkKIZrEF+hBCNAPQF8D6uGLsK8Fh+XabfSVQ5gG4Ofb5ZgDvJChj5z7EeIQQ4jIAvwNwFRGVW5Sx094xHhIXr+DXSFzf7CvBcDGAb4hoe6Kd7C/+Uc/z8GFxb2kYtAFhJRbFbwyADwA0APASEW0QQoyK7X8ewHzIqKR5AMoBDAvK3iOIXwC4CcA6URPS/H4AEaBal2sBjBZCVAGoADDY6k044wltAcyN9XMaAnidiN5nXwkeIURTyCh9t5u+M+vCvqIBIcRsAL0BtBFCbAfwEIA/AfiHEOJWAAUArouV7QBgBhH1t7oPBfE/HG5YaHIfgKMBfBhrz5YR0SizJrBo7wL4Fw5LLHTpLYToDjkFMR+x9ox9RR+JdCGiF5EgvgH7izasnocPi3sLp5lhGIZhGIZhGIZhQgFP8WUYhmEYhmEYhmFCAXdQGYZhGIZhGIZhmFDAHVSGYRiGYRiGYRgmFHAHlWEYhmEYhmEYhgkF3EFlGIZhGIZhGIZhQgF3UBmGYRiGYRiGYZhQwB1UhmEYhmEYhmEYJhT8P8WKMaruNbtzAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "DeltaE = 0.05\n", "kf_example(DeltaE) " @@ -313,11 +362,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "id": "w5I8Hz20nXMQ" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: MesoPy in /Users/jmandel/opt/anaconda3/lib/python3.8/site-packages (2.0.3)\r\n" + ] + } + ], "source": [ "!pip install MesoPy\n", "from MesoPy import Meso" @@ -334,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "id": "uBp6J9gRc83D" }, @@ -362,7 +419,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "id": "HE-r6GlnjWY7" }, @@ -383,11 +440,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "id": "dPbrsJMtkiKx" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BLACK CEDAR station BKCU1 at -112.238864 38.979242\n", + "bounding box -112.24886400000001, 38.969242, -112.228864, 38.989242\n" + ] + } + ], "source": [ "station=meso_obss['STATION'][0]\n", "#print(json.dumps(station, indent=4))\n", @@ -402,11 +468,497 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "id": "3bXopS3btyz0" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2018-06-01 08:27:00+00:00 4.9\n", + "2018-06-01 09:27:00+00:00 5.0\n", + "2018-06-01 10:27:00+00:00 5.2\n", + "2018-06-01 11:27:00+00:00 5.2\n", + "2018-06-01 12:27:00+00:00 5.3\n", + "2018-06-01 13:27:00+00:00 5.6\n", + "2018-06-01 14:27:00+00:00 6.3\n", + "2018-06-01 15:27:00+00:00 6.8\n", + "2018-06-01 16:27:00+00:00 6.9\n", + "2018-06-01 17:27:00+00:00 7.0\n", + "2018-06-01 18:27:00+00:00 7.2\n", + "2018-06-01 19:27:00+00:00 6.6\n", + "2018-06-01 20:27:00+00:00 6.2\n", + "2018-06-01 21:27:00+00:00 5.7\n", + "2018-06-01 22:27:00+00:00 5.5\n", + "2018-06-01 23:27:00+00:00 5.3\n", + "2018-06-02 00:27:00+00:00 5.2\n", + "2018-06-02 01:27:00+00:00 5.1\n", + "2018-06-02 02:27:00+00:00 5.1\n", + "2018-06-02 03:27:00+00:00 5.1\n", + "2018-06-02 04:27:00+00:00 5.2\n", + "2018-06-02 05:27:00+00:00 5.3\n", + "2018-06-02 06:27:00+00:00 5.7\n", + "2018-06-02 07:27:00+00:00 5.9\n", + "2018-06-02 08:27:00+00:00 6.1\n", + "2018-06-02 09:27:00+00:00 6.4\n", + "2018-06-02 10:27:00+00:00 6.5\n", + "2018-06-02 11:27:00+00:00 6.6\n", + "2018-06-02 12:27:00+00:00 7.0\n", + "2018-06-02 13:27:00+00:00 7.2\n", + "2018-06-02 14:27:00+00:00 7.9\n", + "2018-06-02 15:27:00+00:00 7.7\n", + "2018-06-02 16:27:00+00:00 7.5\n", + "2018-06-02 17:27:00+00:00 7.0\n", + "2018-06-02 18:27:00+00:00 6.4\n", + "2018-06-02 19:27:00+00:00 5.8\n", + "2018-06-02 20:27:00+00:00 5.5\n", + "2018-06-02 21:27:00+00:00 5.2\n", + "2018-06-02 22:27:00+00:00 4.9\n", + "2018-06-02 23:27:00+00:00 4.7\n", + "2018-06-03 00:27:00+00:00 4.7\n", + "2018-06-03 01:27:00+00:00 4.6\n", + "2018-06-03 02:27:00+00:00 4.4\n", + "2018-06-03 03:27:00+00:00 4.5\n", + "2018-06-03 04:27:00+00:00 4.6\n", + "2018-06-03 05:27:00+00:00 4.7\n", + "2018-06-03 06:27:00+00:00 5.0\n", + "2018-06-03 07:27:00+00:00 5.2\n", + "2018-06-03 08:27:00+00:00 5.3\n", + "2018-06-03 09:27:00+00:00 5.5\n", + "2018-06-03 10:27:00+00:00 5.9\n", + "2018-06-03 11:27:00+00:00 6.0\n", + "2018-06-03 12:27:00+00:00 6.3\n", + "2018-06-03 13:27:00+00:00 6.5\n", + "2018-06-03 14:27:00+00:00 7.2\n", + "2018-06-03 15:27:00+00:00 7.4\n", + "2018-06-03 16:27:00+00:00 7.0\n", + "2018-06-03 17:27:00+00:00 6.7\n", + "2018-06-03 18:27:00+00:00 5.9\n", + "2018-06-03 19:27:00+00:00 5.6\n", + "2018-06-03 20:27:00+00:00 5.1\n", + "2018-06-03 21:27:00+00:00 4.7\n", + "2018-06-03 22:27:00+00:00 4.5\n", + "2018-06-03 23:27:00+00:00 4.3\n", + "2018-06-04 00:27:00+00:00 4.2\n", + "2018-06-04 01:27:00+00:00 4.1\n", + "2018-06-04 02:27:00+00:00 4.0\n", + "2018-06-04 03:27:00+00:00 4.2\n", + "2018-06-04 04:27:00+00:00 4.3\n", + "2018-06-04 05:27:00+00:00 4.5\n", + "2018-06-04 06:27:00+00:00 4.7\n", + "2018-06-04 07:27:00+00:00 5.0\n", + "2018-06-04 08:27:00+00:00 4.9\n", + "2018-06-04 09:27:00+00:00 5.1\n", + "2018-06-04 10:27:00+00:00 5.0\n", + "2018-06-04 11:27:00+00:00 5.2\n", + "2018-06-04 12:27:00+00:00 5.0\n", + "2018-06-04 13:27:00+00:00 5.2\n", + "2018-06-04 14:27:00+00:00 5.7\n", + "2018-06-04 15:27:00+00:00 6.0\n", + "2018-06-04 16:27:00+00:00 5.7\n", + "2018-06-04 17:27:00+00:00 5.3\n", + "2018-06-04 18:27:00+00:00 4.6\n", + "2018-06-04 19:27:00+00:00 4.2\n", + "2018-06-04 20:27:00+00:00 3.9\n", + "2018-06-04 21:27:00+00:00 3.8\n", + "2018-06-04 22:27:00+00:00 3.6\n", + "2018-06-04 23:27:00+00:00 3.5\n", + "2018-06-05 00:27:00+00:00 3.4\n", + "2018-06-05 01:27:00+00:00 3.4\n", + "2018-06-05 02:27:00+00:00 3.3\n", + "2018-06-05 03:27:00+00:00 3.4\n", + "2018-06-05 04:27:00+00:00 3.5\n", + "2018-06-05 05:27:00+00:00 3.5\n", + "2018-06-05 06:27:00+00:00 3.6\n", + "2018-06-05 07:27:00+00:00 3.6\n", + "2018-06-05 08:27:00+00:00 3.6\n", + "2018-06-05 09:27:00+00:00 3.7\n", + "2018-06-05 10:27:00+00:00 3.7\n", + "2018-06-05 11:27:00+00:00 3.7\n", + "2018-06-05 12:27:00+00:00 3.9\n", + "2018-06-05 13:27:00+00:00 3.9\n", + "2018-06-05 14:27:00+00:00 4.1\n", + "2018-06-05 15:27:00+00:00 4.2\n", + "2018-06-05 16:27:00+00:00 4.1\n", + "2018-06-05 17:27:00+00:00 4.0\n", + "2018-06-05 18:27:00+00:00 3.8\n", + "2018-06-05 19:27:00+00:00 3.6\n", + "2018-06-05 20:27:00+00:00 3.3\n", + "2018-06-05 21:27:00+00:00 3.4\n", + "2018-06-05 22:27:00+00:00 3.1\n", + "2018-06-05 23:27:00+00:00 3.1\n", + "2018-06-06 00:27:00+00:00 3.2\n", + "2018-06-06 01:27:00+00:00 3.2\n", + "2018-06-06 02:27:00+00:00 3.1\n", + "2018-06-06 03:27:00+00:00 3.3\n", + "2018-06-06 04:27:00+00:00 3.4\n", + "2018-06-06 05:27:00+00:00 3.5\n", + "2018-06-06 06:27:00+00:00 3.6\n", + "2018-06-06 07:27:00+00:00 3.7\n", + "2018-06-06 08:27:00+00:00 3.8\n", + "2018-06-06 09:27:00+00:00 4.0\n", + "2018-06-06 10:27:00+00:00 4.1\n", + "2018-06-06 11:27:00+00:00 4.1\n", + "2018-06-06 12:27:00+00:00 4.2\n", + "2018-06-06 13:27:00+00:00 4.5\n", + "2018-06-06 14:27:00+00:00 4.9\n", + "2018-06-06 15:27:00+00:00 5.0\n", + "2018-06-06 16:27:00+00:00 5.0\n", + "2018-06-06 17:27:00+00:00 4.5\n", + "2018-06-06 18:27:00+00:00 4.3\n", + "2018-06-06 19:27:00+00:00 4.0\n", + "2018-06-06 20:27:00+00:00 3.7\n", + "2018-06-06 21:27:00+00:00 3.6\n", + "2018-06-06 22:27:00+00:00 3.5\n", + "2018-06-06 23:27:00+00:00 3.3\n", + "2018-06-07 00:27:00+00:00 3.3\n", + "2018-06-07 01:27:00+00:00 3.2\n", + "2018-06-07 02:27:00+00:00 3.2\n", + "2018-06-07 03:27:00+00:00 3.3\n", + "2018-06-07 04:27:00+00:00 3.4\n", + "2018-06-07 05:27:00+00:00 3.5\n", + "2018-06-07 06:27:00+00:00 3.6\n", + "2018-06-07 07:27:00+00:00 3.7\n", + "2018-06-07 08:27:00+00:00 3.9\n", + "2018-06-07 09:27:00+00:00 4.0\n", + "2018-06-07 10:27:00+00:00 4.1\n", + "2018-06-07 11:27:00+00:00 4.3\n", + "2018-06-07 12:27:00+00:00 4.4\n", + "2018-06-07 13:27:00+00:00 4.6\n", + "2018-06-07 14:27:00+00:00 5.1\n", + "2018-06-07 15:27:00+00:00 5.4\n", + "2018-06-07 16:27:00+00:00 5.3\n", + "2018-06-07 17:27:00+00:00 4.9\n", + "2018-06-07 18:27:00+00:00 4.6\n", + "2018-06-07 19:27:00+00:00 4.3\n", + "2018-06-07 20:27:00+00:00 3.8\n", + "2018-06-07 21:27:00+00:00 3.5\n", + "2018-06-07 22:27:00+00:00 3.6\n", + "2018-06-07 23:27:00+00:00 3.4\n", + "2018-06-08 00:27:00+00:00 3.3\n", + "2018-06-08 01:27:00+00:00 3.3\n", + "2018-06-08 02:27:00+00:00 3.3\n", + "2018-06-08 03:27:00+00:00 3.5\n", + "2018-06-08 04:27:00+00:00 3.5\n", + "2018-06-08 05:27:00+00:00 3.6\n", + "2018-06-08 06:27:00+00:00 3.7\n", + "2018-06-08 07:27:00+00:00 3.8\n", + "2018-06-08 08:27:00+00:00 3.9\n", + "2018-06-08 09:27:00+00:00 4.0\n", + "2018-06-08 10:27:00+00:00 4.2\n", + "2018-06-08 11:27:00+00:00 4.2\n", + "2018-06-08 12:27:00+00:00 4.2\n", + "2018-06-08 13:27:00+00:00 4.5\n", + "2018-06-08 14:27:00+00:00 5.0\n", + "2018-06-08 15:27:00+00:00 5.3\n", + "2018-06-08 16:27:00+00:00 5.0\n", + "2018-06-08 17:27:00+00:00 4.7\n", + "2018-06-08 18:27:00+00:00 4.3\n", + "2018-06-08 19:27:00+00:00 4.1\n", + "2018-06-08 20:27:00+00:00 3.6\n", + "2018-06-08 21:27:00+00:00 3.5\n", + "2018-06-08 22:27:00+00:00 3.4\n", + "2018-06-08 23:27:00+00:00 3.2\n", + "2018-06-09 00:27:00+00:00 3.2\n", + "2018-06-09 01:27:00+00:00 3.2\n", + "2018-06-09 02:27:00+00:00 3.2\n", + "2018-06-09 03:27:00+00:00 3.3\n", + "2018-06-09 04:27:00+00:00 3.5\n", + "2018-06-09 05:27:00+00:00 3.7\n", + "2018-06-09 06:27:00+00:00 3.7\n", + "2018-06-09 07:27:00+00:00 3.8\n", + "2018-06-09 08:27:00+00:00 4.0\n", + "2018-06-09 09:27:00+00:00 3.9\n", + "2018-06-09 10:27:00+00:00 4.2\n", + "2018-06-09 11:27:00+00:00 4.3\n", + "2018-06-09 12:27:00+00:00 4.3\n", + "2018-06-09 13:27:00+00:00 4.2\n", + "2018-06-09 14:27:00+00:00 4.5\n", + "2018-06-09 15:27:00+00:00 4.4\n", + "2018-06-09 16:27:00+00:00 4.3\n", + "2018-06-09 17:27:00+00:00 4.1\n", + "2018-06-09 18:27:00+00:00 3.9\n", + "2018-06-09 19:27:00+00:00 3.6\n", + "2018-06-09 20:27:00+00:00 3.4\n", + "2018-06-09 21:27:00+00:00 3.2\n", + "2018-06-09 22:27:00+00:00 3.1\n", + "2018-06-09 23:27:00+00:00 3.0\n", + "2018-06-10 00:27:00+00:00 3.0\n", + "2018-06-10 01:27:00+00:00 3.0\n", + "2018-06-10 02:27:00+00:00 3.0\n", + "2018-06-10 03:27:00+00:00 3.0\n", + "2018-06-10 04:27:00+00:00 3.0\n", + "2018-06-10 05:27:00+00:00 3.1\n", + "2018-06-10 06:27:00+00:00 3.1\n", + "2018-06-10 07:27:00+00:00 3.2\n", + "2018-06-10 08:27:00+00:00 3.2\n", + "2018-06-10 09:27:00+00:00 3.1\n", + "2018-06-10 10:27:00+00:00 3.3\n", + "2018-06-10 11:27:00+00:00 3.2\n", + "2018-06-10 12:27:00+00:00 3.3\n", + "2018-06-10 13:27:00+00:00 3.3\n", + "2018-06-10 14:27:00+00:00 3.5\n", + "2018-06-10 15:27:00+00:00 3.9\n", + "2018-06-10 16:27:00+00:00 4.1\n", + "2018-06-10 17:27:00+00:00 4.4\n", + "2018-06-10 18:27:00+00:00 4.5\n", + "2018-06-10 19:27:00+00:00 4.2\n", + "2018-06-10 20:27:00+00:00 4.2\n", + "2018-06-10 21:27:00+00:00 4.1\n", + "2018-06-10 22:27:00+00:00 4.0\n", + "2018-06-10 23:27:00+00:00 4.0\n", + "2018-06-11 00:27:00+00:00 3.9\n", + "2018-06-11 01:27:00+00:00 3.9\n", + "2018-06-11 02:27:00+00:00 3.9\n", + "2018-06-11 03:27:00+00:00 3.9\n", + "2018-06-11 04:27:00+00:00 4.0\n", + "2018-06-11 05:27:00+00:00 4.2\n", + "2018-06-11 06:27:00+00:00 4.4\n", + "2018-06-11 07:27:00+00:00 4.5\n", + "2018-06-11 08:27:00+00:00 4.6\n", + "2018-06-11 09:27:00+00:00 4.8\n", + "2018-06-11 10:27:00+00:00 4.9\n", + "2018-06-11 11:27:00+00:00 5.1\n", + "2018-06-11 12:27:00+00:00 5.4\n", + "2018-06-11 13:27:00+00:00 5.5\n", + "2018-06-11 14:27:00+00:00 6.1\n", + "2018-06-11 15:27:00+00:00 6.2\n", + "2018-06-11 16:27:00+00:00 6.0\n", + "2018-06-11 17:27:00+00:00 5.6\n", + "2018-06-11 18:27:00+00:00 5.1\n", + "2018-06-11 19:27:00+00:00 4.7\n", + "2018-06-11 20:27:00+00:00 4.3\n", + "2018-06-11 21:27:00+00:00 4.0\n", + "2018-06-11 22:27:00+00:00 3.8\n", + "2018-06-11 23:27:00+00:00 3.7\n", + "2018-06-12 00:27:00+00:00 3.6\n", + "2018-06-12 01:27:00+00:00 3.5\n", + "2018-06-12 02:27:00+00:00 3.5\n", + "2018-06-12 03:27:00+00:00 3.6\n", + "2018-06-12 04:27:00+00:00 3.7\n", + "2018-06-12 05:27:00+00:00 3.9\n", + "2018-06-12 06:27:00+00:00 4.1\n", + "2018-06-12 07:27:00+00:00 4.1\n", + "2018-06-12 08:27:00+00:00 4.2\n", + "2018-06-12 09:27:00+00:00 4.4\n", + "2018-06-12 10:27:00+00:00 4.5\n", + "2018-06-12 11:27:00+00:00 4.6\n", + "2018-06-12 12:27:00+00:00 4.7\n", + "2018-06-12 13:27:00+00:00 5.0\n", + "2018-06-12 14:27:00+00:00 5.8\n", + "2018-06-12 15:27:00+00:00 6.0\n", + "2018-06-12 16:27:00+00:00 6.0\n", + "2018-06-12 17:27:00+00:00 6.0\n", + "2018-06-12 18:27:00+00:00 5.7\n", + "2018-06-12 19:27:00+00:00 5.3\n", + "2018-06-12 20:27:00+00:00 4.9\n", + "2018-06-12 21:27:00+00:00 4.6\n", + "2018-06-12 22:27:00+00:00 4.4\n", + "2018-06-12 23:27:00+00:00 4.2\n", + "2018-06-13 00:27:00+00:00 4.0\n", + "2018-06-13 01:27:00+00:00 4.0\n", + "2018-06-13 02:27:00+00:00 3.9\n", + "2018-06-13 03:27:00+00:00 4.1\n", + "2018-06-13 04:27:00+00:00 4.3\n", + "2018-06-13 05:27:00+00:00 4.5\n", + "2018-06-13 06:27:00+00:00 4.8\n", + "2018-06-13 07:27:00+00:00 4.7\n", + "2018-06-13 08:27:00+00:00 4.7\n", + "2018-06-13 09:27:00+00:00 5.0\n", + "2018-06-13 10:27:00+00:00 5.1\n", + "2018-06-13 11:27:00+00:00 5.2\n", + "2018-06-13 12:27:00+00:00 5.4\n", + "2018-06-13 13:27:00+00:00 5.6\n", + "2018-06-13 14:27:00+00:00 6.3\n", + "2018-06-13 15:27:00+00:00 6.5\n", + "2018-06-13 16:27:00+00:00 6.0\n", + "2018-06-13 17:27:00+00:00 5.3\n", + "2018-06-13 18:27:00+00:00 4.7\n", + "2018-06-13 19:27:00+00:00 4.3\n", + "2018-06-13 20:27:00+00:00 3.8\n", + "2018-06-13 21:27:00+00:00 3.5\n", + "2018-06-13 22:27:00+00:00 3.3\n", + "2018-06-13 23:27:00+00:00 3.2\n", + "2018-06-14 00:27:00+00:00 3.1\n", + "2018-06-14 01:27:00+00:00 3.1\n", + "2018-06-14 02:27:00+00:00 3.1\n", + "2018-06-14 03:27:00+00:00 3.2\n", + "2018-06-14 04:27:00+00:00 3.2\n", + "2018-06-14 05:27:00+00:00 3.2\n", + "2018-06-14 06:27:00+00:00 3.2\n", + "2018-06-14 07:27:00+00:00 3.3\n", + "2018-06-14 08:27:00+00:00 3.2\n", + "2018-06-14 09:27:00+00:00 3.4\n", + "2018-06-14 10:27:00+00:00 3.5\n", + "2018-06-14 11:27:00+00:00 3.5\n", + "2018-06-14 12:27:00+00:00 3.4\n", + "2018-06-14 13:27:00+00:00 3.5\n", + "2018-06-14 14:27:00+00:00 3.8\n", + "2018-06-14 15:27:00+00:00 3.9\n", + "2018-06-14 16:27:00+00:00 3.9\n", + "2018-06-14 17:27:00+00:00 3.7\n", + "2018-06-14 18:27:00+00:00 3.6\n", + "2018-06-14 19:27:00+00:00 3.4\n", + "2018-06-14 20:27:00+00:00 3.2\n", + "2018-06-14 21:27:00+00:00 3.2\n", + "2018-06-14 22:27:00+00:00 2.9\n", + "2018-06-14 23:27:00+00:00 2.9\n", + "2018-06-15 00:27:00+00:00 2.9\n", + "2018-06-15 01:27:00+00:00 2.8\n", + "2018-06-15 02:27:00+00:00 2.8\n", + "2018-06-15 03:27:00+00:00 2.9\n", + "2018-06-15 04:27:00+00:00 3.0\n", + "2018-06-15 05:27:00+00:00 3.0\n", + "2018-06-15 06:27:00+00:00 3.1\n", + "2018-06-15 07:27:00+00:00 3.0\n", + "2018-06-15 08:27:00+00:00 3.1\n", + "2018-06-15 09:27:00+00:00 3.2\n", + "2018-06-15 10:27:00+00:00 3.2\n", + "2018-06-15 11:27:00+00:00 3.2\n", + "2018-06-15 12:27:00+00:00 3.2\n", + "2018-06-15 13:27:00+00:00 3.3\n", + "2018-06-15 14:27:00+00:00 3.6\n", + "2018-06-15 15:27:00+00:00 3.7\n", + "2018-06-15 16:27:00+00:00 3.7\n", + "2018-06-15 17:27:00+00:00 3.6\n", + "2018-06-15 18:27:00+00:00 3.4\n", + "2018-06-15 19:27:00+00:00 3.5\n", + "2018-06-15 20:27:00+00:00 3.4\n", + "2018-06-15 21:27:00+00:00 3.5\n", + "2018-06-15 22:27:00+00:00 3.3\n", + "2018-06-15 23:27:00+00:00 3.4\n", + "2018-06-16 00:27:00+00:00 3.4\n", + "2018-06-16 01:27:00+00:00 3.4\n", + "2018-06-16 02:27:00+00:00 3.6\n", + "2018-06-16 03:27:00+00:00 3.7\n", + "2018-06-16 04:27:00+00:00 3.8\n", + "2018-06-16 05:27:00+00:00 4.0\n", + "2018-06-16 06:27:00+00:00 4.2\n", + "2018-06-16 07:27:00+00:00 4.4\n", + "2018-06-16 08:27:00+00:00 4.4\n", + "2018-06-16 09:27:00+00:00 4.6\n", + "2018-06-16 10:27:00+00:00 4.8\n", + "2018-06-16 11:27:00+00:00 4.8\n", + "2018-06-16 12:27:00+00:00 5.1\n", + "2018-06-16 13:27:00+00:00 5.4\n", + "2018-06-16 14:27:00+00:00 6.1\n", + "2018-06-16 15:27:00+00:00 6.2\n", + "2018-06-16 16:27:00+00:00 6.1\n", + "2018-06-16 17:27:00+00:00 5.8\n", + "2018-06-16 18:27:00+00:00 5.6\n", + "2018-06-16 19:27:00+00:00 4.7\n", + "2018-06-16 20:27:00+00:00 5.1\n", + "2018-06-16 21:27:00+00:00 4.5\n", + "2018-06-16 22:27:00+00:00 4.1\n", + "2018-06-16 23:27:00+00:00 4.4\n", + "2018-06-17 00:27:00+00:00 4.3\n", + "2018-06-17 01:27:00+00:00 4.3\n", + "2018-06-17 02:27:00+00:00 4.4\n", + "2018-06-17 03:27:00+00:00 4.5\n", + "2018-06-17 04:27:00+00:00 4.6\n", + "2018-06-17 05:27:00+00:00 4.8\n", + "2018-06-17 06:27:00+00:00 5.1\n", + "2018-06-17 07:27:00+00:00 5.2\n", + "2018-06-17 08:27:00+00:00 5.5\n", + "2018-06-17 09:27:00+00:00 5.8\n", + "2018-06-17 10:27:00+00:00 6.3\n", + "2018-06-17 11:27:00+00:00 6.5\n", + "2018-06-17 12:27:00+00:00 6.8\n", + "2018-06-17 13:27:00+00:00 7.5\n", + "2018-06-17 14:27:00+00:00 7.9\n", + "2018-06-17 15:27:00+00:00 7.8\n", + "2018-06-17 16:27:00+00:00 7.6\n", + "2018-06-17 17:27:00+00:00 6.8\n", + "2018-06-17 18:27:00+00:00 6.3\n", + "2018-06-17 19:27:00+00:00 5.8\n", + "2018-06-17 20:27:00+00:00 5.6\n", + "2018-06-17 21:27:00+00:00 5.1\n", + "2018-06-17 22:27:00+00:00 5.0\n", + "2018-06-17 23:27:00+00:00 4.9\n", + "2018-06-18 00:27:00+00:00 4.6\n", + "2018-06-18 01:27:00+00:00 4.7\n", + "2018-06-18 02:27:00+00:00 4.7\n", + "2018-06-18 03:27:00+00:00 4.7\n", + "2018-06-18 04:27:00+00:00 4.8\n", + "2018-06-18 05:27:00+00:00 4.9\n", + "2018-06-18 06:27:00+00:00 5.0\n", + "2018-06-18 07:27:00+00:00 5.1\n", + "2018-06-18 08:27:00+00:00 5.1\n", + "2018-06-18 09:27:00+00:00 5.0\n", + "2018-06-18 10:27:00+00:00 5.0\n", + "2018-06-18 11:27:00+00:00 5.2\n", + "2018-06-18 12:27:00+00:00 5.5\n", + "2018-06-18 13:27:00+00:00 5.8\n", + "2018-06-18 14:27:00+00:00 6.5\n", + "2018-06-18 15:27:00+00:00 6.5\n", + "2018-06-18 16:27:00+00:00 