2 * Ambisonic reverb engine for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
29 #include "alAuxEffectSlot.h"
33 #include "mixer_defs.h"
35 /* This is the maximum number of samples processed for each inner loop
37 #define MAX_UPDATE_SAMPLES 256
39 /* The number of samples used for cross-faded delay lines. This can be used
40 * to balance the compensation for abrupt line changes and attenuation due to
41 * minimally lengthed recursive lines. Try to keep this below the device
44 #define FADE_SAMPLES 128
47 #define UNEXPECTED(x) __builtin_expect((bool)(x), 0)
49 #define UNEXPECTED(x) (x)
52 static MixerFunc MixSamples
= Mix_C
;
53 static RowMixerFunc MixRowSamples
= MixRow_C
;
55 static alonce_flag mixfunc_inited
= AL_ONCE_FLAG_INIT
;
56 static void init_mixfunc(void)
58 MixSamples
= SelectMixer();
59 MixRowSamples
= SelectRowMixer();
62 typedef struct DelayLineI
{
63 /* The delay lines use interleaved samples, with the lengths being powers
64 * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
70 typedef struct VecAllpass
{
75 typedef struct ALreverbState
{
76 DERIVE_FROM_TYPE(ALeffectState
);
80 /* All delay lines are allocated as a single buffer to reduce memory
81 * fragmentation and management code.
83 ALfloat
*SampleBuffer
;
86 /* Master effect filters */
89 ALfilterState Hp
; /* EAX only */
92 /* Core delay line (early reflections and late reverb tap from this). */
95 /* Tap points for early reflection delay. */
96 ALsizei EarlyDelayTap
[4][2];
97 ALfloat EarlyDelayCoeff
[4];
99 /* Tap points for late reverb feed and delay. */
101 ALsizei LateDelayTap
[4][2];
103 /* The feed-back and feed-forward all-pass coefficient. */
106 /* Coefficients for the all-pass and line scattering matrices. */
111 /* A Gerzon vector all-pass filter is used to simulate initial
112 * diffusion. The spread from this filter also helps smooth out the
117 /* An echo line is used to complete the second half of the early
121 ALsizei Offset
[4][2];
124 /* The gain for each output channel based on 3D panning. */
125 ALfloat CurrentGain
[4][MAX_OUTPUT_CHANNELS
];
126 ALfloat PanGain
[4][MAX_OUTPUT_CHANNELS
];
130 /* The vibrato time is tracked with an index over a modulus-wrapped
131 * range (in samples).
136 /* The depth of frequency change (also in samples) and its filter. */
140 } Mod
; /* EAX only */
143 /* Attenuation to compensate for the modal density and decay rate of
148 /* A recursive delay line is used fill in the reverb tail. */
150 ALsizei Offset
[4][2];
152 /* T60 decay filters are used to simulate absorption. */
157 /* The LF and HF filters keep a state of the last input and last
160 ALfloat States
[2][2];
163 /* A Gerzon vector all-pass filter is used to simulate diffusion. */
166 /* The gain for each output channel based on 3D panning. */
167 ALfloat CurrentGain
[4][MAX_OUTPUT_CHANNELS
];
168 ALfloat PanGain
[4][MAX_OUTPUT_CHANNELS
];
171 /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */
174 /* The current write offset for all delay lines. */
177 /* Temporary storage used when processing. */
178 alignas(16) ALfloat AFormatSamples
[4][MAX_UPDATE_SAMPLES
];
179 alignas(16) ALfloat ReverbSamples
[4][MAX_UPDATE_SAMPLES
];
180 alignas(16) ALfloat EarlySamples
[4][MAX_UPDATE_SAMPLES
];
183 static ALvoid
ALreverbState_Destruct(ALreverbState
*State
);
184 static ALboolean
ALreverbState_deviceUpdate(ALreverbState
*State
, ALCdevice
*Device
);
185 static ALvoid
ALreverbState_update(ALreverbState
*State
, const ALCdevice
*Device
, const ALeffectslot
*Slot
, const ALeffectProps
*props
);
186 static ALvoid
ALreverbState_process(ALreverbState
*State
, ALsizei SamplesToDo
, const ALfloat (*restrict SamplesIn
)[BUFFERSIZE
], ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALsizei NumChannels
);
187 DECLARE_DEFAULT_ALLOCATORS(ALreverbState
)
189 DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState
);
191 static void ALreverbState_Construct(ALreverbState
*state
)
195 ALeffectState_Construct(STATIC_CAST(ALeffectState
, state
));
196 SET_VTABLE2(ALreverbState
, ALeffectState
, state
);
198 state
->IsEax
= AL_FALSE
;
200 state
->TotalSamples
= 0;
201 state
->SampleBuffer
= NULL
;
205 ALfilterState_clear(&state
->Filter
[i
].Lp
);
206 ALfilterState_clear(&state
->Filter
[i
].Hp
);
209 state
->Delay
.Mask
= 0;
210 state
->Delay
.Line
= NULL
;
214 state
->EarlyDelayTap
[i
][0] = 0;
215 state
->EarlyDelayTap
[i
][1] = 0;
216 state
->EarlyDelayCoeff
[i
] = 0.0f
;
219 state
->LateFeedTap
= 0;
223 state
->LateDelayTap
[i
][0] = 0;
224 state
->LateDelayTap
[i
][1] = 0;
227 state
->ApFeedCoeff
= 0.0f
;
231 state
->Early
.VecAp
.Delay
.Mask
= 0;
232 state
->Early
.VecAp
.Delay
.Line
= NULL
;
233 state
->Early
.Delay
.Mask
= 0;
234 state
->Early
.Delay
.Line
= NULL
;
237 state
->Early
.VecAp
.Offset
[i
][0] = 0;
238 state
->Early
.VecAp
.Offset
[i
][1] = 0;
239 state
->Early
.Offset
[i
][0] = 0;
240 state
->Early
.Offset
[i
][1] = 0;
241 state
->Early
.Coeff
[i
] = 0.0f
;
244 state
->Mod
.Index
= 0;
245 state
->Mod
.Range
= 1;
246 state
->Mod
.Depth
= 0.0f
;
247 state
->Mod
.Coeff
= 0.0f
;
248 state
->Mod
.Filter
= 0.0f
;
250 state
->Late
.DensityGain
= 0.0f
;
252 state
->Late
.Delay
.Mask
= 0;
253 state
->Late
.Delay
.Line
= NULL
;
254 state
->Late
.VecAp
.Delay
.Mask
= 0;
255 state
->Late
.VecAp
.Delay
.Line
= NULL
;
258 state
->Late
.Offset
[i
][0] = 0;
259 state
->Late
.Offset
[i
][1] = 0;
261 state
->Late
.VecAp
.Offset
[i
][0] = 0;
262 state
->Late
.VecAp
.Offset
[i
][1] = 0;
266 state
->Late
.Filters
[i
].LFCoeffs
[j
] = 0.0f
;
267 state
->Late
.Filters
[i
].HFCoeffs
[j
] = 0.0f
;
269 state
->Late
.Filters
[i
].MidCoeff
= 0.0f
;
271 state
->Late
.Filters
[i
].States
[0][0] = 0.0f
;
272 state
->Late
.Filters
[i
].States
[0][1] = 0.0f
;
273 state
->Late
.Filters
[i
].States
[1][0] = 0.0f
;
274 state
->Late
.Filters
[i
].States
[1][1] = 0.0f
;
279 for(j
= 0;j
< MAX_OUTPUT_CHANNELS
;j
++)
281 state
->Early
.CurrentGain
[i
][j
] = 0.0f
;
282 state
->Early
.PanGain
[i
][j
] = 0.0f
;
283 state
->Late
.CurrentGain
[i
][j
] = 0.0f
;
284 state
->Late
.PanGain
[i
][j
] = 0.0f
;
288 state
->FadeCount
= 0;
292 static ALvoid
ALreverbState_Destruct(ALreverbState
*State
)
294 al_free(State
->SampleBuffer
);
295 State
->SampleBuffer
= NULL
;
297 ALeffectState_Destruct(STATIC_CAST(ALeffectState
,State
));
300 /* The B-Format to A-Format conversion matrix. The arrangement of rows is
301 * deliberately chosen to align the resulting lines to their spatial opposites
302 * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
303 * back left). It's not quite opposite, since the A-Format results in a
304 * tetrahedron, but it's close enough. Should the model be extended to 8-lines
305 * in the future, true opposites can be used.
307 static const aluMatrixf B2A
= {{
308 { 0.288675134595f
, 0.288675134595f
, 0.288675134595f
, 0.288675134595f
},
309 { 0.288675134595f
, -0.288675134595f
, -0.288675134595f
, 0.288675134595f
},
310 { 0.288675134595f
, 0.288675134595f
, -0.288675134595f
, -0.288675134595f
},
311 { 0.288675134595f
, -0.288675134595f
, 0.288675134595f
, -0.288675134595f
}
314 /* Converts A-Format to B-Format. */
315 static const aluMatrixf A2B
= {{
316 { 0.866025403785f
, 0.866025403785f
, 0.866025403785f
, 0.866025403785f
},
317 { 0.866025403785f
, -0.866025403785f
, 0.866025403785f
, -0.866025403785f
},
318 { 0.866025403785f
, -0.866025403785f
, -0.866025403785f
, 0.866025403785f
},
319 { 0.866025403785f
, 0.866025403785f
, -0.866025403785f
, -0.866025403785f
}
322 static const ALfloat FadeStep
= 1.0f
/ FADE_SAMPLES
;
324 /* This is a user config option for modifying the overall output of the reverb
327 ALfloat ReverbBoost
= 1.0f
;
329 /* Specifies whether to use a standard reverb effect in place of EAX reverb (no
330 * high-pass, modulation, or echo).
332 ALboolean EmulateEAXReverb
= AL_FALSE
;
334 /* The all-pass and delay lines have a variable length dependent on the
335 * effect's density parameter. The resulting density multiplier is:
337 * multiplier = 1 + (density * LINE_MULTIPLIER)
339 * Thus the line multiplier below will result in a maximum density multiplier
342 static const ALfloat LINE_MULTIPLIER
= 9.0f
;
344 /* All delay line lengths are specified in seconds.
346 * To approximate early reflections, we break them up into primary (those
347 * arriving from the same direction as the source) and secondary (those
348 * arriving from the opposite direction).
350 * The early taps decorrelate the 4-channel signal to approximate an average
351 * room response for the primary reflections after the initial early delay.
