Increase the priority of the ALSA backend
[openal-soft.git] / common / phase_shifter.h
blobace92c9a0c8e30739825dcca24db153d3fdf1c70
1 #ifndef PHASE_SHIFTER_H
2 #define PHASE_SHIFTER_H
4 #ifdef HAVE_SSE_INTRINSICS
5 #include <xmmintrin.h>
6 #elif defined(HAVE_NEON)
7 #include <arm_neon.h>
8 #endif
10 #include <array>
11 #include <stddef.h>
13 #include "alcomplex.h"
14 #include "alspan.h"
17 /* Implements a wide-band +90 degree phase-shift. Note that this should be
18 * given one sample less of a delay (FilterSize/2 - 1) compared to the direct
19 * signal delay (FilterSize/2) to properly align.
21 template<size_t FilterSize>
22 struct PhaseShifterT {
23 static_assert(FilterSize >= 16, "FilterSize needs to be at least 16");
24 static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two");
26 alignas(16) std::array<float,FilterSize/2> mCoeffs{};
28 /* Some notes on this filter construction.
30 * A wide-band phase-shift filter needs a delay to maintain linearity. A
31 * dirac impulse in the center of a time-domain buffer represents a filter
32 * passing all frequencies through as-is with a pure delay. Converting that
33 * to the frequency domain, adjusting the phase of each frequency bin by
34 * +90 degrees, then converting back to the time domain, results in a FIR
35 * filter that applies a +90 degree wide-band phase-shift.
37 * A particularly notable aspect of the time-domain filter response is that
38 * every other coefficient is 0. This allows doubling the effective size of
39 * the filter, by storing only the non-0 coefficients and double-stepping
40 * over the input to apply it.
42 * Additionally, the resulting filter is independent of the sample rate.
43 * The same filter can be applied regardless of the device's sample rate
44 * and achieve the same effect.
46 PhaseShifterT()
48 using complex_d = std::complex<double>;
49 constexpr size_t fft_size{FilterSize};
50 constexpr size_t half_size{fft_size / 2};
52 auto fftBuffer = std::make_unique<complex_d[]>(fft_size);
53 std::fill_n(fftBuffer.get(), fft_size, complex_d{});
54 fftBuffer[half_size] = 1.0;
56 forward_fft({fftBuffer.get(), fft_size});
57 for(size_t i{0};i < half_size+1;++i)
58 fftBuffer[i] = complex_d{-fftBuffer[i].imag(), fftBuffer[i].real()};
59 for(size_t i{half_size+1};i < fft_size;++i)
60 fftBuffer[i] = std::conj(fftBuffer[fft_size - i]);
61 inverse_fft({fftBuffer.get(), fft_size});
63 auto fftiter = fftBuffer.get() + half_size + (FilterSize/2 - 1);
64 for(float &coeff : mCoeffs)
66 coeff = static_cast<float>(fftiter->real() / double{fft_size});
67 fftiter -= 2;
71 void process(al::span<float> dst, const float *RESTRICT src) const;
72 void processAccum(al::span<float> dst, const float *RESTRICT src) const;
74 private:
75 #if defined(HAVE_NEON)
76 /* There doesn't seem to be NEON intrinsics to do this kind of stipple
77 * shuffling, so there's two custom methods for it.
79 static auto shuffle_2020(float32x4_t a, float32x4_t b)
81 float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 0))};
82 ret = vsetq_lane_f32(vgetq_lane_f32(a, 2), ret, 1);
83 ret = vsetq_lane_f32(vgetq_lane_f32(b, 0), ret, 2);
84 ret = vsetq_lane_f32(vgetq_lane_f32(b, 2), ret, 3);
85 return ret;
87 static auto shuffle_3131(float32x4_t a, float32x4_t b)
89 float32x4_t ret{vmovq_n_f32(vgetq_lane_f32(a, 1))};
90 ret = vsetq_lane_f32(vgetq_lane_f32(a, 3), ret, 1);
91 ret = vsetq_lane_f32(vgetq_lane_f32(b, 1), ret, 2);
92 ret = vsetq_lane_f32(vgetq_lane_f32(b, 3), ret, 3);
93 return ret;
95 static auto unpacklo(float32x4_t a, float32x4_t b)
97 float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))};
98 return vcombine_f32(result.val[0], result.val[1]);
100 static auto unpackhi(float32x4_t a, float32x4_t b)
102 float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))};
103 return vcombine_f32(result.val[0], result.val[1]);
105 static auto load4(float32_t a, float32_t b, float32_t c, float32_t d)
107 float32x4_t ret{vmovq_n_f32(a)};
108 ret = vsetq_lane_f32(b, ret, 1);
109 ret = vsetq_lane_f32(c, ret, 2);
110 ret = vsetq_lane_f32(d, ret, 3);
111 return ret;
113 #endif
116 template<size_t S>
117 inline void PhaseShifterT<S>::process(al::span<float> dst, const float *RESTRICT src) const
119 #ifdef HAVE_SSE_INTRINSICS
120 if(size_t todo{dst.size()>>1})
122 auto *out = reinterpret_cast<__m64*>(dst.data());
123 do {
124 __m128 r04{_mm_setzero_ps()};
125 __m128 r14{_mm_setzero_ps()};
126 for(size_t j{0};j < mCoeffs.size();j+=4)
128 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
129 const __m128 s0{_mm_loadu_ps(&src[j*2])};
130 const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};
132 __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
133 r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));
135 s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
