Fix #10490: Allow ships to exit depots if another is not moving at the exit point...
[openttd-github.git] / src / tgp.cpp
blob5a66c69de8d08c2008dfc114563ad8e2233cffb8
1 /*
2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6 */
8 /** @file tgp.cpp OTTD Perlin Noise Landscape Generator, aka TerraGenesis Perlin */
10 #include "stdafx.h"
11 #include "clear_map.h"
12 #include "void_map.h"
13 #include "genworld.h"
14 #include "core/random_func.hpp"
15 #include "landscape_type.h"
17 #include "safeguards.h"
21 * Quickie guide to Perlin Noise
22 * Perlin noise is a predictable pseudo random number sequence. By generating
23 * it in 2 dimensions, it becomes a useful random map that, for a given seed
24 * and starting X & Y, is entirely predictable. On the face of it, that may not
25 * be useful. However, it means that if you want to replay a map in a different
26 * terrain, or just vary the sea level, you just re-run the generator with the
27 * same seed. The seed is an int32_t, and is randomised on each run of New Game.
28 * The Scenario Generator does not randomise the value, so that you can
29 * experiment with one terrain until you are happy, or click "Random" for a new
30 * random seed.
32 * Perlin Noise is a series of "octaves" of random noise added together. By
33 * reducing the amplitude of the noise with each octave, the first octave of
34 * noise defines the main terrain sweep, the next the ripples on that, and the
35 * next the ripples on that. I use 6 octaves, with the amplitude controlled by
36 * a power ratio, usually known as a persistence or p value. This I vary by the
37 * smoothness selection, as can be seen in the table below. The closer to 1,
38 * the more of that octave is added. Each octave is however raised to the power
39 * of its position in the list, so the last entry in the "smooth" row, 0.35, is
40 * raised to the power of 6, so can only add 0.001838... of the amplitude to
41 * the running total.
43 * In other words; the first p value sets the general shape of the terrain, the
44 * second sets the major variations to that, ... until finally the smallest
45 * bumps are added.
47 * Usefully, this routine is totally scalable; so when 32bpp comes along, the
48 * terrain can be as bumpy as you like! It is also infinitely expandable; a
49 * single random seed terrain continues in X & Y as far as you care to
50 * calculate. In theory, we could use just one seed value, but randomly select
51 * where in the Perlin XY space we use for the terrain. Personally I prefer
52 * using a simple (0, 0) to (X, Y), with a varying seed.
55 * Other things i have had to do: mountainous wasn't mountainous enough, and
56 * since we only have 0..15 heights available, I add a second generated map
57 * (with a modified seed), onto the original. This generally raises the
58 * terrain, which then needs scaling back down. Overall effect is a general
59 * uplift.
61 * However, the values on the top of mountains are then almost guaranteed to go
62 * too high, so large flat plateaus appeared at height 15. To counter this, I
63 * scale all heights above 12 to proportion up to 15. It still makes the
64 * mountains have flattish tops, rather than craggy peaks, but at least they
65 * aren't smooth as glass.
68 * For a full discussion of Perlin Noise, please visit:
69 * http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
72 * Evolution II
74 * The algorithm as described in the above link suggests to compute each tile height
75 * as composition of several noise waves. Some of them are computed directly by
76 * noise(x, y) function, some are calculated using linear approximation. Our
77 * first implementation of perlin_noise_2D() used 4 noise(x, y) calls plus
78 * 3 linear interpolations. It was called 6 times for each tile. This was a bit
79 * CPU expensive.
81 * The following implementation uses optimized algorithm that should produce
82 * the same quality result with much less computations, but more memory accesses.
83 * The overall speedup should be 300% to 800% depending on CPU and memory speed.