353 * Given an average room dimension (d_a) and the speed of sound (c) we can
354 * calculate the average reflection delay (r_a) regardless of listener and
355 * source positions as:
360 * This can extended to finding the average difference (r_d) between the
361 * maximum (r_1) and minimum (r_0) reflection delays:
372 * As can be determined by integrating the 1D model with a source (s) and
373 * listener (l) positioned across the dimension of length (d_a):
375 * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
377 * The initial taps (T_(i=0)^N) are then specified by taking a power series
378 * that ranges between r_0 and half of r_1 less r_0:
380 * R_i = 2^(i / (2 N - 1)) r_d
381 * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
384 * = (2^(i / (2 N - 1)) - 1) r_d
386 * Assuming an average of 5m (up to 50m with the density multiplier), we get
387 * the following taps:
389 static const ALfloat EARLY_TAP_LENGTHS
[4] =
391 0.000000e+0f
, 1.010676e-3f
, 2.126553e-3f
, 3.358580e-3f
394 /* The early all-pass filter lengths are based on the early tap lengths:
398 * Where a is the approximate maximum all-pass cycle limit (20).
400 static const ALfloat EARLY_ALLPASS_LENGTHS
[4] =
402 4.854840e-4f
, 5.360178e-4f
, 5.918117e-4f
, 6.534130e-4f
405 /* The early delay lines are used to transform the primary reflections into
406 * the secondary reflections. The A-format is arranged in such a way that
407 * the channels/lines are spatially opposite:
409 * C_i is opposite C_(N-i-1)
411 * The delays of the two opposing reflections (R_i and O_i) from a source
412 * anywhere along a particular dimension always sum to twice its full delay:
416 * With that in mind we can determine the delay between the two reflections
417 * and thus specify our early line lengths (L_(i=0)^N) using:
419 * O_i = 2 r_a - R_(N-i-1)
420 * L_i = O_i - R_(N-i-1)
421 * = 2 (r_a - R_(N-i-1))
422 * = 2 (r_a - T_(N-i-1) - r_0)
423 * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
425 * Using an average dimension of 5m, we get:
427 static const ALfloat EARLY_LINE_LENGTHS
[4] =
429 2.992520e-3f
, 5.456575e-3f
, 7.688329e-3f
, 9.709681e-3f
432 /* The late all-pass filter lengths are based on the late line lengths:
434 * A_i = (5 / 3) L_i / r_1
436 static const ALfloat LATE_ALLPASS_LENGTHS
[4] =
438 8.091400e-4f
, 1.019453e-3f
, 1.407968e-3f
, 1.618280e-3f
441 /* The late lines are used to approximate the decaying cycle of recursive
444 * Splitting the lines in half, we start with the shortest reflection paths
447 * L_i = 2^(i / (N - 1)) r_d
449 * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
451 * L_i = 2 r_a - L_(i-N/2)
452 * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
454 * For our 5m average room, we get:
456 static const ALfloat LATE_LINE_LENGTHS
[4] =
458 9.709681e-3f
, 1.223343e-2f
, 1.689561e-2f
, 1.941936e-2f
461 /* This coefficient is used to define the sinus depth according to the
462 * modulation depth property. This value must be below half the shortest late
463 * line length (0.0097/2 = ~0.0048), otherwise with certain parameters (high
464 * mod time, low density) the downswing can sample before the input.
466 static const ALfloat MODULATION_DEPTH_COEFF
= 1.0f
/ 4096.0f
;
468 /* A filter is used to avoid the terrible distortion caused by changing
469 * modulation time and/or depth. To be consistent across different sample
470 * rates, the coefficient must be raised to a constant divided by the sample
471 * rate: coeff^(constant / rate).
473 static const ALfloat MODULATION_FILTER_COEFF
= 0.048f
;
474 static const ALfloat MODULATION_FILTER_CONST
= 100000.0f
;
477 /* Prior to VS2013, MSVC lacks the round() family of functions. */
478 #if defined(_MSC_VER) && _MSC_VER < 1800
479 static inline long lroundf(float val
)
482 return fastf2i(ceilf(val
-0.5f
));
483 return fastf2i(floorf(val
+0.5f
));
488 /**************************************
490 **************************************/
492 /* Given the allocated sample buffer, this function updates each delay line
495 static inline ALvoid
RealizeLineOffset(ALfloat
*sampleBuffer
, DelayLineI
*Delay
)
501 u
.f
= &sampleBuffer
[(ptrdiff_t)Delay
->Line
* 4];
505 /* Calculate the length of a delay line and store its mask and offset. */
506 static ALuint
CalcLineLength(const ALfloat length
, const ptrdiff_t offset
, const ALuint frequency
,
507 const ALuint extra
, DelayLineI
*Delay
)
511 /* All line lengths are powers of 2, calculated from their lengths in
512 * seconds, rounded up.
514 samples
= fastf2i(ceilf(length
*frequency
));
515 samples
= NextPowerOf2(samples
+ extra
);
517 /* All lines share a single sample buffer. */
518 Delay
->Mask
= samples
- 1;
519 Delay
->Line
= (ALfloat(*)[4])offset
;
521 /* Return the sample count for accumulation. */
525 /* Calculates the delay line metrics and allocates the shared sample buffer
526 * for all lines given the sample rate (frequency). If an allocation failure
527 * occurs, it returns AL_FALSE.
529 static ALboolean
AllocLines(const ALuint frequency
, ALreverbState
*State
)
531 ALuint totalSamples
, i
;
532 ALfloat multiplier
, length
;
534 /* All delay line lengths are calculated to accomodate the full range of
535 * lengths given their respective paramters.
539 /* Multiplier for the maximum density value, i.e. density=1, which is
540 * actually the least density...
542 multiplier
= 1.0f
+ LINE_MULTIPLIER
;
544 /* The main delay length includes the maximum early reflection delay, the
545 * largest early tap width, the maximum late reverb delay, and the
546 * largest late tap width. Finally, it must also be extended by the
547 * update size (MAX_UPDATE_SAMPLES) for block processing.
549 length
= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+
550 EARLY_TAP_LENGTHS
[3]*multiplier
+
551 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
+
552 (LATE_LINE_LENGTHS
[3] - LATE_LINE_LENGTHS
[0])*0.25f
*multiplier
;
553 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, MAX_UPDATE_SAMPLES
,
556 /* The early vector all-pass line. */
557 length
= EARLY_ALLPASS_LENGTHS
[3] * multiplier
;
558 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, 0,
559 &State
->Early
.VecAp
.Delay
);
561 /* The early reflection line. */
562 length
= EARLY_LINE_LENGTHS
[3] * multiplier
;
563 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, 0,
564 &State
->Early
.Delay
);
566 /* The late vector all-pass line. */
567 length
= LATE_ALLPASS_LENGTHS
[3] * multiplier
;
568 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, 0,
569 &State
->Late
.VecAp
.Delay
);
571 /* The late delay lines are calculated from the larger of the maximum
572 * density line length or the maximum echo time, and includes the maximum
573 * modulation-related delay. The modulator's delay is calculated from the
574 * maximum modulation time and depth coefficient, and halved for the low-
575 * to-high frequency swing.
577 length
= maxf(AL_EAXREVERB_MAX_ECHO_TIME
, LATE_LINE_LENGTHS
[3]*multiplier
) +
578 AL_EAXREVERB_MAX_MODULATION_TIME
*MODULATION_DEPTH_COEFF
/2.0f
;
579 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, 0,
582 if(totalSamples
!= State
->TotalSamples
)
586 TRACE("New reverb buffer length: %ux4 samples\n", totalSamples
);
587 newBuffer
= al_calloc(16, sizeof(ALfloat
[4]) * totalSamples
);
588 if(!newBuffer
) return AL_FALSE
;
590 al_free(State
->SampleBuffer
);
591 State
->SampleBuffer
= newBuffer
;
592 State
->TotalSamples
= totalSamples
;
595 /* Update all delays to reflect the new sample buffer. */
596 RealizeLineOffset(State
->SampleBuffer
, &State
->Delay
);
597 RealizeLineOffset(State
->SampleBuffer
, &State
->Early
.VecAp
.Delay
);
598 RealizeLineOffset(State
->SampleBuffer
, &State
->Early
.Delay
);
599 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.VecAp
.Delay
);
600 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.Delay
);
602 /* Clear the sample buffer. */
603 for(i
= 0;i
< State
->TotalSamples
;i
++)
604 State
->SampleBuffer
[i
] = 0.0f
;
609 static ALboolean
ALreverbState_deviceUpdate(ALreverbState
*State
, ALCdevice
*Device
)
611 ALuint frequency
= Device
->Frequency
, i
;
614 /* Allocate the delay lines. */
615 if(!AllocLines(frequency
, State
))
618 /* Calculate the modulation filter coefficient. Notice that the exponent
619 * is calculated given the current sample rate. This ensures that the
620 * resulting filter response over time is consistent across all sample
623 State
->Mod
.Coeff
= powf(MODULATION_FILTER_COEFF
,
624 MODULATION_FILTER_CONST
/ frequency
);
626 multiplier
= 1.0f
+ LINE_MULTIPLIER
;
628 /* The late feed taps are set a fixed position past the latest delay tap. */
630 State
->LateFeedTap
= fastf2i((AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+
631 EARLY_TAP_LENGTHS
[3]*multiplier
) *
637 /**************************************
639 **************************************/
641 /* Calculate a decay coefficient given the length of each cycle and the time
642 * until the decay reaches -60 dB.
644 static inline ALfloat
CalcDecayCoeff(const ALfloat length
, const ALfloat decayTime
)
646 return powf(REVERB_DECAY_GAIN
, length
/decayTime
);
649 /* Calculate a decay length from a coefficient and the time until the decay
652 static inline ALfloat
CalcDecayLength(const ALfloat coeff
, const ALfloat decayTime
)
654 return log10f(coeff
) * decayTime
/ log10f(REVERB_DECAY_GAIN
);
657 /* Calculate an attenuation to be applied to the input of any echo models to
658 * compensate for modal density and decay time.
660 static inline ALfloat
CalcDensityGain(const ALfloat a
)
662 /* The energy of a signal can be obtained by finding the area under the
663 * squared signal. This takes the form of Sum(x_n^2), where x is the
664 * amplitude for the sample n.
666 * Decaying feedback matches exponential decay of the form Sum(a^n),
667 * where a is the attenuation coefficient, and n is the sample. The area
668 * under this decay curve can be calculated as: 1 / (1 - a).
670 * Modifying the above equation to find the area under the squared curve
671 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
672 * calculated by inverting the square root of this approximation,
673 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
675 return sqrtf(1.0f
- a
*a
);
678 /* Calculate the scattering matrix coefficients given a diffusion factor. */
679 static inline ALvoid
CalcMatrixCoeffs(const ALfloat diffusion
, ALfloat
*x
, ALfloat
*y
)
683 /* The matrix is of order 4, so n is sqrt(4 - 1). */
685 t
= diffusion
* atanf(n
);
687 /* Calculate the first mixing matrix coefficient. */
689 /* Calculate the second mixing matrix coefficient. */
693 /* Calculate the limited HF ratio for use with the late reverb low-pass
696 static ALfloat
CalcLimitedHfRatio(const ALfloat hfRatio
, const ALfloat airAbsorptionGainHF
,
697 const ALfloat decayTime
)
701 /* Find the attenuation due to air absorption in dB (converting delay
702 * time to meters using the speed of sound). Then reversing the decay
703 * equation, solve for HF ratio. The delay length is cancelled out of
704 * the equation, so it can be calculated once for all lines.
