1 #ifndef PHASE_SHIFTER_H
2 #define PHASE_SHIFTER_H
4 #ifdef HAVE_SSE_INTRINSICS
6 #elif defined(HAVE_NEON)
12 #include <type_traits>
15 #include "alcomplex.h"
21 /* Implements a wide-band +90 degree phase-shift. Note that this should be
22 * given one sample less of a delay (FilterSize/2 - 1) compared to the direct
23 * signal delay (FilterSize/2) to properly align.
25 template<size_t FilterSize
>
26 struct PhaseShifterT
{
27 static_assert(FilterSize
>= 16, "FilterSize needs to be at least 16");
28 static_assert((FilterSize
&(FilterSize
-1)) == 0, "FilterSize needs to be power-of-two");
30 alignas(16) std::array
<float,FilterSize
/2> mCoeffs
{};
32 /* Some notes on this filter construction.
34 * A wide-band phase-shift filter needs a delay to maintain linearity. A
35 * dirac impulse in the center of a time-domain buffer represents a filter
36 * passing all frequencies through as-is with a pure delay. Converting that
37 * to the frequency domain, adjusting the phase of each frequency bin by
38 * +90 degrees, then converting back to the time domain, results in a FIR
39 * filter that applies a +90 degree wide-band phase-shift.
41 * A particularly notable aspect of the time-domain filter response is that
42 * every other coefficient is 0. This allows doubling the effective size of
43 * the filter, by storing only the non-0 coefficients and double-stepping
44 * over the input to apply it.
46 * Additionally, the resulting filter is independent of the sample rate.
47 * The same filter can be applied regardless of the device's sample rate
48 * and achieve the same effect.
52 using complex_d
= std::complex<double>;
53 constexpr size_t fft_size
{FilterSize
};
54 constexpr size_t half_size
{fft_size
/ 2};
56 auto fftBuffer
= std::vector
<complex_d
>(fft_size
, complex_d
{});
57 fftBuffer
[half_size
] = 1.0;
59 forward_fft(al::span
{fftBuffer
});
60 fftBuffer
[0] *= std::numeric_limits
<double>::epsilon();
61 for(size_t i
{1};i
< half_size
;++i
)
62 fftBuffer
[i
] = complex_d
{-fftBuffer
[i
].imag(), fftBuffer
[i
].real()};
63 fftBuffer
[half_size
] *= std::numeric_limits
<double>::epsilon();
64 for(size_t i
{half_size
+1};i
< fft_size
;++i
)
65 fftBuffer
[i
] = std::conj(fftBuffer
[fft_size
- i
]);
66 inverse_fft(al::span
{fftBuffer
});
68 auto fftiter
= fftBuffer
.data() + fft_size
- 1;
69 for(float &coeff
: mCoeffs
)
71 coeff
= static_cast<float>(fftiter
->real() / double{fft_size
});
76 PhaseShifterT(NoInit
) { }
78 void process(al::span
<float> dst
, const float *RESTRICT src
) const;
81 #if defined(HAVE_NEON)
82 static auto unpacklo(float32x4_t a
, float32x4_t b
)
84 float32x2x2_t result
{vzip_f32(vget_low_f32(a
), vget_low_f32(b
))};
85 return vcombine_f32(result
.val
[0], result
.val
[1]);
87 static auto unpackhi(float32x4_t a
, float32x4_t b
)
89 float32x2x2_t result
{vzip_f32(vget_high_f32(a
), vget_high_f32(b
))};
90 return vcombine_f32(result
