2 * This source code is a product of Sun Microsystems, Inc. and is provided
3 * for unrestricted use. Users may copy or modify this source code without
6 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
10 * Sun source code is provided with no support and without any obligation on
11 * the part of Sun Microsystems, Inc. to assist in its use, correction,
12 * modification or enhancement.
14 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16 * OR ANY PART THEREOF.
18 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19 * or profits or other special, indirect and consequential damages, even if
20 * Sun has been advised of the possibility of such damages.
22 * Sun Microsystems, Inc.
24 * Mountain View, California 94043
30 * u-law, A-law and linear PCM conversions.
35 * Functions linear2alaw, linear2ulaw have been updated to correctly
36 * convert unquantized 16 bit values.
37 * Tables for direct u- to A-law and A- to u-law conversions have been
39 * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
44 #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
45 #define QUANT_MASK (0xf) /* Quantization field mask. */
46 #define NSEGS (8) /* Number of A-law segments. */
47 #define SEG_SHIFT (4) /* Left shift for segment number. */
48 #define SEG_MASK (0x70) /* Segment field mask. */
50 static int seg_aend
[8] = {0x1F, 0x3F, 0x7F, 0xFF,
51 0x1FF, 0x3FF, 0x7FF, 0xFFF};
52 static int seg_uend
[8] = {0x3F, 0x7F, 0xFF, 0x1FF,
53 0x3FF, 0x7FF, 0xFFF, 0x1FFF};
55 /* copy from CCITT G.711 specifications */
56 unsigned char u2a
[128] = { /* u- to A-law conversions */
57 1, 1, 2, 2, 3, 3, 4, 4,
58 5, 5, 6, 6, 7, 7, 8, 8,
59 9, 10, 11, 12, 13, 14, 15, 16,
60 17, 18, 19, 20, 21, 22, 23, 24,
61 25, 27, 29, 31, 33, 34, 35, 36,
62 37, 38, 39, 40, 41, 42, 43, 44,
63 46, 48, 49, 50, 51, 52, 53, 54,
64 55, 56, 57, 58, 59, 60, 61, 62,
65 64, 65, 66, 67, 68, 69, 70, 71,
66 72, 73, 74, 75, 76, 77, 78, 79,
68 81, 82, 83, 84, 85, 86, 87, 88,
70 80, 82, 83, 84, 85, 86, 87, 88,
71 89, 90, 91, 92, 93, 94, 95, 96,
72 97, 98, 99, 100, 101, 102, 103, 104,
73 105, 106, 107, 108, 109, 110, 111, 112,
74 113, 114, 115, 116, 117, 118, 119, 120,
75 121, 122, 123, 124, 125, 126, 127, 128};
77 unsigned char a2u
[128] = { /* A- to u-law conversions */
78 1, 3, 5, 7, 9, 11, 13, 15,
79 16, 17, 18, 19, 20, 21, 22, 23,
80 24, 25, 26, 27, 28, 29, 30, 31,
81 32, 32, 33, 33, 34, 34, 35, 35,
82 36, 37, 38, 39, 40, 41, 42, 43,
83 44, 45, 46, 47, 48, 48, 49, 49,
84 50, 51, 52, 53, 54, 55, 56, 57,
85 58, 59, 60, 61, 62, 63, 64, 64,
86 65, 66, 67, 68, 69, 70, 71, 72,
88 73, 74, 75, 76, 77, 78, 79, 79,
90 73, 74, 75, 76, 77, 78, 79, 80,
92 80, 81, 82, 83, 84, 85, 86, 87,
93 88, 89, 90, 91, 92, 93, 94, 95,
94 96, 97, 98, 99, 100, 101, 102, 103,
95 104, 105, 106, 107, 108, 109, 110, 111,
96 112, 113, 114, 115, 116, 117, 118, 119,
97 120, 121, 122, 123, 124, 125, 126, 127};
101 int val
, /* changed from "short" *drago* */
103 int size
) /* changed from "short" *drago* */
105 int i
; /* changed from "short" *drago* */
107 for (i
= 0; i
< size
; i
++) {
115 * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
117 * linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
119 * Linear Input Code Compressed Code
120 * ------------------------ ---------------
121 * 0000000wxyza 000wxyz
122 * 0000001wxyza 001wxyz
123 * 000001wxyzab 010wxyz
124 * 00001wxyzabc 011wxyz
125 * 0001wxyzabcd 100wxyz
126 * 001wxyzabcde 101wxyz
127 * 01wxyzabcdef 110wxyz
128 * 1wxyzabcdefg 111wxyz
130 * For further information see John C. Bellamy's Digital Telephony, 1982,
131 * John Wiley & Sons, pps 98-111 and 472-476.