6.3\n", + "2018-06-18 17:27:00+00:00 6.0\n", + "2018-06-18 18:27:00+00:00 5.6\n", + "2018-06-18 19:27:00+00:00 5.3\n", + "2018-06-18 20:27:00+00:00 4.8\n", + "2018-06-18 21:27:00+00:00 4.4\n", + "2018-06-18 22:27:00+00:00 4.2\n", + "2018-06-18 23:27:00+00:00 4.1\n", + "2018-06-19 00:27:00+00:00 4.0\n", + "2018-06-19 01:27:00+00:00 3.9\n", + "2018-06-19 02:27:00+00:00 3.9\n", + "2018-06-19 03:27:00+00:00 3.8\n", + "2018-06-19 04:27:00+00:00 3.9\n", + "2018-06-19 05:27:00+00:00 4.1\n", + "2018-06-19 06:27:00+00:00 4.2\n", + "2018-06-19 07:27:00+00:00 4.2\n", + "2018-06-19 08:27:00+00:00 4.3\n", + "2018-06-19 09:27:00+00:00 4.5\n", + "2018-06-19 10:27:00+00:00 4.6\n", + "2018-06-19 11:27:00+00:00 4.9\n", + "2018-06-19 12:27:00+00:00 5.1\n", + "2018-06-19 13:27:00+00:00 5.3\n", + "2018-06-19 14:27:00+00:00 6.1\n", + "2018-06-19 15:27:00+00:00 6.4\n", + "2018-06-19 16:27:00+00:00 6.5\n", + "2018-06-19 17:27:00+00:00 6.2\n", + "2018-06-19 18:27:00+00:00 5.9\n", + "2018-06-19 19:27:00+00:00 5.3\n", + "2018-06-19 20:27:00+00:00 4.8\n", + "2018-06-19 21:27:00+00:00 4.7\n", + "2018-06-19 22:27:00+00:00 4.5\n", + "2018-06-19 23:27:00+00:00 4.3\n", + "2018-06-20 00:27:00+00:00 4.3\n", + "2018-06-20 01:27:00+00:00 4.2\n", + "2018-06-20 02:27:00+00:00 4.3\n", + "2018-06-20 03:27:00+00:00 4.3\n", + "2018-06-20 04:27:00+00:00 4.5\n", + "2018-06-20 05:27:00+00:00 4.6\n", + "2018-06-20 06:27:00+00:00 4.9\n", + "2018-06-20 07:27:00+00:00 5.2\n", + "2018-06-20 08:27:00+00:00 5.4\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'BKCU1 10 h fuel moisture data')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAEICAYAAAA6MVvXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACLTElEQVR4nO3dd3hUZfYH8O876T0hgfQQWiYQkN4yiKyoIGLbXewFV8TFikDY1e2/XXWXRIooYoEVBVHU3VURVBQVndBCMwQyQAJJIKTBpPfM+/tjcseQTKbeluR8nodHmblz5yTcuXPPPe97XsY5ByGEEEIIIYQQ4i6N0gEQQgghhBBCCOkdKMEkhBBCCCGEECIKSjAJIYQQQgghhIiCEkxCCCGEEEIIIaKgBJMQQgghhBBCiCgowSSEEEIIIYQQIgpKMAkhhPQqjLFzjLHrnNj+H4yxCsZYiZvvm8gY44wxT3f24+B75TDGZkj9Pu5ijP2VMbZZ6TgIIYTIhxJMQgjphdqTrAbGWC1jzMgY+5wxFt/h+bcZY//o8PcUxthFxtjS9r8nMcY+bE+8qhhjPzHGljDGPBhjMxhj562853eMsQXt/z+SMfZl++vtLrjMGPs7YyybMdbKGPurlefvYYwVMMbqGGP/Y4z1c/FX03m/8QCWAhjBOY8SY59y4JyncM6/s7WNnAmvGDofk4QQQnomSjAJIaT3uplzHgggGkApgLXWNmKMjQHwLYDnOecvMcaGANgPoAjAKM55CIB5ACYACHLwvVsAbAPwsIPbnwGwHMDnVuJLAfA6gPsBRAKoB7DOwf3aMxDAJc55mUj76zWYGV0nEEIIcQp9cRBCSC/HOW8E8BGAEZ2fY4xNAvA1gOc456+0P/w3AJmc8yWc84vt+zBwzu/hnFc6+J4GzvkGADkObr+Jc74TQI2Vp+8F8BnnfA/nvBbAnwD8kjFmK9kd0151rWKMfcAY8+28Qfsw2l0AYtorvW9bq852HHLLGNMwxn7PGMtjjF1ijG1ztJravp+09rjqGGMbGGORjLGdjLEaxtjXjLGwDtvf0j4UtrK9Ojy8m5gmMcayGGPVjLFSxtjK9s32tP+3sv3nm9p5yGrnKmf7+zzPGNPDnMgPZowlM8Z2McYuM8YMjLE7bPyMgxhj37f/PLsARHR6/kPGWEn7v8ue9psHYIwthPnfeXl7rJ+1Py78rmsYYycYY7c78rsmhBCiHEowCSGkl2OM+QO4E8C+Tk9NAvAFgGc45291ePw6mBNStUgBcEz4C+c8D0AzgCQbr7kDwGwAgwBcBWB+5w04518DuBFAMec8kHPeZRsrngJwG4BrAMQAMAJ41YHXCX4F4HqYY78ZwE4Az8GciGna9w/GWBKArQAWA+gPYAeAzxhj3lb2uQbAGs55MIAhMFeOAWB6+39D23++vQ7GeD+AhTBXq8thTsLfAzAAwN0A1gmJoRXvATjU/vP8HcCDnZ7fCWBY+74OA9gCAJzzN9r/f0V7rDe3b58H4GoAITDf+NjMGIt28OcghBCiAEowCSGk9/ofY6wSQDXMSU16p+enAKiC+aK/o3AAFyWPznGBMMfZURVsD9d9mXNezDm/DOAzAGNEiuVRAH/gnJ/nnDcB+CuAXzsxz3Et57yUc34BwA8A9nPOj7Tv678AxrZvdyeAzznnuzjnLQAyAPgBSLWyzxYAQxljEZzzWs555xsJznqbc57DOW+FOUk/xzn/N+e8lXN+GMDHAH7d+UWMsQQAEwH8iXPexDnfA/Pv3oJzvpFzXtPhdzeaMRbSXSCc8w/b/x1NnPMPAJyG+cYIIYQQlaIEkxBCeq/bOOehAHwAPAHge8ZYx0Y2rwI4CGBXx6GZAC7BPG+zO60AvKw87gVzsiO2WgDBnR4LhvXhtIKOHWHrYU5SxTAQwH/bh61WAjgJoA3muaGOKO3w/w1W/i7EGQOgQHiCc26CeU5srJV9PgxzRTSXMXaQMTbXwVi6U9Th/wcCmCz8vO0/870ArDVEigFg5JzXdXjM8jMwc4Oof7YPea0GcK79qSuG0XbEGHuAMXa0w3uPtLU9IYQQ5VGCSQghvRznvI1z/h+YE6FpHZ5qgzlZKATwJWNMSOK+hnkoZ3cKAUQwxixJG2OMwZyMFHT7KtflABjd4b0Gw5w0n5LgveoA+Hd4Lw+Yh6gKigDcyDkP7fDHt70iKaZimH+fQhwMQDyALu/DOT/NOb8b5mGn/wLwEWMsAIC17r1X/Hywnih2fF0RgO87/byBnPNFVl53EUBY+3sLEjr8/z0AboV5CHYIgEThx7PyvmCMDQTwJsw3R8Lbb5Yc77A9IYQQFaIEkxBCern2bqC3AgiDueJm0T78ch6ACgA72pODvwBIZYylCxVPxthQxthmxlgo57wQ5i6z/2KMBTLGfACkwVzZ3NfhPX0BeLf/3bd9u+5i9GrfXgPAs317j/antwC4mTF2dXt8/wfgP5xzWxVMV50C4MsYu4kx5gXgjzAns4L1AJ5vT37AGOvf/rsV2zYANzHGZrbHsRRAE4DMzhsyxu5jjPVvr3JWtj/cBvP8SROAwR02PwpgOmMsoX1o6rN24tgOIIkxdn/7v5EXY2xix4ZDAs55AYAsAH9jjHkzxqbBPM9UENT+M1yCOcl9odMuSjvFKiTJ5e0/50MwVzAJIYSoGCWYhBDSe33GGKuFeQ7m8wAe5Jx36erKOW8G8EsAjTDPmSsGMBXmClMOY6wK5nl3Wfh5WOqdMFfMzsBcVZsJYE57x1rAXH1rwM9dZBsAGGzE+mb7NncD+EP7/9/fHl8OgN/CnGiWwZyoPOb4r8FxnPOq9n2/BfPPVQegY1fZNQA+BfAVY6wG5oR6sgRxGADcB/PSMhUwJ2o3t/9bdTYb5n+n2vb47uKcN3LO62H+d9e3DzGdwjnfBeADAD/B3Ixnu504agDcAOAumI+LEpirpN3dLLgH5t/HZZhvVLzT4bl3YK5wXwBwAl2bTm0AMKI91v9xzk8AeAnAXpiTz1EA9LbiJYQQojzGud31rwkhhBBCCCGEELuogkkIIYQQQgghRBSUYBJCCCGEEEIIEQUlmIQQQgghhBBCREEJJiGEEEIIIYQQUXhKsdOIiAiemJgoxa4JIYQQQgghhCjo0KFDFZzz/taekyTBTExMRFZWlhS7JoQQQgghhBCiIMZYQXfP0RBZQgghhBBCCCGicCjBZIw9wxjLYYwdZ4xtZYz5Sh0YIYQQQgghhJCexW6CyRiLBfAUgAmc85EAPADcJXVghBBCCCGEEEJ6FkeHyHoC8GOMeQLwB1AsXUiEEEIIIYQQQnoiuwkm5/wCgAwAhQAuAqjinH/VeTvG2ELGWBZjLKu8vFz8SAkhhBBCCCGEqJojQ2TDANwKYBCAGAABjLH7Om/HOX+Dcz6Bcz6hf3+rHWsJIYQQQgghhPRijgyRvQ7AWc55Oee8BcB/AKRKGxYhhBBCCCGEkJ7GkQSzEMAUxpg/Y4wBmAngpLRhEWeYTCZs2LABjY2NSodCCCGEEEJkUlZWhs2bN4NzrnQohFg4MgdzP4CPABwGkN3+mjckjos44dChQ1iwYAHee+89pUMhhBBCCCEyefvtt3H//fdj9+7dSodCiIVDXWQ553/hnCdzzkdyzu/nnDdJHRhxXEVFBQBAr9crHAkhhBBCCJFLQUEBACA9PV3hSAj5maPLlBAVMxqNAIDMzEyFIyGEEEIIIXIpLCwEAHz55Zc4duyYwtEQYkYJZi9QWVkJAMjNzcWlS5eUDYYQQgghhMiiqKgI06ZNQ2BgIFUxiWpQgtkLCBVMgKqYhBBCCCF9RVFREUaNGoW7774bn376Kdra2pQOiRBKMHsDo9EIb29veHl50TxMQgghhJA+oK6uDpcvX0ZCQgKuueYa1NTUIDs7W+mwCKEEszcwGo2IiIjAuHHjqIJJCCGEENIHFBUVAQDi4+Oh0+kA0Eg2og6UYPYClZWVCA0NhU6nw8GDB9Hc3Kx0SIQQQgghREJCg5+EhAQMHDgQ0dHRNJKNqAIlmL2A0WhEWFgYdDodGhsbcfjwYaVDIoQQQgghEupYwWSMQafTUYJJVIESzF5ASDBTU1MB0HqYhBBCCCG9XVFRERhjiI2NBQDodDoUFBTgwoULCkdG+jpKMHsBIcGMiorC4MGDafw9IYQQQkgvV1hYiOjoaHh5eQGApdBA14FEaZRg9gKVlZUICwsDAMvwCM65wlERQgghhBCpFBUVIT4+3vL3sWPHws/PjxJMojhKMHu4trY2VFVVITQ0FID57lVpaSny8/OVDYwQQgghhEimqKgICQkJlr97eXlh4MCBOH/+vIJREUIJZo9XVVUFAFdUMAGah0kIIYQQ0ltxzlFYWHhFBRMAQkJCUF1drVBUhJhRgtnDGY1GAD8nmCkpKQgJCaEEkxBCCCGkl7p8+TIaGhq6JJjBwcGW4gMhSqEEs4frnGBqNBpMnToV+/btUzIsQgghhBAikY5LlHQUEhJCCSZRHCWYPVxlZSWAnxNMABg6dKhl8V1CCCGEENK7VFRUAAAGDBhwxeM0RJaoASWYPZxQwRSa/ABAVFQUKisr0djYqFBUhBBCCCFEKtau/wAaIkvUgRLMHq7zEFkAiIyMBACUlZUpEpMjWlpa0NLSonQYhBBCCCE9jrURbIC5gllXV4fW1lYFoiLEjBLMHs5aghkVFQUAKCkpUSQmRyxYsAC33HKL0mEQQgghhPQ41q7/AHOCCQA1NTWyx0SIwFPpAIh7Kisr4eXlBX9/f8tjQgWztLRUqbBs4pxjx44d8PDwUDoUQgghhJAex2g0drn+A8xDZAHzMnadk09C5EIJZg9nNBoRFhYGxpjlMbVXME+dOmWZnN7U1AQfHx+FIyKEEEII6TmMRiNCQ0OvuP4Dfq5g0jxMoiQaItvDCSeYjoSOYmqtYHZco/P8+fMKRkIIIYQQ0vMIBYbOhASTOskSJVGC2cNZO8H4+PggLCxMtRXMjgmmsI4TIYQQQghxTGVlpc0EkyqYREmUYPZw3d3BioyMVHUFMykpCQBovU5CCCGEECd1d/3XcQ4mIUqhBLOH6+4OVlRUlCormBUVFTAYDLjzzjsBUAWTEEIIIcRZ1qZIAVTBJOpACaaLTp8+jYKCAqXD6HEVzL179wIArrvuOkRERFCCSQghhBDiJJqDSdSMEkwX3XbbbXjqqacUjaGurg5Go9HS1KcjtVYwjx07BgCYMGECEhISaIgsIYQQQogTOOfdjmDz9fWFp6cnVTCJoijBdEFFRQVOnDiB4uJiRePYv38/TCYTJk2a1OW5yMhI1NTUoL6+XoHIunfp0iUEBgbC398f8fHxVMEkhBBCCHFCbW0t2trarCaYjDGEhIRQgkkURQmmCzIzMwHAspajknEwxjB16tQuzwlrYaptmGzHO24JCQmUYBJCCCGEOMFoNAKA1TmYgHmYLA2RJUqiBNMFwjIbly5dUjyOlJQUqyeYyMhIAOpLMDvOGYiPj0dVVRWdBAkhhBBCHCQkmNYqmIC5kyxVMImSKMF0gZBg1tTUoLm5WZEYTCYT9u7dC51OZ/V5oYKptnmYHRPMhIQEANRJlhBCCCHEUfYSTBoiS5RmN8FkjGkZY0c7/KlmjC2WITZVampqQlZWlqVLl1JVzJycHFRVVSE1NdXq82quYAoV1/j4eAC0FiYhhBBCiKMcSTBpdBhRkt0Ek3Nu4JyP4ZyPATAeQD2A/0odmFodOnQITU1NmDNnDgDl5mEKVdTuKphCZ1k1VzCFBJMqmIQQQgghjqEhskTtnB0iOxNAHudc+QUgFSIkdrfccgsAZRPMyMhIDB482OrzXl5eCA8PV12C2bHJT3R0NDw8PCjBJIQQQghxUGVlJQDbTX4owSRKcjbBvAvAVmtPMMYWMsayGGNZ5eXl7kemQpxzvPPOO7jqqquQkpICQNkhsuPGjQNjrNttBgwYgLKyMhmjsq2lpQW1tbWWBNPT0xPx8fHIy8tTODJCCCGEkJ7BaDSCMYbg4GCrzwtDZDnnMkdGiJnDCSZjzBvALQA+tPY85/wNzvkEzvmE/v37ixWfqnzxxRc4fvw4lixZgvDwcADKVTALCwsxcOBAm9tEREQo3um2I+GOW8chHVqtFgaDQaGICCGEEEJ6FqGfhUZj/TI+JCQEbW1tqlsLnfQdzlQwbwRwmHOurq4xMkpPT0dsbCzuvvtuS4KpRAJXX1+PS5cuWeYwdkdtCaa1dZu0Wi1OnTpFd9kIIYQQQhzQsZ+FNUJlk4bJEqU4k2DejW6Gx/YFWVlZ+Pbbb7F48WJ4e3vDx8cHQUFBilQwz58/D+DnZT66Ex4erliF1Rprk9K1Wi1qa2tRXFysVFiEEEIIIT1Gx4781ggrHVAnWaIUhxJMxpg/gOsB/EfacNQrPT0dwcHBWLhwoeUxpRI4YVkPRyqYFRUVqqkOdpdgAqBhsoQQQgghDujYMNEaIcGkCiZRikMJJue8nnMezjnvk0dqfn4+PvroI/z2t7+9YkK1UkNQha6r9hLM8PBwtLa2oqamRo6w7OpuDiZACSYhhBBCiCNoiCxRO2e7yPZJK1euhIeHB55++ukrHleygskYQ2xsrM3tIiIiACjXiKgzaxXM2NhYBAQEIDc3V6mwCCGEEEJ6DHsJJg2RJUqjBNOOqqoqbNy4Effffz9iYmKueE4Ygiq3oqIiREZGwsfHx+Z2QoKplkY/1pr8MMaokywhhBBCiAM45w7PwaQKJlEKJZh25OXloaGhAXPnzu3yXHh4uGJDZO0NjwWg+FIqnRmNRvj6+sLX1/eKxynBJIQQQgixr6SkBM3NzTavA4Xrv966Lj1RP0ow7SgpKQEAREdHd3kuIiIC1dXVaG5uljWmwsJCux1kAXUOkbU2pEOr1aKgoAANDQ0KREUIIYQQ0jMIU4qEHhbWBAQEIDAwEKWlfXZlQaIwSjDtED6ckZGRXZ4TErjLly/LFg/n3OkKplqGyHbX9Uyr1YJzjjNnzigQFSGEEEJIzyCM+EpOTra5XVRUlKVIQojcKMG0Q/hwWkswlRiCWllZibq6OocSzNDQUGg0mh5RwQSAU6dOyR0SIYQQQkiPYTAY4Ofnh7i4OJvbRUZGUgWTKIYSTDtKS0sRFBQEf3//Ls8pMQRVWAPTkSGyGo1GsXmi1nSXYArJu1oSYUIIIYQQNTIYDEhKSoJGY/sSniqYREmUYNpRUlKCqKgoq88pMQTV0TUwBUotpWJNd13PqNsZIYQQQoh9BoPB5vxLAVUwiZIowbSjtLTU6vBYQP0VTEC5pVSs6a6C6e/vDw8PD0owCSGEEEK60djYiHPnzjmUYEZFReHy5cuyN6IkBKAE0y5HKphytoHOycmBt7d3t0lvZ2oZImsymVBdXW01wWSMITg4mBJMQgghhJBunDlzBiaTyW6DH+Dn6UdlZWVSh0VIF5Rg2mGrgunr64vw8HBcuHBBlliMRiPeeecdzJs3z+7Ye4FaKphVVVXgnFtNMAHzMNnq6mqZoyKEEEII6RmEDrKOVjAB0DxMoghKMG1oamqC0WjstoIJmOdCCsNWpbZ+/XrU1tYiLS3N4ddERETg0qVL4JxLGJl9RqMRALpNMKmCSQghhBDSPSHBTEpKsrutUByheZhECZRg2iAMK7A1HDU+Pt7SeEdKjY2NePnllzFr1iyMHj3a4deFh4ejubkZtbW1EkZnn5BgWmvyA5grmJRgEkIIUZOmpibZRikRYo/BYEBMTAyCgoLsbqvGCqbRaMSePXvwww8/oL6+XulwHNbW1oazZ88qHUaPQgmmDcKH0lYFMyEhQZYK5ubNm1FSUuJU9RJQphGRNcLvUoinMxoiSwghRG2ef/55jBo1CiaTSelQCEFOTo5D8y8BdVYwFyxYgGuuuQbTp0/Hc889p3Q4DvvHP/6B4cOHW4olxD5KMG0QPpT2KphVVVWoqamRLA6TyYSMjAyMGzcO1157rVOvVWIpFWv2798PjUbTbfWVhsgSQghRm6+//hpGo5EuLIni6urqcPToUUyePNmh7X19fRESEqKqCuaFCxcwceJETJkyBd99953S4TiktrYWa9asQVNTE3Jzc5UOp8egBNMGRyuYACQdJvvZZ5/BYDAgLS0NjDGnXquWCqZer8fo0aMRGBho9XkaIksIIURNGhsbcejQIQDqqgKRvungwYNoa2uDTqdz+DVqWwvTaDRi8ODBmDVrFrKzs3vEyLWNGzdabjAJc2CJfZRg2iB8KAcMGNDtNvHx8QAg6TDZFStWIDExEb/+9a+dfq2QYCpZwWxtbcX+/fttnhSFIbJKNyMihBBCAODQoUOWNQTVVAUifZNerwcATJ061eHXREVFqerYFdZD1+l0MJlM2Ldvn9Ih2dTa2oqVK1diypQp8PLyogqmEyjBtKGkpAShoaHw9fXtdhshwZSqgllYWIjMzEw88cQT8PT0dPr1whBZJSuYx44dQ11dnd0Es6WlBY2NjTJGRgghhFgnXNADVMEkytPr9RgxYgT69evn8GvUVMHknFsSzClTpkCj0VzxGVOjvXv3oqCgAEuWLMHQoUOpgukESjBtsLUGpiAmJgYajUayBPPkyZMAgIkTJ7r0+tDQUGg0GkUTzMzMTACwmWAGBwcDAA2TJYQQogp6vd4ygklNVSDS95hMJuzdu9ep4bGAuiqYdXV1aG1tRWhoKIKCgnDVVVepPsHseA2u1WopwXQCJZg2lJSU2Jx/CQBeXl6Ijo6WbIisM4vqWuPh4YGwsDBFh8jq9XrEx8dbqr3WhISEAECPGI9PCCGkd+OcIzMzEzfeeCO8vLxUUwUifdPJkydRWVmJ1NRUp14XGRmJqqoqVYwOq6ysBPDzeuipqanYt28fWltbFYzKNoPBAF9fXyQkJCA5ORlnzpxRdbxqQgmmDY5UMAFzox+pKpi5ubkICQmxOQ/UnoiICEUrmHq93u5JUUgwqYJJCCFEaadPn0ZFRQWmTZuGyMhI1VSBSN8kVPpcqWAC6hjiLTTKERJMnU6Huro6/PTTT0qGZVNubi6SkpKg0Wig1WrR0tJC62E6iBJMG8rKytC/f3+728XHx0uWYBoMBiQnJzvdPbajiIgIxSqYZWVlOH/+vN222jRElhBCiFocP34cADBu3DhERUWp4gKd9F0//fQTgoODMXToUKdep6a1MDsnmFOmTAEAS6dmNTIYDJYRhMJ/aZisYyjB7IbJZEJVVZVDk6mFBFOKDqgdD25XhYeHK1bBFD6Iw4cPt7kdDZElhBCiFpcvXwZgvkFLFUyitJKSEsTGxjpdbBAqmGo4foUEMzQ0FAAwcOBA+Pj4qDZha2pqwtmzZynBdBElmN2oqqoC59xyp8WWhIQENDY2ip7E1dbW4sKFC24nmEoOkRU+iMnJyTa3oyGyhBBC1KLjfDGqYBKlOTplqzM1D5H18PDAsGHDVJuw5eXlwWQyWa5f+/Xrh4iICNXGqzaUYHaj82RkW6RaquTUqVMAXG/wIwgPD8elS5cUWWMyNzfXMkHaFhoiSwgh7nnllVdw9OhRpcPoFYxGIzw8PBAYGIioqCiUlZXBZDIpHRaR2YULF/CXv/zFsh6qUhxpOmmNmrogW7uuTk5OVm3CZq3JJnWSdRwlmN3oXMq3JS4uDgBw/vx5UWMQFnQVo4LZ1NSEuro6McJyisFgwLBhw6DR2D7UKMEkhBDXZWVl4cknn0R6errSofQKRqMRoaGhYIwhMjISbW1tinZjJ8r405/+hP/7v//De++9p2gcrlYwvb290a9fP1UkmEajEYwxy4g1wHx9m5+fr3gCb41wDZ6UlGR5LDk52fI4sY0SzG50LuXbItUQBIPBAMaY05O6O4uIiAAARb4cHZ1D6unpiYCAAJqDSQghLhASS7WvK9dTCAvCA+qax0bkU1xcjM2bNwMAMjIyFKtg19fXo6amxqUKJmBu9KOWIbIhISFXFBy0Wi3a2tqQl5enYGTWGQwGREdHWwoggDnesrIySzWWdI8SzG44k2AKQxCkSDATExPh6+vr1n7Cw8MBQPZ5mM3NzcjPz3e4AhscHEwVTEIIcVJ+fj4++ugjREdHo6CgABcuXFA6pB6vsrLS8v2vpk6cRD4vv/wy2tra8Ne//hU5OTnYuXOnInEIx50rFUzAfINEDTdHhFEBHam5cY6wikNHao5XbSjB7IYzCaaPjw9CQ0NF/wBbO7hdoVQFMz8/H21tbQ7/DCEhIZRgEkKIk1avXg1PT0+sX78eAFUxxUAVzL6trq4O69evx69//Ws899xziI+PR0ZGhiKxCMddT69gdrxpI1BzwmZtBJ6a41UbSjC74UyCCUD0LnMNDQ3IycnBqFGj3N6XUhVMZ+eQhoSE0BBZQghx0sGDB3H11VfjxhtvhJ+fHyWYIuiYYFIFs+85ffo0qqqqMG/ePHh5eeGee+6BXq9HS0uL7LH0pgpm52vqkJAQREVFqS5ha2pqgtFotDTxFAwePBienp6qi1eNHEowGWOhjLGPGGO5jLGTjLGpUgemtMrKSsu8QEeIvU7WwYMH0dLSAp1O5/a+hAqm3AmmtQ5ctlAFkxBCnFdRUYEBAwbAy8sLkyZNQmZmptIh9Xgdh/MFBwfD19dXFRfpRB5CkUG4QT98+HC0tLTg7NmzssciRgWztrZWkUaPHVlLMAF1dmYVih0dGxIBgJeXFwYPHkyNfhzgaAVzDYAvOOfJAEYDOCldSOrQsYOcI8SuYAoXCKmpqW7vKywsDIwx2YfIGgwGREVFXTFB2haag0kIIc6rqKiwXAjrdDocOXJE8YvJnoxzfsVwPqGTLCWYfUfnUWxKDo0Uri379+/v0uvVshamtTmYgPl3q7aETbgW7ZxgAupeWkVN7CaYjLFgANMBbAAAznkz57xS4rgU192dlu6I/eWj1+uh1Wot1Ud3eHh4ICwsTPYKZk5OjlNLrKhxiCznHHfddRc+//xzpUMhhJAuWltbUVlZafmu0Ol0aGtrw8GDBxWOrHvnz5/H6NGjMWTIEMufZ555RumwLOrr69HS0nLFNYDYN5GJunVes1HJBLOkpAQRERHw8vJy6fVqGeJtq4J5+fJl2a9RbRESTGsFEq1WizNnzqCtrU3usHoURyqYgwGUA/g3Y+wIY+wtxliXcaOMsYWMsSzGWFZ5ebnogcrN2QQzKioKNTU1qK+vd/u9TSYTMjMzRRkeK4iIiJC1gnns2DEcOHAAs2bNcvg1ahwiW15ejg8++AAfffSR0qEQQkgXly9fBvDzUD5h3v7p06cVi8mezz//HD/99BPGjx+P1NRU+Pj44N1331U6LAtrPRjCw8NpHcw+pPNa6GFhYejfv79iFUxX518C6mhS1djYiMbGRqvX1YMHDwYAnDt3TuaoutfdEFnAnGA2NTWhoKBA7rB6FEcSTE8A4wC8xjkfC6AOwO87b8Q5f4NzPoFzPsHVMr6auFLBBMS5Q2QwGHD58mVRE8zw8HBZ7w5lZGQgICAAv/3tbx1+TXBwMOrq6tDa2iphZM4Rhm2obfgGIYQAP3cHFyqY0dHR0Gg0KCwsVDIsm/R6PQYMGIAPPvgA7777LhYsWIBLly6ppoLRObkAzAmG8Djp/YxGIzQaDYKCgiyPKTWUs6SkxOX5l4A6KpidK8IdJSQkAACKiorkDMkmW0NkhWo2XRfa5kiCeR7Aec75/va/fwRzwtmrWWunbIuYY9yFDoBizL8UREREyPblXVBQgK1bt2LhwoVO/Q6FD3JNTY1UoTlNuFtpMBjAOVc4GkIIuZJwXhcSTE9PT8TExKjqYq0zvV4PnU5n6XGgttb/1iqYlGD2LcJ8QY3m58tkpebeuVvB7N+/PxhjilYwba3MIHRqVdNNMXtDZAH1nK/Uym6CyTkvAVDEGBMm080EcELSqFTA1QqmGB/gzMxMhIeHOzV/0R45h8i+8cYbAIDFixc79TohwVTTl7hwAjEajaq5u04IIQLhvCQMkQXMFQE1Xax1VFJSgvz8/CtuoKrtgs1atSUsLAxVVVUwmUwKRUXk1N2ajeXl5bJfo7hbwfTy8kJ4eLiiFUxrowIEERER8PX1VdVNMVsVzIiICISFheHUqVNyh9WjONpF9kkAWxhjPwEYA+AFySJSAc55t92uuiN2BTM1NdXhDraOkHOI7PHjxzFixAjLsAdHDRw4EAAUaQPenY4XPGq5+CGEEEHnIbKAuSKgpou1joQO6R2ngCQmJsLLy0s159juKpicc9U1oiPSsFZkUOJGSG1tLerr692qYALKr4Vpq4LJGFPdOUv4nFurYDLGEBsbS12l7XAoweScH22fX3kV5/w2zrl6SkwSqK2tRVtbm1MVzAEDBgBwv4JZXl6OU6dOiTr/EjBffDQ2NorShMieoqKiLovTOkJtd7EBcyzjx4+3/D8hhKiJtQqmcLGmxmH9er0ePj4+GDfu55k2np6eGDZsmGrOsdaqLcL/q2mEDZGOtSKDEnPv3F0DUxAZGanaOZiA+ZylplEXVVVV8PPz67Zzr9yNM3siRyuYfYqtOy3dEYYguJtgWru7Kwbh4kOOKmZhYaHT1UsAiImJQWBgoGouMpqbm5Gfn48bbrgBPj4+qomLEEIEly5dgp+fH/z9/S2PJSQkoKmpCWrs6K7X6zFx4kT4+Phc8biaFlsXrgE6Do8TrgcowewbrFUwBw0aBE9PT1mPUyEp7M0VTMB8zlJTBbOqqsrq8FiB3I0zeyJKMK1wJcEExLlDpNfr4eXlhQkTJri1n86E4VNlZWWi7rez+vp6XLp0yaUKJmMMSUlJqrnIyM/PR1tbG4YPH46hQ4dSxzBCiOpUVFR0WS9ZOP+q6YINMK/ZefjwYUydOrXLc8Laci0tLQpEdqXKykqEhITAw8PD8hglmH2LtQTTy8sLQ4cOxYkT8rUhuXjxIgD3K5jR0dG4ePGiYms3CtW+7pK2+Ph4XLx4URWff8A8RNZWgiln48yeihJMK+yV8rsjxh2izMxMjB8/Hr6+vm7tp7MhQ4YAAM6cOSPqfjs7f/48ALiUYALKtQG3RohDq9Wq6u46IYQIKioqrhgeC/zc9l9NQ84Ac1WgpaUFsbGxXZ7TarVobW1VxRx8a8mF8Hfh+oD0XpzzblcSmDhxIvbt2yfb8HNhPVthrUhXjRkzBo2NjcjOzhYjLKedOXMG8fHx8Pb2tvp8QkICTCYTiouLZY7MuqqqKqvzLwXh4eG4fPkyNf2ygRJMK5SqYDY1NSErK0v04bEAMHToUDDGJE+ShAsaV4bIAuY24IWFhWhoaBAzLJcIvyshwczPz1fN3TVCCAHMlYGeUsF0ZG05NdzIs5Zg0hzMvqOhoQHNzc1WrwFTU1NRVlaGvLw8WWIxGAyIiYm5Yj1OVwjXlcI0LLkZDAabKyOo7Zxlb4hsREQE2traLOc00hUlmFbYaqdsi7sVzEOHDqGpqUmSBNPPzw8DBw6U/MtbODm4U8HknFvu2inJYDAgKioKISEhlrvr+fn5SodFCCEW1iqYamz7D/SsBLPz9z8Nke07bF0Dyp2o5ebmIjk52e39DBw4EDExMZZ11uXEOe+VCSYAavRjAyWYVrhawYyJibHMQXTFwYMHAcDq/BQxyDH8tLCw0NLC2RVqusg4c+YMkpKSAPwcF617RAhRE2sVTKHtv9qGyNpq/d+vXz9ERESo4hxrbXhkYGAgPDw8KMHsA2xdA6akpCAkJESWRM2RxMxRjDGkpqYqkmCWlpaiurraoQRTLecse3Mw5Wyc2VNRgmmF0WgEY8zm+GtrhMY8+/btc+l9CwoK4O/v73a3sO5otVqcOnVK0rkDRUVFiIyM7NIh0FHDhg0DoI4E8+LFi4iJiQHw8xqdajn5EUJIW1sbjEZjlwQTUOdamLYqmID5PKuGc6y1IbKMMYSFhdEczD7AVoKp0WgwdepUWRK18vJyVFZWipJgAubqa0FBAS5cuCDK/hwlFDZsVWKDgoIQGhqqmnOWvTmYwjmXEszuUYJpRWVlJUJDQ6HROPfrmTRpEjw9PV0+8QjLezDGXHq9PVqtFnV1dZKeXFxdA1MQEBCA+Ph4VSSYJSUlls5tkZGR8PLyUs3JjxBCjEYjOOddhsgC6ltXDrCfYKplqQJrCSZgHjJJFczez16jR51Oh5ycHMmPhY59IMQgDO+Vu4rp6M+hls9/W1sbampqHKpg0hDZ7lGCaUV3Xy72+Pv7Y+zYsS6PzXc3ObNHuHskZfLm6hqYHSUnJyveSbaurg61tbWWarJGo0FcXJzqLtgIIX2XcPfcWgUzISEBFy9eRGtrq9xhdcvWEFng56RYrg6d1jQ1NaGhocHq/LuwsDBKMPsAe9OkhETN1dFqjurYyV4MY8aMgb+/v+yNfgwGA/z8/BAXF2dzO7XcFKutrQXQ/Y0wgCqYjqAE04qysjKrd4QdkZqaigMHDrjUbbSoqMjt5MwWqec3cs5FSZKHDRsmW4e27gjdgDuuPaXGIWeEkL5LuLix9n0VFxcHk8lkWUdPDRypYNbW1iramVEY4TNgwIAuz1GC2TfYa/Q4ceJEAMCxY8ckjcNgMMDHx0e060IvLy+MGzcOhw8fFmV/jjIYDEhKSrI7KnDgwIE4d+6cojeYgJ/PU7aGyAYHB8PT05MqmDZQgmmFwWCwzAV0lk6nQ0NDA44cOeLU65qbm1FSUiJpBTMmJgaBgYGSVQcrKytRV1fn9s8QHR0No9GIpqYmkSJznpBgdpwPq5bhG4QQAvw8PMtaBTM6OhoA3F6bWUxVVVXw9vbudp1nNXSSFKo7kyZN6vIczcHsG+wlmIGBgfDy8pL8RoiQmHl4eIi2z7i4ONnPCY42KkpKSkJlZaXiVUF7N8IA85zs8PBwxWNVM0owO6mvr0dhYaHLQxJcHeN+4cIFcM4lTTAZY0hKSpKsgunuGpgCoWpYVlbmdkyuEk7AnSuY58+fR1tbm1JhEUKIha0hssLNMXfWZhabvc6MaugkmZmZieDgYIwcObLLc1TB7BuMRiOCg4NtJnZBQUGoqamRNA6xOsh2FBkZKWuC2dTUhLNnzzq01Irwsyo9RUoYym/rXAWYz7uUYHaPEsxOhPUXXf1Qx8TEIDEx0ekEU6zkzB6tVitZgunuGpgC4cJIyTvv3VUw29raVFURIIT0XUIF09oQWeHmmJrOV/Y6Mwrff0pWMPV6PaZMmWI1uRCa/Cg9hI9Iy9oyNZ1JnWA2NzcjPz9f9AQzKioKNTU1qK+vF3W/3Tlz5gxMJpNDP4dalqlzZIgsYD7v0hDZ7lGC2YlwYLuzsK2w1pAzX0JiJWf2JCcno7CwEA0NDaLvW7jrNHjwYLf2I1wYKXnnvaSkBIwx9O/f3/KYGu6uE0KIYM+ePRgwYAD8/f27PCfMIVRTBdPe4uVRUVHw9PRULMGsqqpCdna2ZSRSZ2FhYWhtbUVdXZ3MkRE5OdLoUeoEMy8vD21tbZJUMAH5zgvOdMJNSEiAj4+PahJMqmC6hxLMToQD29U5mIB5mGxJSQnOnTvn8GvkSjC1Wi0455ZKrZj0ej2GDh16RVLmCrVUMMPDw+Hl5WV5TA131wkhBABycnLw+eef4/HHH7e6tJWvry9CQ0NVVcG0N0TWw8MDsbGxit3E27dvHzjnSE1Ntfq8kHTQPMzezWg0djv/UiB1gin2EiUCua+vhJ8jKSnJ7rYeHh4YNmxYj0kwqYJpGyWYnRgMBiQkJFi9I+woV+ZhFhYWIjw83K33dYRUY9w559Dr9d1+MTtDDQlmxzUwBWpoQEEIIQCQkZEBf39/PP74491uExkZqboKpr1hZ0p269br9dBoNJg8ebLV54UEk+Zh9m6OVDCDg4N7ZIIp9wgxg8GAmJgYBAUFObS9lNO4HGVvOSVBREQELl26REPmu0EJZie5ubluf6BHjhyJoKAgpxJMqdfAFAiVWbE/wGfOnEF5eXm3Q4uc4ePjg9DQUEUvjEpLS6+YfwmY72YFBgbSENk+Ztu2bfjmm2+UDoMQi+LiYmzZsgW/+c1vbC6pFRUVpaoKpr0hsoCya+FlZmZi9OjR3V4MC1UtSjB7NzXMwTQYDIiKirL7eXGWEhVMZ6acJScnIz8/36Wl/sRSVVUFDw8PuwWfiIgItLa2WhJSsT322GP46KOPJNm3HCjB7IBzLkrXLg8PD0yZMsWpxWzlSjADAgIQHx8veoIp/KxiJJiA8hdG1iqYjDFaqqQPeuaZZ/Dggw+iublZ6VAIAQB88803aGlpwSOPPGJzOzVWMO1dMCckJOD8+fMwmUwyRWXW2tqKffv22fwOowpm79fS0mL1BnNnQUFBkiUWgDQdZAF552Zzzp0u2mi1WrS2tiq6FrpwnrI29aAj4eaeFPMwL1++jNdee03xaq47KMHs4OLFi6itrRXlQ63T6ZCdne3wOkmFhYWSd5AVSDEEQa/XIzQ0FMOHDxdlf0peGHHOu/2CUfLuOpFfdXU1iouLceHCBWzdulXpcAgBYB5p4+HhYbcyoPSNuo4453bnYALmc2xLS4vsy1T99NNPqKurowSzjzt79ixaW1vtXgdKXcEUYzSdNV5eXggPD5flvFBeXo7KykqnE0xA2U6yjpyngJ+Xh5Iiwdy7dy8A8Yo2SqAEswMxx7zrdDpwzrFv3z6729bU1KCyslKWCiZgHoJgMBhEHTeu1+sxdepUaDTiHFJKXhjV1taivr6+SwUTAFUw+5hTp04BADw9PZGenk5zLYgqGAwGDB48GN7e3ja3i4yMRHV1tSRdw51VW1sLzrndeU3CjVa5b+QJU1ps9RGgJj+9n6PXgUKCKcV3QkVFBS5fvixJggmYr6/kuIHvyjW1GhJMR+aKAz9XMKVo9JOZmQlPT09MmjRJ9H3LhRLMDoTGN2J8qCdPngyNRoMffvjB7rZyrYEp0Gq1qKmpES2Bu3TpEk6cOCHqnRYlK5jW1sAUxMfHo6ysDI2NjXKHRRQgfMktXboUOTk5+PLLLxWOqHstLS1YtGgRzpw5o3QoRGKODp9Tw5JPAkc7MyrVTE2v1yMuLs7m97AwbI4qmL2Xo9eBQUFBMJlMkty8karBjyAyMlKWG/iu/BwhISGIjIxUPMFUuoKp1+sxduxYyRt/SokSzA7effddDBo0CHFxcW7vKygoCNOnT8emTZvsTlbeunUrGGOy3akQu5Psxo0bAQBz5swRZX+A+cJIqTvvwonXWgVTeKy8vFzWmIgyDAYDNBoN/vCHP0Cj0TjVuEtu2dnZWL9+PT788EOlQyESamtrw+nTpx26aFNDR26BMF9NzQmmvZukGo0GoaGhuHz5skxREbkZDAYMGDDAoSY/ACQZJivGeuy2yFnB9PX1dbp4MmjQIMWmInHOcfLkSQwcONDutsKSfGIP529pacGBAwdEWZVBSZRgttPr9di7dy+WLFki2jDPZcuW4fz583j//fe73aa2thbr1q3D7bffjiFDhojyvvaIOQShubkZq1evxrXXXouxY8e6vT+B3IsBd2SrgklzcPoWg8GAQYMGISgoSNH1+RwhfJ57clMAYl9hYSGampocuvhUYwXT3tCzfv36wd/fX9bPWlFREc6fP+/QKJzw8HBaXL0Xc3R0gJQJZm5uLry9vZGYmCj6vgH5Kpi5ubkYNmwYPDw8nHqdklOk8vPzUVZW5lByFxwcDF9fX9HPr0ePHkVDQ0OPnn8JUIJpsWLFCoSHh+Ohhx4SbZ833ngjRowYYXPu1oYNG2A0GpGWliba+9oTFxcHPz8/US5E33vvPRQXF2P58uUiRPYz4cJIiZOMrQomJZh9S8eLDSXX53OE8HkWe41boi7ODDtTUwXT0SGyjDHZP2uOzL8UCGvfkd5JDQmmwWDA0KFDnU7MHBUVFYX6+nrU1tZKsn+Bq51wlZwiJZwLHEnuGGOSJOvOxKBmfTrBbG1txfXXX49hw4bh008/xeOPP46AgADR9q/RaJCWlobs7Gx89dVXXZ5vaWnBypUrcfXVV2PKlCmiva8jcYnVSXblypW46qqrcMMNN4gQ2c/krGDW19dj9uzZOHjwIADzxZhGo7GMr+9IWAeNmjz0fiaTCadOnboiwVRzBVNILMVu4EXUxZkEU84lCexxdIgsYO5HIOdnbc+ePQgICMDo0aPtbksVzN7r8uXLKC8vVzTB5JwjJydHsvmXgDw3npqbm5Gfn+/SzxEVFYWKigq0trZKEJlter0eISEhSElJcWh7KYYbZ2ZmIjExETExMaLuV259OsH86aef8PXXXyM+Ph4LFizA4sWLRX+Pe+65BzExMVixYkWX5z788EMUFhbKWr0UiJFgFhcXIzs7Gw888IDd9YKcJWcFc+/evfjyyy/x3nvvAQCOHDmCpKQkq3cPqYLZd5w/fx4NDQ2WL0hhfT61Jm/C57myspLmCPdiBoMBoaGhlvk/tnh7e6Nfv36qqmA60p1RzgpmVVUVtmzZgptvvhmenp52t4+IiKAEs5dy5uaNVAnm999/j7y8PNFv2nckx9D5I0eOoK2tDWPGjHH6tZGRkeCcK/I95uyKCFJUMLOzs0WdcqaUPp1gCmXot99+G2+++abdSd2u8Pb2xuLFi7F7924cOnTI8jjnHCtWrMDw4cNx0003if6+9mi1Wpw9e9atbqiZmZkAgGnTpokVloWcd96F4yAzMxMmkwmZmZndDk2gBLPvECqCwly3+Ph4NDU1qTJ5E6qtQqw0D7P3ys3NRXJyssM39eRq6GGPo0NkAfPNnJKSEjQ3N0sdFt544w1UV1c7fKOXhsj2XmpIMNPT09G/f388+OCDou63IzkqmO4M81RqilRlZSVycnKcaq4j9vm1paUFeXl5klaw5dLnE0x7bcnFsHDhQgQHByM9Pd3y2K5du3Ds2DEsW7ZMtKZCztBqteCcu7WkgV6vh6+vryR3WuRcDFg4ER4+fBhHjhyB0Wjs9gRDber7js4XG0J3SzUOk71w4QLq6+tx6623AqAEszdzdl6Tkg0zOqqurgZjDIGBgXa3jY+PB+ccFy5ckDQmoUndzJkzMW7cOIdeEx4ejvr6etTX10saG5GfwWCAl5cXBg0aZHdbKRLM48ePY8eOHXjyySfh5+cn2n47k6OCmZmZiUGDBiE6Otrp1yrV5HHv3r0AnEuKIyMjUVFRgba2NlFiOHv2LFpaWiTrICynPp9gyjGJNiQkBL/97W/xwQcfwMvLC15eXpg9ezaio6Nx7733Sv7+1ojRSVav12PSpEl2F/t2lZSdzv7yl7/g5ptvRltbG/bt24fExES0trZizZo1ALo/wWg0GoSEhFCC2QecOnUKwcHBli874UaUGhv9CJ/j66+/Hj4+PtTop5eqrq5GcXGxUwmmXB0j7REWL3fkhqpcS5UITeqcmaYizM2nKmbvYzAYMGTIEHh5edndtmOC+cknn2DixIluJxmvvvoq/P398dhjj7m1H3siIiKg0Whw9uxZt/aTn5+PiIgIeHl5ISYmxpIQcs7dur5WqoKp1+vh4eGByZMnO/yaqKgomEwm0UY2Sb0GqpwcSjAZY+cYY9mMsaOMsSypg5KDM23JxfD73/8ef/3rX7F8+XIsX74czz77LN5//334+PjI8v6dJSUlAXA9wayvr8eRI0ck/f3Fxsbi/Pnzkux769at2L59O9atW4fq6mo888wzlscjIiIsvx9rwsLCqMlPH3DhwgXEx8dbhiIqtT6fI4TP8fDhwzFs2DCqYPZSBw4cAACMHz/e4dfExsbiwoULis8dFhJMR8hxM8dkMiE9Pd3pJnXh4eEAKMHsjZwZHSBU4qurq/Htt98iKyvL7WMiKysLOp3OcoxJxdPTEzfccAPeeecdt6ZJZWRkoKamBosXL0ZJSQnWrl0LwFyFKykpcXkdR6UqmHq9HmPGjHGq2afYsfa5BLPdLzjnYzjnEySLRkbOtCUXQ1hYGP7yl7/g+eeft/yZPn26LO9tjbCun6sXogcPHkRra6ukCWZCQoIkFxhlZWU4ffo0AFiWV5k7dy6GDx+O1tZWpKam2pzfFBoaShXMPqCkpOSKpWoiIiLg6+uryiGyBoMBgYGBiI6OFq1DNFEfvV4PxphTXccTEhJUMXe4urraofmXgDzD0Xfu3IkTJ04gLS3NqSZ1QgWTGv30Lq2trThz5ozDF/YeHh4ICAhATU2N5TrFnWOCc+7ysh6uWL58OcrKyvDOO++49PqysjL8+9//xgMPPID09HTcfvvtWLduHWpra91eZiMgIACBgYGyVjBbWlpw4MABp2MWu9pqMBjQv39/SXrCyK3PDpHV6/UOtyXvrbRarctD6YQTyNSpU8UM6Qrx8fEoKSlBU1OTKPsTGkYIzYlmz56NxsZGREVFYdCgQZYTi70TTFhYGCWYbuKco7i4GBcuXFCkFbkjSktLLXcnAWXW53NUx8YvycnJyM/Pl6VBCpGXXq/HqFGjHK4EAuqpvFdVVTmcYPr7+yM8PFzSmFesWIH4+HjceeedTr2Ohsj2TufOnUNzc7NTCV5QUNAVCaY7x0RJSQlqampkSzBnzJiBCRMmICMjw6Whva+++ioaGxuxdOlSAOaE1Wg0Yu3atfjmm28QHBzs8FIf1si9FuaxY8dQX1/vdNFJigpmb6heAo4nmBzAV4yxQ4yxhVIGJAfOOb7++mtMnjzZobbkvZVQ6XBl6NS+ffuQnJyMfv36SRCZmTBMSoxGDwaDAUFBQfj666+RmZkJb29vbNiwAQEBAbj66qvBGLNUlK+++mqb+6IE033PPvssYmNjERcXhwceeEDpcKzqXMEE1LsW5unTpy3DurVaLdra2pCfn69wVERMwnxxZ++wC+dRpY9bo9HocIIJSPtZO3nyJPbs2YPFixc7NN+uI2H4IlUwexdXhiYKCaZwnLpzTAg3++VKLhhjSEtLw+nTp/Hpp5869dq6ujq88soruPXWWy3NaCZPnozp06fjueeew6ZNm5Cammp1qTdHyd2czNWqq9gVTOFmcW/gaHal45wXM8YGANjFGMvlnO/puEF74rkQgORdWd31xRdfIDc3F88++6zSoShKq9WiqqoKZWVlV1RqHHHixAmn5gG5ouOd98GDB7u1rwMHDqC5uRnPP/88mpubMX78eMTExGDPnj2WJVHuvvtuDBgwwO7wM5qD6R6j0YhXXnkF119/PSoqKnDixAmlQ+qitrYW9fX1XT4XCQkJ2LVrl0JRWSdUg+Pi4gBc2cCrt3xREfPaaDU1NU5fAKmhgsk5R15enlPVgfj4eBQUFEgSz7FjxwCYm2I5S7ipSglm7yIkmM6cM4OCglBRUWGpXrlzTLjy/u765S9/icGDB2PFihW47bbbHB4qvnHjRly+fLlLc6x3330XX375JQBg5syZbsUWGRkpa7M6vV6PhIQEy/eoowIDA+Hv7y9KBdNoNKK8vLxvVTA558Xt/y0D8F8Ak6xs8wbnfALnfIIjC0ArKT09HbGxsbjrrruUDkVRrnaSbWpqwtmzZyX/EIg5D0f4Gb/77rsrqgDjxo2znFA8PT0xa9YsuydZqmC657XXXkNdXR3S09MxYcIEVXS47EyIyVoF8+LFi2hpaVEiLKsqKyvR3NxsiVX4XFIn2d5FGNrv7BAuNcwdLikpQXV1tVPfGVLNwQfM3weMMQwdOtTp13p5eSEkJISGyPYyBoMB4eHhTjXYCQoKuuI8684xYTAY4O/vj9jYWJf34SxPT08sWbIE+/bts1Tw7GltbcXKlSuRmpra5WZXQkICHnnkETzyyCNuFwXkrGCK0fVWjFh7U4MfwIEEkzEWwBgLEv4fwA0AjksdmFSysrLw7bff4plnnpFseY2ewtUEMy8vDyaTSfI7bWLeeTcYDIiLi0NISAhMJpNbzYlCQ0PR2NjoVve1vqqxsREvv/wyZs2ahdGjRyMqKgrl5eWirSElFuFuZOcKZnx8PEwmE4qLi5UIy6rOsYaEhCAyMpIa/fQyer0e0dHRSExMdOp1apg77MqFU3x8PIxGI2prayWJZ+DAgS6vNRgREUEVzF7GlblvQUFBV3S6d7eCmZSUJPu66A899BDCw8OxYsUKh7b/6KOPcO7cOaeW9nFFZGQkLl++LEsvgcLCQhQXF7t8XSjWfNE+l2ACiATwI2PsGIADAD7nnH8hbVjSWbVqFYKDg/HII48oHYriEhIS4Ofnh+PHnbtfINdcAaHRgxh33nNzczFmzBg8/vjj8PLycivBFLp7URXTeV988QVKS0uxZMkSAOYTs8lkUt3FWncVTGH4v1RD91xhLVbqJNu7NDU14euvv8a0adOc6ngq6IkJppSftdzcXLe+vyjB7H1cOSaEtTAB8xrZ7s7BVCKxENbd/Oyzz1BWVmZzW8450tPTkZSUhFtuuUXSuITvM3sxiWH//v0AXG9aKVYFMzc3F56enhg0aJDb+1IDuwkm5zyfcz66/U8K5/x5OQKTyurVq/HRRx851YWvt/Lw8MCECROwd+9ep14nXCzYWitSLGIMk2pra8Pp06eh1Wrxt7/9DdnZ2XBnGLeQYNI8TOcJjWcmTpwIQLkFle3proIpHPOnTp2SPabuWIs1OTmZEsxeZMuWLSgrK3P5xmhCQoKiQ2QNBgP8/Pwso1IcIdVnjXOOU6dOuTUCJzw8nIbI9iJVVVUoLS11K8EcNmyYy8dEY2Mjzp07p1jlatq0aQDMza9s2b17Nw4fPoxly5ZJXmmVcy3MkydPgjGG4cOHu/T6qKgo0SqYQ4YMcbrxmFr1uWVK+vfv79LE/t5Kp9PhyJEjqK+vd/g1BoMBMTExV5xcpSJGJ8HCwkI0NTVBq9XC09PT7ZM4VTBdV1RUhICAAISGhgJQbkFle0pKSqDRaLrciEhISICPj4+qkrfuKpiXLl2iKksvYDKZkJ6ejjFjxuC6665zaR9Kzx12ZfifkGCK/Vm7cOEC6urqqIJJLFwdmihcA0VERCAhIcHlY+LMmTPgnCuWYDo6XSo9PR2RkZG4//77JY9JzpvP7g6Zj4yMREVFhdvn197WmK/PJZjkSjqdDq2trTh48KDDr5FznR4xhnaJPa6dEkzXFRYWIiEhwTLMT80VzIiIiC5t1j08PDBs2DBVJZilpaXw9PS8YmFmV+dXE/X5/PPPkZubi7S0NJeGxwLKzx12dfhhTEyM282qjEajpWssIM73AVUwe4e2tjb873//w+bNmwG4nmDGx8e7dUwoPfcuPj4efn5+Nr8vjh07hi+//BJPPfUUfH19JY9JzpvP7l7TCtcx5eXlLu+jra0NZ86c6TXzLwFKMPs8oSOhox3EOOey3mVJSEhAVVUVqqurXd6H2O2/heobJZjOKyoqumKYnJormJ3nXwq0Wq2qOrSWlJQgMjLyiuoQJZi9x7///W/ExsZi3rx5Lu9DmM+oxDzMpqYml4f/iTGX+Pnnn8fEiRMt6ymLcTEfERGBuro6NDQ0uBUbUdbnn3+O22+/HWvXrkVoaCiGDBni1OuFBDMhIcGtqnZ2djYYY4olFxqNBklJSTY/axkZGQgICMCiRYtkiUn4/pX6ppgY17RC47UDBw64vI9z586hubmZEkzSe/Tr1w/Dhw93OMEsLy+H0WiUtYIJuHdhlJubi9DQULfmXXZEFUzXCRVMgbCGlBormN2tDavVapGfny9LdztHWIs1MTERXl5elGD2cEL7/JkzZ7o1L0fJtTDPnDkDk8nkVoLJOXf5/bOzs9HS0oI1a9YAMH8fBAYGIiYmxuV9RkREAHBvWQqivD179sDHxwc5OTnIy8tzemWBzhVMo9GI1tZWp+PIzMzEqFGjEBgY6PRrxWLrxmlhYSG2bt2KhQsXXjFSRkq+vr6IiIiQ/JwlxpD5mTNnYuDAgXjppZdc3odczTPlRAkmgU6nQ2ZmJkwmk91t5R7KIcadd2H4g6vDyzoTKpjU5Mc5TU1NKC0tvaKCyRgTbYK8mOxVMNva2iwNi5RmLVZPT0/VDeUlzsvLy0NZWZnTa192Juaaws5y5ztDq9XCaDSKsoD966+/jqqqKst8UHe+D4S1EinB7NkyMzMxYcIEjBgxAv369XP69Z0rmIDzN57b2tquWJtbKVqtFmfPnkVTU1OX51avXg0AWLx4sawxSbkWrkCMa1phPdEff/zR6aaZYsahNpRgEuh0OlRWVuLZZ5/Fm2++afNusdwfAjEujMSeM+rl5YXAwECqYDpJGKLWuZNkZGSkqiqYnHObFUxhKI1akrfuYqWlSno+YWSJuxefQUFBCA0NVaSC6U7XcXc/aw0NDSgsLMStt96K6upqLFy4EIcPH3b7+0BIJqjRT8/V2NiIQ4cOuXXzpnMFE3D+mDh+/DhqamrcvonkLq1WC5PJhLy8PHz11Vd44YUX8MILL+D555/HG2+8gbvvvvuK0UdykGN5JbGuaR9++GH069fP4fVErcURHh5uObf0Bp5KB0CUN3PmTAQGBlo+GPHx8Zg9e7bVbXfs2IF+/frJdqKJiYmBj4+Py3PeKioqUFxcjBEjRogaV1hYGCWYThJuEnQ+dqKionD69GklQrKquroajY2NNiuYgDoSTJPJhNLSUquxDhs2DNu3b4fJZJJ98W4iDr1ej9DQUFHOX2J05HbFjh07MHToUJeWBuv4WROWUnDG6dOnwTnH3XffDQDYtm0bAGDGjBlO76ujAQMGAFDf3HHiuKysLDQ3N7t182b48OGIiorChAkTcPbsWQDOV7XFuonkLuFmTmZmJp566qkr5hf7+fnhd7/7newxxcfH49tvv5X0PQwGg9tD5gEgICAACxYsQEZGBmpqapxeZUHO5plyoasOgvj4eFRWVqK2thaxsbHd3oE5deoU/ve//+Gxxx7r0l1TKp6enpg4cSIyMzNder3wOrHvDoaGhlKC6SThTqTaK5jdrYEpCAkJQWRkpCoSTGHOj7UEMyEhAS0tLXQR3INlZmZi6tSpotwgkGO4WWd79+7Fjz/+iCeffNKl1wvLArl6g7FjdeK///0vmpqa0NzcjIULF7q0P0FcXBwAZea0EnEIiZ071waDBw/GxYsXMXToUJcrmHq9HtHR0ZZGMUoRRhj86U9/QkNDA44dO4ampiY0NTWhpqYGI0eOlD2mhIQEVFdXo6qqSrL3EHMK1bXXXguTyYT9+/e7HEdvQgkmAWBefiEgIACLFy/Gt99+i6ysrC7bvPTSS/D29sYTTzwha2w6nQ6HDx92qWOfXq+Hl5cXJkyYIGpMYWFhNAfTSd0lmFFRUbh06ZJia/R1Zm1dyc7U0klWiNVaMqxk51DiPqPRiJycHNFujskx3Kyz9PR0hIWF4Te/+Y1Lr3d3WSDhMzps2DAwxuDt7S3KIuZKDjkm4sjMzERSUpJozf9cHTadmZkJnU4nWo8IVwnLApWUlGDu3Lm46qqr4O3tDW9vb9kKCp3J0ZzMlSWUujNlyhQwxhxumimoqqpCSUkJJZikd1u4cCGCg4ORnp5+xeOlpaXYtGkT5s+f321lRyo6nQ4tLS1OrdUp0Ov1GD9+vMsL6HaHhsg6r7CwEBEREV3+LSIjI8E5d2sNKTHZq2AC6pnfKMRqLRlWsnMocZ/QLEKsoXPx8fG4dOkS6uvrRdmfPcKIl8cff9yt7pjufNYMBgMSEhIQEBDg8vt3R6khx8R9nHNkZmaKOrLJlcZPxcXFOHfunOLDYwVCgpOWlqZwJGZS3yQV5miLldiFhIRg1KhRTo+4640NfgBKMEknwcHBuP/++/Hpp59esQzD2rVr0dzcjKVLl8oe09SpUwE4vlanoKmpCVlZWZJMnu/fvz/KyspE329vVlRUZHXurpAcqWWY7MmTJ8EYw8CBA7vdJjk5GZcuXVK8i6StCqaSnUOJ+9555x0EBwdj8uTJouxP7oq2WCNeRo4ciTNnzri0FrKUw86UqAgTcZw6dQoVFRWiJnb+/v7w9fV1qoL5zjvvAACuv/560eJwx7x583Dvvffi6quvVjoUANJ/h/33v/8F51y0cyxgHnK9d+9etLW1Ofyajz/+GBqNRvSRdkqjBJN0cc0116CxsRFHjx4FANTW1mLdunW4/fbbMWzYMNnjiYiIgFardfqu0OHDh9HU1CTJ3cH4+HiUlJRYbelNrCssLOwyPBb4OTlSy1zBzMxMjBw50mZTErU0+rFVwezXrx/8/f3pIrgHOnv2LD788EM8+uij8Pf3F2Wfct5wEHPES2pqqkvzmoQF1KVKMJWY00rEIUVjHcYYIiIiHE4wm5qasGbNGlx//fVISUkRLQ53LFq0CJs3b1Z8uK4gOjoaGo1Gks8Z5xwrVqzA8OHDRU3wdTodampqcPz4cYe2r66uxvr16zFv3jzL3O7eghJM0oVw0hVOwhs2bIDRaFR02IQza3UKpOzOJlysCUtvEPuKioqsJphqqmC2tbVh7969do8ZtSSYJSUl8Pb2RkhISJfnGGNUZemhVq5cCQ8PDzz99NOi7VPOCqaYI16mTJkCjUbj9A3GixcvoqamRtIKppxDjol4MjMz0a9fP9GPjfDwcIdHtWzevBklJSVYvny5qDH0Jp6enoiNjZXkptiuXbtw7NgxLFu2TNQu652vn+154403UF1drZphyWKiBJN0ERMTg8TEROj1erS0tGDlypW4+uqrMWXKFMVi0ul0uHz5slMX9Hq9HkOGDJFkzijNb3NOTU0NqqqqrA6RFf591JBg5uTkoLq62u6w6sTERHh5eakiwYyKiur2jnNCQoKqhsjW19fj4Ycfxrlz55QOxS1nz57Fww8/7FLjMXsqKiqwYcMG3HvvvYiNjRVtv7GxsWCMSX7Oqq2txauvviraiJfg4GCMGjXK6SkSUs9roiZaPZder0dqaqroyzc5WsE0mUzIyMjA2LFjMXPmTFFj6G2kukmakZGB6Oho3HvvvaLuNzExEdHR0Q7dEGtpacHq1atx7bXXYvz48aLGoQaUYBKrdDod9Ho9tm3bhsLCQsXvsjl7V4hzbvkSkYJwcaGmi3c1y8vLAwAMGjSoy3P+/v6IiYlxeEiJlBytent6emLo0KGKJ5jnzp2zWhUWqK2CuW/fPmzcuBH/93//p3QobvnrX/+KjRs34sCBA6Lve926dWhoaMCyZctE3a+3tzciIyMlP2e99dZbqKysFPWOvE6nw759+5ya13To0CEAwKhRo0SLoyO6ydgzXbp0Cbm5uZJcG0RGRuLixYt2t9u+fTtyc3ORlpammuGoaiXFUPTa2lrs3r0bDz74IHx8fETdN2MMqampDl2rHj16FBcuXMAjjzwiagxqQQkmsUqn06GkpATPPvsshg8fjjlz5igaT1JSEsLDwx0eJpWXl4fy8nLJurPROmjOEZYL6K6akJqa6vJap2LS6/WIioqymgh3lpycrPhSJfbmmAlzhTs27FKSkJBv3ry5xw4vLyoqwnvvvQdA/CHSDQ0NWLt2LW666SZJ5mVJPW+wpaUFq1atEn3ES2pqKmpqapCdne3wa/R6PQYPHmxzuSF3UBOtnkn4npHi2iAhIQEXLlyweyNkxYoVGDhwIObNmyd6DL2NcJPUmelR9hw8eBBtbW2YPn26aPvsSKfT4dy5cyguLra5nZCEqqWpktgowSRWCSffoqIipKWliT6UxFnO3BUCpJ1/CZirbhEREXRx4SCDwQDGGIYOHWr1eUdPyFLT6/UOr0mm1WqRl5eH1tZWGSLrqrKyEqWlpTYTzISEBHDOVZPMGQwGeHt7o62tDWvWrFE6HJesXr0anHN4e3uLnmC+/fbbqKiokGzEiNRLawgjXsSeT+TqCBYpl3+Qa8gxEZewNvbEiRNF33d8fDxaWlpsNqzLzMyEXq/HkiVL4OnpKXoMvU18fDyam5tFXcZMOI9INe3L0fOVXq/HwIEDRZ0KoSaUYBKrUlJSEBwcjOjoaNxzzz1KhwPA/KE9deqUQycavV6P0NBQjBgxQrJ41Db8UM0MBgMGDhzY7Xqkzl5ASqGoqMipNcm0Wi1aWlpw9uxZiSOzzpE5Zmobxpebm4uUlBTccccdeP3111FVVaV0SE6pra3FG2+8gbvuukv0CjbnHKtWrcLkyZMlu6MtVDA555Lsf9WqVRg+fDhuuukmUfc7cOBAxMTEOHx+kHoECwD4+PjIMuSYiOPtt9+GVqvFq6++inHjxom+NjZw5fm2rq4ON9xwA7Kysq7YJj09Hf369cPDDz8s+vv3RsJ0pIKCAtH2qdfrkZKSgrCwMNH22dHYsWPh5+dn83wlx00wpVGCSazy8PDA6tWrsWHDBtHHqLtK+CA6MpRSr9dj6tSpklZeKcF0nL2hnGPGjLF7Qpba+vXrwRjDzTff7ND2SneSFd43OTm5223UlmAKx0FaWhqqq6vxxhtvKB2SU44fP47a2lrccccd0Gq1ov7b5+fn4/Tp03jwwQclm5cVHx+P+vp6GI1G0fddXl6OQ4cO4YEHHhD9vMsYs3QSd4TUI1gEtFRJz/Hmm2+ipqYGc+fOxZ/+9CdJ3qNj46cjR45g165d+OMf/2h53mAw4JNPPsFjjz2GgIAASWLobYSpAkeOHBFlfyaTyaFO8e7w8vLCpEmTbJ6vCgoKcPHiRUowSd/00EMP4cYbb1Q6DIvx48fDy8vL7kWG0WjEiRMnJGvwI1Bbh0614pzj1KlTNhMhR07IUqqpqcG6devwy1/+stthvJ2pIcH09PTE4MGDu91GTfPEGhoaUFBQAK1Wi3HjxmHmzJlYvXq1auaHOqJjUq/VanH27FnR1sIVkqJp06aJsj9rpDwehM+uVPHrdDoUFBQ4NNxbr9cjJCRE0hEsAN1k7CkaGxuRlZWFe++9F1u3bhW9wi7oeENPOFd8+eWXOHbsGADgpZdegre3N5588klJ3r83GjJkCAYMGCDazecTJ06gqqpK8sQuNTUVR44c6XYZI+Hnkfo6VUmUYJIew8/PD+PHj7d7otm7dy8A6e9ex8fHo6qqCtXV1ZK+T09XXFyM2tpau8sF6HQ6mydkKW3YsMHpzpf9+vVD//79FU0wBw8eDC8vr263CQgIQL9+/VRxEXzmzBlwzi03GpYvX47i4mJLw5yeQEjqBw0ahOTkZJhMJkuHZHdlZmYiODhY0kXXpVxaQ6/Xw9vbGxMmTBB938DPF2KOXGjKMYIF+HlOq1RDjok4Dh8+jObmZsmvCcLCwhAQEIDCwkLLfPPAwEBkZGSgpKQEmzZtwvz58zFgwABJ4+hNhNELYiWYco1u0Ol0aG1t7bbTuF6vR1BQkGRdrtWAEkzSo+h0Ohw8eNBmUvftt9/Cw8MDkyZNkjQWtQ0/VCt7HWQFwgn54MGDcoRlwTnHmjVrMH36dEyePNmp14o9TNIZubm5Dq3xl5CQoMi6k6+99hr8/Pzg4+ODe++9t8uc0euvvx6jR4/G6tWrZY/NVQaDAUOGDIGXl5foFWy5hvUD4s5nEuj1eowfPx6+vr6i7xswD6P39/e3e6F5+fJlnDhxQpahZwkJCZINOSbiEY6ZqVOnSvo+jDFLVTs3NxfDhg3DI488gs2bNyMuLg4tLS1YunSppDH0RjqdDvn5+aKslf3tt98iMjLS5sgfMQjH2nXXXYfg4GBL4eO5556Dj48P1q9fjylTpsDDw0PSOJRECSbpUe688040Nzfjrbfesvp8bW0tNmzYgJtvvlnyOQ600LZjHF3wfPTo0QCAnJwcyWPqKD8/H+fOncPdd9/t9Gvj4+MV6dDa1taGM2fOOJRgjh49GllZWbJWWZqamvD3v/8dSUlJmDVrFt577z18+OGHAMxLDgHmi7G77roLx44dw6VLl2SLzR25ubmWCqzwc4jR6KeyshI5OTmSJ0WRkZEICAjAmTNnRN2vMARRjnlN9hLMffv2AZC+QgEA0dHRAODQ2odEOXq9HkOHDkVkZKTk7yXMyxXmm//hD3/An//8Z6SlpeGdd97BsGHDJI+ht3Gm/4Yt58+fx3/+8x/ccccdkq8/2q9fP7z99ttIS0uDj48P/vGPf6CsrMzSyO13v/sd/vnPf0oag9IowSQ9ysSJEzFjxgysWrUKLS0tXZ7fuHEjjEajZG3+O6IKpmMMBgMCAwMRExNjc7uYmBgEBgbKXhF0Z8hMVFSUzZb0UikoKEBTU5NDCWZqairKy8tFTyps2bJlCy5evIiMjAxs2rQJAQEB2LZtG+Li4q648SPWhYMcOif1QpdtMY7XvXv3gnMueVKk0WiQlJQk+mdMGIIo9XwinU6Ho0ePoq6urttt9Hq9LCNYAFjW2FTiHEAcwzlHZmambM1U4uPjkZ+fj/z8fGi1WoSHh+Nvf/sbXnzxRdx3332yxNDbjBs3Dj4+Pm4Pk12zZg1MJhOWLFkiUmS2Pfjgg3jxxRexePFi7NixA4899hiamprw5ptv4sUXX8S4ceNkiUMplGCSHmf58uU4f/483n///Sseb21txcqVK6HT6SQfCgOYEyKNRqOKBioCsRqOiEm4k2vvjiFjTJKLX3uEhiCuzH2LjIxEbW2tzQtesdTX1+PixYu4ePEi9u/fD8B2B1mB3EvAmEwmZGRkYMyYMbjuuusQFhaGRx55BEDXKvaECRPg5eWlaPdgR507dw7Nzc1X/AxarRY5OTm4ePGiW+uhypkUSTGsW66GFTqdDm1tbd3OaxJiGTt2rCxdOoWKmBhD94g0zpw5I/mSNR0lJCSgoqICra2tDt0AJPZ5e3tj4sSJLt+INBqNyMvLw+uvv4477rgDiYmJ4gZox6JFixAQEICPP/4Yt9xyS585LijBJD3O7NmzMXLkSKxYseKKYX+ff/45CgoKRF/kuzuenp6IiYmRZD6TK7777jsEBwerqhrU0tKCo0ePOpQIAcrMaczMzHR57ptcFYzGxkbLWoAxMTGWtWkd+b0OHz4coaGhsiVxe/bswcmTJ7F06VLLTYVnnnkGnp6eXZJ4Rxt3qYG1od4pKSnIyspCTEwMbr31Vpf3nZmZidGjRyMwMNDtOO3RarU4d+4cGhoaRNvnrl27ZBmCKCyM3t3x0tLSggMHDsjWmZEqmOond7dOYWQT4Nj5mThm2rRpOHTokNPTKTIzMxEeHo6hQ4eipqZGtuvDjvr164cFCxYAgCLvrxRKMEmPwxhDWloajh8/ji+++MLy+Pfffw9fX19Zl1YZOnQoTp8+Ldv72fL888+jubkZL774otKhWHz44YcoLS3FnXfe6dD2ycnJKCgoEPXi1xZh7purFx9yVTAOHTqEiooKPP3001i/fj3Wr1+Pzz//HBEREXZfq9FoMHXqVNluPAgt+W+44QbLYwkJCdizZw/+8Ic/dNk+NTUVBw8eVP1yJdaaVf3hD3/A66+/jgcffBA7duxwaa22lpYW7N+/X7YKi1arBedctCHTx48fx65du/DAAw+Isj9bwsLCkJKS0m2CefToUTQ0NMj2uwwNDYW3tzdVMFVMr9cjNDQUw4cPl+X9hN4MgP2+A8Rx9913H1paWrBu3TqnXvfiiy8iPDwc69evx/bt2zF27FiJIrTtH//4B3bu3Nmr173sjBJM0iPdddddiI2NRXp6uuUxvV6PiRMnwtvbW7Y4hIqb0m3qjxw5gq+//hqDBw/G9u3bceLECUXjAcxzX9LT0zF8+HCH1x0TLn7lStrdnfsmVDCkvsAUksPnnnsOjz76KB599FHMmTPH4dfrdDqcOHECly9flipEC4PBgNDQUPTv3/+Kx6dOnWq1Pb9Op0NTUxMOHz4seWzuMBgM6Nev3xVJfXR0NBYuXIjVq1cjMDDwivORo44dO4b6+npZE0xAvO63GRkZ8Pf3x2OPPSbK/uzR6XTYu3cvTCZTl+fkWoJAwBhDZGQkVTBVTK/XIzU1VfIlawRCBXPAgAEIDQ2V5T37gpSUFNx0001Yu3atwzegc3JysH37djz55JN49NFHJVv/1BGBgYGYPXu2Yu+vBEowSY/k7e2NZ555Bt9++y0OHjyI+vp6HD58WPa7Q8nJyTAajaioqJD1fTtLT09HUFAQvvrqK/j7+yMjI0OxWIRham+99RaOHj2KZcuWOfzlLvbFrz3C3DdnlycRCBVMqS8whS6Irq6fJnwuhFbpUnJ0zq1A7jmirhJ+LmtCQ0Px6KOPYtu2bU4vCSN3UiR0v3XnM8Y5x7Fjx/DVV19hy5YtePjhhxEeHi5WiDbpdDpUVVVZvYmm1+sxcOBAxMbGyhILYD4HUAVTnS5fvoyTJ0/Kel0QFxcHgKqXUkhLS0N5eTk2bdrk0PbCza/HH39c4siINZRgkh7rkUceQXBwMNLT03Hw4EG0trbKnmAKXyJiLFXgKqPRiG3btmHBggUYMmQIfvOb32Dz5s2KLJ8BmIfqTp48GQsXLkRMTAzuvfdeh18rtHCXI8HknGPnzp1uNQTp378/GGOSXmCK0QVx4sSJYIzJssaorUTMmsjISAwZMkTVCSbnHDk5OTbnVD399NNgjGHVqlVO7Vuv1yMhIcFyYSq1wMBAxMXFufUZ27NnD8aMGYNZs2YBMM+xlUt3NyQ459Dr9bJ/ByjVSZrYJ9xQk2v+JQD4+/sjISEBY8aMke09+4rp06dj0qRJyMjIQFtbm81ta2trsWXLFsyfP1+2m1/kSg4nmIwxD8bYEcbYdikDIsRRwcHBWLRoET7++GO8++67AKRfSLkzuStu1uzduxdtbW24+eabAQBLlixBW1sbXn75Zdljqaurw9q1a3H99dfjiy++gF6vh4+Pj8OvDwgIQHx8vCy/z++++w6HDx+2TL53haenJyIiIiS9wBSjC2JAQAD69++P4uJiESPrqqamBhcuXHC6uUVqair0er3iQ827k5eXh4qKCpuV7vj4eNxzzz146623HG5EISRFcl4AA+bzljs3xXbv3g2NRoPPPvsMhw8fxqBBg0SMzrbBgwdjwIABXRLMgoICXLx4UfbfZVRUFFUwVUqv18PT01OW7swd/fjjj3j++edlfc++QOi/kZeXh//97382t92/fz9aWlos10VEfs5UMJ8GcFKqQAhxxVNPPQUPDw9s2LABycnJst+pGjhwIHx8fBRNMDsvcTBo0CDMmzcP69evR3V1tayxbNy4EZcvX8bf/vY3zJo1y6V24MnJybL8PtPT0zFgwAC3m5NIfYEpVhdEOS6ET506BcD54WE6nQ5lZWXIz8+XIiy3OTqMddmyZaivr8drr73m0H4LCwtRXFysyMgLd+aO6/V6XHXVVZg7dy5GjRolcnS2Mcag0+m6JJhyDzUWREZGory83OqcUKIsYckaf39/Wd83Pj4eQUFBsr5nX3H77bdjyJAh+Ne//mXz/JWZmQnGmKXzNJGfQwkmYywOwE0A3pI2HEKcExMTg/vvvx+A/BcWAODh4YGhQ4cqnmB2HuaZlpaG6upqvPHGG7LFIdY6pHI0TsrOzsbOnTvx1FNPwc/Pz619Sd3kQ6wuiFLGaTAYUFJSYnUpD0eofR6msFbqiBEjbG43atQo3HjjjXj55ZexdetWfP/993b3C8h/7tJqtaiurnbpeGhtbZW16601Op0O+fn52Lhxo+V3rNfrERQUJHvCGxUVhba2NqeXTyDSEnoB9KWunX2Bh4cHli5dioMHD2LPnj3dbqfX65GSkkKNlhTkaAVzNYDlALq9RccYW8gYy2KMZZWXl4sRGyEOWbZsGXx8fK5YFkFOclXcrOnuS3T8+PGYPn06Nm7cKFss3333Hc6dO4clS5a4tR/h4lfKaltGRgYCAgKwaNEit/clZWWwubkZO3bswNVXX+12F0Sp4uSc44YbbsC8efNgMBig0WgwdOhQp/YxYsQIhISEqDrBdHSt1N///vcoLy/HPffcgxkzZuDo0aPdbvvJJ58gNDRU9qRIuFmRnZ3t9Guzs7NRW1ur6IX7zJkzAQAPP/wwZsyYgWPHjkGv12PKlCnw8PCQNRa5lioizjly5AgaGxtlHzJNpDd//nz079+/267dbW1t2Lt3L91cUJjdb0vG2FwAZZzzQ7a245y/wTmfwDmf0Lk9PSFSGj58OEpKSjBv3jxF3l+r1SI/Px8tLS2yv7ew7pu1L9FZs2bh5MmTsixNAZjnnWg0Glx33XVu7Ufqea1FRUV47733sGDBAvTr18/t/QmVQSkqrlu3bkVxcbEoS0BIFWdBQQEKCwvx448/YuvWrRg0aJBT826Bn9fqVGOCaTQaceLECYcvVqZPn47CwkIcOXIEgYGB3XZ0zs/Px0cffYSFCxfC09NTzJDtmjRpEhhjLnUVlnvhemvGjBmDoqIiHD58GAEBAfjzn/+M7OxsRS4ohaWKqNGPuig1OoBIz8/PD08++SQ+//xz5OTkdHk+JycH1dXV9G+vMEduiesA3MIYOwfgfQDXMsY2SxoVIU4KDQ11eFkEsWm1WrS2tiIvL0/297b1JSo8JqyhKEcso0aNQnBwsFv7kTrBXLNmDTjnonW+jIqKQkNDA2pqakTZn0BYR3TUqFGWbp3uiIqKQlNTE6qqqkSI7mfCMejt7Y3Tp0+73J5fp9MhJycHlZWVIkbnPiEJc+ZiJT4+HmPGjMHChQvx/vvvo6CgoMs2q1atgoeHB55++mnRYnVUSEgIRo4c6VJCr9frERsbe8WC8kqIi4vD2LFjsXDhQnz66afgnCuS9FIFU530ej0SExMRExOjdChEAo899li3S7IJ1zyUYCrLboLJOX+Wcx7HOU8EcBeA3Zzz+ySPjJAeQolOsqdOncI///lPbN68udt13yZOnAhPT09ZqkKtra3Yt2+fKCf0uLg4+Pn5SfL7rKysxOuvv44777wTAwcOFGWfUlUwdu7ciZycHKSlpYly80SqOIW5b8uWLQPg+vpvcq7V6YzOTbScsXjxYjDGsGjRIvzzn/+0/HnxxRexYcMG3HfffYpdAOt0OksHamcIS4EodUOvs8WLF8PT0xMajUaRhh5qqmB+//33+Oc//4n09HRcvHhR6XAUo9SSNUQ+4eHhePjhh7FlyxY8//zzeP311y2NtvR6PSIjI2Xtbk26kndcDiG90IgRI+Dj44MdO3bg1ltvleU9n3vuOXz88ccAzJ10rfH398e4ceNkqWAeP34ctbW1olQQNBqNpdGP2LZv347a2tpuf2eu6FjBENbxFEN6ejri4+Nx1113ibK/jnGKuQh4ZmYmpkyZgqeffhrvvPMOrrnmGpf2IyRwWVlZuPHGG0WLz13Hjh1DSkqKS2ulxsfHY8GCBVi/fj127tx5xXN+fn5IS0sTK0yn6XQ6rF+/Hjk5Objqqqscek1RURGKioosNxPUICEhAY8++ijy8vIU6dwZFBQEX19fxSuYNTU1uO222ywjAMrKyrqdo9bbnTt3DiUlJTT/spdbsmQJ3n77bfzxj38EYF6X+oYbbsDnn3+O2bNnq+YmWF/lVNcIzvl3nPO5UgVDSE8UFBSEBx98EJs2bZLlLjbnHD/++CPuueceNDQ0YPXq1d1um5qaigMHDqC5uVnSmMSe7yJVgqnX6xEcHIwJEyaItk8pKhgHDx7Ed999h8WLF8PLy0uUfUoRZ3V1tWXu24ABA1BUVOTyTZaAgAAkJCQo2pHZmsLCQpeW2xGsW7cODQ0NXf5UV1e73RnYHa507hVuVqntwv2VV17pksDLhTGGqKgoxSuYb731FiorK/Hjjz9a1pXtq2j+Zd+QmJiIy5cvo7a2FkOGDMGKFSuwYcMGGI1GUW8iE9e415aQEAIAWLp0KZqbm/HKK69I/l5nz55FaWkprr76avj6+tq8S6fT6dDY2IgjR45IGpNer0dMTIxow061Wi3Onj2LpqYmUfYnkKLTpBRzsNLT0xESEoJHHnlEtH0KcYp5Ibxv3z6YTCbV31hwR2FhoVvzDRlj8PX17fJH7sY+nSUmJiI6OtqpRESv18Pf3x+jR4+WMLKeJzIyUtEKZktLC1atWoVrrrkGOp0OOp0Ohw4dQmNjo2IxKUm4kThy5EilQyES8/T0REBAAJYsWYL9+/fjz3/+M6ZNm0brX6oAJZiEiCApKQm33XYbXn31VdTV1Un6Xs50cZRjfcGO813EGpKi1WphMplw5swZUfYHmOdfHj9+XPS72uHh4fDw8BAtccvLy8PHH3+MRYsWiTrkT4hTzAthvV4PjUaDyZMni7K/5ORk5ObmSroGqjNqampQVVWF+Ph4pUMRHWMMOp0Oer3e4d+3Xq/H5MmTRauq9xZKVzA/+OADFBUVWYZc63Q6NDc3IysrS7GYlKTUkjVEOfPnz0dERASqq6sVnXpAfkYJJiEiefzxx2E0GvHtt99K+j7C3dmUlBS720ZHR2PQoEGSJpg//PADCgsLcf3114u2TykaJ+3btw+cc9ETTA8PD8TExFjtFOqKlStXwtPTU/QhPhqNBgMGDBDtQritrQ1btmzBlClTREuEtVotamtrVdOgpKioCAAU75gqleuvvx7nzp1z6PxQW1uLY8eO0bBDK+Li4lBQUKDYjZEdO3YgNjbWMndZuPnYF4fJHj16FNnZ2aJ+HxH18/f3x9///nfMnTsXc+fSTD41oASTEJFMnTpVlq6twqLvjt6d1el0yMzMlOziJz09HREREbjvPvGaSyclJQEQN8HMzMwUtdrWUVJSkiixlpeXY+PGjXjggQcQHR0tQmRXioqKEq2C+b///Q95eXlYsmSJKPsDlOnIbEthYSEA9MoKJgDcd999CA8Pd6gZzIEDB9DW1qa6+ZdqkJSUhKqqKpSVlSny/gaDASNHjoRGY76k69+/P5KSkmRbokpNMjIyEBgYiAULFigdCpHZb3/7W3z22WeWzwFRFv0rECISObq2VlZWIicnx6kqgk6nQ0lJCc6ePSt6PCdOnMD27dvx5JNPws/PT7T9BgUFITY2VtREQ6/XY/To0QgMDBRtnwJh7qC7Sfwrr7yCxsZGLF26VKTIrhQZGSlKBZNzjhUrVmDo0KG47bbb3A+sndoSTKGC2VsTTH9/fzzxxBP49NNPcfLkSZvb6vV6MMYwdepUmaLrOZQ8bjnnOHXqVJfO0KmpqZLeWFSjgoICvP/++1i4cCFCQ0OVDoeQPo0STEJEJHbXVs45li1bhtmzZ2P27Nm48cYbnR7mKeVwqYyMDPj7++Pxxx8Xfd9ardbuRa+jWlpasH//fsmG92m1WrcrGHV1dXj11Vdx6623Ijk5WcTofuZuBbOmpgZ33nknZs6ciQMHDmDp0qWiznOKjY2Fv7+/ahLMwsJCaDSaXr1Y++OPPw4/Pz+89NJLNrf78ccfkZKSQhfuVgif19zcXNnfu7i4GLW1tV0STJ1Oh4qKCtV8ljpqbm7G/PnzMXv2bNxxxx2WpVXctXr1ajDGsHjxYlH2RwhxHSWYhIhI7K6tP/74I1566SUUFhaisrISnHPMnTvXqSpCSkoKgoODRU8wL1y4gM2bN+M3v/kNwsPDRd03AFx99dU4ePCgKBdIH3zwAerq6jBnzhwRIutKuLhz5wLz3//+Ny5duiRpgwKhgulqVWPXrl3Ytm0bLl++jFtuuQUPPvigqPFpNBokJSUpcqFuTVFREWJiYhTv+Cql/v3746GHHsK7776L4uJiq9ucPXsW33zzjWSfn54uPj4efn5+iiRzwmel802pG264AR4eHtiwYYPsMdmzZcsWbNq0CWVlZfjwww9F6b5uNBrx5ptv4u677+61Iw4I6UkowSRERGJXC9PT0xEeHo6srCzs27cP+/btw2effebUcFQPDw9MnTpV9KG7L7/8Mtra2kSdg9fRY489Bm9vb7uVFXuE4ZwpKSmYNWuWSNFdSbi4c/UCs7W1FStXrkRqaqqkTVSioqLQ0tICo9Ho0uv1ej18fHywf/9+fPLJJ6IOixaoaakSd5co6SmWLFmC1tZWvPzyy1afX7VqFTQaDZ588kmZI+sZNBoNhg0bpshxK7xn5wpmQkIC7rjjDrz++uuiVQjFYDKZkJGRgdGjR+PQoUOYM2cO1q5di4aGBrf2+9prr6Guro46iBKiEpRgEiKimJgYJCYmipLMnTx5Ep999hmeeOIJ+Pv7u7UvnU6H48ePi3ahUVVVhfXr12PevHkYNGiQKPvsbMCAAZg/fz7eeecdt4Z1fvXVV8jOzsayZcskm/zvbgXj448/xtmzZyW/OIqKigLg+lqYer0eEydOhI+Pj5hhXUGr1eLcuXOqWMOvqKioT1RDhgwZgl/96ldYv349qqurr3ju0qVL2LBhA+655x7ExcUpFKH6KXVjxGAwIDAw0Oow7rS0NNTU1OD111+XPa7u7NixAydOnEBaWhoYY0hLS0NZWRneeecdl/fZ2NiIl19+GbNnz8aoUaNEjJYQ4ipKMAkRmU6nw48//oi2tjanXmcwGDB27FgMHz4cw4cPx4wZM+Dr6yvK/EadTgfOOfbt2+f2vgDgjTfekGW9qaVLl6K5uRlr1651eR8rVqxATEwM7rnnHhEju1LHCkZWVhZmzZqF2tpah17LOUd6ejqSkpJwyy23SBYjYB4iCwDnz593+rUNDQ04fPiw5MtUJCcng3OO06dPS/o+9nDOUVRU1CcqmIA5GamqqsKbb755xePr1q1DfX09li1bplBkPUNycjLOnj2LpqYmWd/XYDAgKSnJ6hrEY8eOxfXXX481a9agtbVV1ri6s2rVKkt1FQCuueYaTJw4EStXrnR56P57772H0tJSLF++XMxQCSFuoASTEJHdfvvtKC0txf/+9z+nXvf888/j1KlTuOqqq3DVVVdhxowZWLduHfr37+92TOPGjQMAZGdnu72v5uZmrF69Gtdeey3Gjx/v9v5sGTZsGH75y19i3bp1DidsHR06dAi7d+/G4sWL4e3tLUGEPxMqGH/84x/x1Vdf4YcffnDodd9++y0OHTokaYVVMHbsWAQEBODdd991+rVZWVloaWmRPMEcM2YMAODgwYOSvo895eXlaGpq6hMVTACYOHEiZsyYgVWrVlmalDU0NGDt2rWYM2cORo4cqXCE6qbVatHW1oa8vDxZ3zc3N7fL8NiO5s+fj4sXL+L48eMyRmWdyWTC3r178atf/QpeXl4AAMYY5s+fj1OnTuHcuXMu7feLL75AQkICZsyYIV6whBC3UIJJiMhuu+02DBkyBCtWrHD4jmxRURG2bt2KRx55BB988IHlz0MPPSRKTKGhoRgwYIAoQ7jee+89FBcXy3a3OC0tDZWVlXjrrbecfm16ejqCg4OxcOFCCSK7klarRV5eHr788ksAjs/DTU9PR2RkJO6//34pwwNgPg4eeeQRbN261bLGo6OEn0fqZSq0Wi3CwsIUXyS+ty9RYs3y5ctx4cIFvP/++wCATZs2oby8nCpDDlBiqZKGhgYUFhbaTDCFG0JKf54A82eqoaGhS0Mid2LknEOv10On01mt4hJClEEJJiEi8/DwwNKlS3HgwAGHq1irV68G5xzPPPOMZHGJMUdIaNBw1VVX4YYbbhApMtsmT56M6dOnY9WqVWhpaXH4dfn5+fjwww/x6KOPIiQkRMIIzbRaLTjnCAgIgFardehi6aeffsIXX3yBp556Cr6+vpLHCADPPPMMOOdYvXq1U6/T6/XQarWIiIiQJrB2Go3GsoafkoQEvK8MkQWA2bNnY+TIkUhPT0draysyMjIwceJETJ8+XenQVC8pKQmAvAnm6dOnwTm3mWAmJCQgNjZWFQlmdw2JRo4cieDgYJc+8wUFBSguLpZ8ZAUhxDmUYBIigfnz56N///5YsWJFt9twzjFnzhz4+flh5cqVuPPOOzFw4EDJYhIjwdy5cydycnIsDRrkkpaWhsLCQqeGHa9atQoeHh54+umnpQusA+Gu/COPPIJZs2Zh//793SbEH374IQIDAzF+/HgEBARg0aJFssQImC847777brz55psOd5M1mUzIzMyU7SJOp9MhNzcXly5dkuX9rCkoKADQtyqYQtOV48ePIyAgAHl5eVi+fDlVhhwQHByMmJgY0dbu7eyJJ56An58f/P39kZ6eDsB8gwromrB1xBiDTqdTdYLp4eGBKVOmQK/Xo7m5GZMnT8Zrr70GANi+fTtGjBiBmpoaq/sUfi5KMAlRF0owCZGAn58fnnjiCXz++efIycmxus3333+PnTt3Yu7cuXj22Wfx4osvShqTVqtFeXk5Ll++7PI+0tPTER8fjzvvvFPEyOybM2cOQkJC8PXXXzu0fUVFBTZs2ID77rsPsbGxEkdnNm7cOLzyyiv485//DJ1Oh4aGBhw7dszqth9//DF8fX2xZMkSbN26FWFhYbLEKFi2bBlqa2uxfv16h7Y3GAy4fPmyrAkmAEWrmFlZWYiKipK8Yqs299xzD1544QUsXrwYK1aswO233650SD3GuHHjcODAAdH3e/bsWaxfvx7Tpk1DSkoKXnjhBdTW1uK1115DYmKi3c6pqampKCwsdKm5l5gMBgNCQkIszcY60ul0yM7Oxvr163HgwAH87W9/Q0NDA/74xz/i5MmT3Z4LMjMzERgYSN1jCVEbzrnof8aPH88J6esqKiq4v78/nz9/vtXn58yZw/v378/r6+tliefTTz/lAHhmZqZLr9+3bx8HwFeuXClyZI6ZPXs2T0lJcWjbv/3tbxwAz8nJkTgq64qKijgAvnr1aqvPx8XF8TvvvFPmqK40a9YsHhUVxRsaGuxu+9Zbb3EAPDc3V4bIOK+rq+Oenp78d7/7nSzvZ01iYiL/1a9+pdj7k57nxRdf5AB4RUWFqPt98sknuZeXFy8qKrKch++44w4OgK9du9bu6w8ePMgB8A8++EDUuJw1c+ZMPmnSJKvP7dq1iwPgfn5+PDw8/IqfEQD/85//bPV1o0eP5tddd52UYRNCugEgi3eTC1IFkxCJhIeH4ze/+Q22bNmC48ePXzEc8fjx49ixYweefPJJSRart0YYwmkwGGAymZxeRiU9PR2hoaFYsGCBFOHZpdPpkJOTY3dYZ319PdauXYu5c+dixIgRMkV3pbi4OCQkJFgdliZUEpQe0pWWloaSkhJs3rzZ7rZ6vR7h4eGWeWZS8/f3x7hx4xSrYBYXF+PcuXOK/xuRniU1NRWAuJX3zuuQCnPSt23bhn79+jnUCG706NHw9/dXfJiswWDodjjv5MmTodFo0NDQgFWrVmH8+PHYtm0boqOjkZKSYom9ubkZpaWlKC0txdmzZ5GdnU2fU0JUiBJMQiS0ZMkStLW1YdSoUejXrx+2b98OAMjIyIC/vz8ee+wx2WIZNGgQvLy8YDAYsHz5cstyEI44c+YM/vOf/2DRokUICgqSLkgbhIuIvXv32txu06ZNqKiokHyNTnumTZuG7777zrLkg0Atc4auvfZay7Bee/R6PVJTU2Wdi6fT6XDw4MEuvz85qOXfiPQsEydOhJeXl6iJ3Ntvv91lHVKhq+/jjz+OgIAAu/vw8vLC5MmTFU0w6+rqcP78+W4TzKCgIIwdOxbx8fG46667LD/j008/jRkzZmDfvn1obm7GxIkTERUVhaioKAwePBgmkwnTpk2T80chhDiAEkxCJDRo0CB88cUXWLduHRITE/GPf/wD58+fx5YtW/Dwww8jPDxctlg8PT0xZMgQ/Pjjj3j11Vdx/PhxVFdXO/Tal156CV5eXnjqqackjrJ7kyZNgoeHh83qQFtbGzIyMjB58mRcffXVMkbX1f3334/y8nJs3br1isczMzMREBCAq666SqHIzBhj+OUvf4ljx47ZnJdbXl6OU6dOyZ5s6XQ6NDY24vDhw7K+L2BOMP38/DB27FjZ35v0XH5+fhg3bpyoidx3330HrVZ7xTqkc+bMwaeffopnn33W4f2kpqbi6NGjLq0nLIZTp04BQJclSjp699138cUXX8DLywvz5s3DJ598gmeeeQY6nQ51dXV44YUX8NNPP2Hx4sVYt24d1q1bh3fffRfXXnutXD8GIcRR3Y2ddecPzcEkpKtXX32VA+DTp0/nHh4e/OzZs7LHcOutt1rmtADgBw8etPua0tJS7uvryxcsWCBDhLaNHz+ez5gxo9vnt23bxgHwjz76SMaorDOZTHzUqFE8JSWFm0wmy+Njx47l1157rYKR/ezbb7/lAPj27du73eaTTz7hAPgPP/wgY2ScFxcXcwA8IyND1vflnPOJEyfy6dOny/6+pOdbsmQJ9/Hx4U1NTW7vq62tjffr14//5je/cXtfO3bs4AD47t273d6XK7Zu3coB8OzsbKdfW1BQwAFwDw8PnpiYyFtaWiSIkBDiLNAcTEKUN3/+fERERGDPnj2YN28eEhMTZY9BGJ6UkpICAMjNzbX7mldeeQVNTU1XDNFSik6nw/79+7F3717LOoUCzjnS09MxdOhQ3HbbbcoE2IGw5ENOTg5ef/117N+/Hz/88AOOHTummqGXjlSF9Xo9vLy8MH78eBkjA6KjozFo0CBJh/U1NjaivLzc8vdz585Br9fjyJEjqvk3Ij1Lamoqmpqa3Kq8X7hwAW1tbTh16pRo3ZunTp0KAIoNk83NzQVjDEOHDnX6tfHx8YiNjUVbWxuWLl0KT09PCSIkhIiJEkxCZOLv748nn3wSABSbHzh69GgA5qTRw8PD7rqYnHO88cYbmDt3rs211uQyY8YMNDQ0IDU1FSkpKaioqLA89/333+PgwYNYunQpPDw8FIzyZ3fddRcSEhKwaNEiTJkyBdOnT4fJZMI111yjdGgAzMfk2LFju73o5Jxj586dmDBhgmzNqDrS6XTIzMyE+Uap+J577jkMHz4cNTU1KC4uxvDhwzFt2jS0traq5t+I9CxCMrhjxw6XXl9QUIAhQ4bg73//u+VzKTQPckdoaOgVzXLktnfvXgwePBi+vr5Ov5Yxhl/84heIiIhwqKkRIUR5lGASIqPnnnsOP/30E8aNG6fI+99xxx04fvw4ZsyYgUGDBtlNME+fPo3S0lLcfPPNMkVo2y233ILdu3fj3XffRW1tLdatW2d5Lj09Hf3798eDDz6oYIRX8vLywvfff48dO3ZY/nz//feqmjOk0+lw4MABtLS0dHlu165dyM7OVrRzcGlpKfLz8yXZ/9dff41Lly7hzTffxJo1a9Dc3IwPPvgA3333HW644QZJ3pP0blFRUZg7dy7WrVuH+vp6p1+/atUqNDU14eWXX8ZXX32F8PBw0W7u6XQ67N27FyaTSZT9Oer48eP46quvMH/+fJf3sXbtWhw6dMihpkaEEBXobuysO39oDiYh6nfTTTfxq666yuY2GzduVHQ9SVtuuukmHhERwevr63l2djYHwP/+978rHVaPI8xb3b9/f5fnrrvuOh4dHc0bGxsViIzzn376iQPgmzZtEn3flZWVnDHGAfDY2FgeHBys+NqkpHfYs2cPB8BfffVVp1536dIl7u/vz8ePH2+ZJ3/zzTeLFtemTZtcngfpjgcffJD7+/uLvj4oIURZsDEHkwayE9JHabVafPPNNzCZTNBoNDCZTNixYwfq6+sRGxsLnU4HvV6PsLAwm53/lJKWloYZM2bgueeew5kzZ+Dv749FixYpHVaPIwzpe/PNN3Hu3DnL4xUVFfj666/xz3/+Ez4+PorElpKSguDgYOj1ejzwwANu7evIkSM4ffo0vLy8MGfOHOzbtw+cczzzzDNYtWoVAOWGrpPeZdq0aZgyZQpeeuklPProo12G7HPOsWvXLlRWVl7x+K5du1BfX49///vfeOyxx/Djjz+KOhdY2Nf69etx3XXX4cYbbxT1s33mzJkuc0+bmprw3nvvYdGiRbJ2TSeEKKy7zNOdP1TBJET9Xn/9dQ7A0s323Xfftdw1Z4zxEydO8OHDh/ObbrpJ2UC7YTKZeGpqqiXmZ555RumQeqzk5OQrugsLf0JDQ7nRaFQ0tptuuonHxcXx5uZml/dRUVHB/f39LT/X888/z//0pz9xjUbDq6qq+JgxY/isWbNEjJr0dR9//DEHwLdt29bluS+++MLq5w0Anzt3Luec8507d3KNRsOzsrJEi8lkMvHExETLe23cuFG0fbe0tPBBgwZZ/Zl8fHwU6ZpOCJEWqIJJCOlMqEoaDAYMHDgQK1aswIgRI/D2229j+vTp+MMf/oCTJ0/ivvvuUzhS6xhj+Oqrr1BQUADGGIYNG6Z0SD3Wvn37cOHChS6P9+/fH6GhofIH1MGiRYswd+5cfPDBBy4fi8J8uC+//BIZGRlYs2YNhg4ditGjRyM4OBg//vgjNBpqSUDEc+utt2LYsGH417/+hV//+tdgjFmeW7FiBWJjY/HFF190Oe4GDx4MAJg9ezbKy8vRr18/0WJijOHw4cMoLi7GhAkTcPz4cdH2/fHHH+Ps2bN44403ulRdw8LCEB0dLdp7EULUjxJMQvoooXGEwWAA5xzZ2dl4++23MXHiRDz00EN47bXXAEDVyzUEBARgxIgRSofR44WEhCAkJETpMKy68cYbkZKSghUrVuDee++94kLdEQ0NDXj55Zdx00034YYbboCXlxeuvfZalJWV4fHHHwcAahxCROfh4YGlS5fit7/9Lb777jv84he/AAAcOnQIu3fvRnp6OkaOHGlzH2Iml4KwsDCEhYUhKSnJbpM3R3HOsWLFCmi1Wjz88MN0s4YQAsYlaP8+YcIEnpWVJfp+CSHi4ZwjLCwMV111FWpra1FWVob8/Hx4e3vjzJkz0Gq10Gg0qKqqgr+/v9Lhkj7s7bffxkMPPYQvvvgCs2bNcug1xcXFeO+993D8+HFs2rQJ33//PaZPnw7OOSZNmoSsrCy89957uPvuuyWOnvRVDQ0NSExMxMCBA/HrX/8aALB9+3YcO3YMRUVFCA4OViy2O+64wzIv2Vmcc2zbtg2zZs1CaGgodu/ejZkzZ+LNN99UrOM0IUR+jLFDnPMJ1p6j20yE9FGMMVxzzTX44YcfcOTIETz77LPw9vYGAAwdOhTz58/H7NmzKbkkirvnnnsQExODFStWOPyaZcuWIS0tDZs2bcIvfvELXH311QDMx/1f//pXhIeHW6pKhEjBz88Pv//973Hw4EH87ne/w+9+9zv88MMPWLJkiaLJJWAewZKfn4+mpianX/vVV1/hrrvuwl/+8hcA5iG/UVFRqp1OQQiRn90KJmPMF8AeAD4wD6n9iHP+F1uvoQomIT2DyWRCY2MjNBpNlwWwOedOD0ckRCrp6elYvnw5srKyMH78eJvbnjt3DkOHDsWTTz6J559/Hr6+vl2G7dHxTeTS0NAA4VqLMQY/Pz+FIwI2b96M+++/Hzk5OU5PM5g5cyZ2794Nf39/bN++Hddeey1eeOEFPPvssxJFSwhRI3crmE0AruWcjwYwBsBsxtgUEeMjhChEo9HA39+/S3IJgC6+iaosXLgQwcHBSE9Pt7vtqlWrwBjD0qVL4e/vb3VOGB3fRC5+fn7w9/eHv7+/KpJL4Mo5+M7IysrC7t27MX/+fNTX1+O2225DYGAgfvvb30oRJiGkh7Lb5Ke9DW1t+1+92v+IP3GTEEII6UZISAgeffRRvPTSSwgNDbXZSGTTpk245557EBcXJ2OEhPQcziaYu3fvxkcffYR9+/YhODgYa9asQWlpKXbu3IlnnnkGYWFhUoZLCOlhHOoiyxjzAHAIwFAAr3LO91vZZiGAhQCQkJAgZoyEEEIIFi9ejE8++QT/+c9/bG7Xv39//P73v5cpKkJ6nuDgYERHRzuUYLa0tGD+/PmoqKhAYGAg/vjHPyI4OBh//etfcfHiRSxZskSGiAkhPYlTXWQZY6EA/gvgSc55twso0RxMQgghhBD1+sUvfoHGxkbs3bvX5nZbtmzBfffdh88++wxz586VKTpCiNqJ1kWWc14J4DsAs90PixBCCCGEKEGr1VrWQe6OsMbliBEjMGfOHBmjI4T0ZHaHyDLG+gNo4ZxXMsb8AFwH4F+SR0YIIYQQQiSRnJwMo9GI2bNnw8PDAwAwb948PPTQQ5ZtvvrqK/z000/YuHGjzXnPhBDSkSPLlFwFYBMAD5grnts45/9n6zU0RJYQQgghRL0MBgMWLFhgWQuzuLgY1dXVKCoqQkhICADguuuuw8mTJ5Gfnw8fHx8lwyWEqIytIbKOdJH9CcBY0aMihBBCCCGK0Gq1+OGHHyx/P3z4MMaPH4/XX38dy5cvx+HDh/HNN9/gX//6FyWXhBCn0HgHQgghhJA+bty4cZg5cybWrFmDpqYmpKenIygoCI8++qjSoRFCehhKMAkhhBBCCNLS0lBcXIzhw4dj27ZtePTRRy3DZQkhxFEOrYNJCCGEEEJ6txtuuAHLly9Hfn4+pk2bhrS0NKVDIoT0QJRgEkIIIYQQMMbwr3/RQgGEEPfQEFlCCCGEEEIIIaKgBJMQQgghhBBCiCgowSSEEEIIIYQQIgpKMAkhhBBCCCGEiIISTEIIIYQQQgghoqAEkxBCCCGEEEKIKCjBJIQQQgghhBAiCkowCSGEEEIIIYSIgnHOxd8pY+UACkTfsXgiAFQoHQQhbqLjmPQGdByT3oCOY9Ib0HFMnDGQc97f2hOSJJhqxxjL4pxPUDoOQtxBxzHpDeg4Jr0BHcekN6DjmIiFhsgSQgghhBBCCBEFJZiEEEIIIYQQQkTRVxPMN5QOgBAR0HFMegM6jklvQMcx6Q3oOCai6JNzMAkhhBBCCCGEiK+vVjAJIYQQQgghhIiMEkxCCCGEEEIIIaLocwkmY2w2Y8zAGDvDGPu90vEQ0h3G2EbGWBlj7HiHx/oxxnYxxk63/zesw3PPth/XBsbYLGWiJuRnjLF4xti3jLGTjLEcxtjT7Y/TcUx6DMaYL2PsAGPsWPtx/Lf2x+k4Jj0OY8yDMXaEMba9/e90HBPR9akEkzHmAeBVADcCGAHgbsbYCGWjIqRbbwOY3emx3wP4hnM+DMA37X9H+3F8F4CU9tesaz/eCVFSK4ClnPPhAKYAeLz9WKXjmPQkTQCu5ZyPBjAGwGzG2BTQcUx6pqcBnOzwdzqOiej6VIIJYBKAM5zzfM55M4D3AdyqcEyEWMU53wPgcqeHbwWwqf3/NwG4rcPj73POmzjnZwGcgfl4J0QxnPOLnPPD7f9fA/NFTSzoOCY9CDerbf+rV/sfDjqOSQ/DGIsDcBOAtzo8TMcxEV1fSzBjARR1+Pv59scI6SkiOecXAfPFO4AB7Y/TsU1UjTGWCGAsgP2g45j0MO3DCo8CKAOwi3NOxzHpiVYDWA7A1OExOo6J6PpagsmsPEbrtJDegI5tolqMsUAAHwNYzDmvtrWplcfoOCaK45y3cc7HAIgDMIkxNtLG5nQcE9VhjM0FUMY5P+ToS6w8RscxcUhfSzDPA4jv8Pc4AMUKxUKIK0oZY9EA0P7fsvbH6dgmqsQY84I5udzCOf9P+8N0HJMeiXNeCeA7mOek0XFMehIdgFsYY+dgniJ2LWNsM+g4JhLoawnmQQDDGGODGGPeME9e/lThmAhxxqcAHmz//wcBfNLh8bsYYz6MsUEAhgE4oEB8hFgwxhiADQBOcs5XdniKjmPSYzDG+jPGQtv/3w/AdQByQccx6UE4589yzuM454kwX//u5pzfBzqOiQQ8lQ5ATpzzVsbYEwC+BOABYCPnPEfhsAixijG2FcAMABGMsfMA/gLgnwC2McYeBlAIYB4AcM5zGGPbAJyAuXPn45zzNkUCJ+RnOgD3A8hun78GAM+BjmPSs0QD2NTeQVMDYBvnfDtjbC/oOCY9H52PiegY5zScmhBCCCGEEEKI+/raEFlCCCGEEEIIIRKhBJMQQgghhBBCiCgowSSEEEIIIYQQIgpKMAkhhBBCCCGEiIISTEIIIYQQQgghoqAEkxBCCCGEEEKIKCjBJIQQQgghhBAiiv8H+6qI4Y07L14AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# process the data retrieved for this statin\n", "# print(json.dumps(meso_ts['STATION'][0], indent=4))\n", @@ -426,7 +978,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "id": "FgKsHsDstoxg" }, @@ -437,7 +989,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "executionInfo": { "elapsed": 119, @@ -472,7 +1024,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -491,7 +1043,20 @@ "id": "TwqwYQrBLDck", "outputId": "2eb14e59-9297-4dc1-c328-4d3527297eb6" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: pygrib in /Users/jmandel/opt/anaconda3/lib/python3.8/site-packages (2.1.4)\n", + "Requirement already satisfied: numpy in /Users/jmandel/opt/anaconda3/lib/python3.8/site-packages (from pygrib) (1.21.2)\n", + "Requirement already satisfied: pyproj in /Users/jmandel/opt/anaconda3/lib/python3.8/site-packages (from pygrib) (3.2.1)\n", + "Requirement already satisfied: certifi in /Users/jmandel/opt/anaconda3/lib/python3.8/site-packages (from pyproj->pygrib) (2020.6.20)\n", + "File ‘grib_file.py’ already there; not retrieving.