2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8 /** @file landscape.cpp Functions related to the landscape (slopes etc.). */
10 /** @defgroup SnowLineGroup Snowline functions and data structures */
13 #include "heightmap.h"
14 #include "clear_map.h"
15 #include "spritecache.h"
16 #include "viewport_func.h"
17 #include "command_func.h"
18 #include "landscape.h"
23 #include "error_func.h"
24 #include "timer/timer_game_calendar.h"
25 #include "timer/timer_game_tick.h"
27 #include "effectvehicle_func.h"
28 #include "landscape_type.h"
29 #include "animated_tile_func.h"
30 #include "core/random_func.hpp"
31 #include "object_base.h"
32 #include "company_func.h"
33 #include "pathfinder/npf/aystar.h"
34 #include "saveload/saveload.h"
35 #include "framerate_type.h"
36 #include "landscape_cmd.h"
37 #include "terraform_cmd.h"
38 #include "station_func.h"
39 #include "pathfinder/water_regions.h"
41 #include "table/strings.h"
42 #include "table/sprites.h"
44 #include "safeguards.h"
46 extern const TileTypeProcs
47 _tile_type_clear_procs
,
48 _tile_type_rail_procs
,
49 _tile_type_road_procs
,
50 _tile_type_town_procs
,
51 _tile_type_trees_procs
,
52 _tile_type_station_procs
,
53 _tile_type_water_procs
,
54 _tile_type_void_procs
,
55 _tile_type_industry_procs
,
56 _tile_type_tunnelbridge_procs
,
57 _tile_type_object_procs
;
60 * Tile callback functions for each type of tile.
61 * @ingroup TileCallbackGroup
64 const TileTypeProcs
* const _tile_type_procs
[16] = {
65 &_tile_type_clear_procs
, ///< Callback functions for MP_CLEAR tiles
66 &_tile_type_rail_procs
, ///< Callback functions for MP_RAILWAY tiles
67 &_tile_type_road_procs
, ///< Callback functions for MP_ROAD tiles
68 &_tile_type_town_procs
, ///< Callback functions for MP_HOUSE tiles
69 &_tile_type_trees_procs
, ///< Callback functions for MP_TREES tiles
70 &_tile_type_station_procs
, ///< Callback functions for MP_STATION tiles
71 &_tile_type_water_procs
, ///< Callback functions for MP_WATER tiles
72 &_tile_type_void_procs
, ///< Callback functions for MP_VOID tiles
73 &_tile_type_industry_procs
, ///< Callback functions for MP_INDUSTRY tiles
74 &_tile_type_tunnelbridge_procs
, ///< Callback functions for MP_TUNNELBRIDGE tiles
75 &_tile_type_object_procs
, ///< Callback functions for MP_OBJECT tiles
78 /** landscape slope => sprite */
79 extern const byte _slope_to_sprite_offset
[32] = {
80 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0,
81 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 17, 0, 15, 18, 0,
85 * Description of the snow line throughout the year.
87 * If it is \c nullptr, a static snowline height is used, as set by \c _settings_game.game_creation.snow_line_height.
88 * Otherwise it points to a table loaded from a newGRF file that describes the variable snowline.
89 * @ingroup SnowLineGroup
90 * @see GetSnowLine() GameCreationSettings
92 static SnowLine
*_snow_line
= nullptr;
95 * Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
96 * Function takes into account height of tiles and foundations.
98 * @param x X viewport 2D coordinate.
99 * @param y Y viewport 2D coordinate.
100 * @param clamp_to_map Clamp the coordinate outside of the map to the closest, non-void tile within the map.
101 * @param[out] clamped Whether coordinates were clamped.
102 * @return 3D world coordinate of point visible at the given screen coordinate (3D perspective).
104 * @note Inverse of #RemapCoords2 function. Smaller values may get rounded.
105 * @see InverseRemapCoords
107 Point
InverseRemapCoords2(int x
, int y
, bool clamp_to_map
, bool *clamped
)
109 if (clamped
!= nullptr) *clamped
= false; // Not clamping yet.
111 /* Initial x/y world coordinate is like if the landscape
112 * was completely flat on height 0. */
113 Point pt
= InverseRemapCoords(x
, y
);
115 const uint min_coord
= _settings_game
.construction
.freeform_edges
? TILE_SIZE
: 0;
116 const uint max_x
= Map::MaxX() * TILE_SIZE
- 1;
117 const uint max_y
= Map::MaxY() * TILE_SIZE
- 1;
120 /* Bring the coordinates near to a valid range. At the top we allow a number
121 * of extra tiles. This is mostly due to the tiles on the north side of
122 * the map possibly being drawn higher due to the extra height levels. */
123 int extra_tiles
= CeilDiv(_settings_game
.construction
.map_height_limit
* TILE_HEIGHT
, TILE_PIXELS
);
125 pt
.x
= Clamp(pt
.x
, -extra_tiles
* TILE_SIZE
, max_x
);
126 pt
.y
= Clamp(pt
.y
, -extra_tiles
* TILE_SIZE
, max_y
);
127 if (clamped
!= nullptr) *clamped
= (pt
.x
!= old_pt
.x
) || (pt
.y
!= old_pt
.y
);
130 /* Now find the Z-world coordinate by fix point iteration.
131 * This is a bit tricky because the tile height is non-continuous at foundations.
132 * The clicked point should be approached from the back, otherwise there are regions that are not clickable.
133 * (FOUNDATION_HALFTILE_LOWER on SLOPE_STEEP_S hides north halftile completely)
134 * So give it a z-malus of 4 in the first iterations. */
137 for (int i
= 0; i
< 5; i
++) z
= GetSlopePixelZ(Clamp(pt
.x
+ std::max(z
, 4) - 4, min_coord
, max_x
), Clamp(pt
.y
+ std::max(z
, 4) - 4, min_coord
, max_y
)) / 2;
138 for (int m
= 3; m
> 0; m
--) z
= GetSlopePixelZ(Clamp(pt
.x
+ std::max(z
, m
) - m
, min_coord
, max_x
), Clamp(pt
.y
+ std::max(z
, m
) - m
, min_coord
, max_y
)) / 2;
139 for (int i
= 0; i
< 5; i
++) z
= GetSlopePixelZ(Clamp(pt
.x
+ z
, min_coord
, max_x
), Clamp(pt
.y
+ z
, min_coord
, max_y
)) / 2;
141 for (int i
= 0; i
< 5; i
++) z
= GetSlopePixelZOutsideMap(pt
.x
+ std::max(z
, 4) - 4, pt
.y
+ std::max(z
, 4) - 4) / 2;
142 for (int m
= 3; m
> 0; m
--) z
= GetSlopePixelZOutsideMap(pt
.x
+ std::max(z
, m
) - m
, pt
.y
+ std::max(z
, m
) - m
) / 2;
143 for (int i
= 0; i
< 5; i
++) z
= GetSlopePixelZOutsideMap(pt
.x
+ z
, pt
.y
+ z
) / 2;
150 pt
.x
= Clamp(pt
.x
, min_coord
, max_x
);
151 pt
.y
= Clamp(pt
.y
, min_coord
, max_y
);
152 if (clamped
!= nullptr) *clamped
= *clamped
|| (pt
.x
!= old_pt
.x
) || (pt
.y
!= old_pt
.y
);
159 * Applies a foundation to a slope.
161 * @pre Foundation and slope must be valid combined.
162 * @param f The #Foundation.
163 * @param s The #Slope to modify.
164 * @return Increment to the tile Z coordinate.
166 uint
ApplyFoundationToSlope(Foundation f
, Slope
*s
)
168 if (!IsFoundation(f
)) return 0;
170 if (IsLeveledFoundation(f
)) {
171 uint dz
= 1 + (IsSteepSlope(*s
) ? 1 : 0);
176 if (f
!= FOUNDATION_STEEP_BOTH
&& IsNonContinuousFoundation(f
)) {
177 *s
= HalftileSlope(*s
, GetHalftileFoundationCorner(f
));
181 if (IsSpecialRailFoundation(f
)) {
182 *s
= SlopeWithThreeCornersRaised(OppositeCorner(GetRailFoundationCorner(f
)));
186 uint dz
= IsSteepSlope(*s
) ? 1 : 0;
187 Corner highest_corner
= GetHighestSlopeCorner(*s
);
190 case FOUNDATION_INCLINED_X
:
191 *s
= (((highest_corner
== CORNER_W
) || (highest_corner
== CORNER_S
)) ? SLOPE_SW
: SLOPE_NE
);
194 case FOUNDATION_INCLINED_Y
:
195 *s
= (((highest_corner
== CORNER_S
) || (highest_corner
== CORNER_E
)) ? SLOPE_SE
: SLOPE_NW
);
198 case FOUNDATION_STEEP_LOWER
:
199 *s
= SlopeWithOneCornerRaised(highest_corner
);
202 case FOUNDATION_STEEP_BOTH
:
203 *s
= HalftileSlope(SlopeWithOneCornerRaised(highest_corner
), highest_corner
);
206 default: NOT_REACHED();
213 * Determines height at given coordinate of a slope.
215 * At the northern corner (0, 0) the result is always a multiple of TILE_HEIGHT.
216 * When the height is a fractional Z, then the height is rounded down. For example,
217 * when at the height is 0 at x = 0 and the height is 8 at x = 16 (actually x = 0
218 * of the next tile), then height is 0 at x = 1, 1 at x = 2, and 7 at x = 15.
