Remove another gratuitous [[likely]]
[openal-soft.git] / common / alnumeric.h
bloba426763f1efe92fd097efdf3e2235382c80af7fb
1 #ifndef AL_NUMERIC_H
2 #define AL_NUMERIC_H
4 #include <algorithm>
5 #include <cmath>
6 #include <cstddef>
7 #include <cstdint>
8 #ifdef HAVE_INTRIN_H
9 #include <intrin.h>
10 #endif
11 #ifdef HAVE_SSE_INTRINSICS
12 #include <xmmintrin.h>
13 #endif
15 #include "altraits.h"
16 #include "opthelpers.h"
19 inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
20 inline constexpr uint64_t operator "" _u64(unsigned long long int n) noexcept { return static_cast<uint64_t>(n); }
23 constexpr inline float minf(float a, float b) noexcept
24 { return ((a > b) ? b : a); }
25 constexpr inline float maxf(float a, float b) noexcept
26 { return ((a > b) ? a : b); }
27 constexpr inline float clampf(float val, float min, float max) noexcept
28 { return minf(max, maxf(min, val)); }
30 constexpr inline double mind(double a, double b) noexcept
31 { return ((a > b) ? b : a); }
32 constexpr inline double maxd(double a, double b) noexcept
33 { return ((a > b) ? a : b); }
34 constexpr inline double clampd(double val, double min, double max) noexcept
35 { return mind(max, maxd(min, val)); }
37 constexpr inline unsigned int minu(unsigned int a, unsigned int b) noexcept
38 { return ((a > b) ? b : a); }
39 constexpr inline unsigned int maxu(unsigned int a, unsigned int b) noexcept
40 { return ((a > b) ? a : b); }
41 constexpr inline unsigned int clampu(unsigned int val, unsigned int min, unsigned int max) noexcept
42 { return minu(max, maxu(min, val)); }
44 constexpr inline int mini(int a, int b) noexcept
45 { return ((a > b) ? b : a); }
46 constexpr inline int maxi(int a, int b) noexcept
47 { return ((a > b) ? a : b); }
48 constexpr inline int clampi(int val, int min, int max) noexcept
49 { return mini(max, maxi(min, val)); }
51 constexpr inline int64_t mini64(int64_t a, int64_t b) noexcept
52 { return ((a > b) ? b : a); }
53 constexpr inline int64_t maxi64(int64_t a, int64_t b) noexcept
54 { return ((a > b) ? a : b); }
55 constexpr inline int64_t clampi64(int64_t val, int64_t min, int64_t max) noexcept
56 { return mini64(max, maxi64(min, val)); }
58 constexpr inline uint64_t minu64(uint64_t a, uint64_t b) noexcept
59 { return ((a > b) ? b : a); }
60 constexpr inline uint64_t maxu64(uint64_t a, uint64_t b) noexcept
61 { return ((a > b) ? a : b); }
62 constexpr inline uint64_t clampu64(uint64_t val, uint64_t min, uint64_t max) noexcept
63 { return minu64(max, maxu64(min, val)); }
65 constexpr inline size_t minz(size_t a, size_t b) noexcept
66 { return ((a > b) ? b : a); }
67 constexpr inline size_t maxz(size_t a, size_t b) noexcept
68 { return ((a > b) ? a : b); }
69 constexpr inline size_t clampz(size_t val, size_t min, size_t max) noexcept
70 { return minz(max, maxz(min, val)); }
73 constexpr inline float lerpf(float val1, float val2, float mu) noexcept
74 { return val1 + (val2-val1)*mu; }
75 constexpr inline float cubic(float val1, float val2, float val3, float val4, float mu) noexcept
77 const float mu2{mu*mu}, mu3{mu2*mu};
78 const float a0{-0.5f*mu3 + mu2 + -0.5f*mu};
79 const float a1{ 1.5f*mu3 + -2.5f*mu2 + 1.0f};
80 const float a2{-1.5f*mu3 + 2.0f*mu2 + 0.5f*mu};
81 const float a3{ 0.5f*mu3 + -0.5f*mu2};
82 return val1*a0 + val2*a1 + val3*a2 + val4*a3;
86 /** Find the next power-of-2 for non-power-of-2 numbers. */
87 inline uint32_t NextPowerOf2(uint32_t value) noexcept
89 if(value > 0)
91 value--;
92 value |= value>>1;
93 value |= value>>2;
94 value |= value>>4;
95 value |= value>>8;
96 value |= value>>16;
98 return value+1;
102 * If the value is not already a multiple of r, round down to the next
103 * multiple.
105 template<typename T>
106 constexpr T RoundDown(T value, al::type_identity_t<T> r) noexcept
107 { return value - (value%r); }
110 * If the value is not already a multiple of r, round up to the next multiple.
112 template<typename T>
113 constexpr T RoundUp(T value, al::type_identity_t<T> r) noexcept
114 { return RoundDown(value + r-1, r); }
118 * Fast float-to-int conversion. No particular rounding mode is assumed; the
119 * IEEE-754 default is round-to-nearest with ties-to-even, though an app could
120 * change it on its own threads. On some systems, a truncating conversion may
121 * always be the fastest method.