85 * I will try to explain it on the example below:
87 * Have a map of 4 x 4 tiles, our simplified noise generator produces only two
88 * values -1 and +1, use 3 octaves with wave length 1, 2 and 4, with amplitudes
89 * 3, 2, 1. Original algorithm produces:
91 * h00 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 0/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 0/2) + -1 = lerp(-3.0, 3.0, 0/4) + lerp(-2, 2, 0/2) + -1 = -3.0 + -2 + -1 = -6.0
92 * h01 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 0/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 0/2) + 1 = lerp(-1.5, 1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = -1.5 + 0 + 1 = -0.5
93 * h02 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 0/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 0/2) + -1 = lerp( 0, 0, 0/4) + lerp( 2, -2, 0/2) + -1 = 0 + 2 + -1 = 1.0
94 * h03 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 0/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 0/2) + 1 = lerp( 1.5, -1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = 1.5 + 0 + 1 = 2.5
96 * h10 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 1/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 1/2) + 1 = lerp(-3.0, 3.0, 1/4) + lerp(-2, 2, 1/2) + 1 = -1.5 + 0 + 1 = -0.5
97 * h11 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 1/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 1/2) + -1 = lerp(-1.5, 1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = -0.75 + 0 + -1 = -1.75
98 * h12 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 1/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 1/2) + 1 = lerp( 0, 0, 1/4) + lerp( 2, -2, 1/2) + 1 = 0 + 0 + 1 = 1.0
99 * h13 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 1/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 1/2) + -1 = lerp( 1.5, -1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = 0.75 + 0 + -1 = -0.25
102 * Optimization 1:
104 * 1) we need to allocate a bit more tiles: (size_x + 1) * (size_y + 1) = (5 * 5):
106 * 2) setup corner values using amplitude 3
107 * { -3.0 X X X 3.0 }
108 * { X X X X X }
109 * { X X X X X }
110 * { X X X X X }
111 * { 3.0 X X X -3.0 }
113 * 3a) interpolate values in the middle
114 * { -3.0 X 0.0 X 3.0 }
115 * { X X X X X }
116 * { 0.0 X 0.0 X 0.0 }
117 * { X X X X X }
118 * { 3.0 X 0.0 X -3.0 }
120 * 3b) add patches with amplitude 2 to them
121 * { -5.0 X 2.0 X 1.0 }
122 * { X X X X X }
123 * { 2.0 X -2.0 X 2.0 }
124 * { X X X X X }
125 * { 1.0 X 2.0 X -5.0 }
127 * 4a) interpolate values in the middle
128 * { -5.0 -1.5 2.0 1.5 1.0 }
129 * { -1.5 -0.75 0.0 0.75 1.5 }
130 * { 2.0 0.0 -2.0 0.0 2.0 }
131 * { 1.5 0.75 0.0 -0.75 -1.5 }
132 * { 1.0 1.5 2.0 -1.5 -5.0 }
134 * 4b) add patches with amplitude 1 to them
135 * { -6.0 -0.5 1.0 2.5 0.0 }
136 * { -0.5 -1.75 1.0 -0.25 2.5 }
137 * { 1.0 1.0 -3.0 1.0 1.0 }
138 * { 2.5 -0.25 1.0 -1.75 -0.5 }
139 * { 0.0 2.5 1.0 -0.5 -6.0 }
143 * Optimization 2:
145 * As you can see above, each noise function was called just once. Therefore
146 * we don't need to use noise function that calculates the noise from x, y and
147 * some prime. The same quality result we can obtain using standard Random()
148 * function instead.
152 /** Fixed point type for heights */
153 using Height = int16_t;
154 static const int height_decimal_bits = 4;
156 /** Fixed point array for amplitudes (and percent values) */
157 using Amplitude = int;
158 static const int amplitude_decimal_bits = 10;
160 /** Height map - allocated array of heights (MapSizeX() + 1) x (MapSizeY() + 1) */
161 struct HeightMap
163 std::vector<Height> h; //< array of heights
164 /* Even though the sizes are always positive, there are many cases where
165 * X and Y need to be signed integers due to subtractions. */
166 int dim_x; //< height map size_x Map::SizeX() + 1
167 int size_x; //< Map::SizeX()
168 int size_y; //< Map::SizeY()
171 * Height map accessor
172 * @param x X position
173 * @param y Y position
174 * @return height as fixed point number
176 inline Height &height(uint x, uint y)
178 return h[x + y * dim_x];
182 /** Global height map instance */
183 static HeightMap _height_map = { {}, 0, 0, 0 };
185 /** Conversion: int to Height */
186 #define I2H(i) ((i) << height_decimal_bits)
187 /** Conversion: Height to int */
188 #define H2I(i) ((i) >> height_decimal_bits)
190 /** Conversion: int to Amplitude */
191 #define I2A(i) ((i) << amplitude_decimal_bits)
192 /** Conversion: Amplitude to int */
193 #define A2I(i) ((i) >> amplitude_decimal_bits)
195 /** Conversion: Amplitude to Height */
196 #define A2H(a) ((a) >> (amplitude_decimal_bits - height_decimal_bits))
198 /** Maximum number of TGP noise frequencies. */
199 static const int MAX_TGP_FREQUENCIES = 10;
201 /** Desired water percentage (100% == 1024) - indexed by _settings_game.difficulty.quantity_sea_lakes */
202 static const Amplitude _water_percent[4] = {70, 170, 270, 420};
205 * Gets the maximum allowed height while generating a map based on
206 * mapsize, terraintype, and the maximum height level.