219 * @param x x coordinate (value from 0 to 15)
220 * @param y y coordinate (value from 0 to 15)
221 * @param corners slope to examine
222 * @return height of given point of given slope
224 uint
GetPartialPixelZ(int x
, int y
, Slope corners
)
226 if (IsHalftileSlope(corners
)) {
227 /* A foundation is placed on half the tile at a specific corner. This means that,
228 * depending on the corner, that one half of the tile is at the maximum height. */
229 switch (GetHalftileSlopeCorner(corners
)) {
231 if (x
> y
) return GetSlopeMaxPixelZ(corners
);
235 if (x
+ y
>= (int)TILE_SIZE
) return GetSlopeMaxPixelZ(corners
);
239 if (x
<= y
) return GetSlopeMaxPixelZ(corners
);
243 if (x
+ y
< (int)TILE_SIZE
) return GetSlopeMaxPixelZ(corners
);
246 default: NOT_REACHED();
250 switch (RemoveHalftileSlope(corners
)) {
251 case SLOPE_FLAT
: return 0;
253 /* One corner is up.*/
254 case SLOPE_N
: return x
+ y
<= (int)TILE_SIZE
? (TILE_SIZE
- x
- y
) >> 1 : 0;
255 case SLOPE_E
: return y
>= x
? (1 + y
- x
) >> 1 : 0;
256 case SLOPE_S
: return x
+ y
>= (int)TILE_SIZE
? (1 + x
+ y
- TILE_SIZE
) >> 1 : 0;
257 case SLOPE_W
: return x
>= y
? (x
- y
) >> 1 : 0;
259 /* Two corners next to eachother are up. */
260 case SLOPE_NE
: return (TILE_SIZE
- x
) >> 1;
261 case SLOPE_SE
: return (y
+ 1) >> 1;
262 case SLOPE_SW
: return (x
+ 1) >> 1;
263 case SLOPE_NW
: return (TILE_SIZE
- y
) >> 1;
265 /* Three corners are up on the same level. */
266 case SLOPE_ENW
: return x
+ y
>= (int)TILE_SIZE
? TILE_HEIGHT
- ((1 + x
+ y
- TILE_SIZE
) >> 1) : TILE_HEIGHT
;
267 case SLOPE_SEN
: return y
< x
? TILE_HEIGHT
- ((x
- y
) >> 1) : TILE_HEIGHT
;
268 case SLOPE_WSE
: return x
+ y
<= (int)TILE_SIZE
? TILE_HEIGHT
- ((TILE_SIZE
- x
- y
) >> 1) : TILE_HEIGHT
;
269 case SLOPE_NWS
: return x
< y
? TILE_HEIGHT
- ((1 + y
- x
) >> 1) : TILE_HEIGHT
;
271 /* Two corners at opposite sides are up. */
272 case SLOPE_NS
: return x
+ y
< (int)TILE_SIZE
? (TILE_SIZE
- x
- y
) >> 1 : (1 + x
+ y
- TILE_SIZE
) >> 1;
273 case SLOPE_EW
: return x
>= y
? (x
- y
) >> 1 : (1 + y
- x
) >> 1;
275 /* Very special cases. */
276 case SLOPE_ELEVATED
: return TILE_HEIGHT
;
278 /* Steep slopes. The top is at 2 * TILE_HEIGHT. */
279 case SLOPE_STEEP_N
: return (TILE_SIZE
- x
+ TILE_SIZE
- y
) >> 1;
280 case SLOPE_STEEP_E
: return (TILE_SIZE
+ 1 + y
- x
) >> 1;
281 case SLOPE_STEEP_S
: return (1 + x
+ y
) >> 1;
282 case SLOPE_STEEP_W
: return (TILE_SIZE
+ x
- y
) >> 1;
284 default: NOT_REACHED();
289 * Return world \c Z coordinate of a given point of a tile. Normally this is the
290 * Z of the ground/foundation at the given location, but in some cases the
291 * ground/foundation can differ from the Z coordinate that the (ground) vehicle
292 * passing over it would take. For example when entering a tunnel or bridge.
294 * @param x World X coordinate in tile "units".
295 * @param y World Y coordinate in tile "units".
296 * @param ground_vehicle Whether to get the Z coordinate of the ground vehicle, or the ground.
297 * @return World Z coordinate at tile ground (vehicle) level, including slopes and foundations.
299 int GetSlopePixelZ(int x
, int y
, bool ground_vehicle
)
301 TileIndex tile
= TileVirtXY(x
, y
);
303 return _tile_type_procs
[GetTileType(tile
)]->get_slope_z_proc(tile
, x
, y
, ground_vehicle
);
307 * Return world \c z coordinate of a given point of a tile,
308 * also for tiles outside the map (virtual "black" tiles).
310 * @param x World X coordinate in tile "units", may be outside the map.
311 * @param y World Y coordinate in tile "units", may be outside the map.
312 * @return World Z coordinate at tile ground level, including slopes and foundations.
314 int GetSlopePixelZOutsideMap(int x
, int y
)
316 if (IsInsideBS(x
, 0, Map::SizeX() * TILE_SIZE
) && IsInsideBS(y
, 0, Map::SizeY() * TILE_SIZE
)) {
317 return GetSlopePixelZ(x
, y
, false);
319 return _tile_type_procs
[MP_VOID
]->get_slope_z_proc(INVALID_TILE
, x
, y
, false);
324 * Determine the Z height of a corner relative to TileZ.
326 * @pre The slope must not be a halftile slope.
328 * @param tileh The slope.
329 * @param corner The corner.
330 * @return Z position of corner relative to TileZ.
332 int GetSlopeZInCorner(Slope tileh
, Corner corner
)
334 assert(!IsHalftileSlope(tileh
));
335 return ((tileh
& SlopeWithOneCornerRaised(corner
)) != 0 ? 1 : 0) + (tileh
== SteepSlope(corner
) ? 1 : 0);
339 * Determine the Z height of the corners of a specific tile edge
341 * @note If a tile has a non-continuous halftile foundation, a corner can have different heights wrt. its edges.
343 * @pre z1 and z2 must be initialized (typ. with TileZ). The corner heights just get added.
345 * @param tileh The slope of the tile.
346 * @param edge The edge of interest.
347 * @param z1 Gets incremented by the height of the first corner of the edge. (near corner wrt. the camera)
348 * @param z2 Gets incremented by the height of the second corner of the edge. (far corner wrt. the camera)
350 void GetSlopePixelZOnEdge(Slope tileh
, DiagDirection edge
, int *z1
, int *z2
)
352 static const Slope corners
[4][4] = {
353 /* corner | steep slope
355 {SLOPE_E
, SLOPE_N
, SLOPE_STEEP_E
, SLOPE_STEEP_N
}, // DIAGDIR_NE, z1 = E, z2 = N
356 {SLOPE_S
, SLOPE_E
, SLOPE_STEEP_S
, SLOPE_STEEP_E
}, // DIAGDIR_SE, z1 = S, z2 = E
357 {SLOPE_S
, SLOPE_W
, SLOPE_STEEP_S
, SLOPE_STEEP_W
}, // DIAGDIR_SW, z1 = S, z2 = W
358 {SLOPE_W
, SLOPE_N
, SLOPE_STEEP_W
, SLOPE_STEEP_N
}, // DIAGDIR_NW, z1 = W, z2 = N
361 int halftile_test
= (IsHalftileSlope(tileh
) ? SlopeWithOneCornerRaised(GetHalftileSlopeCorner(tileh
)) : 0);
362 if (halftile_test
== corners
[edge
][0]) *z2
+= TILE_HEIGHT
; // The slope is non-continuous in z2. z2 is on the upper side.
363 if (halftile_test
== corners
[edge
][1]) *z1
+= TILE_HEIGHT
; // The slope is non-continuous in z1. z1 is on the upper side.
365 if ((tileh
& corners
[edge
][0]) != 0) *z1
+= TILE_HEIGHT
; // z1 is raised
366 if ((tileh
& corners
[edge
][1]) != 0) *z2
+= TILE_HEIGHT
; // z2 is raised
367 if (RemoveHalftileSlope(tileh
) == corners
[edge
][2]) *z1
+= TILE_HEIGHT
; // z1 is highest corner of a steep slope
368 if (RemoveHalftileSlope(tileh
) == corners
[edge
][3]) *z2
+= TILE_HEIGHT
; // z2 is highest corner of a steep slope
372 * Get slope of a tile on top of a (possible) foundation
373 * If a tile does not have a foundation, the function returns the same as GetTileSlope.
375 * @param tile The tile of interest.
376 * @param z returns the z of the foundation slope. (Can be nullptr, if not needed)
377 * @return The slope on top of the foundation.