123 inline int fastf2i(float f) noexcept
125 #if defined(HAVE_SSE_INTRINSICS)
126 return _mm_cvt_ss2si(_mm_set_ss(f));
128 #elif defined(_MSC_VER) && defined(_M_IX86_FP)
130 int i;
131 __asm fld f
132 __asm fistp i
133 return i;
135 #elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
137 int i;
138 #ifdef __SSE_MATH__
139 __asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
140 #else
141 __asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
142 #endif
143 return i;
145 #else
147 return static_cast<int>(f);
148 #endif
150 inline unsigned int fastf2u(float f) noexcept
151 { return static_cast<unsigned int>(fastf2i(f)); }
153 /** Converts float-to-int using standard behavior (truncation). */
154 inline int float2int(float f) noexcept
156 #if defined(HAVE_SSE_INTRINSICS)
157 return _mm_cvtt_ss2si(_mm_set_ss(f));
159 #elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0) \
160 || ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
161 && !defined(__SSE_MATH__))
162 int sign, shift, mant;
163 union {
164 float f;
165 int i;
166 } conv;
168 conv.f = f;
169 sign = (conv.i>>31) | 1;
170 shift = ((conv.i>>23)&0xff) - (127+23);
172 /* Over/underflow */
173 if(shift >= 31 || shift < -23) [[unlikely]]
174 return 0;
176 mant = (conv.i&0x7fffff) | 0x800000;
177 if(shift < 0) [[likely]]
178 return (mant >> -shift) * sign;
179 return (mant << shift) * sign;
181 #else
183 return static_cast<int>(f);
184 #endif
186 inline unsigned int float2uint(float f) noexcept
187 { return static_cast<unsigned int>(float2int(f)); }
189 /** Converts double-to-int using standard behavior (truncation). */
190 inline int double2int(double d) noexcept
192 #if defined(HAVE_SSE_INTRINSICS)
193 return _mm_cvttsd_si32(_mm_set_sd(d));
195 #elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) \
196 || ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
197 && !defined(__SSE2_MATH__))
198 int sign, shift;
199 int64_t mant;
200 union {
201 double d;
202 int64_t i64;
203 } conv;
205 conv.d = d;
206 sign = (conv.i64 >> 63) | 1;
207 shift = ((conv.i64 >> 52) & 0x7ff) - (1023 + 52);
209 /* Over/underflow */
210 if(shift >= 63 || shift < -52) [[unlikely]]
211 return 0;
213 mant = (conv.i64 & 0xfffffffffffff_i64) | 0x10000000000000_i64;
214 if(shift < 0) [[likely]]
215 return (int)(mant >> -shift) * sign;
216 return (int)(mant << shift) * sign;
218 #else
220 return static_cast<int>(d);
221 #endif
225 * Rounds a float to the nearest integral value, according to the current
226 * rounding mode. This is essentially an inlined version of rintf, although
227 * makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
229 inline float fast_roundf(float f) noexcept
231 #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
232 && !defined(__SSE_MATH__)
234 float out;
235 __asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
236 return out;
238 #elif (defined(__GNUC__) || defined(__clang__)) && defined(__aarch64__)
240 float out;
241 __asm__ volatile("frintx %s0, %s1" : "=w"(out) : "w"(f));
242 return out;
244 #else
246 /* Integral limit, where sub-integral precision is not available for
247 * floats.
249 static const float ilim[2]{
250 8388608.0f /* 0x1.0p+23 */,
251 -8388608.0f /* -0x1.0p+23 */
253 unsigned int sign, expo;
254 union {
255 float f;
256 unsigned int i;
257 } conv;
259 conv.f = f;
260 sign = (conv.i>>31)&0x01;
261 expo = (conv.i>>23)&0xff;
263 if(expo >= 150/*+23*/) [[unlikely]]
265 /* An exponent (base-2) of 23 or higher is incapable of sub-integral
266 * precision, so it's already an integral value. We don't need to worry
267 * about infinity or NaN here.
269 return f;
271 /* Adding the integral limit to the value (with a matching sign) forces a
272 * result that has no sub-integral precision, and is consequently forced to
273 * round to an integral value. Removing the integral limit then restores
274 * the initial value rounded to the integral. The compiler should not
275 * optimize this out because of non-associative rules on floating-point
276 * math (as long as you don't use -fassociative-math,
277 * -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
278 * may break).
280 f += ilim[sign];
281 return f - ilim[sign];
282 #endif
286 template<typename T>
287 constexpr const T& clamp(const T& value, const T& min_value, const T& max_value) noexcept
289 return std::min(std::max(value, min_value), max_value);
292 // Converts level (mB) to gain.
293 inline float level_mb_to_gain(float x)
295 if(x <= -10'000.0f)
296 return 0.0f;
297 return std::pow(10.0f, x / 2'000.0f);
300 // Converts gain to level (mB).
301 inline float gain_to_level_mb(float x)
303 if (x <= 0.0f)
304 return -10'000.0f;
305 return maxf(std::log10(x) * 2'000.0f, -10'000.0f);
308 #endif /* AL_NUMERIC_H */