136 r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
138 src += 2;
140 __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))};
141 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
143 _mm_storel_pi(out, r4);
144 ++out;
145 } while(--todo);
147 if((dst.size()&1))
149 __m128 r4{_mm_setzero_ps()};
150 for(size_t j{0};j < mCoeffs.size();j+=4)
152 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
153 const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
154 r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
156 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
157 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
159 dst.back() = _mm_cvtss_f32(r4);
162 #elif defined(HAVE_NEON)
164 size_t pos{0};
165 if(size_t todo{dst.size()>>1})
167 do {
168 float32x4_t r04{vdupq_n_f32(0.0f)};
169 float32x4_t r14{vdupq_n_f32(0.0f)};
170 for(size_t j{0};j < mCoeffs.size();j+=4)
172 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
173 const float32x4_t s0{vld1q_f32(&src[j*2])};
174 const float32x4_t s1{vld1q_f32(&src[j*2 + 4])};
176 r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs);
177 r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs);
179 src += 2;
181 float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))};
182 float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))};
184 vst1_f32(&dst[pos], r2);
185 pos += 2;
186 } while(--todo);
188 if((dst.size()&1))
190 float32x4_t r4{vdupq_n_f32(0.0f)};
191 for(size_t j{0};j < mCoeffs.size();j+=4)
193 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
194 const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
195 r4 = vmlaq_f32(r4, s, coeffs);
197 r4 = vaddq_f32(r4, vrev64q_f32(r4));
198 dst[pos] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
201 #else
203 for(float &output : dst)
205 float ret{0.0f};
206 for(size_t j{0};j < mCoeffs.size();++j)
207 ret += src[j*2] * mCoeffs[j];
209 output = ret;
210 ++src;
212 #endif
215 template<size_t S>
216 inline void PhaseShifterT<S>::processAccum(al::span<float> dst, const float *RESTRICT src) const
218 #ifdef HAVE_SSE_INTRINSICS
219 if(size_t todo{dst.size()>>1})
221 auto *out = reinterpret_cast<__m64*>(dst.data());
222 do {
223 __m128 r04{_mm_setzero_ps()};
224 __m128 r14{_mm_setzero_ps()};
225 for(size_t j{0};j < mCoeffs.size();j+=4)
227 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
228 const __m128 s0{_mm_loadu_ps(&src[j*2])};
229 const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};
231 __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
232 r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));
234 s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
235 r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
237 src += 2;
239 __m128 r4{_mm_add_ps(_mm_unpackhi_ps(r04, r14), _mm_unpacklo_ps(r04, r14))};
240 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
242 _mm_storel_pi(out, _mm_add_ps(_mm_loadl_pi(_mm_undefined_ps(), out), r4));
243 ++out;
244 } while(--todo);
246 if((dst.size()&1))
248 __m128 r4{_mm_setzero_ps()};
249 for(size_t j{0};j < mCoeffs.size();j+=4)
251 const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
252 const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
253 r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
255 r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
256 r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
258 dst.back() += _mm_cvtss_f32(r4);
261 #elif defined(HAVE_NEON)
263 size_t pos{0};
264 if(size_t todo{dst.size()>>1})
266 do {
267 float32x4_t r04{vdupq_n_f32(0.0f)};
268 float32x4_t r14{vdupq_n_f32(0.0f)};
269 for(size_t j{0};j < mCoeffs.size();j+=4)
271 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
272 const float32x4_t s0{vld1q_f32(&src[j*2])};
273 const float32x4_t s1{vld1q_f32(&src[j*2 + 4])};
275 r04 = vmlaq_f32(r04, shuffle_2020(s0, s1), coeffs);
276 r14 = vmlaq_f32(r14, shuffle_3131(s0, s1), coeffs);
278 src += 2;
280 float32x4_t r4{vaddq_f32(unpackhi(r04, r14), unpacklo(r04, r14))};
281 float32x2_t r2{vadd_f32(vget_low_f32(r4), vget_high_f32(r4))};
283 vst1_f32(&dst[pos], vadd_f32(vld1_f32(&dst[pos]), r2));
284 pos += 2;
285 } while(--todo);
287 if((dst.size()&1))
289 float32x4_t r4{vdupq_n_f32(0.0f)};
290 for(size_t j{0};j < mCoeffs.size();j+=4)
292 const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
293 const float32x4_t s{load4(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
294 r4 = vmlaq_f32(r4, s, coeffs);
296 r4 = vaddq_f32(r4, vrev64q_f32(r4));
297 dst[pos] += vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
300 #else
302 for(float &output : dst)
304 float ret{0.0f};
305 for(size_t j{0};j < mCoeffs.size();++j)
306 ret += src[j*2] * mCoeffs[j];
308 output += ret;
309 ++src;
311 #endif
314 #endif /* PHASE_SHIFTER_H */