379 Slope
GetFoundationSlope(TileIndex tile
, int *z
)
381 Slope tileh
= GetTileSlope(tile
, z
);
382 Foundation f
= _tile_type_procs
[GetTileType(tile
)]->get_foundation_proc(tile
, tileh
);
383 uint z_inc
= ApplyFoundationToSlope(f
, &tileh
);
384 if (z
!= nullptr) *z
+= z_inc
;
389 bool HasFoundationNW(TileIndex tile
, Slope slope_here
, uint z_here
)
393 int z_W_here
= z_here
;
394 int z_N_here
= z_here
;
395 GetSlopePixelZOnEdge(slope_here
, DIAGDIR_NW
, &z_W_here
, &z_N_here
);
397 Slope slope
= GetFoundationPixelSlope(TILE_ADDXY(tile
, 0, -1), &z
);
400 GetSlopePixelZOnEdge(slope
, DIAGDIR_SE
, &z_W
, &z_N
);
402 return (z_N_here
> z_N
) || (z_W_here
> z_W
);
406 bool HasFoundationNE(TileIndex tile
, Slope slope_here
, uint z_here
)
410 int z_E_here
= z_here
;
411 int z_N_here
= z_here
;
412 GetSlopePixelZOnEdge(slope_here
, DIAGDIR_NE
, &z_E_here
, &z_N_here
);
414 Slope slope
= GetFoundationPixelSlope(TILE_ADDXY(tile
, -1, 0), &z
);
417 GetSlopePixelZOnEdge(slope
, DIAGDIR_SW
, &z_E
, &z_N
);
419 return (z_N_here
> z_N
) || (z_E_here
> z_E
);
423 * Draw foundation \a f at tile \a ti. Updates \a ti.
424 * @param ti Tile to draw foundation on
425 * @param f Foundation to draw
427 void DrawFoundation(TileInfo
*ti
, Foundation f
)
429 if (!IsFoundation(f
)) return;
431 /* Two part foundations must be drawn separately */
432 assert(f
!= FOUNDATION_STEEP_BOTH
);
434 uint sprite_block
= 0;
436 Slope slope
= GetFoundationPixelSlope(ti
->tile
, &z
);
438 /* Select the needed block of foundations sprites
439 * Block 0: Walls at NW and NE edge
440 * Block 1: Wall at NE edge
441 * Block 2: Wall at NW edge
442 * Block 3: No walls at NW or NE edge
444 if (!HasFoundationNW(ti
->tile
, slope
, z
)) sprite_block
+= 1;
445 if (!HasFoundationNE(ti
->tile
, slope
, z
)) sprite_block
+= 2;
447 /* Use the original slope sprites if NW and NE borders should be visible */
448 SpriteID leveled_base
= (sprite_block
== 0 ? (int)SPR_FOUNDATION_BASE
: (SPR_SLOPES_VIRTUAL_BASE
+ sprite_block
* SPR_TRKFOUND_BLOCK_SIZE
));
449 SpriteID inclined_base
= SPR_SLOPES_VIRTUAL_BASE
+ SPR_SLOPES_INCLINED_OFFSET
+ sprite_block
* SPR_TRKFOUND_BLOCK_SIZE
;
450 SpriteID halftile_base
= SPR_HALFTILE_FOUNDATION_BASE
+ sprite_block
* SPR_HALFTILE_BLOCK_SIZE
;
452 if (IsSteepSlope(ti
->tileh
)) {
453 if (!IsNonContinuousFoundation(f
)) {
454 /* Lower part of foundation */
455 AddSortableSpriteToDraw(
456 leveled_base
+ (ti
->tileh
& ~SLOPE_STEEP
), PAL_NONE
, ti
->x
, ti
->y
, TILE_SIZE
, TILE_SIZE
, TILE_HEIGHT
- 1, ti
->z
460 Corner highest_corner
= GetHighestSlopeCorner(ti
->tileh
);
461 ti
->z
+= ApplyPixelFoundationToSlope(f
, &ti
->tileh
);
463 if (IsInclinedFoundation(f
)) {
464 /* inclined foundation */
465 byte inclined
= highest_corner
* 2 + (f
== FOUNDATION_INCLINED_Y
? 1 : 0);
467 AddSortableSpriteToDraw(inclined_base
+ inclined
, PAL_NONE
, ti
->x
, ti
->y
,
468 f
== FOUNDATION_INCLINED_X
? TILE_SIZE
: 1,
469 f
== FOUNDATION_INCLINED_Y
? TILE_SIZE
: 1,
472 OffsetGroundSprite(0, 0);
473 } else if (IsLeveledFoundation(f
)) {
474 AddSortableSpriteToDraw(leveled_base
+ SlopeWithOneCornerRaised(highest_corner
), PAL_NONE
, ti
->x
, ti
->y
, TILE_SIZE
, TILE_SIZE
, TILE_HEIGHT
- 1, ti
->z
- TILE_HEIGHT
);
475 OffsetGroundSprite(0, -(int)TILE_HEIGHT
);
476 } else if (f
== FOUNDATION_STEEP_LOWER
) {
477 /* one corner raised */
478 OffsetGroundSprite(0, -(int)TILE_HEIGHT
);
480 /* halftile foundation */
481 int x_bb
= (((highest_corner
== CORNER_W
) || (highest_corner
== CORNER_S
)) ? TILE_SIZE
/ 2 : 0);
482 int y_bb
= (((highest_corner
== CORNER_S
) || (highest_corner
== CORNER_E
)) ? TILE_SIZE
/ 2 : 0);
484 AddSortableSpriteToDraw(halftile_base
+ highest_corner
, PAL_NONE
, ti
->x
+ x_bb
, ti
->y
+ y_bb
, TILE_SIZE
/ 2, TILE_SIZE
/ 2, TILE_HEIGHT
- 1, ti
->z
+ TILE_HEIGHT
);
485 /* Reposition ground sprite back to original position after bounding box change above. This is similar to
486 * RemapCoords() but without zoom scaling. */
487 Point pt
= {(y_bb
- x_bb
) * 2, y_bb
+ x_bb
};
488 OffsetGroundSprite(-pt
.x
, -pt
.y
);
491 if (IsLeveledFoundation(f
)) {
492 /* leveled foundation */
493 AddSortableSpriteToDraw(leveled_base
+ ti
->tileh
, PAL_NONE
, ti
->x
, ti
->y
, TILE_SIZE
, TILE_SIZE
, TILE_HEIGHT
- 1, ti
->z
);
494 OffsetGroundSprite(0, -(int)TILE_HEIGHT
);
495 } else if (IsNonContinuousFoundation(f
)) {
496 /* halftile foundation */
497 Corner halftile_corner
= GetHalftileFoundationCorner(f
);
498 int x_bb
= (((halftile_corner
== CORNER_W
) || (halftile_corner
== CORNER_S
)) ? TILE_SIZE
/ 2 : 0);
499 int y_bb
= (((halftile_corner
== CORNER_S
) || (halftile_corner
== CORNER_E
)) ? TILE_SIZE
/ 2 : 0);
501 AddSortableSpriteToDraw(halftile_base
+ halftile_corner
, PAL_NONE
, ti
->x
+ x_bb
, ti
->y
+ y_bb
, TILE_SIZE
/ 2, TILE_SIZE
/ 2, TILE_HEIGHT
- 1, ti
->z
);
502 /* Reposition ground sprite back to original position after bounding box change above. This is similar to
503 * RemapCoords() but without zoom scaling. */
504 Point pt
= {(y_bb
- x_bb
) * 2, y_bb
+ x_bb
};
505 OffsetGroundSprite(-pt
.x
, -pt
.y
);
506 } else if (IsSpecialRailFoundation(f
)) {
507 /* anti-zig-zag foundation */
509 if (ti
->tileh
== SLOPE_NS
|| ti
->tileh
== SLOPE_EW
) {
510 /* half of leveled foundation under track corner */
511 spr
= leveled_base
+ SlopeWithThreeCornersRaised(GetRailFoundationCorner(f
));
513 /* tile-slope = sloped along X/Y, foundation-slope = three corners raised */
514 spr
= inclined_base
+ 2 * GetRailFoundationCorner(f
) + ((ti
->tileh
== SLOPE_SW
|| ti
->tileh
== SLOPE_NE
) ? 1 : 0);
516 AddSortableSpriteToDraw(spr
, PAL_NONE
, ti
->x
, ti
->y
, TILE_SIZE
, TILE_SIZE
, TILE_HEIGHT
- 1, ti
->z
);
517 OffsetGroundSprite(0, 0);
519 /* inclined foundation */
520 byte inclined
= GetHighestSlopeCorner(ti
->tileh
) * 2 + (f
== FOUNDATION_INCLINED_Y
? 1 : 0);
522 AddSortableSpriteToDraw(inclined_base
+ inclined
, PAL_NONE
, ti
->x
, ti
->y
,
523 f
== FOUNDATION_INCLINED_X
? TILE_SIZE
: 1,
524 f
== FOUNDATION_INCLINED_Y
? TILE_SIZE
: 1,
527 OffsetGroundSprite(0, 0);
529 ti
->z
+= ApplyPixelFoundationToSlope(f
, &ti
->tileh
);
533 void DoClearSquare(TileIndex tile
)
535 /* If the tile can have animation and we clear it, delete it from the animated tile list. */
536 if (_tile_type_procs
[GetTileType(tile
)]->animate_tile_proc
!= nullptr) DeleteAnimatedTile(tile
);
538 bool remove
= IsDockingTile(tile
);
539 MakeClear(tile
, CLEAR_GRASS
, _generating_world
? 3 : 0);
540 MarkTileDirtyByTile(tile
);
541 if (remove
) RemoveDockingTile(tile
);
543 InvalidateWaterRegion(tile
);
547 * Returns information about trackdirs and signal states.
548 * If there is any trackbit at 'side', return all trackdirbits.
549 * For TRANSPORT_ROAD, return no trackbits if there is no roadbit (of given subtype) at given side.