207 * @return The maximum height for the map generation.
208 * @note Values should never be lower than 3 since the minimum snowline height is 2.
210 static Height TGPGetMaxHeight()
212 if (_settings_game.difficulty.terrain_type == CUSTOM_TERRAIN_TYPE_NUMBER_DIFFICULTY) {
213 /* TGP never reaches this height; this means that if a user inputs "2",
214 * it would create a flat map without the "+ 1". But that would
215 * overflow on "255". So we reduce it by 1 to get back in range. */
216 return I2H(_settings_game.game_creation.custom_terrain_type + 1) - 1;
220 * Desired maximum height - indexed by:
221 * - _settings_game.difficulty.terrain_type
222 * - min(Map::LogX(), Map::LogY()) - MIN_MAP_SIZE_BITS
224 * It is indexed by map size as well as terrain type since the map size limits the height of
225 * a usable mountain. For example, on a 64x64 map a 24 high single peak mountain (as if you
226 * raised land 24 times in the center of the map) will leave only a ring of about 10 tiles
227 * around the mountain to build on. On a 4096x4096 map, it won't cover any major part of the map.
229 static const int max_height[5][MAX_MAP_SIZE_BITS - MIN_MAP_SIZE_BITS + 1] = {
230 /* 64 128 256 512 1024 2048 4096 */
231 { 3, 3, 3, 3, 4, 5, 7 }, ///< Very flat
232 { 5, 7, 8, 9, 14, 19, 31 }, ///< Flat
233 { 8, 9, 10, 15, 23, 37, 61 }, ///< Hilly
234 { 10, 11, 17, 19, 49, 63, 73 }, ///< Mountainous
235 { 12, 19, 25, 31, 67, 75, 87 }, ///< Alpinist
238 int map_size_bucket = std::min(Map::LogX(), Map::LogY()) - MIN_MAP_SIZE_BITS;
239 int max_height_from_table = max_height[_settings_game.difficulty.terrain_type][map_size_bucket];
241 /* If there is a manual map height limit, clamp to it. */
242 if (_settings_game.construction.map_height_limit != 0) {
243 max_height_from_table = std::min<uint>(max_height_from_table, _settings_game.construction.map_height_limit);
246 return I2H(max_height_from_table);
250 * Get an overestimation of the highest peak TGP wants to generate.
252 uint GetEstimationTGPMapHeight()
254 return H2I(TGPGetMaxHeight());
258 * Get the amplitude associated with the currently selected
259 * smoothness and maximum height level.
260 * @param frequency The frequency to get the amplitudes for
261 * @return The amplitudes to apply to the map.
263 static Amplitude GetAmplitude(int frequency)
265 /* Base noise amplitudes (multiplied by 1024) and indexed by "smoothness setting" and log2(frequency). */
266 static const Amplitude amplitudes[][7] = {
267 /* lowest frequency ...... highest (every corner) */
268 {16000, 5600, 1968, 688, 240, 16, 16}, ///< Very smooth
269 {24000, 12800, 6400, 2700, 1024, 128, 16}, ///< Smooth
270 {32000, 19200, 12800, 8000, 3200, 256, 64}, ///< Rough
271 {48000, 24000, 19200, 16000, 8000, 512, 320}, ///< Very rough
274 * Extrapolation factors for ranges before the table.
275 * The extrapolation is needed to account for the higher map heights. They need larger
276 * areas with a particular gradient so that we are able to create maps without too
277 * many steep slopes up to the wanted height level. It's definitely not perfect since
278 * it will bring larger rectangles with similar slopes which makes the rectangular
279 * behaviour of TGP more noticeable. However, these height differentiations cannot
280 * happen over much smaller areas; we basically double the "range" to give a similar
281 * slope for every doubling of map height.