706 limitRatio
= 1.0f
/ (CalcDecayLength(airAbsorptionGainHF
, decayTime
) *
707 SPEEDOFSOUNDMETRESPERSEC
);
708 /* Using the limit calculated above, apply the upper bound to the HF
709 * ratio. Also need to limit the result to a minimum of 0.1, just like
710 * the HF ratio parameter.
712 return clampf(limitRatio
, 0.1f
, hfRatio
);
715 /* Calculates the first-order high-pass coefficients following the I3DL2
716 * reference model. This is the transfer function:
719 * H(z) = p ------------
722 * And this is the I3DL2 coefficient calculation given gain (g) and reference
723 * angular frequency (w):
726 * p = ------------------------------------------------------
727 * g cos(w) + sqrt((cos(w) - 1) (g^2 cos(w) + g^2 - 2))
729 * The coefficient is applied to the partial differential filter equation as:
734 * y_i = c_0 x_i + c_1 x_(i-1) + c_2 y_(i-1)
737 static inline void CalcHighpassCoeffs(const ALfloat gain
, const ALfloat w
, ALfloat coeffs
[3])
739 ALfloat g
, g2
, cw
, p
;
750 g
= maxf(0.001f
, gain
);
753 p
= g
/ (g
*cw
+ sqrtf((cw
- 1.0f
) * (g2
*cw
+ g2
- 2.0f
)));
760 /* Calculates the first-order low-pass coefficients following the I3DL2
761 * reference model. This is the transfer function:
764 * H(z) = ----------------
767 * And this is the I3DL2 coefficient calculation given gain (g) and reference
768 * angular frequency (w):
770 * 1 - g^2 cos(w) - sqrt(2 g^2 (1 - cos(w)) - g^4 (1 - cos(w)^2))
771 * a = ----------------------------------------------------------------
774 * The coefficient is applied to the partial differential filter equation as:
779 * y_i = c_0 x_i + c_1 x_(i-1) + c_2 y_(i-1)
782 static inline void CalcLowpassCoeffs(const ALfloat gain
, const ALfloat w
, ALfloat coeffs
[3])
784 ALfloat g
, g2
, cw
, a
;
795 /* Be careful with gains < 0.001, as that causes the coefficient
796 * to head towards 1, which will flatten the signal. */
797 g
= maxf(0.001f
, gain
);
800 a
= (1.0f
- g2
*cw
- sqrtf((2.0f
*g2
*(1.0f
- cw
)) - g2
*g2
*(1.0f
- cw
*cw
))) /
803 coeffs
[0] = 1.0f
- a
;
808 /* Calculates the first-order low-shelf coefficients. The shelf filters are
809 * used in place of low/high-pass filters to preserve the mid-band. This is
810 * the transfer function:
813 * H(z) = ----------------
816 * And these are the coefficient calculations given cut gain (g) and a center
817 * angular frequency (w):
819 * sin(0.5 (pi - w) - 0.25 pi)
820 * p = -----------------------------
821 * sin(0.5 (pi - w) + 0.25 pi)
824 * a = ------- + sqrt((-------)^2 - 1)
828 * b_0 = -------------------
832 * b_1 = -------------------
835 * The coefficients are applied to the partial differential filter equation
839 * c_0 = -------------
843 * c_1 = ----------------
850 * y_i = c_0 x_i + c_1 x_(i-1) + c_2 y_(i-1)
853 static inline void CalcLowShelfCoeffs(const ALfloat gain
, const ALfloat w
, ALfloat coeffs
[3])
856 ALfloat alpha
, beta0
, beta1
;
867 g
= maxf(0.001f
, gain
);
869 p
= sinf(0.5f
*rw
- 0.25f
*F_PI
) / sinf(0.5f
*rw
+ 0.25f
*F_PI
);
870 n
= (g
+ 1.0f
) / (g
- 1.0f
);
871 alpha
= n
+ sqrtf(n
*n
- 1.0f
);
872 beta0
= (1.0f
+ g
+ (1.0f
- g
)*alpha
) / 2.0f
;
873 beta1
= (1.0f
- g
+ (1.0f
+ g
)*alpha
) / 2.0f
;
875 coeffs
[0] = (beta0
+ p
*beta1
) / (1.0f
+ p
*alpha
);
876 coeffs
[1] = -(beta1
+ p
*beta0
) / (1.0f
+ p
*alpha
);
877 coeffs
[2] = (p
+ alpha
) / (1.0f
+ p
*alpha
);
880 /* Calculates the first-order high-shelf coefficients. The shelf filters are
881 * used in place of low/high-pass filters to preserve the mid-band. This is
882 * the transfer function:
885 * H(z) = ----------------
888 * And these are the coefficient calculations given cut gain (g) and a center
889 * angular frequency (w):
891 * sin(0.5 w - 0.25 pi)
892 * p = ----------------------
893 * sin(0.5 w + 0.25 pi)
896 * a = ------- + sqrt((-------)^2 - 1)
900 * b_0 = -------------------
904 * b_1 = -------------------
907 * The coefficients are applied to the partial differential filter equation
911 * c_0 = -------------
915 * c_1 = -------------
922 * y_i = c_0 x_i + c_1 x_(i-1) + c_2 y_(i-1)
925 static inline void CalcHighShelfCoeffs(const ALfloat gain
, const ALfloat w
, ALfloat coeffs
[3])
928 ALfloat alpha
, beta0
, beta1
;
939 g
= maxf(0.001f
, gain
);
940 p
= sinf(0.5f
*w
- 0.25f
*F_PI
) / sinf(0.5f
*w
+ 0.25f
*F_PI
);
941 n
= (g
+ 1.0f
) / (g
- 1.0f
);
942 alpha
= n
+ sqrtf(n
*n
- 1.0f
);
943 beta0
= (1.0f
+ g
+ (1.0f
- g
)*alpha
) / 2.0f
;
944 beta1
= (1.0f
- g
+ (1.0f
+ g
)*alpha
) / 2.0f
;
946 coeffs
[0] = (beta0
+ p
*beta1
) / (1.0f
+ p
*alpha
);
947 coeffs
[1] = (beta1
+ p
*beta0
) / (1.0f
+ p
*alpha
);
948 coeffs
[2] = -(p
+ alpha
) / (1.0f
+ p
*alpha
);
951 /* Calculates the 3-band T60 damping coefficients for a particular delay line
952 * of specified length using a combination of two low/high-pass/shelf or
953 * pass-through filter sections (producing 3 coefficients each) and a general
954 * gain (7th coefficient) given decay times for each band split at two (LF/
955 * HF) reference frequencies (w).
957 static void CalcT60DampingCoeffs(const ALfloat length
, const ALfloat lfDecayTime
,
958 const ALfloat mfDecayTime
, const ALfloat hfDecayTime
,
959 const ALfloat lfW
, const ALfloat hfW
, ALfloat lfcoeffs
[3],
960 ALfloat hfcoeffs
[3], ALfloat
*midcoeff
)
962 ALfloat lfGain
= CalcDecayCoeff(length
, lfDecayTime
);
963 ALfloat mfGain
= CalcDecayCoeff(length
, mfDecayTime
);
964 ALfloat hfGain
= CalcDecayCoeff(length
, hfDecayTime
);
970 CalcLowShelfCoeffs(mfGain
/ hfGain
, hfW
, lfcoeffs
);
971 CalcHighpassCoeffs(lfGain
/ mfGain
, lfW
, hfcoeffs
);
974 else if(mfGain
> hfGain
)
976 CalcHighpassCoeffs(lfGain
/ mfGain
, lfW
, lfcoeffs
);
977 CalcLowpassCoeffs(hfGain
/ mfGain
, hfW
, hfcoeffs
);
985 CalcHighpassCoeffs(lfGain
/ mfGain
, lfW
, hfcoeffs
);
989 else if(lfGain
> mfGain
)
993 ALfloat hg
= mfGain
/ lfGain
;
994 ALfloat lg
= mfGain
/ hfGain
;
996 CalcHighShelfCoeffs(hg
, lfW
, lfcoeffs
);
997 CalcLowShelfCoeffs(lg
, hfW
, hfcoeffs
);
998 *midcoeff
= maxf(lfGain
, hfGain
) / maxf(hg
, lg
);
1000 else if(mfGain
> hfGain
)
1002 CalcHighShelfCoeffs(mfGain
/ lfGain
, lfW
, lfcoeffs
);
1003 CalcLowpassCoeffs(hfGain
/ mfGain
, hfW
, hfcoeffs
);
1011 CalcHighShelfCoeffs(mfGain
/ lfGain
, lfW
, hfcoeffs
);
1023 CalcLowShelfCoeffs(mfGain
/ hfGain
, hfW
, hfcoeffs
);
1026 else if(mfGain
> hfGain
)
1028 CalcLowpassCoeffs(hfGain
/ mfGain
, hfW
, hfcoeffs
);
1041 /* Update the EAX modulation index, range, and depth. Keep in mind that this
1042 * kind of vibrato is additive and not multiplicative as one may expect. The
1043 * downswing will sound stronger than the upswing.
1045 static ALvoid
UpdateModulator(const ALfloat modTime
, const ALfloat modDepth
,
1046 const ALuint frequency
, ALreverbState
*State
)
1050 /* Modulation is calculated in two parts.
1052 * The modulation time effects the speed of the sinus. An index out of the
1053 * current range (both in samples) is incremented each sample, so a longer
1054 * time implies a larger range. The range is bound to a reasonable minimum
1055 * (1 sample) and when the timing changes, the index is rescaled to the new
1056 * range to keep the sinus consistent.