550 * @param tile tile to get info about
551 * @param mode transport type
552 * @param sub_mode for TRANSPORT_ROAD, roadtypes to check
553 * @param side side we are entering from, INVALID_DIAGDIR to return all trackbits
554 * @return trackdirbits and other info depending on 'mode'
556 TrackStatus
GetTileTrackStatus(TileIndex tile
, TransportType mode
, uint sub_mode
, DiagDirection side
)
558 return _tile_type_procs
[GetTileType(tile
)]->get_tile_track_status_proc(tile
, mode
, sub_mode
, side
);
562 * Change the owner of a tile
563 * @param tile Tile to change
564 * @param old_owner Current owner of the tile
565 * @param new_owner New owner of the tile
567 void ChangeTileOwner(TileIndex tile
, Owner old_owner
, Owner new_owner
)
569 _tile_type_procs
[GetTileType(tile
)]->change_tile_owner_proc(tile
, old_owner
, new_owner
);
572 void GetTileDesc(TileIndex tile
, TileDesc
*td
)
574 _tile_type_procs
[GetTileType(tile
)]->get_tile_desc_proc(tile
, td
);
578 * Has a snow line table already been loaded.
579 * @return true if the table has been loaded already.
580 * @ingroup SnowLineGroup
584 return _snow_line
!= nullptr;
588 * Set a variable snow line, as loaded from a newgrf file.
589 * @param table the 12 * 32 byte table containing the snowline for each day
590 * @ingroup SnowLineGroup
592 void SetSnowLine(byte table
[SNOW_LINE_MONTHS
][SNOW_LINE_DAYS
])
594 _snow_line
= CallocT
<SnowLine
>(1);
595 _snow_line
->lowest_value
= 0xFF;
596 memcpy(_snow_line
->table
, table
, sizeof(_snow_line
->table
));
598 for (uint i
= 0; i
< SNOW_LINE_MONTHS
; i
++) {
599 for (uint j
= 0; j
< SNOW_LINE_DAYS
; j
++) {
600 _snow_line
->highest_value
= std::max(_snow_line
->highest_value
, table
[i
][j
]);
601 _snow_line
->lowest_value
= std::min(_snow_line
->lowest_value
, table
[i
][j
]);
607 * Get the current snow line, either variable or static.
608 * @return the snow line height.
609 * @ingroup SnowLineGroup
613 if (_snow_line
== nullptr) return _settings_game
.game_creation
.snow_line_height
;
615 TimerGameCalendar::YearMonthDay ymd
= TimerGameCalendar::ConvertDateToYMD(TimerGameCalendar::date
);
616 return _snow_line
->table
[ymd
.month
][ymd
.day
];
620 * Get the highest possible snow line height, either variable or static.
621 * @return the highest snow line height.
622 * @ingroup SnowLineGroup
624 byte
HighestSnowLine()
626 return _snow_line
== nullptr ? _settings_game
.game_creation
.snow_line_height
: _snow_line
->highest_value
;
630 * Get the lowest possible snow line height, either variable or static.
631 * @return the lowest snow line height.
632 * @ingroup SnowLineGroup
634 byte
LowestSnowLine()
636 return _snow_line
== nullptr ? _settings_game
.game_creation
.snow_line_height
: _snow_line
->lowest_value
;
640 * Clear the variable snow line table and free the memory.
641 * @ingroup SnowLineGroup
646 _snow_line
= nullptr;
650 * Clear a piece of landscape
651 * @param flags of operation to conduct
652 * @param tile tile to clear
653 * @return the cost of this operation or an error
655 CommandCost
CmdLandscapeClear(DoCommandFlag flags
, TileIndex tile
)
657 CommandCost
cost(EXPENSES_CONSTRUCTION
);
658 bool do_clear
= false;
659 /* Test for stuff which results in water when cleared. Then add the cost to also clear the water. */
660 if ((flags
& DC_FORCE_CLEAR_TILE
) && HasTileWaterClass(tile
) && IsTileOnWater(tile
) && !IsWaterTile(tile
) && !IsCoastTile(tile
)) {
661 if ((flags
& DC_AUTO
) && GetWaterClass(tile
) == WATER_CLASS_CANAL
) return_cmd_error(STR_ERROR_MUST_DEMOLISH_CANAL_FIRST
);
663 cost
.AddCost(GetWaterClass(tile
) == WATER_CLASS_CANAL
? _price
[PR_CLEAR_CANAL
] : _price
[PR_CLEAR_WATER
]);
666 Company
*c
= (flags
& (DC_AUTO
| DC_BANKRUPT
)) ? nullptr : Company::GetIfValid(_current_company
);
667 if (c
!= nullptr && (int)GB(c
->clear_limit
, 16, 16) < 1) {
668 return_cmd_error(STR_ERROR_CLEARING_LIMIT_REACHED
);
671 const ClearedObjectArea
*coa
= FindClearedObject(tile
);
673 /* If this tile was the first tile which caused object destruction, always
674 * pass it on to the tile_type_proc. That way multiple test runs and the exec run stay consistent. */
675 if (coa
!= nullptr && coa
->first_tile
!= tile
) {
676 /* If this tile belongs to an object which was already cleared via another tile, pretend it has been
678 * However, we need to check stuff, which is not the same for all object tiles. (e.g. being on water or not) */
680 /* If a object is removed, it leaves either bare land or water. */
681 if ((flags
& DC_NO_WATER
) && HasTileWaterClass(tile
) && IsTileOnWater(tile
)) {
682 return_cmd_error(STR_ERROR_CAN_T_BUILD_ON_WATER
);
685 cost
.AddCost(_tile_type_procs
[GetTileType(tile
)]->clear_tile_proc(tile
, flags
));
688 if (flags
& DC_EXEC
) {
689 if (c
!= nullptr) c
->clear_limit
-= 1 << 16;
690 if (do_clear
) DoClearSquare(tile
);
696 * Clear a big piece of landscape
697 * @param flags of operation to conduct
698 * @param tile end tile of area dragging
699 * @param start_tile start tile of area dragging
700 * @param diagonal Whether to use the Orthogonal (false) or Diagonal (true) iterator.
701 * @return the cost of this operation or an error
703 std::tuple
<CommandCost
, Money
> CmdClearArea(DoCommandFlag flags
, TileIndex tile
, TileIndex start_tile
, bool diagonal
)
705 if (start_tile
>= Map::Size()) return { CMD_ERROR
, 0 };
707 Money money
= GetAvailableMoneyForCommand();
708 CommandCost
cost(EXPENSES_CONSTRUCTION
);
709 CommandCost last_error
= CMD_ERROR
;
710 bool had_success
= false;
712 const Company
*c
= (flags
& (DC_AUTO
| DC_BANKRUPT
)) ? nullptr : Company::GetIfValid(_current_company
);
713 int limit
= (c
== nullptr ? INT32_MAX
: GB(c
->clear_limit
, 16, 16));
715 if (tile
!= start_tile
) flags
|= DC_FORCE_CLEAR_TILE
;
717 std::unique_ptr
<TileIterator
> iter
= TileIterator::Create(tile
, start_tile
, diagonal
);
718 for (; *iter
!= INVALID_TILE
; ++(*iter
)) {
720 CommandCost ret
= Command
<CMD_LANDSCAPE_CLEAR
>::Do(flags
& ~DC_EXEC
, t
);
724 /* We may not clear more tiles. */
725 if (c
!= nullptr && GB(c
->clear_limit
, 16, 16) < 1) break;
730 if (flags
& DC_EXEC
) {
731 money
-= ret
.GetCost();
732 if (ret
.GetCost() > 0 && money
< 0) {
733 return { cost
, ret
.GetCost() };
735 Command
<CMD_LANDSCAPE_CLEAR
>::Do(flags
, t
);
737 /* draw explosion animation...
738 * Disable explosions when game is paused. Looks silly and blocks the view. */
739 if ((t
== tile
|| t
== start_tile
) && _pause_mode
== PM_UNPAUSED
) {
740 /* big explosion in two corners, or small explosion for single tiles */
741 CreateEffectVehicleAbove(TileX(t
) * TILE_SIZE
+ TILE_SIZE
/ 2, TileY(t
) * TILE_SIZE
+ TILE_SIZE
/ 2, 2,
742 TileX(tile
) == TileX(start_tile
) && TileY(tile
) == TileY(start_tile
) ? EV_EXPLOSION_SMALL
: EV_EXPLOSION_LARGE
746 /* When we're at the clearing limit we better bail (unneed) testing as well. */
747 if (ret
.GetCost() != 0 && --limit
<= 0) break;
752 return { had_success
? cost
: last_error
, 0 };
756 TileIndex _cur_tileloop_tile
;
759 * Gradually iterate over all tiles on the map, calling their TileLoopProcs once every 256 ticks.
763 PerformanceAccumulator
framerate(PFE_GL_LANDSCAPE
);
765 /* The pseudorandom sequence of tiles is generated using a Galois linear feedback
766 * shift register (LFSR). This allows a deterministic pseudorandom ordering, but
767 * still with minimal state and fast iteration. */
769 /* Maximal length LFSR feedback terms, from 12-bit (for 64x64 maps) to 24-bit (for 4096x4096 maps).