283 static const double extrapolation_factors[] = { 3.3, 2.8, 2.3, 1.8 };
285 int smoothness = _settings_game.game_creation.tgen_smoothness;
287 /* Get the table index, and return that value if possible. */
288 int index = frequency - MAX_TGP_FREQUENCIES + lengthof(amplitudes[smoothness]);
289 Amplitude amplitude = amplitudes[smoothness][std::max(0, index)];
290 if (index >= 0) return amplitude;
292 /* We need to extrapolate the amplitude. */
293 double extrapolation_factor = extrapolation_factors[smoothness];
294 int height_range = I2H(16);
295 do {
296 amplitude = (Amplitude)(extrapolation_factor * (double)amplitude);
297 height_range <<= 1;
298 index++;
299 } while (index < 0);
301 return Clamp((TGPGetMaxHeight() - height_range) / height_range, 0, 1) * amplitude;
305 * Check if a X/Y set are within the map.
306 * @param x coordinate x
307 * @param y coordinate y
308 * @return true if within the map
310 static inline bool IsValidXY(int x, int y)
312 return x >= 0 && x < _height_map.size_x && y >= 0 && y < _height_map.size_y;
317 * Allocate array of (MapSizeX()+1)*(MapSizeY()+1) heights and init the _height_map structure members
318 * @return true on success
320 static inline bool AllocHeightMap()
322 assert(_height_map.h.empty());
324 _height_map.size_x = Map::SizeX();
325 _height_map.size_y = Map::SizeY();
327 /* Allocate memory block for height map row pointers */
328 size_t total_size = static_cast<size_t>(_height_map.size_x + 1) * (_height_map.size_y + 1);
329 _height_map.dim_x = _height_map.size_x + 1;
330 _height_map.h.resize(total_size);
332 return true;
335 /** Free height map */
336 static inline void FreeHeightMap()
338 _height_map.h.clear();
342 * Generates new random height in given amplitude (generated numbers will range from - amplitude to + amplitude)
343 * @param rMax Limit of result
344 * @return generated height
346 static inline Height RandomHeight(Amplitude rMax)
348 /* Spread height into range -rMax..+rMax */
349 return A2H(RandomRange(2 * rMax + 1) - rMax);
353 * Base Perlin noise generator - fills height map with raw Perlin noise.
355 * This runs several iterations with increasing precision; the last iteration looks at areas
356 * of 1 by 1 tiles, the second to last at 2 by 2 tiles and the initial 2**MAX_TGP_FREQUENCIES
357 * by 2**MAX_TGP_FREQUENCIES tiles.
359 static void HeightMapGenerate()
361 /* Trying to apply noise to uninitialized height map */
362 assert(!_height_map.h.empty());
364 int start = std::max(MAX_TGP_FREQUENCIES - (int)std::min(Map::LogX(), Map::LogY()), 0);
365 bool first = true;
367 for (int frequency = start; frequency < MAX_TGP_FREQUENCIES; frequency++) {
368 const Amplitude amplitude = GetAmplitude(frequency);
370 /* Ignore zero amplitudes; it means our map isn't height enough for this
371 * amplitude, so ignore it and continue with the next set of amplitude. */
372 if (amplitude == 0) continue;
374 const int step = 1 << (MAX_TGP_FREQUENCIES - frequency - 1);
376 if (first) {
377 /* This is first round, we need to establish base heights with step = size_min */
378 for (int y = 0; y <= _height_map.size_y; y += step) {
379 for (int x = 0; x <= _height_map.size_x; x += step) {
380 Height height = (amplitude > 0) ? RandomHeight(amplitude) : 0;
381 _height_map.height(x, y) = height;
384 first = false;
385 continue;
388 /* It is regular iteration round.
