Add: INR currency (#8136)
[openttd-github.git] / src / articulated_vehicles.cpp
blob4f42c6955c595f8d546abf62e137bc33523bb4b2
1 /*
2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6 */
8 /** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
10 #include "stdafx.h"
11 #include "train.h"
12 #include "roadveh.h"
13 #include "vehicle_func.h"
14 #include "engine_func.h"
15 #include "company_func.h"
16 #include "newgrf.h"
18 #include "table/strings.h"
20 #include "safeguards.h"
22 static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
24 /**
25 * Determines the next articulated part to attach
26 * @param index Position in chain
27 * @param front_type Front engine type
28 * @param front Front engine
29 * @param mirrored Returns whether the part shall be flipped.
30 * @return engine to add or INVALID_ENGINE
32 static EngineID GetNextArticulatedPart(uint index, EngineID front_type, Vehicle *front = nullptr, bool *mirrored = nullptr)
34 assert(front == nullptr || front->engine_type == front_type);
36 const Engine *front_engine = Engine::Get(front_type);
38 uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, index, 0, front_type, front);
39 if (callback == CALLBACK_FAILED) return INVALID_ENGINE;
41 if (front_engine->GetGRF()->grf_version < 8) {
42 /* 8 bits, bit 7 for mirroring */
43 callback = GB(callback, 0, 8);
44 if (callback == 0xFF) return INVALID_ENGINE;
45 if (mirrored != nullptr) *mirrored = HasBit(callback, 7);
46 callback = GB(callback, 0, 7);
47 } else {
48 /* 15 bits, bit 14 for mirroring */
49 if (callback == 0x7FFF) return INVALID_ENGINE;
50 if (mirrored != nullptr) *mirrored = HasBit(callback, 14);
51 callback = GB(callback, 0, 14);
54 return GetNewEngineID(front_engine->GetGRF(), front_engine->type, callback);
57 /**
58 * Does a NewGRF report that this should be an articulated vehicle?
59 * @param engine_type The engine to check.
60 * @return True iff the articulated engine callback flag is set.
62 bool IsArticulatedEngine(EngineID engine_type)
64 return HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE);
67 /**
68 * Count the number of articulated parts of an engine.
69 * @param engine_type The engine to get the number of parts of.
70 * @param purchase_window Whether we are in the scope of the purchase window or not, i.e. whether we cannot allocate vehicles.
71 * @return The number of parts.
73 uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
75 if (!HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
77 /* If we can't allocate a vehicle now, we can't allocate it in the command
78 * either, so it doesn't matter how many articulated parts there are. */
79 if (!Vehicle::CanAllocateItem()) return 0;
81 Vehicle *v = nullptr;
82 if (!purchase_window) {
83 v = new Vehicle();
84 v->engine_type = engine_type;
85 v->owner = _current_company;
88 uint i;
89 for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
90 if (GetNextArticulatedPart(i, engine_type, v) == INVALID_ENGINE) break;
93 delete v;
95 return i - 1;
99 /**
100 * Returns the default (non-refitted) capacity of a specific EngineID.
101 * @param engine the EngineID of interest
102 * @param cargo_type returns the default cargo type, if needed
103 * @return capacity
105 static inline uint16 GetVehicleDefaultCapacity(EngineID engine, CargoID *cargo_type)
107 const Engine *e = Engine::Get(engine);
108 CargoID cargo = (e->CanCarryCargo() ? e->GetDefaultCargoType() : (CargoID)CT_INVALID);
109 if (cargo_type != nullptr) *cargo_type = cargo;
110 if (cargo == CT_INVALID) return 0;
111 return e->GetDisplayDefaultCapacity();
115 * Returns all cargoes a vehicle can carry.
116 * @param engine the EngineID of interest
117 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
118 * @return bit set of CargoIDs
120 static inline CargoTypes GetAvailableVehicleCargoTypes(EngineID engine, bool include_initial_cargo_type)
122 const Engine *e = Engine::Get(engine);
123 if (!e->CanCarryCargo()) return 0;
125 CargoTypes cargoes = e->info.refit_mask;
127 if (include_initial_cargo_type) {
128 SetBit(cargoes, e->GetDefaultCargoType());
131 return cargoes;
135 * Get the capacity of the parts of a given engine.
136 * @param engine The engine to get the capacities from.
137 * @return The cargo capacities.
139 CargoArray GetCapacityOfArticulatedParts(EngineID engine)
141 CargoArray capacity;
142 const Engine *e = Engine::Get(engine);
144 CargoID cargo_type;
145 uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, &cargo_type);
146 if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
148 if (!e->IsGroundVehicle()) return capacity;
150 if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
152 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
153 EngineID artic_engine = GetNextArticulatedPart(i, engine);
154 if (artic_engine == INVALID_ENGINE) break;
156 cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
157 if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
160 return capacity;
164 * Get the default cargoes and refits of an articulated vehicle.
165 * The refits are linked to a cargo rather than an articulated part to prevent a long list of parts.