\n", + "\n" + ] + } + ], "source": [ "! pip install pygrib \n", "! wget --no-clobber https://raw.githubusercontent.com/openwfm/wrfxpy/master/src/ingest/grib_file.py\n", @@ -510,7 +1075,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "executionInfo": { "elapsed": 3, @@ -564,7 +1129,2376 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2018-06-01 08:00:00+00:00\n", + "2018060108_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060108_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060108_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 09:00:00+00:00\n", + "2018060109_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060109_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060109_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 10:00:00+00:00\n", + "2018060110_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060110_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060110_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 11:00:00+00:00\n", + "2018060111_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060111_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060111_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 12:00:00+00:00\n", + "2018060112_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060112_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060112_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 13:00:00+00:00\n", + "2018060113_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060113_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060113_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 14:00:00+00:00\n", + "2018060114_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060114_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060114_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 15:00:00+00:00\n", + "2018060115_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060115_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060115_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 16:00:00+00:00\n", + "2018060116_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060116_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060116_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 17:00:00+00:00\n", + "2018060117_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060117_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060117_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 18:00:00+00:00\n", + "2018060118_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060118_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060118_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 19:00:00+00:00\n", + "2018060119_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060119_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060119_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 20:00:00+00:00\n", + "2018060120_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060120_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060120_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 21:00:00+00:00\n", + "2018060121_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060121_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060121_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 22:00:00+00:00\n", + "2018060122_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060122_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060122_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-01 23:00:00+00:00\n", + "2018060123_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060123_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060123_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 00:00:00+00:00\n", + "2018060200_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060200_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060200_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 01:00:00+00:00\n", + "2018060201_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060201_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060201_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 02:00:00+00:00\n", + "2018060202_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060202_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060202_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 03:00:00+00:00\n", + "2018060203_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060203_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060203_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 04:00:00+00:00\n", + "2018060204_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060204_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060204_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 05:00:00+00:00\n", + "2018060205_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060205_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060205_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 06:00:00+00:00\n", + "2018060206_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060206_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060206_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 07:00:00+00:00\n", + "2018060207_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060207_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060207_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 08:00:00+00:00\n", + "2018060208_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060208_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060208_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 09:00:00+00:00\n", + "2018060209_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060209_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060209_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 10:00:00+00:00\n", + "2018060210_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060210_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060210_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 11:00:00+00:00\n", + "2018060211_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060211_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060211_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 12:00:00+00:00\n", + "2018060212_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060212_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060212_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 13:00:00+00:00\n", + "2018060213_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060213_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060213_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 14:00:00+00:00\n", + "2018060214_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060214_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060214_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 15:00:00+00:00\n", + "2018060215_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060215_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060215_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 16:00:00+00:00\n", + "2018060216_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060216_td.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018060216_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 17:00:00+00:00\n", + "2018060217_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060217_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060217_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 18:00:00+00:00\n", + "2018060218_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060218_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060218_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 19:00:00+00:00\n", + "2018060219_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060219_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060219_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 20:00:00+00:00\n", + "2018060220_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060220_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060220_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 21:00:00+00:00\n", + "2018060221_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060221_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060221_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 22:00:00+00:00\n", + "2018060222_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060222_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060222_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-02 23:00:00+00:00\n", + "2018060223_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060223_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060223_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 00:00:00+00:00\n", + "2018060300_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060300_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060300_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 01:00:00+00:00\n", + "2018060301_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060301_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060301_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 02:00:00+00:00\n", + "2018060302_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060302_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060302_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 03:00:00+00:00\n", + "2018060303_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060303_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060303_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 04:00:00+00:00\n", + "2018060304_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060304_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060304_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 05:00:00+00:00\n", + "2018060305_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060305_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060305_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 06:00:00+00:00\n", + "2018060306_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060306_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060306_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 07:00:00+00:00\n", + "2018060307_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060307_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060307_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 08:00:00+00:00\n", + "2018060308_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060308_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060308_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 09:00:00+00:00\n", + "2018060309_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060309_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060309_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 10:00:00+00:00\n", + "2018060310_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060310_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060310_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 11:00:00+00:00\n", + "2018060311_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060311_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060311_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 12:00:00+00:00\n", + "2018060312_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060312_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060312_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 13:00:00+00:00\n", + "2018060313_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060313_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060313_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 14:00:00+00:00\n", + "2018060314_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060314_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060314_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 15:00:00+00:00\n", + "2018060315_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060315_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060315_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 16:00:00+00:00\n", + "2018060316_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060316_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060316_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 17:00:00+00:00\n", + "2018060317_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060317_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060317_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 18:00:00+00:00\n", + "2018060318_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060318_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060318_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 19:00:00+00:00\n", + "2018060319_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060319_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060319_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 20:00:00+00:00\n", + "2018060320_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060320_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060320_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 21:00:00+00:00\n", + "2018060321_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060321_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060321_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 22:00:00+00:00\n", + "2018060322_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060322_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060322_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-03 23:00:00+00:00\n", + "2018060323_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060323_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060323_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 00:00:00+00:00\n", + "2018060400_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060400_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060400_precipa.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018-06-04 01:00:00+00:00\n", + "2018060401_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060401_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060401_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 02:00:00+00:00\n", + "2018060402_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060402_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060402_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 03:00:00+00:00\n", + "2018060403_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060403_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060403_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 04:00:00+00:00\n", + "2018060404_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060404_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060404_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 05:00:00+00:00\n", + "2018060405_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060405_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060405_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 06:00:00+00:00\n", + "2018060406_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060406_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060406_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 07:00:00+00:00\n", + "2018060407_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060407_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060407_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 08:00:00+00:00\n", + "2018060408_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060408_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060408_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 09:00:00+00:00\n", + "2018060409_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060409_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060409_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 10:00:00+00:00\n", + "2018060410_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060410_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060410_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 11:00:00+00:00\n", + "2018060411_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060411_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060411_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 12:00:00+00:00\n", + "2018060412_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060412_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060412_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 13:00:00+00:00\n", + "2018060413_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060413_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060413_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 14:00:00+00:00\n", + "2018060414_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060414_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060414_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 15:00:00+00:00\n", + "2018060415_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060415_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060415_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 16:00:00+00:00\n", + "2018060416_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060416_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060416_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 17:00:00+00:00\n", + "2018060417_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060417_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060417_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 18:00:00+00:00\n", + "2018060418_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060418_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060418_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 19:00:00+00:00\n", + "2018060419_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060419_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060419_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 20:00:00+00:00\n", + "2018060420_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060420_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060420_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 