133 int linear2alaw(int pcm_val
) /* 2's complement (16-bit range) */
134 /* changed from "short" *drago* */
136 int mask
; /* changed from "short" *drago* */
137 int seg
; /* changed from "short" *drago* */
140 pcm_val
= pcm_val
>> 3;
143 mask
= 0xD5; /* sign (7th) bit = 1 */
145 mask
= 0x55; /* sign bit = 0 */
146 pcm_val
= -pcm_val
- 1;
149 /* Convert the scaled magnitude to segment number. */
150 seg
= search(pcm_val
, seg_aend
, 8);
152 /* Combine the sign, segment, and quantization bits. */
154 if (seg
>= 8) /* out of range, return maximum value. */
155 return (0x7F ^ mask
);
157 aval
= seg
<< SEG_SHIFT
;
159 aval
|= (pcm_val
>> 1) & QUANT_MASK
;
161 aval
|= (pcm_val
>> seg
) & QUANT_MASK
;
162 return (aval
^ mask
);
167 * alaw2linear() - Convert an A-law value to 16-bit linear PCM
170 int alaw2linear(int a_val
)
172 int t
; /* changed from "short" *drago* */
173 int seg
; /* changed from "short" *drago* */
177 t
= (a_val
& QUANT_MASK
) << 4;
178 seg
= ((unsigned)a_val
& SEG_MASK
) >> SEG_SHIFT
;
190 return ((a_val
& SIGN_BIT
) ? t
: -t
);
193 #define BIAS (0x84) /* Bias for linear code. */
197 * linear2ulaw() - Convert a linear PCM value to u-law
199 * In order to simplify the encoding process, the original linear magnitude
200 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
201 * (33 - 8191). The result can be seen in the following encoding table:
203 * Biased Linear Input Code Compressed Code
204 * ------------------------ ---------------
205 * 00000001wxyza 000wxyz
206 * 0000001wxyzab 001wxyz
207 * 000001wxyzabc 010wxyz
208 * 00001wxyzabcd 011wxyz
209 * 0001wxyzabcde 100wxyz
210 * 001wxyzabcdef 101wxyz
211 * 01wxyzabcdefg 110wxyz
212 * 1wxyzabcdefgh 111wxyz
214 * Each biased linear code has a leading 1 which identifies the segment
215 * number. The value of the segment number is equal to 7 minus the number
216 * of leading 0's. The quantization interval is directly available as the
217 * four bits wxyz. * The trailing bits (a - h) are ignored.
219 * Ordinarily the complement of the resulting code word is used for
220 * transmission, and so the code word is complemented before it is returned.
222 * For further information see John C. Bellamy's Digital Telephony, 1982,
223 * John Wiley & Sons, pps 98-111 and 472-476.
225 int linear2ulaw( int pcm_val
) /* 2's complement (16-bit range) */
231 /* Get the sign and the magnitude of the value. */
232 pcm_val
= pcm_val
>> 2;
239 if ( pcm_val
> CLIP
) pcm_val
= CLIP
; /* clip the magnitude */
240 pcm_val
+= (BIAS
>> 2);
242 /* Convert the scaled magnitude to segment number. */
243 seg
= search(pcm_val
, seg_uend
, 8);
246 * Combine the sign, segment, quantization bits;
247 * and complement the code word.
249 if (seg
>= 8) /* out of range, return maximum value. */
250 return (0x7F ^ mask
);
252 uval
= (seg
<< 4) | ((pcm_val
>> (seg
+ 1)) & 0xF);
253 return (uval
^ mask
);
259 * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
261 * First, a biased linear code is derived from the code word. An unbiased
262 * output can then be obtained by subtracting 33 from the biased code.
264 * Note that this function expects to be passed the complement of the
265 * original code word. This is in keeping with ISDN conventions.
267 int ulaw2linear( int u_val
)
271 /* Complement to obtain normal u-law value. */
275 * Extract and bias the quantization bits. Then
276 * shift up by the segment number and subtract out the bias.
278 t
= ((u_val
& QUANT_MASK
) << 3) + BIAS
;
279 t
<<= (u_val
& SEG_MASK
) >> SEG_SHIFT
;
281 return ((u_val
& SIGN_BIT
) ? (BIAS
- t
) : (t
- BIAS
));
286 /* A-law to u-law conversion */
287 static int alaw2ulaw (int aval
)
290 return ((aval
& 0x80) ? (0xFF ^ a2u
[aval
^ 0xD5]) :
291 (0x7F ^ a2u
[aval
^ 0x55]));
294 /* u-law to A-law conversion */
295 static int ulaw2alaw (int uval
)
298 return ((uval
& 0x80) ? (0xD5 ^ (u2a
[0xFF ^ uval
] - 1)) :
299 (0x55 ^ (u2a
[0x7F ^ uval
] - 1)));