1058 range
= maxi(fastf2i(modTime
*frequency
), 1);
1059 State
->Mod
.Index
= (ALuint
)(State
->Mod
.Index
* (ALuint64
)range
/
1061 State
->Mod
.Range
= range
;
1063 /* The modulation depth effects the scale of the sinus, which changes how
1064 * much extra delay is added to the delay line. This delay changing over
1065 * time changes the pitch, creating the modulation effect. The scale needs
1066 * to be multiplied by the modulation time so that a given depth produces a
1067 * consistent shift in frequency over all ranges of time. Since the depth
1068 * is applied to a sinus value, it needs to be halved for the sinus swing
1069 * in time (half of it is spent decreasing the frequency, half is spent
1072 State
->Mod
.Depth
= modDepth
* MODULATION_DEPTH_COEFF
* modTime
/ 2.0f
*
1076 /* Update the offsets for the main effect delay line. */
1077 static ALvoid
UpdateDelayLine(const ALfloat earlyDelay
, const ALfloat lateDelay
, const ALfloat density
, const ALfloat decayTime
, const ALuint frequency
, ALreverbState
*State
)
1079 ALfloat multiplier
, length
;
1082 multiplier
= 1.0f
+ density
*LINE_MULTIPLIER
;
1084 /* Early reflection taps are decorrelated by means of an average room
1085 * reflection approximation described above the definition of the taps.
1086 * This approximation is linear and so the above density multiplier can
1087 * be applied to adjust the width of the taps. A single-band decay
1088 * coefficient is applied to simulate initial attenuation and absorption.
1090 * Late reverb taps are based on the late line lengths to allow a zero-
1091 * delay path and offsets that would continue the propagation naturally
1092 * into the late lines.
1094 for(i
= 0;i
< 4;i
++)
1096 length
= earlyDelay
+ EARLY_TAP_LENGTHS
[i
]*multiplier
;
1097 State
->EarlyDelayTap
[i
][1] = fastf2i(length
* frequency
);
1099 length
= EARLY_TAP_LENGTHS
[i
]*multiplier
;
1100 State
->EarlyDelayCoeff
[i
] = CalcDecayCoeff(length
, decayTime
);
1102 length
= lateDelay
+ (LATE_LINE_LENGTHS
[i
] - LATE_LINE_LENGTHS
[0])*0.25f
*multiplier
;
1103 State
->LateDelayTap
[i
][1] = State
->LateFeedTap
+ fastf2i(length
* frequency
);
1107 /* Update the early reflection line lengths and gain coefficients. */
1108 static ALvoid
UpdateEarlyLines(const ALfloat density
, const ALfloat decayTime
, const ALuint frequency
, ALreverbState
*State
)
1110 ALfloat multiplier
, length
;
1113 multiplier
= 1.0f
+ density
*LINE_MULTIPLIER
;
1115 for(i
= 0;i
< 4;i
++)
1117 /* Calculate the length (in seconds) of each all-pass line. */
1118 length
= EARLY_ALLPASS_LENGTHS
[i
] * multiplier
;
1120 /* Calculate the delay offset for each all-pass line. */
1121 State
->Early
.VecAp
.Offset
[i
][1] = fastf2i(length
* frequency
);
1123 /* Calculate the length (in seconds) of each delay line. */
1124 length
= EARLY_LINE_LENGTHS
[i
] * multiplier
;
1126 /* Calculate the delay offset for each delay line. */
1127 State
->Early
.Offset
[i
][1] = fastf2i(length
* frequency
);
1129 /* Calculate the gain (coefficient) for each line. */
1130 State
->Early
.Coeff
[i
] = CalcDecayCoeff(length
, decayTime
);
1134 /* Update the late reverb line lengths and T60 coefficients. */
1135 static ALvoid
UpdateLateLines(const ALfloat density
, const ALfloat diffusion
, const ALfloat lfDecayTime
, const ALfloat mfDecayTime
, const ALfloat hfDecayTime
, const ALfloat lfW
, const ALfloat hfW
, const ALfloat echoTime
, const ALfloat echoDepth
, const ALuint frequency
, ALreverbState
*State
)
1137 ALfloat multiplier
, length
, bandWeights
[3];
1140 /* To compensate for changes in modal density and decay time of the late
1141 * reverb signal, the input is attenuated based on the maximal energy of
1142 * the outgoing signal. This approximation is used to keep the apparent
1143 * energy of the signal equal for all ranges of density and decay time.
1145 * The average length of the delay lines is used to calculate the
1146 * attenuation coefficient.
1148 multiplier
= 1.0f
+ density
*LINE_MULTIPLIER
;
1149 length
= (LATE_LINE_LENGTHS
[0] + LATE_LINE_LENGTHS
[1] +
1150 LATE_LINE_LENGTHS
[2] + LATE_LINE_LENGTHS
[3]) / 4.0f
* multiplier
;
1151 /* Include the echo transformation (see below). */
1152 length
= lerp(length
, echoTime
, echoDepth
);
1153 length
+= (LATE_ALLPASS_LENGTHS
[0] + LATE_ALLPASS_LENGTHS
[1] +
1154 LATE_ALLPASS_LENGTHS
[2] + LATE_ALLPASS_LENGTHS
[3]) / 4.0f
* multiplier
;
1155 /* The density gain calculation uses an average decay time weighted by
1156 * approximate bandwidth. This attempts to compensate for losses of
1157 * energy that reduce decay time due to scattering into highly attenuated
1160 bandWeights
[0] = lfW
;
1161 bandWeights
[1] = hfW
- lfW
;
1162 bandWeights
[2] = F_TAU
- hfW
;
1163 State
->Late
.DensityGain
= CalcDensityGain(
1164 CalcDecayCoeff(length
, (bandWeights
[0]*lfDecayTime
+ bandWeights
[1]*mfDecayTime
+
1165 bandWeights
[2]*hfDecayTime
) / F_TAU
)
1168 for(i
= 0;i
< 4;i
++)
1170 /* Calculate the length (in seconds) of each all-pass line. */
1171 length
= LATE_ALLPASS_LENGTHS
[i
] * multiplier
;
1173 /* Calculate the delay offset for each all-pass line. */
1174 State
->Late
.VecAp
.Offset
[i
][1] = fastf2i(length
* frequency
);
1176 /* Calculate the length (in seconds) of each delay line. This also
1177 * applies the echo transformation. As the EAX echo depth approaches
1178 * 1, the line lengths approach a length equal to the echoTime. This
1179 * helps to produce distinct echoes along the tail.
1181 length
= lerp(LATE_LINE_LENGTHS
[i
] * multiplier
, echoTime
, echoDepth
);
1183 /* Calculate the delay offset for each delay line. */
1184 State
->Late
.Offset
[i
][1] = fastf2i(length
* frequency
);
1186 /* Approximate the absorption that the vector all-pass would exhibit
1187 * given the current diffusion so we don't have to process a full T60
1188 * filter for each of its four lines.
1190 length
+= lerp(LATE_ALLPASS_LENGTHS
[i
],
1191 (LATE_ALLPASS_LENGTHS
[0] + LATE_ALLPASS_LENGTHS
[1] +
1192 LATE_ALLPASS_LENGTHS
[2] + LATE_ALLPASS_LENGTHS
[3]) / 4.0f
,
1193 diffusion
) * multiplier
;
1195 /* Calculate the T60 damping coefficients for each line. */
1196 CalcT60DampingCoeffs(length
, lfDecayTime
, mfDecayTime
, hfDecayTime
,
1197 lfW
, hfW
, State
->Late
.Filters
[i
].LFCoeffs
,
1198 State
->Late
.Filters
[i
].HFCoeffs
,
1199 &State
->Late
.Filters
[i
].MidCoeff
);
1203 /* Creates a transform matrix given a reverb vector. This works by creating a
1204 * Z-focus transform, then a rotate transform around X, then Y, to place the
1205 * focal point in the direction of the vector, using the vector length as a
1208 * This isn't technically correct since the vector is supposed to define the
1209 * aperture and not rotate the perceived soundfield, but in practice it's
1210 * probably good enough.
1212 static aluMatrixf
GetTransformFromVector(const ALfloat
*vec
)
1214 aluMatrixf zfocus
, xrot
, yrot
;
1215 aluMatrixf tmp1
, tmp2
;
1219 length
= sqrtf(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2]);
1221 /* Define a Z-focus (X in Ambisonics) transform, given the panning vector
1224 sa
= sinf(minf(length
, 1.0f
) * (F_PI
/4.0f
));
1225 aluMatrixfSet(&zfocus
,
1226 1.0f
/(1.0f
+sa
), 0.0f
, 0.0f
, (sa
/(1.0f
+sa
))/1.732050808f
,
1227 0.0f
, sqrtf((1.0f
-sa
)/(1.0f
+sa
)), 0.0f
, 0.0f
,
1228 0.0f
, 0.0f
, sqrtf((1.0f
-sa
)/(1.0f
+sa
)), 0.0f
,
1229 (sa
/(1.0f
+sa
))*1.732050808f
, 0.0f
, 0.0f
, 1.0f
/(1.0f
+sa
)
1232 /* Define rotation around X (Y in Ambisonics) */
1233 a
= atan2f(vec
[1], sqrtf(vec
[0]*vec
[0] + vec
[2]*vec
[2]));
1234 aluMatrixfSet(&xrot
,
1235 1.0f
, 0.0f
, 0.0f
, 0.0f
,
1236 0.0f
, 1.0f
, 0.0f
, 0.0f
,
1237 0.0f
, 0.0f
, cosf(a
), sinf(a
),
1238 0.0f
, 0.0f
, -sinf(a
), cosf(a
)
1241 /* Define rotation around Y (Z in Ambisonics). NOTE: EFX's reverb vectors
1242 * use a right-handled coordinate system, compared to the rest of OpenAL
1243 * which uses left-handed. This is fixed by negating Z, however it would
1244 * need to also be negated to get a proper Ambisonics angle, thus
1245 * cancelling it out.
1247 a
= atan2f(-vec
[0], vec
[2]);
1248 aluMatrixfSet(&yrot
,
1249 1.0f
, 0.0f
, 0.0f
, 0.0f
,
1250 0.0f
, cosf(a
), 0.0f
, sinf(a
),
1251 0.0f
, 0.0f
, 1.0f
, 0.0f
,
1252 0.0f
, -sinf(a
), 0.0f
, cosf(a
)
1255 #define MATRIX_MULT(_res, _m1, _m2) do { \
1257 for(col = 0;col < 4;col++) \
1259 for(row = 0;row < 4;row++) \
1260 _res.m[row][col] = _m1.m[row][0]*_m2.m[0][col] + _m1.m[row][1]*_m2.m[1][col] + \
1261 _m1.m[row][2]*_m2.m[2][col] + _m1.m[row][3]*_m2.m[3][col]; \
1264 /* Define a matrix that first focuses on Z, then rotates around X then Y to
1265 * focus the output in the direction of the vector.