21:00:00+00:00\n", + "2018060421_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060421_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060421_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 22:00:00+00:00\n", + "2018060422_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060422_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060422_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-04 23:00:00+00:00\n", + "2018060423_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060423_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060423_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 00:00:00+00:00\n", + "2018060500_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060500_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060500_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 01:00:00+00:00\n", + "2018060501_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060501_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060501_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 02:00:00+00:00\n", + "2018060502_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060502_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060502_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 03:00:00+00:00\n", + "2018060503_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060503_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060503_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 04:00:00+00:00\n", + "2018060504_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060504_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060504_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 05:00:00+00:00\n", + "2018060505_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060505_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060505_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 06:00:00+00:00\n", + "2018060506_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060506_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060506_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 07:00:00+00:00\n", + "2018060507_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060507_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060507_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 08:00:00+00:00\n", + "2018060508_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060508_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060508_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 09:00:00+00:00\n", + "2018060509_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060509_td.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018060509_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 10:00:00+00:00\n", + "2018060510_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060510_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060510_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 11:00:00+00:00\n", + "2018060511_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060511_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060511_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 12:00:00+00:00\n", + "2018060512_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060512_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060512_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 13:00:00+00:00\n", + "2018060513_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060513_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060513_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 14:00:00+00:00\n", + "2018060514_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060514_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060514_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 15:00:00+00:00\n", + "2018060515_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060515_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060515_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 16:00:00+00:00\n", + "2018060516_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060516_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060516_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 17:00:00+00:00\n", + "2018060517_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060517_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060517_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 18:00:00+00:00\n", + "2018060518_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060518_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060518_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 19:00:00+00:00\n", + "2018060519_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060519_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060519_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 20:00:00+00:00\n", + "2018060520_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060520_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060520_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 21:00:00+00:00\n", + "2018060521_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060521_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060521_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 22:00:00+00:00\n", + "2018060522_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060522_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060522_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-05 23:00:00+00:00\n", + "2018060523_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060523_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060523_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 00:00:00+00:00\n", + "2018060600_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060600_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060600_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 01:00:00+00:00\n", + "2018060601_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060601_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060601_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 02:00:00+00:00\n", + "2018060602_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060602_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060602_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 03:00:00+00:00\n", + "2018060603_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060603_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060603_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 04:00:00+00:00\n", + "2018060604_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060604_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060604_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 05:00:00+00:00\n", + "2018060605_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060605_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060605_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 06:00:00+00:00\n", + "2018060606_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060606_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060606_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 07:00:00+00:00\n", + "2018060607_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060607_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060607_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 08:00:00+00:00\n", + "2018060608_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060608_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060608_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 09:00:00+00:00\n", + "2018060609_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060609_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060609_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 10:00:00+00:00\n", + "2018060610_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060610_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060610_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 11:00:00+00:00\n", + "2018060611_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060611_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060611_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 12:00:00+00:00\n", + "2018060612_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060612_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060612_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 13:00:00+00:00\n", + "2018060613_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060613_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060613_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 14:00:00+00:00\n", + "2018060614_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060614_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060614_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 15:00:00+00:00\n", + "2018060615_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060615_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060615_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 16:00:00+00:00\n", + "2018060616_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060616_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060616_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 17:00:00+00:00\n", + "2018060617_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060617_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060617_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2018-06-06 18:00:00+00:00\n", + "2018060618_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060618_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060618_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 19:00:00+00:00\n", + "2018060619_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060619_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060619_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 20:00:00+00:00\n", + "2018060620_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060620_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060620_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 21:00:00+00:00\n", + "2018060621_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060621_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060621_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 22:00:00+00:00\n", + "2018060622_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060622_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060622_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-06 23:00:00+00:00\n", + "2018060623_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060623_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060623_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 00:00:00+00:00\n", + "2018060700_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060700_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060700_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 01:00:00+00:00\n", + "2018060701_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060701_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060701_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 02:00:00+00:00\n", + "2018060702_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060702_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060702_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 03:00:00+00:00\n", + "2018060703_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060703_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060703_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 04:00:00+00:00\n", + "2018060704_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060704_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060704_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 05:00:00+00:00\n", + "2018060705_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060705_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060705_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 06:00:00+00:00\n", + "2018060706_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060706_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060706_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 07:00:00+00:00\n", + "2018060707_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060707_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060707_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 08:00:00+00:00\n", + "2018060708_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060708_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060708_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 09:00:00+00:00\n", + "2018060709_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060709_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060709_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 10:00:00+00:00\n", + "2018060710_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060710_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060710_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 11:00:00+00:00\n", + "2018060711_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060711_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060711_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 12:00:00+00:00\n", + "2018060712_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060712_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060712_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 13:00:00+00:00\n", + "2018060713_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060713_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060713_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 14:00:00+00:00\n", + "2018060714_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060714_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060714_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 15:00:00+00:00\n", + "2018060715_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060715_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060715_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 16:00:00+00:00\n", + "2018060716_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060716_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060716_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 17:00:00+00:00\n", + "2018060717_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060717_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060717_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 18:00:00+00:00\n", + "2018060718_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060718_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060718_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 19:00:00+00:00\n", + "2018060719_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060719_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060719_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 20:00:00+00:00\n", + "2018060720_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060720_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060720_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 21:00:00+00:00\n", + "2018060721_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060721_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060721_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 22:00:00+00:00\n", + "2018060722_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060722_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060722_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-07 23:00:00+00:00\n", + "2018060723_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060723_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060723_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 00:00:00+00:00\n", + "2018060800_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060800_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060800_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 01:00:00+00:00\n", + "2018060801_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060801_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060801_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 02:00:00+00:00\n", + "2018060802_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060802_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060802_precipa.