.val
[0], result
.val
[1]);
92 static auto load4(float32_t a
, float32_t b
, float32_t c
, float32_t d
)
94 float32x4_t ret
{vmovq_n_f32(a
)};
95 ret
= vsetq_lane_f32(b
, ret
, 1);
96 ret
= vsetq_lane_f32(c
, ret
, 2);
97 ret
= vsetq_lane_f32(d
, ret
, 3);
104 inline void PhaseShifterT
<S
>::process(al::span
<float> dst
, const float *RESTRICT src
) const
106 #ifdef HAVE_SSE_INTRINSICS
107 if(size_t todo
{dst
.size()>>1})
109 auto *out
= reinterpret_cast<__m64
*>(dst
.data());
111 __m128 r04
{_mm_setzero_ps()};
112 __m128 r14
{_mm_setzero_ps()};
113 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
115 const __m128 coeffs
{_mm_load_ps(&mCoeffs
[j
])};
116 const __m128 s0
{_mm_loadu_ps(&src
[j
*2])};
117 const __m128 s1
{_mm_loadu_ps(&src
[j
*2 + 4])};
119 __m128 s
{_mm_shuffle_ps(s0
, s1
, _MM_SHUFFLE(2, 0, 2, 0))};
120 r04
= _mm_add_ps(r04
, _mm_mul_ps(s
, coeffs
));
122 s
= _mm_shuffle_ps(s0
, s1
, _MM_SHUFFLE(3, 1, 3, 1));
123 r14
= _mm_add_ps(r14
, _mm_mul_ps(s
, coeffs
));
127 __m128 r4
{_mm_add_ps(_mm_unpackhi_ps(r04
, r14
), _mm_unpacklo_ps(r04
, r14
))};
128 r4
= _mm_add_ps(r4
, _mm_movehl_ps(r4
, r4
));
130 _mm_storel_pi(out
, r4
);
136 __m128 r4
{_mm_setzero_ps()};
137 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
139 const __m128 coeffs
{_mm_load_ps(&mCoeffs
[j
])};
140 const __m128 s
{_mm_setr_ps(src
[j
*2], src
[j
*2 + 2], src
[j
*2 + 4], src
[j
*2 + 6])};
141 r4
= _mm_add_ps(r4
, _mm_mul_ps(s
, coeffs
));
143 r4
= _mm_add_ps(r4
, _mm_shuffle_ps(r4
, r4
, _MM_SHUFFLE(0, 1, 2, 3)));
144 r4
= _mm_add_ps(r4
, _mm_movehl_ps(r4
, r4
));
146 dst
.back() = _mm_cvtss_f32(r4
);
149 #elif defined(HAVE_NEON)
152 if(size_t todo
{dst
.size()>>1})
155 float32x4_t r04
{vdupq_n_f32(0.0f
)};
156 float32x4_t r14
{vdupq_n_f32(0.0f
)};
157 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
159 const float32x4_t coeffs
{vld1q_f32(&mCoeffs
[j
])};
160 const float32x4_t s0
{vld1q_f32(&src
[j
*2])};
161 const float32x4_t s1
{vld1q_f32(&src
[j
*2 + 4])};
162 const float32x4x2_t values
{vuzpq_f32(s0
, s1
)};
164 r04
= vmlaq_f32(r04
, values
.val
[0], coeffs
);
165 r14
= vmlaq_f32(r14
, values
.val
[1], coeffs
);
169 float32x4_t r4
{vaddq_f32(unpackhi(r04
, r14
), unpacklo(r04
, r14
))};
170 float32x2_t r2
{vadd_f32(vget_low_f32(r4
), vget_high_f32(r4
))};
172 vst1_f32(&dst
[pos
], r2
);
178 float32x4_t r4
{vdupq_n_f32(0.0f
)};
179 for(size_t j
{0};j
< mCoeffs
.size();j
+=4)
181 const float32x4_t coeffs
{vld1q_f32(&mCoeffs
[j
])};
182 const float32x4_t s
{load4(src
[j
*2], src
[j
*2 + 2], src
[j
*2 + 4], src
[j
*2 + 6])};
183 r4
= vmlaq_f32(r4
, s
, coeffs
);
185 r4
= vaddq_f32(r4
, vrev64q_f32(r4
));
186 dst
[pos
] = vget_lane_f32(vadd_f32(vget_low_f32(r4
), vget_high_f32(r4
)), 0);
191 for(float &output
: dst
)
194 for(size_t j
{0};j
< mCoeffs
.size();++j
)
195 ret
+= src
[j
*2] * mCoeffs
[j
];
203 #endif /* PHASE_SHIFTER_H */