1267 MATRIX_MULT(tmp1
, xrot
, zfocus
);
1268 MATRIX_MULT(tmp2
, yrot
, tmp1
);
1274 /* Update the early and late 3D panning gains. */
1275 static ALvoid
Update3DPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, const ALfloat gain
, const ALfloat earlyGain
, const ALfloat lateGain
, ALreverbState
*State
)
1277 aluMatrixf transform
, rot
;
1280 STATIC_CAST(ALeffectState
,State
)->OutBuffer
= Device
->FOAOut
.Buffer
;
1281 STATIC_CAST(ALeffectState
,State
)->OutChannels
= Device
->FOAOut
.NumChannels
;
1283 /* Note: _res is transposed. */
1284 #define MATRIX_MULT(_res, _m1, _m2) do { \
1286 for(col = 0;col < 4;col++) \
1288 for(row = 0;row < 4;row++) \
1289 _res.m[col][row] = _m1.m[row][0]*_m2.m[0][col] + _m1.m[row][1]*_m2.m[1][col] + \
1290 _m1.m[row][2]*_m2.m[2][col] + _m1.m[row][3]*_m2.m[3][col]; \
1293 /* Create a matrix that first converts A-Format to B-Format, then rotates
1294 * the B-Format soundfield according to the panning vector.
1296 rot
= GetTransformFromVector(ReflectionsPan
);
1297 MATRIX_MULT(transform
, rot
, A2B
);
1298 memset(&State
->Early
.PanGain
, 0, sizeof(State
->Early
.PanGain
));
1299 for(i
= 0;i
< MAX_EFFECT_CHANNELS
;i
++)
1300 ComputeFirstOrderGains(Device
->FOAOut
, transform
.m
[i
], gain
*earlyGain
, State
->Early
.PanGain
[i
]);
1302 rot
= GetTransformFromVector(LateReverbPan
);
1303 MATRIX_MULT(transform
, rot
, A2B
);
1304 memset(&State
->Late
.PanGain
, 0, sizeof(State
->Late
.PanGain
));
1305 for(i
= 0;i
< MAX_EFFECT_CHANNELS
;i
++)
1306 ComputeFirstOrderGains(Device
->FOAOut
, transform
.m
[i
], gain
*lateGain
, State
->Late
.PanGain
[i
]);
1310 static ALvoid
ALreverbState_update(ALreverbState
*State
, const ALCdevice
*Device
, const ALeffectslot
*Slot
, const ALeffectProps
*props
)
1312 ALuint frequency
= Device
->Frequency
;
1313 ALfloat lfScale
, hfScale
, hfRatio
;
1314 ALfloat lfDecayTime
, hfDecayTime
;
1315 ALfloat gain
, gainlf
, gainhf
;
1318 if(Slot
->Params
.EffectType
== AL_EFFECT_EAXREVERB
&& !EmulateEAXReverb
)
1319 State
->IsEax
= AL_TRUE
;
1320 else if(Slot
->Params
.EffectType
== AL_EFFECT_REVERB
|| EmulateEAXReverb
)
1321 State
->IsEax
= AL_FALSE
;
1323 /* Calculate the master filters */
1324 hfScale
= props
->Reverb
.HFReference
/ frequency
;
1325 /* Restrict the filter gains from going below -60dB to keep the filter from
1326 * killing most of the signal.
1328 gainhf
= maxf(props
->Reverb
.GainHF
, 0.001f
);
1329 ALfilterState_setParams(&State
->Filter
[0].Lp
, ALfilterType_HighShelf
,
1330 gainhf
, hfScale
, calc_rcpQ_from_slope(gainhf
, 1.0f
));
1331 lfScale
= props
->Reverb
.LFReference
/ frequency
;
1332 gainlf
= maxf(props
->Reverb
.GainLF
, 0.001f
);
1333 ALfilterState_setParams(&State
->Filter
[0].Hp
, ALfilterType_LowShelf
,
1334 gainlf
, lfScale
, calc_rcpQ_from_slope(gainlf
, 1.0f
));
1335 for(i
= 1;i
< 4;i
++)
1337 ALfilterState_copyParams(&State
->Filter
[i
].Lp
, &State
->Filter
[0].Lp
);
1338 ALfilterState_copyParams(&State
->Filter
[i
].Hp
, &State
->Filter
[0].Hp
);
1341 /* Update the main effect delay and associated taps. */
1342 UpdateDelayLine(props
->Reverb
.ReflectionsDelay
, props
->Reverb
.LateReverbDelay
,
1343 props
->Reverb
.Density
, props
->Reverb
.DecayTime
, frequency
,
1346 /* Calculate the all-pass feed-back/forward coefficient. */
1347 State
->ApFeedCoeff
= sqrtf(0.5f
) * powf(props
->Reverb
.Diffusion
, 2.0f
);
1349 /* Update the early lines. */
1350 UpdateEarlyLines(props
->Reverb
.Density
, props
->Reverb
.DecayTime
,
1353 /* Get the mixing matrix coefficients. */
1354 CalcMatrixCoeffs(props
->Reverb
.Diffusion
, &State
->MixX
, &State
->MixY
);
1356 /* If the HF limit parameter is flagged, calculate an appropriate limit
1357 * based on the air absorption parameter.
1359 hfRatio
= props
->Reverb
.DecayHFRatio
;
1360 if(props
->Reverb
.DecayHFLimit
&& props
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
1361 hfRatio
= CalcLimitedHfRatio(hfRatio
, props
->Reverb
.AirAbsorptionGainHF
,
1362 props
->Reverb
.DecayTime
);
1364 /* Calculate the LF/HF decay times. */
1365 lfDecayTime
= clampf(props
->Reverb
.DecayTime
* props
->Reverb
.DecayLFRatio
,
1366 AL_EAXREVERB_MIN_DECAY_TIME
, AL_EAXREVERB_MAX_DECAY_TIME
);
1367 hfDecayTime
= clampf(props
->Reverb
.DecayTime
* hfRatio
,
1368 AL_EAXREVERB_MIN_DECAY_TIME
, AL_EAXREVERB_MAX_DECAY_TIME
);
1370 /* Update the modulator line. */
1371 UpdateModulator(props
->Reverb
.ModulationTime
, props
->Reverb
.ModulationDepth
,
1374 /* Update the late lines. */
1375 UpdateLateLines(props
->Reverb
.Density
, props
->Reverb
.Diffusion
,
1376 lfDecayTime
, props
->Reverb
.DecayTime
, hfDecayTime
,
1377 F_TAU
* lfScale
, F_TAU
* hfScale
,
1378 props
->Reverb
.EchoTime
, props
->Reverb
.EchoDepth
,
1381 /* Update early and late 3D panning. */
1382 gain
= props
->Reverb
.Gain
* Slot
->Params
.Gain
* ReverbBoost
;
1383 Update3DPanning(Device
, props
->Reverb
.ReflectionsPan
,
1384 props
->Reverb
.LateReverbPan
, gain
,
1385 props
->Reverb
.ReflectionsGain
,
1386 props
->Reverb
.LateReverbGain
, State
);
1388 /* Determine if delay-line cross-fading is required. */
1389 for(i
= 0;i
< 4;i
++)
1391 if((State
->EarlyDelayTap
[i
][1] != State
->EarlyDelayTap
[i
][0]) ||
1392 (State
->Early
.VecAp
.Offset
[i
][1] != State
->Early
.VecAp
.Offset
[i
][0]) ||
1393 (State
->Early
.Offset
[i
][1] != State
->Early
.Offset
[i
][0]) ||
1394 (State
->LateDelayTap
[i
][1] != State
->LateDelayTap
[i
][0]) ||
1395 (State
->Late
.VecAp
.Offset
[i
][1] != State
->Late
.VecAp
.Offset
[i
][0]) ||
1396 (State
->Late
.Offset
[i
][1] != State
->Late
.Offset
[i
][0]))
1398 State
->FadeCount
= 0;
1405 /**************************************
1406 * Effect Processing *
1407 **************************************/
1409 /* Basic delay line input/output routines. */
1410 static inline ALfloat
DelayLineOut(const DelayLineI
*Delay
, const ALsizei offset
, const ALsizei c
)
1412 return Delay
->Line
[offset
&Delay
->Mask
][c
];
1415 /* Cross-faded delay line output routine. Instead of interpolating the
1416 * offsets, this interpolates (cross-fades) the outputs at each offset.
1418 static inline ALfloat
FadedDelayLineOut(const DelayLineI
*Delay
, const ALsizei off0
,
1419 const ALsizei off1
, const ALsizei c
, const ALfloat mu
)
1421 return lerp(Delay
->Line
[off0
&Delay
->Mask
][c
], Delay
->Line
[off1
&Delay
->Mask
][c
], mu
);
1423 #define DELAY_OUT_Faded(d, o0, o1, c, mu) FadedDelayLineOut(d, o0, o1, c, mu)
1424 #define DELAY_OUT_Unfaded(d, o0, o1, c, mu) DelayLineOut(d, o0, c)
1426 static inline ALvoid
DelayLineIn(DelayLineI
*Delay
, const ALsizei offset
, const ALsizei c
, const ALfloat in
)
1428 Delay
->Line
[offset
&Delay
->Mask
][c
] = in
;
1431 static inline ALvoid
DelayLineIn4(DelayLineI
*Delay
, ALsizei offset
, const ALfloat in
[4])
1434 offset
&= Delay
->Mask
;
1435 for(i
= 0;i
< 4;i
++)
1436 Delay
->Line
[offset
][i
] = in
[i
];
1439 static inline ALvoid
DelayLineIn4Rev(DelayLineI
*Delay
, ALsizei offset
, const ALfloat in
[4])
1442 offset
&= Delay
->Mask
;
1443 for(i
= 0;i
< 4;i
++)
1444 Delay
->Line
[offset
][i
] = in
[3-i
];
1447 static void CalcModulationDelays(ALreverbState
*State
, ALint
*restrict delays
, const ALsizei todo
)
1449 ALfloat sinus
, range
;
1452 index
= State
->Mod
.Index
;
1453 range
= State
->Mod
.Filter
;
1454 for(i
= 0;i
< todo
;i
++)
1456 /* Calculate the sinus rhythm (dependent on modulation time and the
1459 sinus
= sinf(F_TAU
* index
/ State
->Mod
.Range
);
1461 /* Step the modulation index forward, keeping it bound to its range. */
1462 index
= (index
+1) % State
->Mod
.Range
;
1464 /* The depth determines the range over which to read the input samples
1465 * from, so it must be filtered to reduce the distortion caused by even
1466 * small parameter changes.
1468 range
= lerp(range
, State
->Mod
.Depth
, State
->Mod
.Coeff
);
1470 /* Calculate the read offset. */
1471 delays
[i
] = lroundf(range
*sinus
);
1473 State
->Mod
.Index
= index
;
1474 State
->Mod
.Filter
= range
;
1477 /* Applies a scattering matrix to the 4-line (vector) input. This is used
1478 * for both the below vector all-pass model and to perform modal feed-back
1479 * delay network (FDN) mixing.