166 * @param engine Model to investigate.
167 * @param[out] cargoes Total amount of units that can be transported, summed by cargo.
168 * @param[out] refits Whether a (possibly partial) refit for each cargo is possible.
169 * @param cargo_type Selected refitted cargo type
170 * @param cargo_capacity Capacity of selected refitted cargo type
172 void GetArticulatedVehicleCargoesAndRefits(EngineID engine, CargoArray *cargoes, CargoTypes *refits, CargoID cargo_type, uint cargo_capacity)
174 cargoes->Clear();
175 *refits = 0;
177 const Engine *e = Engine::Get(engine);
179 if (cargo_type < NUM_CARGO && cargo_capacity > 0) {
180 (*cargoes)[cargo_type] += cargo_capacity;
181 if (IsEngineRefittable(engine)) SetBit(*refits, cargo_type);
184 if (!e->IsGroundVehicle() || !HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
186 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
187 EngineID artic_engine = GetNextArticulatedPart(i, engine);
188 if (artic_engine == INVALID_ENGINE) break;
190 cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
191 if (cargo_type < NUM_CARGO && cargo_capacity > 0) {
192 (*cargoes)[cargo_type] += cargo_capacity;
193 if (IsEngineRefittable(artic_engine)) SetBit(*refits, cargo_type);
199 * Checks whether any of the articulated parts is refittable
200 * @param engine the first part
201 * @return true if refittable
203 bool IsArticulatedVehicleRefittable(EngineID engine)
205 if (IsEngineRefittable(engine)) return true;
207 const Engine *e = Engine::Get(engine);
208 if (!e->IsGroundVehicle()) return false;
210 if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return false;
212 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
213 EngineID artic_engine = GetNextArticulatedPart(i, engine);
214 if (artic_engine == INVALID_ENGINE) break;
216 if (IsEngineRefittable(artic_engine)) return true;
219 return false;
223 * Merges the refit_masks of all articulated parts.
224 * @param engine the first part
225 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
226 * @param union_mask returns bit mask of CargoIDs which are a refit option for at least one articulated part
227 * @param intersection_mask returns bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
229 void GetArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type, CargoTypes *union_mask, CargoTypes *intersection_mask)
231 const Engine *e = Engine::Get(engine);
232 CargoTypes veh_cargoes = GetAvailableVehicleCargoTypes(engine, include_initial_cargo_type);
233 *union_mask = veh_cargoes;
234 *intersection_mask = (veh_cargoes != 0) ? veh_cargoes : ALL_CARGOTYPES;
236 if (!e->IsGroundVehicle()) return;
237 if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
239 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
240 EngineID artic_engine = GetNextArticulatedPart(i, engine);
241 if (artic_engine == INVALID_ENGINE) break;
243 veh_cargoes = GetAvailableVehicleCargoTypes(artic_engine, include_initial_cargo_type);
244 *union_mask |= veh_cargoes;
245 if (veh_cargoes != 0) *intersection_mask &= veh_cargoes;
250 * Ors the refit_masks of all articulated parts.
251 * @param engine the first part
252 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
253 * @return bit mask of CargoIDs which are a refit option for at least one articulated part
255 CargoTypes GetUnionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
257 CargoTypes union_mask, intersection_mask;
258 GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
259 return union_mask;
263 * Ands the refit_masks of all articulated parts.
264 * @param engine the first part
265 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
266 * @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
268 CargoTypes GetIntersectionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
270 CargoTypes union_mask, intersection_mask;
271 GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
272 return intersection_mask;
277 * Tests if all parts of an articulated vehicle are refitted to the same cargo.
278 * Note: Vehicles not carrying anything are ignored
279 * @param v the first vehicle in the chain
280 * @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
281 * @return true if some parts are carrying different cargoes, false if all parts are carrying the same (nothing is also the same)
283 bool IsArticulatedVehicleCarryingDifferentCargoes(const Vehicle *v, CargoID *cargo_type)
285 CargoID first_cargo = CT_INVALID;
287 do {
288 if (v->cargo_type != CT_INVALID && v->GetEngine()->CanCarryCargo()) {
289 if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
290 if (first_cargo != v->cargo_type) {
291 if (cargo_type != nullptr) *cargo_type = CT_INVALID;
292 return true;
296 v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : nullptr;
297 } while (v != nullptr);
299 if (cargo_type != nullptr) *cargo_type = first_cargo;
300 return false;
304 * Checks whether the specs of freshly build articulated vehicles are consistent with the information specified in the purchase list.
305 * Only essential information is checked to leave room for magic tricks/workarounds to grfcoders.
306 * It checks:
307 * For autoreplace/-renew:
308 * - Default cargo type (without capacity)
309 * - intersection and union of refit masks.