389 * Interpolate height values at odd x, even y tiles */
390 for (int y = 0; y <= _height_map.size_y; y += 2 * step) {
391 for (int x = 0; x <= _height_map.size_x - 2 * step; x += 2 * step) {
392 Height h00 = _height_map.height(x + 0 * step, y);
393 Height h02 = _height_map.height(x + 2 * step, y);
394 Height h01 = (h00 + h02) / 2;
395 _height_map.height(x + 1 * step, y) = h01;
399 /* Interpolate height values at odd y tiles */
400 for (int y = 0; y <= _height_map.size_y - 2 * step; y += 2 * step) {
401 for (int x = 0; x <= _height_map.size_x; x += step) {
402 Height h00 = _height_map.height(x, y + 0 * step);
403 Height h20 = _height_map.height(x, y + 2 * step);
404 Height h10 = (h00 + h20) / 2;
405 _height_map.height(x, y + 1 * step) = h10;
409 /* Add noise for next higher frequency (smaller steps) */
410 for (int y = 0; y <= _height_map.size_y; y += step) {
411 for (int x = 0; x <= _height_map.size_x; x += step) {
412 _height_map.height(x, y) += RandomHeight(amplitude);
418 /** Returns min, max and average height from height map */
419 static void HeightMapGetMinMaxAvg(Height *min_ptr, Height *max_ptr, Height *avg_ptr)
421 Height h_min, h_max, h_avg;
422 int64_t h_accu = 0;
423 h_min = h_max = _height_map.height(0, 0);
425 /* Get h_min, h_max and accumulate heights into h_accu */
426 for (const Height &h : _height_map.h) {
427 if (h < h_min) h_min = h;
428 if (h > h_max) h_max = h;
429 h_accu += h;
432 /* Get average height */
433 h_avg = (Height)(h_accu / (_height_map.size_x * _height_map.size_y));
435 /* Return required results */
436 if (min_ptr != nullptr) *min_ptr = h_min;
437 if (max_ptr != nullptr) *max_ptr = h_max;
438 if (avg_ptr != nullptr) *avg_ptr = h_avg;
441 /** Dill histogram and return pointer to its base point - to the count of zero heights */
442 static int *HeightMapMakeHistogram(Height h_min, [[maybe_unused]] Height h_max, int *hist_buf)
444 int *hist = hist_buf - h_min;
446 /* Count the heights and fill the histogram */
447 for (const Height &h : _height_map.h){
448 assert(h >= h_min);
449 assert(h <= h_max);
450 hist[h]++;
452 return hist;
455 /** Applies sine wave redistribution onto height map */
456 static void HeightMapSineTransform(Height h_min, Height h_max)
458 for (Height &h : _height_map.h) {
459 double fheight;
461 if (h < h_min) continue;
463 /* Transform height into 0..1 space */
464 fheight = (double)(h - h_min) / (double)(h_max - h_min);
465 /* Apply sine transform depending on landscape type */
466 switch (_settings_game.game_creation.landscape) {
467 case LT_TOYLAND:
468 case LT_TEMPERATE:
469 /* Move and scale 0..1 into -1..+1 */
470 fheight = 2 * fheight - 1;
471 /* Sine transform */
472 fheight = sin(fheight * M_PI_2);
473 /* Transform it back from -1..1 into 0..1 space */
474 fheight = 0.5 * (fheight + 1);
475 break;
477 case LT_ARCTIC:
479 /* Arctic terrain needs special height distribution.
480 * Redistribute heights to have more tiles at highest (75%..100%) range */
481 double sine_upper_limit = 0.75;
482 double linear_compression = 2;
483 if (fheight >= sine_upper_limit) {
484 /* Over the limit we do linear compression up */
485 fheight = 1.0 - (1.0 - fheight) / linear_compression;
486 } else {
487 double m = 1.0 - (1.0 - sine_upper_limit) / linear_compression;
488 /* Get 0..sine_upper_limit into -1..1 */
489 fheight = 2.0 * fheight / sine_upper_limit - 1.0;
490 /* Sine wave transform */
491 fheight = sin(fheight * M_PI_2);
492 /* Get -1..1 back to 0..(1 - (1 - sine_upper_limit) / linear_compression) == 0.0..m */
493 fheight = 0.5 * (fheight + 1.0) * m;
496 break;
498 case LT_TROPIC:
500 /* Desert terrain needs special height distribution.
501 * Half of tiles should be at lowest (0..25%) heights */
502 double sine_lower_limit = 0.5;
503 double linear_compression = 2;
504 if (fheight <= sine_lower_limit) {
505 /* Under the limit we do linear compression down */
506 fheight = fheight / linear_compression;
507 } else {
508 double m = sine_lower_limit / linear_compression;
509 /* Get sine_lower_limit..1 into -1..1 */
510 fheight = 2.0 * ((fheight - sine_lower_limit) / (1.0 - sine_lower_limit)) - 1.0;
511 /* Sine wave transform */
512 fheight = sin(fheight * M_PI_2);
513 /* Get -1..1 back to (sine_lower_limit / linear_compression)..1.0 */
514 fheight = 0.5 * ((1.0 - m) * fheight + (1.0 + m));
517 break;
519 default:
520 NOT_REACHED();
521 break;
523 /* Transform it back into h_min..h_max space */
524 h = (Height)(fheight * (h_max - h_min) + h_min);
525 if (h < 0) h = I2H(0);
526 if (h >= h_max) h = h_max - 1;
531 * Additional map variety is provided by applying different curve maps
532 * to different parts of the map. A randomized low resolution grid contains
533 * which curve map to use on each part of the make. This filtered non-linearly
534 * to smooth out transitions between curves, so each tile could have between
535 * 100% of one map applied or 25% of four maps.