1481 * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
1482 * matrix with a single unitary rotational parameter:
1484 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1489 * The rotation is constructed from the effect's diffusion parameter,
1494 * Where a, b, and c are the coefficient y with differing signs, and d is the
1495 * coefficient x. The final matrix is thus:
1497 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1498 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1499 * [ y, -y, x, y ] x = cos(t)
1500 * [ -y, -y, -y, x ] y = sin(t) / n
1502 * Any square orthogonal matrix with an order that is a power of two will
1503 * work (where ^T is transpose, ^-1 is inverse):
1507 * Using that knowledge, finding an appropriate matrix can be accomplished
1508 * naively by searching all combinations of:
1512 * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
1513 * whose combination of signs are being iterated.
1515 static inline void VectorPartialScatter(ALfloat
*restrict vec
, const ALfloat xCoeff
, const ALfloat yCoeff
)
1517 const ALfloat f
[4] = { vec
[0], vec
[1], vec
[2], vec
[3] };
1519 vec
[0] = xCoeff
*f
[0] + yCoeff
*( f
[1] + -f
[2] + f
[3]);
1520 vec
[1] = xCoeff
*f
[1] + yCoeff
*(-f
[0] + f
[2] + f
[3]);
1521 vec
[2] = xCoeff
*f
[2] + yCoeff
*( f
[0] + -f
[1] + f
[3]);
1522 vec
[3] = xCoeff
*f
[3] + yCoeff
*(-f
[0] + -f
[1] + -f
[2] );
1525 /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
1526 * filter to the 4-line input.
1528 * It works by vectorizing a regular all-pass filter and replacing the delay
1529 * element with a scattering matrix (like the one above) and a diagonal
1530 * matrix of delay elements.
1532 * Two static specializations are used for transitional (cross-faded) delay
1533 * line processing and non-transitional processing.
1535 #define DECL_TEMPLATE(T) \
1536 static void VectorAllpass_##T(ALfloat *restrict vec, const ALsizei offset, \
1537 const ALfloat feedCoeff, const ALfloat xCoeff, \
1538 const ALfloat yCoeff, const ALfloat mu, \
1545 (void)mu; /* Ignore for Unfaded. */ \
1547 for(i = 0;i < 4;i++) \
1550 vec[i] = DELAY_OUT_##T(&Vap->Delay, offset-Vap->Offset[i][0], \
1551 offset-Vap->Offset[i][1], i, mu) - \
1553 f[i] = input + feedCoeff*vec[i]; \
1556 VectorPartialScatter(f, xCoeff, yCoeff); \
1558 DelayLineIn4(&Vap->Delay, offset, f); \
1560 DECL_TEMPLATE(Unfaded
)
1561 DECL_TEMPLATE(Faded
)
1562 #undef DECL_TEMPLATE
1564 /* A helper to reverse vector components. */
1565 static inline void VectorReverse(ALfloat vec
[4])
1567 const ALfloat f
[4] = { vec
[0], vec
[1], vec
[2], vec
[3] };
1575 /* This generates early reflections.
1577 * This is done by obtaining the primary reflections (those arriving from the
1578 * same direction as the source) from the main delay line. These are
1579 * attenuated and all-pass filtered (based on the diffusion parameter).
1581 * The early lines are then fed in reverse (according to the approximately
1582 * opposite spatial location of the A-Format lines) to create the secondary
1583 * reflections (those arriving from the opposite direction as the source).
1585 * The early response is then completed by combining the primary reflections
1586 * with the delayed and attenuated output from the early lines.
1588 * Finally, the early response is reversed, scattered (based on diffusion),
1589 * and fed into the late reverb section of the main delay line.
1591 * Two static specializations are used for transitional (cross-faded) delay
1592 * line processing and non-transitional processing.
1594 #define DECL_TEMPLATE(T) \
1595 static ALvoid EarlyReflection_##T(ALreverbState *State, const ALsizei todo, \
1597 ALfloat (*restrict out)[MAX_UPDATE_SAMPLES])\
1599 ALsizei offset = State->Offset; \
1600 const ALfloat apFeedCoeff = State->ApFeedCoeff; \
1601 const ALfloat mixX = State->MixX; \
1602 const ALfloat mixY = State->MixY; \
1606 for(i = 0;i < todo;i++) \
1608 for(j = 0;j < 4;j++) \
1609 f[j] = DELAY_OUT_##T(&State->Delay, \
1610 offset-State->EarlyDelayTap[j][0], \
1611 offset-State->EarlyDelayTap[j][1], j, fade \
1612 ) * State->EarlyDelayCoeff[j]; \
1614 VectorAllpass_##T(f, offset, apFeedCoeff, mixX, mixY, fade, \
1615 &State->Early.VecAp); \
1617 DelayLineIn4Rev(&State->Early.Delay, offset, f); \
1619 for(j = 0;j < 4;j++) \
1620 f[j] += DELAY_OUT_##T(&State->Early.Delay, \
1621 offset-State->Early.Offset[j][0], \
1622 offset-State->Early.Offset[j][1], j, fade \
1623 ) * State->Early.Coeff[j]; \
1625 for(j = 0;j < 4;j++) \
1630 VectorPartialScatter(f, mixX, mixY); \
1632 DelayLineIn4(&State->Delay, offset-State->LateFeedTap, f); \
1638 DECL_TEMPLATE(Unfaded
)
1639 DECL_TEMPLATE(Faded
)
1640 #undef DECL_TEMPLATE
1642 /* Applies a first order filter section. */
1643 static inline ALfloat
FirstOrderFilter(const ALfloat in
, const ALfloat coeffs
[3], ALfloat state
[2])
1645 ALfloat out
= coeffs
[0]*in
+ coeffs
[1]*state
[0] + coeffs
[2]*state
[1];
1653 /* Applies the two T60 damping filter sections. */
1654 static inline ALfloat
LateT60Filter(const ALsizei index
, const ALfloat in
, ALreverbState
*State
)
1656 ALfloat out
= FirstOrderFilter(in
, State
->Late
.Filters
[index
].LFCoeffs
,
1657 State
->Late
.Filters
[index
].States
[0]);
1659 return State
->Late
.Filters
[index
].MidCoeff
*
1660 FirstOrderFilter(out
, State
->Late
.Filters
[index
].HFCoeffs
,
1661 State
->Late
.Filters
[index
].States
[1]);
1664 /* This generates the reverb tail using a modified feed-back delay network
1667 * Results from the early reflections are attenuated by the density gain and
1668 * mixed with the output from the late delay lines.
1670 * The late response is then completed by T60 and all-pass filtering the mix.
1672 * Finally, the lines are reversed (so they feed their opposite directions)
1673 * and scattered with the FDN matrix before re-feeding the delay lines.
1675 * Two static specializations are used for transitional (cross-faded) delay
1676 * line processing and non-transitional processing.
1678 #define DECL_TEMPLATE(T) \
1679 static ALvoid LateReverb_##T(ALreverbState *State, const ALsizei todo, \
1681 ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) \
1683 const ALfloat apFeedCoeff = State->ApFeedCoeff; \
1684 const ALfloat mixX = State->MixX; \
1685 const ALfloat mixY = State->MixY; \
1686 ALint moddelay[MAX_UPDATE_SAMPLES]; \
1692 CalcModulationDelays(State, moddelay, todo); \
1694 offset = State->Offset; \
1695 for(i = 0;i < todo;i++) \
1697 for(j = 0;j < 4;j++) \
1698 f[j] = DELAY_OUT_##T(&State->Delay, \
1699 offset-State->LateDelayTap[j][0], \
1700 offset-State->LateDelayTap[j][1], j, fade \
1701 ) * State->Late.DensityGain; \
1703 delay = offset - moddelay[i]; \
1704 for(j = 0;j < 4;j++) \
1705 f[j] += DELAY_OUT_##T(&State->Late.Delay, \
1706 delay-State->Late.Offset[j][0], \
1707 delay-State->Late.Offset[j][1], j, fade \
1710 for(j = 0;j < 4;j++) \
1711 f[j] = LateT60Filter(j, f[j], State); \
1713 VectorAllpass_##T(f, offset, apFeedCoeff, mixX, mixY, fade, \
1714 &State->Late.VecAp); \
1716 for(j = 0;j < 4;j++) \
1721 VectorPartialScatter(f, mixX, mixY); \
1723 DelayLineIn4(&State->Late.Delay, offset, f); \
1729 DECL_TEMPLATE(Unfaded
)
1730 DECL_TEMPLATE(Faded
)
1731 #undef DECL_TEMPLATE
1733 typedef ALfloat (*ProcMethodType
)(ALreverbState
*State
, const ALsizei todo
, ALfloat fade
,
1734 const ALfloat (*restrict input
)[MAX_UPDATE_SAMPLES
],
1735 ALfloat (*restrict early
)[MAX_UPDATE_SAMPLES
], ALfloat (*restrict late
)[MAX_UPDATE_SAMPLES
]);
1737 /* Perform the non-EAX reverb pass on a given input sample, resulting in
1738 * four-channel output.