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018-06-08 03:00:00+00:00\n", + "2018060803_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060803_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060803_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 04:00:00+00:00\n", + "2018060804_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060804_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060804_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 05:00:00+00:00\n", + "2018060805_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060805_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060805_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 06:00:00+00:00\n", + "2018060806_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060806_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060806_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 07:00:00+00:00\n", + "2018060807_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060807_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060807_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 08:00:00+00:00\n", + "2018060808_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060808_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060808_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 09:00:00+00:00\n", + "2018060809_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060809_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060809_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 10:00:00+00:00\n", + "2018060810_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060810_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060810_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 11:00:00+00:00\n", + "2018060811_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060811_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060811_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 12:00:00+00:00\n", + "2018060812_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060812_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060812_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 13:00:00+00:00\n", + "2018060813_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060813_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060813_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 14:00:00+00:00\n", + "2018060814_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060814_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060814_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 15:00:00+00:00\n", + "2018060815_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060815_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060815_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 16:00:00+00:00\n", + "2018060816_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060816_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060816_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 17:00:00+00:00\n", + "2018060817_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060817_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060817_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 18:00:00+00:00\n", + "2018060818_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060818_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060818_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 19:00:00+00:00\n", + "2018060819_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060819_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060819_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 20:00:00+00:00\n", + "2018060820_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060820_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060820_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 21:00:00+00:00\n", + "2018060821_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060821_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060821_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 22:00:00+00:00\n", + "2018060822_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060822_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060822_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-08 23:00:00+00:00\n", + "2018060823_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060823_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060823_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 00:00:00+00:00\n", + "2018060900_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060900_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060900_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 01:00:00+00:00\n", + "2018060901_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060901_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060901_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 02:00:00+00:00\n", + "2018060902_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060902_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060902_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 03:00:00+00:00\n", + "2018060903_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060903_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060903_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 04:00:00+00:00\n", + "2018060904_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060904_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060904_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 05:00:00+00:00\n", + "2018060905_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060905_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060905_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 06:00:00+00:00\n", + "2018060906_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060906_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060906_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 07:00:00+00:00\n", + "2018060907_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060907_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060907_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 08:00:00+00:00\n", + "2018060908_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060908_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060908_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 09:00:00+00:00\n", + "2018060909_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060909_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060909_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 10:00:00+00:00\n", + "2018060910_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060910_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060910_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 11:00:00+00:00\n", + "2018060911_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060911_td.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018060911_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 12:00:00+00:00\n", + "2018060912_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060912_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060912_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 13:00:00+00:00\n", + "2018060913_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060913_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060913_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 14:00:00+00:00\n", + "2018060914_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060914_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060914_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 15:00:00+00:00\n", + "2018060915_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060915_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060915_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 16:00:00+00:00\n", + "2018060916_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060916_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060916_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 17:00:00+00:00\n", + "2018060917_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060917_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060917_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 18:00:00+00:00\n", + "2018060918_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060918_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060918_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 19:00:00+00:00\n", + "2018060919_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060919_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060919_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 20:00:00+00:00\n", + "2018060920_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060920_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060920_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 21:00:00+00:00\n", + "2018060921_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060921_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060921_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 22:00:00+00:00\n", + "2018060922_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060922_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060922_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-09 23:00:00+00:00\n", + "2018060923_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060923_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018060923_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 00:00:00+00:00\n", + "2018061000_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061000_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061000_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 01:00:00+00:00\n", + "2018061001_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061001_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061001_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 02:00:00+00:00\n", + "2018061002_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061002_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061002_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 03:00:00+00:00\n", + "2018061003_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061003_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061003_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 04:00:00+00:00\n", + "2018061004_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061004_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061004_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 05:00:00+00:00\n", + "2018061005_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061005_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061005_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 06:00:00+00:00\n", + "2018061006_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061006_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061006_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 07:00:00+00:00\n", + "2018061007_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061007_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061007_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 08:00:00+00:00\n", + "2018061008_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061008_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061008_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 09:00:00+00:00\n", + "2018061009_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061009_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061009_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 10:00:00+00:00\n", + "2018061010_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061010_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061010_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 11:00:00+00:00\n", + "2018061011_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061011_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061011_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 12:00:00+00:00\n", + "2018061012_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061012_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061012_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 13:00:00+00:00\n", + "2018061013_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061013_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061013_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 14:00:00+00:00\n", + "2018061014_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061014_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061014_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 15:00:00+00:00\n", + "2018061015_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061015_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061015_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 16:00:00+00:00\n", + "2018061016_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061016_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061016_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 17:00:00+00:00\n", + "2018061017_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061017_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061017_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 18:00:00+00:00\n", + "2018061018_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061018_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061018_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 19:00:00+00:00\n", + "2018061019_temp.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018061019_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061019_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 20:00:00+00:00\n", + "2018061020_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061020_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061020_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 21:00:00+00:00\n", + "2018061021_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061021_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061021_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 22:00:00+00:00\n", + "2018061022_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061022_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061022_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-10 23:00:00+00:00\n", + "2018061023_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061023_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061023_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 00:00:00+00:00\n", + "2018061100_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061100_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061100_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 01:00:00+00:00\n", + "2018061101_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061101_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061101_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 02:00:00+00:00\n", + "2018061102_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061102_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061102_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 03:00:00+00:00\n", + "2018061103_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061103_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061103_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 04:00:00+00:00\n", + "2018061104_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061104_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061104_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 05:00:00+00:00\n", + "2018061105_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061105_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061105_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 06:00:00+00:00\n", + "2018061106_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061106_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061106_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 07:00:00+00:00\n", + "2018061107_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061107_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061107_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 08:00:00+00:00\n", + "2018061108_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061108_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061108_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 09:00:00+00:00\n", + "2018061109_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061109_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061109_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 10:00:00+00:00\n", + "2018061110_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061110_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061110_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 11:00:00+00:00\n", + "2018061111_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061111_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061111_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 12:00:00+00:00\n", + "2018061112_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061112_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061112_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 13:00:00+00:00\n", + "2018061113_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061113_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061113_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 14:00:00+00:00\n", + "2018061114_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061114_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061114_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 15:00:00+00:00\n", + "2018061115_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061115_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061115_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 16:00:00+00:00\n", + "2018061116_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061116_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061116_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 17:00:00+00:00\n", + "2018061117_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061117_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061117_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 18:00:00+00:00\n", + "2018061118_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061118_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061118_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 19:00:00+00:00\n", + "2018061119_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061119_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061119_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 20:00:00+00:00\n", + "2018061120_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061120_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061120_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 21:00:00+00:00\n", + "2018061121_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061121_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061121_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 22:00:00+00:00\n", + "2018061122_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061122_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061122_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-11 23:00:00+00:00\n", + "2018061123_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061123_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061123_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 00:00:00+00:00\n", + "2018061200_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061200_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061200_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 01:00:00+00:00\n", + "2018061201_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061201_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061201_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 02:00:00+00:00\n", + "2018061202_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061202_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061202_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 03:00:00+00:00\n", + "2018061203_temp.