770 * Extracted from http://www.ece.cmu.edu/~koopman/lfsr/ */
771 static const uint32_t feedbacks
[] = {
772 0xD8F, 0x1296, 0x2496, 0x4357, 0x8679, 0x1030E, 0x206CD, 0x403FE, 0x807B8, 0x1004B2, 0x2006A8, 0x4004B2, 0x800B87
774 static_assert(lengthof(feedbacks
) == 2 * MAX_MAP_SIZE_BITS
- 2 * MIN_MAP_SIZE_BITS
+ 1);
775 const uint32_t feedback
= feedbacks
[Map::LogX() + Map::LogY() - 2 * MIN_MAP_SIZE_BITS
];
777 /* We update every tile every 256 ticks, so divide the map size by 2^8 = 256 */
778 uint count
= 1 << (Map::LogX() + Map::LogY() - 8);
780 TileIndex tile
= _cur_tileloop_tile
;
781 /* The LFSR cannot have a zeroed state. */
784 /* Manually update tile 0 every 256 ticks - the LFSR never iterates over it itself. */
785 if (TimerGameTick::counter
% 256 == 0) {
786 _tile_type_procs
[GetTileType(0)]->tile_loop_proc(0);
791 _tile_type_procs
[GetTileType(tile
)]->tile_loop_proc(tile
);
793 /* Get the next tile in sequence using a Galois LFSR. */
794 tile
= (tile
.base() >> 1) ^ (-(int32_t)(tile
.base() & 1) & feedback
);
797 _cur_tileloop_tile
= tile
;
800 void InitializeLandscape()
802 for (uint y
= _settings_game
.construction
.freeform_edges
? 1 : 0; y
< Map::MaxY(); y
++) {
803 for (uint x
= _settings_game
.construction
.freeform_edges
? 1 : 0; x
< Map::MaxX(); x
++) {
804 MakeClear(TileXY(x
, y
), CLEAR_GRASS
, 3);
805 SetTileHeight(TileXY(x
, y
), 0);
806 SetTropicZone(TileXY(x
, y
), TROPICZONE_NORMAL
);
807 ClearBridgeMiddle(TileXY(x
, y
));
811 for (uint x
= 0; x
< Map::SizeX(); x
++) MakeVoid(TileXY(x
, Map::MaxY()));
812 for (uint y
= 0; y
< Map::SizeY(); y
++) MakeVoid(TileXY(Map::MaxX(), y
));
815 static const byte _genterrain_tbl_1
[5] = { 10, 22, 33, 37, 4 };
816 static const byte _genterrain_tbl_2
[5] = { 0, 0, 0, 0, 33 };
818 static void GenerateTerrain(int type
, uint flag
)
820 uint32_t r
= Random();
822 /* Choose one of the templates from the graphics file. */
823 const Sprite
*templ
= GetSprite((((r
>> 24) * _genterrain_tbl_1
[type
]) >> 8) + _genterrain_tbl_2
[type
] + SPR_MAPGEN_BEGIN
, SpriteType::MapGen
);
824 if (templ
== nullptr) UserError("Map generator sprites could not be loaded");
826 /* Chose a random location to apply the template to. */
827 uint x
= r
& Map::MaxX();
828 uint y
= (r
>> Map::LogX()) & Map::MaxY();
830 /* Make sure the template is not too close to the upper edges; bottom edges are checked later. */
831 uint edge_distance
= 1 + (_settings_game
.construction
.freeform_edges
? 1 : 0);
832 if (x
<= edge_distance
|| y
<= edge_distance
) return;
834 DiagDirection direction
= (DiagDirection
)GB(r
, 22, 2);
835 uint w
= templ
->width
;
836 uint h
= templ
->height
;
838 if (DiagDirToAxis(direction
) == AXIS_Y
) Swap(w
, h
);
840 const byte
*p
= templ
->data
;
842 if ((flag
& 4) != 0) {
843 /* This is only executed in secondary/tertiary loops to generate the terrain for arctic and tropic.
844 * It prevents the templates to be applied to certain parts of the map based on the flags, thus
845 * creating regions with different elevations/topography. */
846 uint xw
= x
* Map::SizeY();
847 uint yw
= y
* Map::SizeX();
848 uint bias
= (Map::SizeX() + Map::SizeY()) * 16;
851 default: NOT_REACHED();
853 if (xw
+ yw
> Map::Size() - bias
) return;
857 if (yw
< xw
+ bias
) return;
861 if (xw
+ yw
< Map::Size() + bias
) return;
865 if (xw
< yw
+ bias
) return;
870 /* Ensure the template does not overflow at the bottom edges of the map; upper edges were checked before. */
871 if (x
+ w
>= Map::MaxX()) return;
872 if (y
+ h
>= Map::MaxY()) return;
874 TileIndex tile
= TileXY(x
, y
);
876 /* Get the template and overlay in a particular direction over the map's height from the given
877 * origin point (tile), and update the map's height everywhere where the height from the template
878 * is higher than the height of the map. In other words, this only raises the tile heights. */
880 default: NOT_REACHED();
883 TileIndex tile_cur
= tile
;
885 for (uint w_cur
= w
; w_cur
!= 0; --w_cur
) {
886 if (GB(*p
, 0, 4) >= TileHeight(tile_cur
)) SetTileHeight(tile_cur
, GB(*p
, 0, 4));
890 tile
+= TileDiffXY(0, 1);
896 TileIndex tile_cur
= tile
;
898 for (uint h_cur
= h
; h_cur
!= 0; --h_cur
) {
899 if (GB(*p
, 0, 4) >= TileHeight(tile_cur
)) SetTileHeight(tile_cur
, GB(*p
, 0, 4));
901 tile_cur
+= TileDiffXY(0, 1);
903 tile
+= TileDiffXY(1, 0);
908 tile
+= TileDiffXY(w
- 1, 0);
910 TileIndex tile_cur
= tile
;
912 for (uint w_cur
= w
; w_cur
!= 0; --w_cur
) {
913 if (GB(*p
, 0, 4) >= TileHeight(tile_cur
)) SetTileHeight(tile_cur
, GB(*p
, 0, 4));
917 tile
+= TileDiffXY(0, 1);
922 tile
+= TileDiffXY(0, h
- 1);
924 TileIndex tile_cur
= tile
;
926 for (uint h_cur
= h
; h_cur
!= 0; --h_cur
) {
927 if (GB(*p
, 0, 4) >= TileHeight(tile_cur
)) SetTileHeight(tile_cur
, GB(*p
, 0, 4));
929 tile_cur
-= TileDiffXY(0, 1);
931 tile
+= TileDiffXY(1, 0);
938 #include "table/genland.h"
940 static void CreateDesertOrRainForest(uint desert_tropic_line
)
942 uint update_freq
= Map::Size() / 4;
943 const TileIndexDiffC
*data
;
945 for (TileIndex tile
= 0; tile
!= Map::Size(); ++tile
) {
946 if ((tile
.base() % update_freq
) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
948 if (!IsValidTile(tile
)) continue;
950 for (data
= _make_desert_or_rainforest_data
;
951 data
!= endof(_make_desert_or_rainforest_data
); ++data
) {
952 TileIndex t
= AddTileIndexDiffCWrap(tile
, *data
);
953 if (t
!= INVALID_TILE
&& (TileHeight(t
) >= desert_tropic_line
|| IsTileType(t
, MP_WATER
))) break;
955 if (data
== endof(_make_desert_or_rainforest_data
)) {
956 SetTropicZone(tile
, TROPICZONE_DESERT
);
960 for (uint i
= 0; i
!= 256; i
++) {
961 if ((i
% 64) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
966 for (TileIndex tile
= 0; tile
!= Map::Size(); ++tile
) {
967 if ((tile
.base() % update_freq
) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
969 if (!IsValidTile(tile
)) continue;
971 for (data
= _make_desert_or_rainforest_data
;
972 data
!= endof(_make_desert_or_rainforest_data
); ++data
) {
973 TileIndex t
= AddTileIndexDiffCWrap(tile
, *data
);
974 if (t
!= INVALID_TILE
&& IsTileType(t
, MP_CLEAR
) && IsClearGround(t
, CLEAR_DESERT
)) break;
976 if (data
== endof(_make_desert_or_rainforest_data
)) {
977 SetTropicZone(tile
, TROPICZONE_RAINFOREST
);
983 * Find the spring of a river.
984 * @param tile The tile to consider for being the spring.
985 * @return True iff it is suitable as a spring.
987 static bool FindSpring(TileIndex tile
, void *)
990 if (!IsTileFlat(tile
, &referenceHeight
) || IsWaterTile(tile
)) return false;
992 /* In the tropics rivers start in the rainforest. */
993 if (_settings_game
.game_creation
.landscape
== LT_TROPIC
&& GetTropicZone(tile
) != TROPICZONE_RAINFOREST
) return false;
995 /* Are there enough higher tiles to warrant a 'spring'? */
997 for (int dx
= -1; dx
<= 1; dx
++) {
998 for (int dy
= -1; dy
<= 1; dy
++) {
999 TileIndex t
= TileAddWrap(tile
, dx
, dy
);
1000 if (t
!= INVALID_TILE
&& GetTileMaxZ(t
) > referenceHeight
) num
++;
1004 if (num
< 4) return false;
1006 /* Are we near the top of a hill? */
1007 for (int dx
= -16; dx
<= 16; dx
++) {
1008 for (int dy
= -16; dy
<= 16; dy
++) {
1009 TileIndex t
= TileAddWrap(tile
, dx
, dy
);
1010 if (t
!= INVALID_TILE
&& GetTileMaxZ(t
) > referenceHeight
+ 2) return false;
1018 * Make a connected lake; fill all tiles in the circular tile search that are connected.
1019 * @param tile The tile to consider for lake making.
1020 * @param user_data The height of the lake.
1021 * @return Always false, so it continues searching.