1740 static ALfloat
VerbPass(ALreverbState
*State
, const ALsizei todo
, ALfloat fade
,
1741 const ALfloat (*restrict input
)[MAX_UPDATE_SAMPLES
],
1742 ALfloat (*restrict early
)[MAX_UPDATE_SAMPLES
],
1743 ALfloat (*restrict late
)[MAX_UPDATE_SAMPLES
])
1747 for(c
= 0;c
< 4;c
++)
1749 /* Low-pass filter the incoming samples (use the early buffer as temp
1752 ALfilterState_process(&State
->Filter
[c
].Lp
, &early
[0][0], input
[c
], todo
);
1754 /* Feed the initial delay line. */
1755 for(i
= 0;i
< todo
;i
++)
1756 DelayLineIn(&State
->Delay
, State
->Offset
+i
, c
, early
[0][i
]);
1761 /* Generate early reflections. */
1762 EarlyReflection_Faded(State
, todo
, fade
, early
);
1764 /* Generate late reverb. */
1765 LateReverb_Faded(State
, todo
, fade
, late
);
1766 fade
= minf(1.0f
, fade
+ todo
*FadeStep
);
1770 /* Generate early reflections. */
1771 EarlyReflection_Unfaded(State
, todo
, fade
, early
);
1773 /* Generate late reverb. */
1774 LateReverb_Unfaded(State
, todo
, fade
, late
);
1777 /* Step all delays forward one sample. */
1778 State
->Offset
+= todo
;
1783 /* Perform the EAX reverb pass on a given input sample, resulting in four-
1786 static ALfloat
EAXVerbPass(ALreverbState
*State
, const ALsizei todo
, ALfloat fade
,
1787 const ALfloat (*restrict input
)[MAX_UPDATE_SAMPLES
],
1788 ALfloat (*restrict early
)[MAX_UPDATE_SAMPLES
],
1789 ALfloat (*restrict late
)[MAX_UPDATE_SAMPLES
])
1793 for(c
= 0;c
< 4;c
++)
1795 /* Band-pass the incoming samples. Use the early output lines for temp
1798 ALfilterState_process(&State
->Filter
[c
].Lp
, early
[0], input
[c
], todo
);
1799 ALfilterState_process(&State
->Filter
[c
].Hp
, early
[1], early
[0], todo
);
1801 /* Feed the initial delay line. */
1802 for(i
= 0;i
< todo
;i
++)
1803 DelayLineIn(&State
->Delay
, State
->Offset
+i
, c
, early
[1][i
]);
1808 /* Generate early reflections. */
1809 EarlyReflection_Faded(State
, todo
, fade
, early
);
1811 /* Generate late reverb. */
1812 LateReverb_Faded(State
, todo
, fade
, late
);
1813 fade
= minf(1.0f
, fade
+ todo
*FadeStep
);
1817 /* Generate early reflections. */
1818 EarlyReflection_Unfaded(State
, todo
, fade
, early
);
1820 /* Generate late reverb. */
1821 LateReverb_Unfaded(State
, todo
, fade
, late
);
1824 /* Step all delays forward. */
1825 State
->Offset
+= todo
;
1830 static ALvoid
ALreverbState_process(ALreverbState
*State
, ALsizei SamplesToDo
, const ALfloat (*restrict SamplesIn
)[BUFFERSIZE
], ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALsizei NumChannels
)
1832 ProcMethodType ReverbProc
= State
->IsEax
? EAXVerbPass
: VerbPass
;
1833 ALfloat (*restrict afmt
)[MAX_UPDATE_SAMPLES
] = State
->AFormatSamples
;
1834 ALfloat (*restrict early
)[MAX_UPDATE_SAMPLES
] = State
->EarlySamples
;
1835 ALfloat (*restrict late
)[MAX_UPDATE_SAMPLES
] = State
->ReverbSamples
;
1836 ALsizei fadeCount
= State
->FadeCount
;
1837 ALfloat fade
= (ALfloat
)fadeCount
/ FADE_SAMPLES
;
1840 /* Process reverb for these samples. */
1841 for(base
= 0;base
< SamplesToDo
;)
1843 ALsizei todo
= mini(SamplesToDo
-base
, MAX_UPDATE_SAMPLES
);
1844 /* If cross-fading, don't do more samples than there are to fade. */
1845 if(FADE_SAMPLES
-fadeCount
> 0)
1846 todo
= mini(todo
, FADE_SAMPLES
-fadeCount
);
1848 /* Convert B-Format to A-Format for processing. */
1849 memset(afmt
, 0, sizeof(*afmt
)*4);
1850 for(c
= 0;c
< 4;c
++)
1851 MixRowSamples(afmt
[c
], B2A
.m
[c
],
1852 SamplesIn
, MAX_EFFECT_CHANNELS
, base
, todo
1855 /* Process the samples for reverb. */
1856 fade
= ReverbProc(State
, todo
, fade
, afmt
, early
, late
);
1857 if(UNEXPECTED(fadeCount
< FADE_SAMPLES
) && (fadeCount
+= todo
) >= FADE_SAMPLES
)
1859 /* Update the cross-fading delay line taps. */
1860 fadeCount
= FADE_SAMPLES
;
1862 for(c
= 0;c
< 4;c
++)
1864 State
->EarlyDelayTap
[c
][0] = State
->EarlyDelayTap
[c
][1];
1865 State
->Early
.VecAp
.Offset
[c
][0] = State
->Early
.VecAp
.Offset
[c
][1];
1866 State
->Early
.Offset
[c
][0] = State
->Early
.Offset
[c
][1];
1867 State
->LateDelayTap
[c
][0] = State
->LateDelayTap
[c
][1];
1868 State
->Late
.VecAp
.Offset
[c
][0] = State
->Late
.VecAp
.Offset
[c
][1];
1869 State
->Late
.Offset
[c
][0] = State
->Late
.Offset
[c
][1];
1873 /* Mix the A-Format results to output, implicitly converting back to
1876 for(c
= 0;c
< 4;c
++)
1877 MixSamples(early
[c
], NumChannels
, SamplesOut
,
1878 State
->Early
.CurrentGain
[c
], State
->Early
.PanGain
[c
],
1879 SamplesToDo
-base
, base
, todo
1881 for(c
= 0;c
< 4;c
++)
1882 MixSamples(late
[c
], NumChannels
, SamplesOut
,
1883 State
->Late
.CurrentGain
[c
], State
->Late
.PanGain
[c
],
1884 SamplesToDo
-base
, base
, todo
1889 State
->FadeCount
= fadeCount
;
1893 typedef struct ALreverbStateFactory
{
1894 DERIVE_FROM_TYPE(ALeffectStateFactory
);
1895 } ALreverbStateFactory
;
1897 static ALeffectState
*ALreverbStateFactory_create(ALreverbStateFactory
* UNUSED(factory
))
1899 ALreverbState
*state
;
1901 alcall_once(&mixfunc_inited
, init_mixfunc
);
1903 NEW_OBJ0(state
, ALreverbState
)();
1904 if(!state
) return NULL
;
1906 return STATIC_CAST(ALeffectState
, state
);
1909 DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory
);
1911 ALeffectStateFactory
*ALreverbStateFactory_getFactory(void)
1913 static ALreverbStateFactory ReverbFactory
= { { GET_VTABLE2(ALreverbStateFactory
, ALeffectStateFactory
) } };
1915 return STATIC_CAST(ALeffectStateFactory
, &ReverbFactory
);
1919 void ALeaxreverb_setParami(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint val
)
1921 ALeffectProps
*props
= &effect
->Props
;
1924 case AL_EAXREVERB_DECAY_HFLIMIT
:
1925 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_EAXREVERB_MAX_DECAY_HFLIMIT
))
1926 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1927 props
->Reverb
.DecayHFLimit
= val
;
1931 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1934 void ALeaxreverb_setParamiv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALint
*vals
)
1936 ALeaxreverb_setParami(effect
, context
, param
, vals
[0]);
1938 void ALeaxreverb_setParamf(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat val
)
1940 ALeffectProps
*props
= &effect
->Props
;
1943 case AL_EAXREVERB_DENSITY
:
1944 if(!(val
>= AL_EAXREVERB_MIN_DENSITY
&& val
<= AL_EAXREVERB_MAX_DENSITY
))
1945 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1946 props
->Reverb
.Density
= val
;
1949 case AL_EAXREVERB_DIFFUSION
:
1950 if(!(val
>= AL_EAXREVERB_MIN_DIFFUSION
&& val
<= AL_EAXREVERB_MAX_DIFFUSION
))
1951 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1952 props
->Reverb
.Diffusion
= val
;
1955 case AL_EAXREVERB_GAIN
:
1956 if(!(val
>= AL_EAXREVERB_MIN_GAIN
&& val
<= AL_EAXREVERB_MAX_GAIN
))
1957 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1958 props
->Reverb
.Gain
= val
;
1961 case AL_EAXREVERB_GAINHF
:
1962 if(!(val
>= AL_EAXREVERB_MIN_GAINHF
&& val
<= AL_EAXREVERB_MAX_GAINHF
))
1963 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1964 props
->Reverb
.GainHF
= val
;
1967 case AL_EAXREVERB_GAINLF
:
1968 if(!(val
>= AL_EAXREVERB_MIN_GAINLF
&& val
<= AL_EAXREVERB_MAX_GAINLF
))
1969 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1970 props
->Reverb
.GainLF
= val
;
1973 case AL_EAXREVERB_DECAY_TIME
:
1974 if(!(val
>= AL_EAXREVERB_MIN_DECAY_TIME
&& val
<= AL_EAXREVERB_MAX_DECAY_TIME
))
1975 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1976 props
->Reverb
.DecayTime
= val
;
1979 case AL_EAXREVERB_DECAY_HFRATIO
:
1980 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_HFRATIO
))
1981 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1982 props
->Reverb
.DecayHFRatio
= val
;
1985 case AL_EAXREVERB_DECAY_LFRATIO
:
1986 if(!(val
>= AL_EAXREVERB_MIN_DECAY_LFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_LFRATIO
))
1987 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1988 props
->Reverb
.DecayLFRatio
= val
;
1991 case AL_EAXREVERB_REFLECTIONS_GAIN
:
1992 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_GAIN
))
1993 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1994 props
->Reverb
.ReflectionsGain
= val
;
1997 case AL_EAXREVERB_REFLECTIONS_DELAY
:
1998 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
))
1999 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2000 props
->Reverb
.ReflectionsDelay
= val
;
2003 case AL_EAXREVERB_LATE_REVERB_GAIN
:
2004 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_GAIN
))
2005 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2006 props
->Reverb
.LateReverbGain
= val
;
2009 case AL_EAXREVERB_LATE_REVERB_DELAY
:
2010 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_DELAY
))
2011 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2012 props
->Reverb
.LateReverbDelay
= val
;
2015 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
2016 if(!(val
>= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF
))
2017 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2018 props
->Reverb
.AirAbsorptionGainHF
= val
;
2021 case AL_EAXREVERB_ECHO_TIME
:
2022 if(!(val
>= AL_EAXREVERB_MIN_ECHO_TIME
&& val
<= AL_EAXREVERB_MAX_ECHO_TIME
))
2023 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2024 props
->Reverb
.EchoTime
= val
;
2027 case AL_EAXREVERB_ECHO_DEPTH
:
2028 if(!(val
>= AL_EAXREVERB_MIN_ECHO_DEPTH
&& val
<= AL_EAXREVERB_MAX_ECHO_DEPTH
))
2029 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2030 props
->Reverb
.EchoDepth
= val
;
2033 case AL_EAXREVERB_MODULATION_TIME
:
2034 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_TIME
&& val
<= AL_EAXREVERB_MAX_MODULATION_TIME
))
2035 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2036 props
->Reverb
.ModulationTime
= val
;
2039 case AL_EAXREVERB_MODULATION_DEPTH
:
2040 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_DEPTH
&& val
<= AL_EAXREVERB_MAX_MODULATION_DEPTH
))
2041 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2042 props
->Reverb
.ModulationDepth
= val
;