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018061203_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061203_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 04:00:00+00:00\n", + "2018061204_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061204_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061204_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 05:00:00+00:00\n", + "2018061205_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061205_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061205_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 06:00:00+00:00\n", + "2018061206_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061206_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061206_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 07:00:00+00:00\n", + "2018061207_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061207_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061207_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 08:00:00+00:00\n", + "2018061208_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061208_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061208_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 09:00:00+00:00\n", + "2018061209_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061209_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061209_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 10:00:00+00:00\n", + "2018061210_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061210_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061210_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 11:00:00+00:00\n", + "2018061211_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061211_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061211_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 12:00:00+00:00\n", + "2018061212_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061212_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061212_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 13:00:00+00:00\n", + "2018061213_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061213_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061213_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 14:00:00+00:00\n", + "2018061214_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061214_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061214_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 15:00:00+00:00\n", + "2018061215_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061215_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061215_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 16:00:00+00:00\n", + "2018061216_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061216_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061216_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 17:00:00+00:00\n", + "2018061217_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061217_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061217_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 18:00:00+00:00\n", + "2018061218_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061218_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061218_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 19:00:00+00:00\n", + "2018061219_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061219_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061219_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 20:00:00+00:00\n", + "2018061220_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061220_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061220_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 21:00:00+00:00\n", + "2018061221_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061221_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061221_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 22:00:00+00:00\n", + "2018061222_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061222_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061222_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-12 23:00:00+00:00\n", + "2018061223_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061223_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061223_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 00:00:00+00:00\n", + "2018061300_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061300_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061300_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 01:00:00+00:00\n", + "2018061301_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061301_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061301_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 02:00:00+00:00\n", + "2018061302_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061302_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061302_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 03:00:00+00:00\n", + "2018061303_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061303_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061303_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 04:00:00+00:00\n", + "2018061304_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061304_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061304_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 05:00:00+00:00\n", + "2018061305_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061305_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061305_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 06:00:00+00:00\n", + "2018061306_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061306_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061306_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 07:00:00+00:00\n", + "2018061307_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061307_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061307_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 08:00:00+00:00\n", + "2018061308_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061308_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061308_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 09:00:00+00:00\n", + "2018061309_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061309_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061309_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 10:00:00+00:00\n", + "2018061310_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061310_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061310_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 11:00:00+00:00\n", + "2018061311_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061311_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2018061311_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 12:00:00+00:00\n", + "2018061312_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061312_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061312_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 13:00:00+00:00\n", + "2018061313_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061313_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061313_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 14:00:00+00:00\n", + "2018061314_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061314_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061314_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 15:00:00+00:00\n", + "2018061315_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061315_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061315_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 16:00:00+00:00\n", + "2018061316_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061316_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061316_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 17:00:00+00:00\n", + "2018061317_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061317_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061317_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 18:00:00+00:00\n", + "2018061318_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061318_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061318_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 19:00:00+00:00\n", + "2018061319_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061319_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061319_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 20:00:00+00:00\n", + "2018061320_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061320_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061320_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 21:00:00+00:00\n", + "2018061321_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061321_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061321_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 22:00:00+00:00\n", + "2018061322_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061322_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061322_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-13 23:00:00+00:00\n", + "2018061323_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061323_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061323_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 00:00:00+00:00\n", + "2018061400_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061400_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061400_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 01:00:00+00:00\n", + "2018061401_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061401_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061401_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 02:00:00+00:00\n", + "2018061402_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061402_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061402_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 03:00:00+00:00\n", + "2018061403_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061403_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061403_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 04:00:00+00:00\n", + "2018061404_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061404_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061404_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 05:00:00+00:00\n", + "2018061405_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061405_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061405_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 06:00:00+00:00\n", + "2018061406_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061406_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061406_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 07:00:00+00:00\n", + "2018061407_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061407_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061407_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 08:00:00+00:00\n", + "2018061408_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061408_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061408_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 09:00:00+00:00\n", + "2018061409_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061409_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061409_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 10:00:00+00:00\n", + "2018061410_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061410_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061410_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 11:00:00+00:00\n", + "2018061411_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061411_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061411_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 12:00:00+00:00\n", + "2018061412_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061412_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061412_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 13:00:00+00:00\n", + "2018061413_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061413_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061413_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 14:00:00+00:00\n", + "2018061414_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061414_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061414_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 15:00:00+00:00\n", + "2018061415_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061415_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061415_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 16:00:00+00:00\n", + "2018061416_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061416_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061416_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 17:00:00+00:00\n", + "2018061417_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061417_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061417_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 18:00:00+00:00\n", + "2018061418_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061418_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061418_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 19:00:00+00:00\n", + "2018061419_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061419_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061419_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 20:00:00+00:00\n", + "2018061420_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061420_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061420_precipa.grib already exists, exiting\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loaded array shape (1377, 2145)\n", + "2018-06-14 21:00:00+00:00\n", + "2018061421_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061421_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061421_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 22:00:00+00:00\n", + "2018061422_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061422_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061422_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-14 23:00:00+00:00\n", + "2018061423_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061423_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061423_precipa.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018-06-15 00:00:00+00:00\n", + "2018061500_temp.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061500_td.grib already exists, exiting\n", + "loaded array shape (1377, 2145)\n", + "2018061500_precipa.grib already exists, exiting\n" + ] + } + ], "source": [ "import pandas as pd\n", "import intergrid\n", @@ -575,7 +3509,7 @@ " if load_rtma(tpath + '/' + var + '.grib',gribfile):\n", " print('cannot load file')\n", " gf=GribFile(gribfile)\n", - " v = np.array(gf.values())\n", + " v = np.array(gf[1].values())\n", " print('loaded array shape ',v.shape)\n", " return gf[1] # grib message\n", "for t in pd.date_range(start=obs_time[0].replace(minute=0),end=obs_time[-1],freq='1H'):\n", -- 2.11.4.GIT