1023 static bool MakeLake(TileIndex tile
, void *user_data
)
1025 uint height
= *(uint
*)user_data
;
1026 if (!IsValidTile(tile
) || TileHeight(tile
) != height
|| !IsTileFlat(tile
)) return false;
1027 if (_settings_game
.game_creation
.landscape
== LT_TROPIC
&& GetTropicZone(tile
) == TROPICZONE_DESERT
) return false;
1029 for (DiagDirection d
= DIAGDIR_BEGIN
; d
< DIAGDIR_END
; d
++) {
1030 TileIndex t2
= tile
+ TileOffsByDiagDir(d
);
1031 if (IsWaterTile(t2
)) {
1032 MakeRiverAndModifyDesertZoneAround(tile
);
1041 * Widen a river by expanding into adjacent tiles via circular tile search.
1042 * @param tile The tile to try expanding the river into.
1043 * @param data The tile to try surrounding the river around.
1044 * @return Always false, so it continues searching.
1046 static bool RiverMakeWider(TileIndex tile
, void *data
)
1048 /* Don't expand into void tiles. */
1049 if (!IsValidTile(tile
)) return false;
1051 /* If the tile is already sea or river, don't expand. */
1052 if (IsWaterTile(tile
)) return false;
1054 /* If the tile is at height 0 after terraforming but the ocean hasn't flooded yet, don't build river. */
1055 if (GetTileMaxZ(tile
) == 0) return false;
1057 TileIndex origin_tile
= *(TileIndex
*)data
;
1058 Slope cur_slope
= GetTileSlope(tile
);
1059 Slope desired_slope
= GetTileSlope(origin_tile
); // Initialize matching the origin tile as a shortcut if no terraforming is needed.
1061 /* Never flow uphill. */
1062 if (GetTileMaxZ(tile
) > GetTileMaxZ(origin_tile
)) return false;
1064 /* If the new tile can't hold a river tile, try terraforming. */
1065 if (!IsTileFlat(tile
) && !IsInclinedSlope(cur_slope
)) {
1066 /* Don't try to terraform steep slopes. */
1067 if (IsSteepSlope(cur_slope
)) return false;
1069 bool flat_river_found
= false;
1070 bool sloped_river_found
= false;
1072 /* There are two common possibilities:
1073 * 1. River flat, adjacent tile has one corner lowered.
1074 * 2. River descending, adjacent tile has either one or three corners raised.
1077 /* First, determine the desired slope based on adjacent river tiles. This doesn't necessarily match the origin tile for the CircularTileSearch. */
1078 for (DiagDirection d
= DIAGDIR_BEGIN
; d
< DIAGDIR_END
; d
++) {
1079 TileIndex other_tile
= TileAddByDiagDir(tile
, d
);
1080 Slope other_slope
= GetTileSlope(other_tile
);
1082 /* Only consider river tiles. */
1083 if (IsWaterTile(other_tile
) && IsRiver(other_tile
)) {
1084 /* If the adjacent river tile flows downhill, we need to check where we are relative to the slope. */
1085 if (IsInclinedSlope(other_slope
) && GetTileMaxZ(tile
) == GetTileMaxZ(other_tile
)) {
1086 /* Check for a parallel slope. If we don't find one, we're above or below the slope instead. */
1087 if (GetInclinedSlopeDirection(other_slope
) == ChangeDiagDir(d
, DIAGDIRDIFF_90RIGHT
) ||
1088 GetInclinedSlopeDirection(other_slope
) == ChangeDiagDir(d
, DIAGDIRDIFF_90LEFT
)) {
1089 desired_slope
= other_slope
;
1090 sloped_river_found
= true;
1094 /* If we find an adjacent river tile, remember it. We'll terraform to match it later if we don't find a slope. */
1095 if (IsTileFlat(other_tile
)) flat_river_found
= true;
1098 /* We didn't find either an inclined or flat river, so we're climbing the wrong slope. Bail out. */
1099 if (!sloped_river_found
&& !flat_river_found
) return false;
1101 /* We didn't find an inclined river, but there is a flat river. */
1102 if (!sloped_river_found
&& flat_river_found
) desired_slope
= SLOPE_FLAT
;
1104 /* Now that we know the desired slope, it's time to terraform! */
1106 /* If the river is flat and the adjacent tile has one corner lowered, we want to raise it. */
1107 if (desired_slope
== SLOPE_FLAT
&& IsSlopeWithThreeCornersRaised(cur_slope
)) {
1108 /* Make sure we're not affecting an existing river slope tile. */
1109 for (DiagDirection d
= DIAGDIR_BEGIN
; d
< DIAGDIR_END
; d
++) {
1110 TileIndex other_tile
= TileAddByDiagDir(tile
, d
);
1111 if (IsInclinedSlope(GetTileSlope(other_tile
)) && IsWaterTile(other_tile
)) return false;
1113 Command
<CMD_TERRAFORM_LAND
>::Do(DC_EXEC
| DC_AUTO
, tile
, ComplementSlope(cur_slope
), true);
1115 /* If the river is descending and the adjacent tile has either one or three corners raised, we want to make it match the slope. */
1116 } else if (IsInclinedSlope(desired_slope
)) {
1117 /* Don't break existing flat river tiles by terraforming under them. */
1118 DiagDirection river_direction
= ReverseDiagDir(GetInclinedSlopeDirection(desired_slope
));
1120 for (DiagDirDiff d
= DIAGDIRDIFF_BEGIN
; d
< DIAGDIRDIFF_END
; d
++) {
1121 /* We don't care about downstream or upstream tiles, just the riverbanks. */
1122 if (d
== DIAGDIRDIFF_SAME
|| d
== DIAGDIRDIFF_REVERSE
) continue;
1124 TileIndex other_tile
= (TileAddByDiagDir(tile
, ChangeDiagDir(river_direction
, d
)));
1125 if (IsWaterTile(other_tile
) && IsRiver(other_tile
) && IsTileFlat(other_tile
)) return false;
1128 /* Get the corners which are different between the current and desired slope. */
1129 Slope to_change
= cur_slope
^ desired_slope
;
1131 /* Lower unwanted corners first. If only one corner is raised, no corners need lowering. */
1132 if (!IsSlopeWithOneCornerRaised(cur_slope
)) {
1133 to_change
= to_change
& ComplementSlope(desired_slope
);
1134 Command
<CMD_TERRAFORM_LAND
>::Do(DC_EXEC
| DC_AUTO
, tile
, to_change
, false);
1137 /* Now check the match and raise any corners needed. */
1138 cur_slope
= GetTileSlope(tile
);
1139 if (cur_slope
!= desired_slope
&& IsSlopeWithOneCornerRaised(cur_slope
)) {
1140 to_change
= cur_slope
^ desired_slope
;
1141 Command
<CMD_TERRAFORM_LAND
>::Do(DC_EXEC
| DC_AUTO
, tile
, to_change
, true);
1144 /* Update cur_slope after possibly terraforming. */
1145 cur_slope
= GetTileSlope(tile
);
1148 /* Sloped rivers need water both upstream and downstream. */
1149 if (IsInclinedSlope(cur_slope
)) {
1150 DiagDirection slope_direction
= GetInclinedSlopeDirection(cur_slope
);
1152 TileIndex upstream_tile
= TileAddByDiagDir(tile
, slope_direction
);
1153 TileIndex downstream_tile
= TileAddByDiagDir(tile
, ReverseDiagDir(slope_direction
));
1155 /* Don't look outside the map. */
1156 if (!IsValidTile(upstream_tile
) || !IsValidTile(downstream_tile
)) return false;
1158 /* Downstream might be new ocean created by our terraforming, and it hasn't flooded yet. */
1159 bool downstream_is_ocean
= GetTileZ(downstream_tile
) == 0 && (GetTileSlope(downstream_tile
) == SLOPE_FLAT
|| IsSlopeWithOneCornerRaised(GetTileSlope(downstream_tile
)));
1161 /* If downstream is dry, flat, and not ocean, try making it a river tile. */
1162 if (!IsWaterTile(downstream_tile
) && !downstream_is_ocean
) {
1163 /* If the tile upstream isn't flat, don't bother. */
1164 if (GetTileSlope(downstream_tile
) != SLOPE_FLAT
) return false;
1166 MakeRiverAndModifyDesertZoneAround(downstream_tile
);
1169 /* If upstream is dry and flat, try making it a river tile. */
1170 if (!IsWaterTile(upstream_tile
)) {
1171 /* If the tile upstream isn't flat, don't bother. */
1172 if (GetTileSlope(upstream_tile
) != SLOPE_FLAT
) return false;
1174 MakeRiverAndModifyDesertZoneAround(upstream_tile
);
1178 /* If the tile slope matches the desired slope, add a river tile. */
1179 if (cur_slope
== desired_slope
) {
1180 MakeRiverAndModifyDesertZoneAround(tile
);
1183 /* Always return false to keep searching. */
1188 * Check whether a river at begin could (logically) flow down to end.
1189 * @param begin The origin of the flow.
1190 * @param end The destination of the flow.
1191 * @return True iff the water can be flowing down.