2045 case AL_EAXREVERB_HFREFERENCE
:
2046 if(!(val
>= AL_EAXREVERB_MIN_HFREFERENCE
&& val
<= AL_EAXREVERB_MAX_HFREFERENCE
))
2047 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2048 props
->Reverb
.HFReference
= val
;
2051 case AL_EAXREVERB_LFREFERENCE
:
2052 if(!(val
>= AL_EAXREVERB_MIN_LFREFERENCE
&& val
<= AL_EAXREVERB_MAX_LFREFERENCE
))
2053 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2054 props
->Reverb
.LFReference
= val
;
2057 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
2058 if(!(val
>= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR
))
2059 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2060 props
->Reverb
.RoomRolloffFactor
= val
;
2064 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
2067 void ALeaxreverb_setParamfv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALfloat
*vals
)
2069 ALeffectProps
*props
= &effect
->Props
;
2072 case AL_EAXREVERB_REFLECTIONS_PAN
:
2073 if(!(isfinite(vals
[0]) && isfinite(vals
[1]) && isfinite(vals
[2])))
2074 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2075 props
->Reverb
.ReflectionsPan
[0] = vals
[0];
2076 props
->Reverb
.ReflectionsPan
[1] = vals
[1];
2077 props
->Reverb
.ReflectionsPan
[2] = vals
[2];
2079 case AL_EAXREVERB_LATE_REVERB_PAN
:
2080 if(!(isfinite(vals
[0]) && isfinite(vals
[1]) && isfinite(vals
[2])))
2081 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2082 props
->Reverb
.LateReverbPan
[0] = vals
[0];
2083 props
->Reverb
.LateReverbPan
[1] = vals
[1];
2084 props
->Reverb
.LateReverbPan
[2] = vals
[2];
2088 ALeaxreverb_setParamf(effect
, context
, param
, vals
[0]);
2093 void ALeaxreverb_getParami(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*val
)
2095 const ALeffectProps
*props
= &effect
->Props
;
2098 case AL_EAXREVERB_DECAY_HFLIMIT
:
2099 *val
= props
->Reverb
.DecayHFLimit
;
2103 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
2106 void ALeaxreverb_getParamiv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*vals
)
2108 ALeaxreverb_getParami(effect
, context
, param
, vals
);
2110 void ALeaxreverb_getParamf(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*val
)
2112 const ALeffectProps
*props
= &effect
->Props
;
2115 case AL_EAXREVERB_DENSITY
:
2116 *val
= props
->Reverb
.Density
;
2119 case AL_EAXREVERB_DIFFUSION
:
2120 *val
= props
->Reverb
.Diffusion
;
2123 case AL_EAXREVERB_GAIN
:
2124 *val
= props
->Reverb
.Gain
;
2127 case AL_EAXREVERB_GAINHF
:
2128 *val
= props
->Reverb
.GainHF
;
2131 case AL_EAXREVERB_GAINLF
:
2132 *val
= props
->Reverb
.GainLF
;
2135 case AL_EAXREVERB_DECAY_TIME
:
2136 *val
= props
->Reverb
.DecayTime
;
2139 case AL_EAXREVERB_DECAY_HFRATIO
:
2140 *val
= props
->Reverb
.DecayHFRatio
;
2143 case AL_EAXREVERB_DECAY_LFRATIO
:
2144 *val
= props
->Reverb
.DecayLFRatio
;
2147 case AL_EAXREVERB_REFLECTIONS_GAIN
:
2148 *val
= props
->Reverb
.ReflectionsGain
;
2151 case AL_EAXREVERB_REFLECTIONS_DELAY
:
2152 *val
= props
->Reverb
.ReflectionsDelay
;
2155 case AL_EAXREVERB_LATE_REVERB_GAIN
:
2156 *val
= props
->Reverb
.LateReverbGain
;
2159 case AL_EAXREVERB_LATE_REVERB_DELAY
:
2160 *val
= props
->Reverb
.LateReverbDelay
;
2163 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
2164 *val
= props
->Reverb
.AirAbsorptionGainHF
;
2167 case AL_EAXREVERB_ECHO_TIME
:
2168 *val
= props
->Reverb
.EchoTime
;
2171 case AL_EAXREVERB_ECHO_DEPTH
:
2172 *val
= props
->Reverb
.EchoDepth
;
2175 case AL_EAXREVERB_MODULATION_TIME
:
2176 *val
= props
->Reverb
.ModulationTime
;
2179 case AL_EAXREVERB_MODULATION_DEPTH
:
2180 *val
= props
->Reverb
.ModulationDepth
;
2183 case AL_EAXREVERB_HFREFERENCE
:
2184 *val
= props
->Reverb
.HFReference
;
2187 case AL_EAXREVERB_LFREFERENCE
:
2188 *val
= props
->Reverb
.LFReference
;
2191 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
2192 *val
= props
->Reverb
.RoomRolloffFactor
;
2196 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
2199 void ALeaxreverb_getParamfv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*vals
)
2201 const ALeffectProps
*props
= &effect
->Props
;
2204 case AL_EAXREVERB_REFLECTIONS_PAN
:
2205 vals
[0] = props
->Reverb
.ReflectionsPan
[0];
2206 vals
[1] = props
->Reverb
.ReflectionsPan
[1];
2207 vals
[2] = props
->Reverb
.ReflectionsPan
[2];
2209 case AL_EAXREVERB_LATE_REVERB_PAN
:
2210 vals
[0] = props
->Reverb
.LateReverbPan
[0];
2211 vals
[1] = props
->Reverb
.LateReverbPan
[1];
2212 vals
[2] = props
->Reverb
.LateReverbPan
[2];
2216 ALeaxreverb_getParamf(effect
, context
, param
, vals
);
2221 DEFINE_ALEFFECT_VTABLE(ALeaxreverb
);
2223 void ALreverb_setParami(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint val
)
2225 ALeffectProps
*props
= &effect
->Props
;
2228 case AL_REVERB_DECAY_HFLIMIT
:
2229 if(!(val
>= AL_REVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_REVERB_MAX_DECAY_HFLIMIT
))
2230 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2231 props
->Reverb
.DecayHFLimit
= val
;
2235 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
2238 void ALreverb_setParamiv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALint
*vals
)
2240 ALreverb_setParami(effect
, context
, param
, vals
[0]);
2242 void ALreverb_setParamf(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat val
)
2244 ALeffectProps
*props
= &effect
->Props
;
2247 case AL_REVERB_DENSITY
:
2248 if(!(val
>= AL_REVERB_MIN_DENSITY
&& val
<= AL_REVERB_MAX_DENSITY
))
2249 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2250 props
->Reverb
.Density
= val
;
2253 case AL_REVERB_DIFFUSION
:
2254 if(!(val
>= AL_REVERB_MIN_DIFFUSION
&& val
<= AL_REVERB_MAX_DIFFUSION
))
2255 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2256 props
->Reverb
.Diffusion
= val
;
2259 case AL_REVERB_GAIN
:
2260 if(!(val
>= AL_REVERB_MIN_GAIN
&& val
<= AL_REVERB_MAX_GAIN
))
2261 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2262 props
->Reverb
.Gain
= val
;
2265 case AL_REVERB_GAINHF
:
2266 if(!(val
>= AL_REVERB_MIN_GAINHF
&& val
<= AL_REVERB_MAX_GAINHF
))
2267 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2268 props
->Reverb
.GainHF
= val
;
2271 case AL_REVERB_DECAY_TIME
:
2272 if(!(val
>= AL_REVERB_MIN_DECAY_TIME
&& val
<= AL_REVERB_MAX_DECAY_TIME
))
2273 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2274 props
->Reverb
.DecayTime
= val
;
2277 case AL_REVERB_DECAY_HFRATIO
:
2278 if(!(val
>= AL_REVERB_MIN_DECAY_HFRATIO
&& val
<= AL_REVERB_MAX_DECAY_HFRATIO
))
2279 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2280 props
->Reverb
.DecayHFRatio
= val
;
2283 case AL_REVERB_REFLECTIONS_GAIN
:
2284 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_REVERB_MAX_REFLECTIONS_GAIN
))
2285 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2286 props
->Reverb
.ReflectionsGain
= val
;
2289 case AL_REVERB_REFLECTIONS_DELAY
:
2290 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_REVERB_MAX_REFLECTIONS_DELAY
))
2291 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2292 props
->Reverb
.ReflectionsDelay
= val
;
2295 case AL_REVERB_LATE_REVERB_GAIN
:
2296 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_REVERB_MAX_LATE_REVERB_GAIN
))
2297 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2298 props
->Reverb
.LateReverbGain
= val
;
2301 case AL_REVERB_LATE_REVERB_DELAY
:
2302 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_REVERB_MAX_LATE_REVERB_DELAY
))
2303 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2304 props
->Reverb
.LateReverbDelay
= val
;
2307 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
2308 if(!(val
>= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF
))
2309 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2310 props
->Reverb
.AirAbsorptionGainHF
= val
;
2313 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
2314 if(!(val
>= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR
))
2315 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
2316 props
->Reverb
.RoomRolloffFactor
= val
;
2320 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
2323 void ALreverb_setParamfv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALfloat
*vals
)
2325 ALreverb_setParamf(effect
, context
, param
, vals
[0]);
2328 void ALreverb_getParami(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*val
)
2330 const ALeffectProps
*props
= &effect
->Props
;
2333 case AL_REVERB_DECAY_HFLIMIT
:
2334 *val
= props
->Reverb
.DecayHFLimit
;
2338 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
2341 void ALreverb_getParamiv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*vals
)
2343 ALreverb_getParami(effect
, context
, param
, vals
);
2345 void ALreverb_getParamf(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*val
)
2347 const ALeffectProps
*props
= &effect
->Props
;
2350 case AL_REVERB_DENSITY
:
2351 *val
= props
->Reverb
.Density
;
2354 case AL_REVERB_DIFFUSION
:
2355 *val
= props
->Reverb
.Diffusion
;
2358 case AL_REVERB_GAIN
:
2359 *val
= props
->Reverb
.Gain
;
2362 case AL_REVERB_GAINHF
:
2363 *val
= props
->Reverb
.GainHF
;
2366 case AL_REVERB_DECAY_TIME
:
2367 *val
= props
->Reverb
.DecayTime
;
2370 case AL_REVERB_DECAY_HFRATIO
:
2371 *val
= props
->Reverb
.DecayHFRatio
;
2374 case AL_REVERB_REFLECTIONS_GAIN
:
2375 *val
= props
->Reverb
.ReflectionsGain
;
2378 case AL_REVERB_REFLECTIONS_DELAY
:
2379 *val
= props
->Reverb
.ReflectionsDelay
;
2382 case AL_REVERB_LATE_REVERB_GAIN
:
2383 *val
= props
->Reverb
.LateReverbGain
;
2386 case AL_REVERB_LATE_REVERB_DELAY
:
2387 *val
= props
->Reverb
.LateReverbDelay
;
2390 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
2391 *val
= props
->Reverb
.AirAbsorptionGainHF
;
2394 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
2395 *val
= props
->Reverb
.RoomRolloffFactor
;
2399 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
2402 void ALreverb_getParamfv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*vals
)
2404 ALreverb_getParamf(effect
, context
, param
, vals
);
2407 DEFINE_ALEFFECT_VTABLE(ALreverb
);