311 void CheckConsistencyOfArticulatedVehicle(const Vehicle *v)
313 const Engine *engine = v->GetEngine();
315 CargoTypes purchase_refit_union, purchase_refit_intersection;
316 GetArticulatedRefitMasks(v->engine_type, true, &purchase_refit_union, &purchase_refit_intersection);
317 CargoArray purchase_default_capacity = GetCapacityOfArticulatedParts(v->engine_type);
319 CargoTypes real_refit_union = 0;
320 CargoTypes real_refit_intersection = ALL_CARGOTYPES;
321 CargoArray real_default_capacity;
323 do {
324 CargoTypes refit_mask = GetAvailableVehicleCargoTypes(v->engine_type, true);
325 real_refit_union |= refit_mask;
326 if (refit_mask != 0) real_refit_intersection &= refit_mask;
328 assert(v->cargo_type < NUM_CARGO);
329 real_default_capacity[v->cargo_type] += v->cargo_cap;
331 v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : nullptr;
332 } while (v != nullptr);
334 /* Check whether the vehicle carries more cargoes than expected */
335 bool carries_more = false;
336 for (CargoID cid = 0; cid < NUM_CARGO; cid++) {
337 if (real_default_capacity[cid] != 0 && purchase_default_capacity[cid] == 0) {
338 carries_more = true;
339 break;
343 /* show a warning once for each GRF after each game load */
344 if (real_refit_union != purchase_refit_union || real_refit_intersection != purchase_refit_intersection || carries_more) {
345 ShowNewGrfVehicleError(engine->index, STR_NEWGRF_BUGGY, STR_NEWGRF_BUGGY_ARTICULATED_CARGO, GBUG_VEH_REFIT, false);
350 * Add the remaining articulated parts to the given vehicle.
351 * @param first The head of the articulated bit.
353 void AddArticulatedParts(Vehicle *first)
355 VehicleType type = first->type;
356 if (!HasBit(EngInfo(first->engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
358 Vehicle *v = first;
359 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
360 bool flip_image;
361 EngineID engine_type = GetNextArticulatedPart(i, first->engine_type, first, &flip_image);
362 if (engine_type == INVALID_ENGINE) return;
364 /* In the (very rare) case the GRF reported wrong number of articulated parts
365 * and we run out of available vehicles, bail out. */
366 if (!Vehicle::CanAllocateItem()) return;
368 GroundVehicleCache *gcache = v->GetGroundVehicleCache();
369 gcache->first_engine = v->engine_type; // Needs to be set before first callback
371 const Engine *e_artic = Engine::Get(engine_type);
372 switch (type) {
373 default: NOT_REACHED();
375 case VEH_TRAIN: {
376 Train *front = Train::From(first);
377 Train *t = new Train();
378 v->SetNext(t);
379 v = t;
381 t->subtype = 0;
382 t->track = front->track;
383 t->railtype = front->railtype;
385 t->spritenum = e_artic->u.rail.image_index;
386 if (e_artic->CanCarryCargo()) {
387 t->cargo_type = e_artic->GetDefaultCargoType();
388 t->cargo_cap = e_artic->u.rail.capacity; // Callback 36 is called when the consist is finished
389 } else {
390 t->cargo_type = front->cargo_type; // Needed for livery selection
391 t->cargo_cap = 0;
393 t->refit_cap = 0;
395 t->SetArticulatedPart();
396 break;
399 case VEH_ROAD: {
400 RoadVehicle *front = RoadVehicle::From(first);
401 RoadVehicle *rv = new RoadVehicle();
402 v->SetNext(rv);
403 v = rv;
405 rv->subtype = 0;
406 gcache->cached_veh_length = VEHICLE_LENGTH; // Callback is called when the consist is finished
407 rv->state = RVSB_IN_DEPOT;
409 rv->roadtype = front->roadtype;
410 rv->compatible_roadtypes = front->compatible_roadtypes;
412 rv->spritenum = e_artic->u.road.image_index;
413 if (e_artic->CanCarryCargo()) {
414 rv->cargo_type = e_artic->GetDefaultCargoType();
415 rv->cargo_cap = e_artic->u.road.capacity; // Callback 36 is called when the consist is finished
416 } else {
417 rv->cargo_type = front->cargo_type; // Needed for livery selection
418 rv->cargo_cap = 0;
420 rv->refit_cap = 0;
422 rv->SetArticulatedPart();
423 break;
427 /* get common values from first engine */
428 v->direction = first->direction;
429 v->owner = first->owner;
430 v->tile = first->tile;
431 v->x_pos = first->x_pos;
432 v->y_pos = first->y_pos;
433 v->z_pos = first->z_pos;
434 v->date_of_last_service = first->date_of_last_service;
435 v->build_year = first->build_year;
436 v->vehstatus = first->vehstatus & ~VS_STOPPED;
438 v->cargo_subtype = 0;
439 v->max_age = 0;
440 v->engine_type = engine_type;
441 v->value = 0;
442 v->sprite_seq.Set(SPR_IMG_QUERY);
443 v->random_bits = VehicleRandomBits();
445 if (flip_image) v->spritenum++;
447 v->UpdatePosition();