1193 static bool FlowsDown(TileIndex begin
, TileIndex end
)
1195 assert(DistanceManhattan(begin
, end
) == 1);
1199 Slope slopeBegin
= GetTileSlope(begin
, &heightBegin
);
1200 Slope slopeEnd
= GetTileSlope(end
, &heightEnd
);
1202 return heightEnd
<= heightBegin
&&
1203 /* Slope either is inclined or flat; rivers don't support other slopes. */
1204 (slopeEnd
== SLOPE_FLAT
|| IsInclinedSlope(slopeEnd
)) &&
1205 /* Slope continues, then it must be lower... or either end must be flat. */
1206 ((slopeEnd
== slopeBegin
&& heightEnd
< heightBegin
) || slopeEnd
== SLOPE_FLAT
|| slopeBegin
== SLOPE_FLAT
);
1209 /** Parameters for river generation to pass as AyStar user data. */
1210 struct River_UserData
{
1211 TileIndex spring
; ///< The current spring during river generation.
1212 bool main_river
; ///< Whether the current river is a big river that others flow into.
1215 /* AyStar callback for checking whether we reached our destination. */
1216 static int32_t River_EndNodeCheck(const AyStar
*aystar
, const OpenListNode
*current
)
1218 return current
->path
.node
.tile
== *(TileIndex
*)aystar
->user_target
? AYSTAR_FOUND_END_NODE
: AYSTAR_DONE
;
1221 /* AyStar callback for getting the cost of the current node. */
1222 static int32_t River_CalculateG(AyStar
*, AyStarNode
*, OpenListNode
*)
1224 return 1 + RandomRange(_settings_game
.game_creation
.river_route_random
);
1227 /* AyStar callback for getting the estimated cost to the destination. */
1228 static int32_t River_CalculateH(AyStar
*aystar
, AyStarNode
*current
, OpenListNode
*)
1230 return DistanceManhattan(*(TileIndex
*)aystar
->user_target
, current
->tile
);
1233 /* AyStar callback for getting the neighbouring nodes of the given node. */
1234 static void River_GetNeighbours(AyStar
*aystar
, OpenListNode
*current
)
1236 TileIndex tile
= current
->path
.node
.tile
;
1238 aystar
->num_neighbours
= 0;
1239 for (DiagDirection d
= DIAGDIR_BEGIN
; d
< DIAGDIR_END
; d
++) {
1240 TileIndex t2
= tile
+ TileOffsByDiagDir(d
);
1241 if (IsValidTile(t2
) && FlowsDown(tile
, t2
)) {
1242 aystar
->neighbours
[aystar
->num_neighbours
].tile
= t2
;
1243 aystar
->neighbours
[aystar
->num_neighbours
].direction
= INVALID_TRACKDIR
;
1244 aystar
->num_neighbours
++;
1249 /* AyStar callback when an route has been found. */
1250 static void River_FoundEndNode(AyStar
*aystar
, OpenListNode
*current
)
1252 River_UserData
*data
= (River_UserData
*)aystar
->user_data
;
1254 /* First, build the river without worrying about its width. */
1256 for (PathNode
*path
= ¤t
->path
; path
!= nullptr; path
= path
->parent
, cur_pos
++) {
1257 TileIndex tile
= path
->node
.tile
;
1258 if (!IsWaterTile(tile
)) {
1259 MakeRiverAndModifyDesertZoneAround(tile
);
1263 /* If the river is a main river, go back along the path to widen it.
1264 * Don't make wide rivers if we're using the original landscape generator.
1266 if (_settings_game
.game_creation
.land_generator
!= LG_ORIGINAL
&& data
->main_river
) {
1267 const uint long_river_length
= _settings_game
.game_creation
.min_river_length
* 4;
1268 uint current_river_length
;
1272 for (PathNode
*path
= ¤t
->path
; path
!= nullptr; path
= path
->parent
, cur_pos
++) {
1273 TileIndex tile
= path
->node
.tile
;
1275 /* Check if we should widen river depending on how far we are away from the source. */
1276 current_river_length
= DistanceManhattan(data
->spring
, tile
);
1277 radius
= std::min(3u, (current_river_length
/ (long_river_length
/ 3u)) + 1u);
1279 if (radius
> 1) CircularTileSearch(&tile
, radius
, RiverMakeWider
, (void *)&path
->node
.tile
);
1284 static const uint RIVER_HASH_SIZE
= 8; ///< The number of bits the hash for river finding should have.
1287 * Simple hash function for river tiles to be used by AyStar.
1288 * @param tile The tile to hash.
1289 * @return The hash for the tile.
1291 static uint
River_Hash(TileIndex tile
, Trackdir
)
1293 return GB(TileHash(TileX(tile
), TileY(tile
)), 0, RIVER_HASH_SIZE
);
1297 * Actually build the river between the begin and end tiles using AyStar.
1298 * @param begin The begin of the river.
1299 * @param end The end of the river.
1300 * @param spring The springing point of the river.
1301 * @param main_river Whether the current river is a big river that others flow into.
1303 static void BuildRiver(TileIndex begin
, TileIndex end
, TileIndex spring
, bool main_river
)
1305 River_UserData user_data
= { spring
, main_river
};
1308 finder
.CalculateG
= River_CalculateG
;
1309 finder
.CalculateH
= River_CalculateH
;
1310 finder
.GetNeighbours
= River_GetNeighbours
;
1311 finder
.EndNodeCheck
= River_EndNodeCheck
;
1312 finder
.FoundEndNode
= River_FoundEndNode
;
1313 finder
.user_target
= &end
;
1314 finder
.user_data
= &user_data
;
1316 finder
.Init(River_Hash
, 1 << RIVER_HASH_SIZE
);
1320 start
.direction
= INVALID_TRACKDIR
;
1321 finder
.AddStartNode(&start
, 0);
1327 * Try to flow the river down from a given begin.
1328 * @param spring The springing point of the river.
1329 * @param begin The begin point we are looking from; somewhere down hill from the spring.
1330 * @param min_river_length The minimum length for the river.
1331 * @return First element: True iff a river could/has been built, otherwise false; second element: River ends at sea.
1333 static std::tuple
<bool, bool> FlowRiver(TileIndex spring
, TileIndex begin
, uint min_river_length
)
1335 # define SET_MARK(x) marks.insert(x)
1336 # define IS_MARKED(x) (marks.find(x) != marks.end())
1338 uint height
= TileHeight(begin
);
1340 if (IsWaterTile(begin
)) {
1341 return { DistanceManhattan(spring
, begin
) > min_river_length
, GetTileZ(begin
) == 0 };
1344 std::set
<TileIndex
> marks
;
1347 /* Breadth first search for the closest tile we can flow down to. */
1348 std::list
<TileIndex
> queue
;
1349 queue
.push_back(begin
);
1352 uint count
= 0; // Number of tiles considered; to be used for lake location guessing.
1355 end
= queue
.front();
1358 uint height2
= TileHeight(end
);
1359 if (IsTileFlat(end
) && (height2
< height
|| (height2
== height
&& IsWaterTile(end
)))) {
1364 for (DiagDirection d
= DIAGDIR_BEGIN
; d
< DIAGDIR_END
; d
++) {
1365 TileIndex t2
= end
+ TileOffsByDiagDir(d
);
1366 if (IsValidTile(t2
) && !IS_MARKED(t2
) && FlowsDown(end
, t2
)) {
1369 queue
.push_back(t2
);
1372 } while (!queue
.empty());
1374 bool main_river
= false;
1376 /* Flow further down hill. */
1377 std::tie(found
, main_river
) = FlowRiver(spring
, end
, min_river_length
);
1378 } else if (count
> 32) {
1379 /* Maybe we can make a lake. Find the Nth of the considered tiles. */
1380 std::set
<TileIndex
>::const_iterator cit
= marks
.cbegin();
1381 std::advance(cit
, RandomRange(count
- 1));
1382 TileIndex lakeCenter
= *cit
;
1384 if (IsValidTile(lakeCenter
) &&
1385 /* A river, or lake, can only be built on flat slopes. */
1386 IsTileFlat(lakeCenter
) &&
1387 /* We want the lake to be built at the height of the river. */
1388 TileHeight(begin
) == TileHeight(lakeCenter
) &&
1389 /* We don't want the lake at the entry of the valley. */
1390 lakeCenter
!= begin
&&
1391 /* We don't want lakes in the desert. */
1392 (_settings_game
.game_creation
.landscape
!= LT_TROPIC
|| GetTropicZone(lakeCenter
) != TROPICZONE_DESERT
) &&
1393 /* We only want a lake if the river is long enough. */
1394 DistanceManhattan(spring
, lakeCenter
) > min_river_length
) {
1396 MakeRiverAndModifyDesertZoneAround(lakeCenter
);
1397 uint range
= RandomRange(8) + 3;
1398 CircularTileSearch(&lakeCenter
, range
, MakeLake
, &height
);
1399 /* Call the search a second time so artefacts from going circular in one direction get (mostly) hidden. */
1401 CircularTileSearch(&lakeCenter
, range
, MakeLake
, &height
);
1407 if (found
) BuildRiver(begin
, end
, spring
, main_river
);
1408 return { found
, main_river
};
1412 * Actually (try to) create some rivers.
1414 static void CreateRivers()
1416 int amount
= _settings_game
.game_creation
.amount_of_rivers
;
1417 if (amount
== 0) return;
1419 uint wells
= Map::ScaleBySize(4 << _settings_game
.game_creation
.amount_of_rivers
);
1420 const uint num_short_rivers
= wells
- std::max(1u, wells
/ 10);
1421 SetGeneratingWorldProgress(GWP_RIVER
, wells
+ 256 / 64); // Include the tile loop calls below.
1423 /* Try to create long rivers. */
1424 for (; wells
> num_short_rivers
; wells
--) {
1425 IncreaseGeneratingWorldProgress(GWP_RIVER
);
1426 for (int tries
= 0; tries
< 512; tries
++) {
1427 TileIndex t
= RandomTile();
1428 if (!CircularTileSearch(&t
, 8, FindSpring
, nullptr)) continue;
1429 if (std::get
<0>(FlowRiver(t
, t
, _settings_game
.game_creation
.min_river_length
* 4))) break;
1433 /* Try to create short rivers. */
1434 for (; wells
!= 0; wells
--) {
1435 IncreaseGeneratingWorldProgress(GWP_RIVER
);
1436 for (int tries
= 0; tries
< 128; tries
++) {
1437 TileIndex t
= RandomTile();
1438 if (!CircularTileSearch(&t
, 8, FindSpring
, nullptr)) continue;
1439 if (std::get
<0>(FlowRiver(t
, t
, _settings_game
.game_creation
.min_river_length
))) break;
1443 /* Widening rivers may have left some tiles requiring to be watered. */
1444 ConvertGroundTilesIntoWaterTiles();
1446 /* Run tile loop to update the ground density. */
1447 for (uint i
= 0; i
!= 256; i
++) {
1448 if (i
% 64 == 0) IncreaseGeneratingWorldProgress(GWP_RIVER
);
1454 * Calculate what height would be needed to cover N% of the landmass.
1456 * The function allows both snow and desert/tropic line to be calculated. It
1457 * tries to find the closests height which covers N% of the landmass; it can
1458 * be below or above it.
1460 * Tropic has a mechanism where water and tropic tiles in mountains grow
1461 * inside the desert. To better approximate the requested coverage, this is
1462 * taken into account via an edge histogram, which tells how many neighbouring
1463 * tiles are lower than the tiles of that height. The multiplier indicates how
1464 * severe this has to be taken into account.
1466 * @param coverage A value between 0 and 100 indicating a percentage of landmass that should be covered.
1467 * @param edge_multiplier How much effect neighbouring tiles that are of a lower height level have on the score.
1468 * @return The estimated best height to use to cover N% of the landmass.
1470 static uint
CalculateCoverageLine(uint coverage
, uint edge_multiplier
)
1472 const DiagDirection neighbour_dir
[] = {
1479 /* Histogram of how many tiles per height level exist. */
1480 std::array
<int, MAX_TILE_HEIGHT
+ 1> histogram
= {};
1481 /* Histogram of how many neighbour tiles are lower than the tiles of the height level. */
1482 std::array
<int, MAX_TILE_HEIGHT
+ 1> edge_histogram
= {};
1484 /* Build a histogram of the map height. */
1485 for (TileIndex tile
= 0; tile
< Map::Size(); tile
++) {
1486 uint h
= TileHeight(tile
);
1489 if (edge_multiplier
!= 0) {
1490 /* Check if any of our neighbours is below us. */
1491 for (auto dir
: neighbour_dir
) {
1492 TileIndex neighbour_tile
= AddTileIndexDiffCWrap(tile
, TileIndexDiffCByDiagDir(dir
));
1493 if (IsValidTile(neighbour_tile
) && TileHeight(neighbour_tile
) < h
) {
1494 edge_histogram
[h
]++;
1500 /* The amount of land we have is the map size minus the first (sea) layer. */
1501 uint land_tiles
= Map::Size() - histogram
[0];
1502 int best_score
= land_tiles
;
1504 /* Our goal is the coverage amount of the land-mass. */
1505 int goal_tiles
= land_tiles
* coverage
/ 100;
1507 /* We scan from top to bottom. */
1508 uint h
= MAX_TILE_HEIGHT
;
1511 int current_tiles
= 0;
1512 for (; h
> 0; h
--) {
1513 current_tiles
+= histogram
[h
];
1514 int current_score
= goal_tiles
- current_tiles
;
1516 /* Tropic grows from water and mountains into the desert. This is a
1517 * great visual, but it also means we* need to take into account how
1518 * much less desert tiles are being created if we are on this
1519 * height-level. We estimate this based on how many neighbouring
1520 * tiles are below us for a given length, assuming that is where
1521 * tropic is growing from.
1523 if (edge_multiplier
!= 0 && h
> 1) {
1524 /* From water tropic tiles grow for a few tiles land inward. */
1525 current_score
-= edge_histogram
[1] * edge_multiplier
;
1526 /* Tropic tiles grow into the desert for a few tiles. */
1527 current_score
-= edge_histogram
[h
] * edge_multiplier
;
1530 if (std::abs(current_score
) < std::abs(best_score
)) {
1531 best_score
= current_score
;
1535 /* Always scan all height-levels, as h == 1 might give a better
1536 * score than any before. This is true for example with 0% desert
1544 * Calculate the line from which snow begins.
1546 static void CalculateSnowLine()
1548 /* We do not have snow sprites on coastal tiles, so never allow "1" as height. */
1549 _settings_game
.game_creation
.snow_line_height
= std::max(CalculateCoverageLine(_settings_game
.game_creation
.snow_coverage
, 0), 2u);
1553 * Calculate the line (in height) between desert and tropic.
1554 * @return The height of the line between desert and tropic.
1556 static uint8_t CalculateDesertLine()
1558 /* CalculateCoverageLine() runs from top to bottom, so we need to invert the coverage. */
1559 return CalculateCoverageLine(100 - _settings_game
.game_creation
.desert_coverage
, 4);
1562 bool GenerateLandscape(byte mode
)
1564 /** Number of steps of landscape generation */
1565 enum GenLandscapeSteps
{
1566 GLS_HEIGHTMAP
= 3, ///< Loading a heightmap
1567 GLS_TERRAGENESIS
= 5, ///< Terragenesis generator
1568 GLS_ORIGINAL
= 2, ///< Original generator
1569 GLS_TROPIC
= 12, ///< Extra steps needed for tropic landscape
1570 GLS_OTHER
= 0, ///< Extra steps for other landscapes
1572 uint steps
= (_settings_game
.game_creation
.landscape
== LT_TROPIC
) ? GLS_TROPIC
: GLS_OTHER
;
1574 if (mode
== GWM_HEIGHTMAP
) {
1575 SetGeneratingWorldProgress(GWP_LANDSCAPE
, steps
+ GLS_HEIGHTMAP
);
1576 if (!LoadHeightmap(_file_to_saveload
.detail_ftype
, _file_to_saveload
.name
.c_str())) {
1579 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
1580 } else if (_settings_game
.game_creation
.land_generator
== LG_TERRAGENESIS
) {
1581 SetGeneratingWorldProgress(GWP_LANDSCAPE
, steps
+ GLS_TERRAGENESIS
);
1582 GenerateTerrainPerlin();
1584 SetGeneratingWorldProgress(GWP_LANDSCAPE
, steps
+ GLS_ORIGINAL
);
1585 if (_settings_game
.construction
.freeform_edges
) {
1586 for (uint x
= 0; x
< Map::SizeX(); x
++) MakeVoid(TileXY(x
, 0));
1587 for (uint y
= 0; y
< Map::SizeY(); y
++) MakeVoid(TileXY(0, y
));
1589 switch (_settings_game
.game_creation
.landscape
) {
1591 uint32_t r
= Random();
1593 for (uint i
= Map::ScaleBySize(GB(r
, 0, 7) + 950); i
!= 0; --i
) {
1594 GenerateTerrain(2, 0);
1597 uint flag
= GB(r
, 7, 2) | 4;
1598 for (uint i
= Map::ScaleBySize(GB(r
, 9, 7) + 450); i
!= 0; --i
) {
1599 GenerateTerrain(4, flag
);
1605 uint32_t r
= Random();
1607 for (uint i
= Map::ScaleBySize(GB(r
, 0, 7) + 170); i
!= 0; --i
) {
1608 GenerateTerrain(0, 0);
1611 uint flag
= GB(r
, 7, 2) | 4;
1612 for (uint i
= Map::ScaleBySize(GB(r
, 9, 8) + 1700); i
!= 0; --i
) {
1613 GenerateTerrain(0, flag
);
1618 for (uint i
= Map::ScaleBySize(GB(r
, 17, 7) + 410); i
!= 0; --i
) {
1619 GenerateTerrain(3, flag
);
1625 uint32_t r
= Random();
1627 assert(_settings_game
.difficulty
.quantity_sea_lakes
!= CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY
);
1628 uint i
= Map::ScaleBySize(GB(r
, 0, 7) + (3 - _settings_game
.difficulty
.quantity_sea_lakes
) * 256 + 100);
1629 for (; i
!= 0; --i
) {
1630 /* Make sure we do not overflow. */
1631 GenerateTerrain(Clamp(_settings_game
.difficulty
.terrain_type
, 0, 3), 0);
1638 /* Do not call IncreaseGeneratingWorldProgress() before FixSlopes(),
1639 * it allows screen redraw. Drawing of broken slopes crashes the game */
1641 MarkWholeScreenDirty();
1642 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
1644 ConvertGroundTilesIntoWaterTiles();
1645 MarkWholeScreenDirty();
1646 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
1648 switch (_settings_game
.game_creation
.landscape
) {
1650 CalculateSnowLine();
1654 uint desert_tropic_line
= CalculateDesertLine();
1655 CreateDesertOrRainForest(desert_tropic_line
);
1668 void OnTick_Trees();
1669 void OnTick_Station();
1670 void OnTick_Industry();
1672 void OnTick_Companies();
1673 void OnTick_LinkGraph();
1675 void CallLandscapeTick()
1678 PerformanceAccumulator
framerate(PFE_GL_LANDSCAPE
);