537 * The curve maps define different land styles, i.e. lakes, low-lands, hills
538 * and mountain ranges, although these are dependent on the landscape style
539 * chosen as well.
541 * The level parameter dictates the resolution of the grid. A low resolution
542 * grid will result in larger continuous areas of a land style, a higher
543 * resolution grid splits the style into smaller areas.
544 * @param level Rough indication of the size of the grid sections to style. Small level means large grid sections.
546 static void HeightMapCurves(uint level)
548 Height mh = TGPGetMaxHeight() - I2H(1); // height levels above sea level only
550 /** Basically scale height X to height Y. Everything in between is interpolated. */
551 struct ControlPoint {
552 Height x; ///< The height to scale from.
553 Height y; ///< The height to scale to.
555 /* Scaled curve maps; value is in height_ts. */
556 #define F(fraction) ((Height)(fraction * mh))
557 const ControlPoint curve_map_1[] = { { F(0.0), F(0.0) }, { F(0.8), F(0.13) }, { F(1.0), F(0.4) } };
558 const ControlPoint curve_map_2[] = { { F(0.0), F(0.0) }, { F(0.53), F(0.13) }, { F(0.8), F(0.27) }, { F(1.0), F(0.6) } };
559 const ControlPoint curve_map_3[] = { { F(0.0), F(0.0) }, { F(0.53), F(0.27) }, { F(0.8), F(0.57) }, { F(1.0), F(0.8) } };
560 const ControlPoint curve_map_4[] = { { F(0.0), F(0.0) }, { F(0.4), F(0.3) }, { F(0.7), F(0.8) }, { F(0.92), F(0.99) }, { F(1.0), F(0.99) } };
561 #undef F
563 /** Helper structure to index the different curve maps. */
564 struct ControlPointList {
565 size_t length; ///< The length of the curve map.
566 const ControlPoint *list; ///< The actual curve map.
568 static const ControlPointList curve_maps[] = {
569 { lengthof(curve_map_1), curve_map_1 },
570 { lengthof(curve_map_2), curve_map_2 },
571 { lengthof(curve_map_3), curve_map_3 },
572 { lengthof(curve_map_4), curve_map_4 },
575 Height ht[lengthof(curve_maps)];
576 MemSetT(ht, 0, lengthof(ht));
578 /* Set up a grid to choose curve maps based on location; attempt to get a somewhat square grid */
579 float factor = sqrt((float)_height_map.size_x / (float)_height_map.size_y);
580 uint sx = Clamp((int)(((1 << level) * factor) + 0.5), 1, 128);
581 uint sy = Clamp((int)(((1 << level) / factor) + 0.5), 1, 128);
582 std::vector<byte> c(static_cast<size_t>(sx) * sy);
584 for (uint i = 0; i < sx * sy; i++) {
585 c[i] = Random() % lengthof(curve_maps);
588 /* Apply curves */
589 for (int x = 0; x < _height_map.size_x; x++) {
591 /* Get our X grid positions and bi-linear ratio */
592 float fx = (float)(sx * x) / _height_map.size_x + 1.0f;
593 uint x1 = (uint)fx;
594 uint x2 = x1;
595 float xr = 2.0f * (fx - x1) - 1.0f;
596 xr = sin(xr * M_PI_2);
597 xr = sin(xr * M_PI_2);
598 xr = 0.5f * (xr + 1.0f);
599 float xri = 1.0f - xr;
601 if (x1 > 0) {
602 x1--;
603 if (x2 >= sx) x2--;
606 for (int y = 0; y < _height_map.size_y; y++) {
608 /* Get our Y grid position and bi-linear ratio */
609 float fy = (float)(sy * y) / _height_map.size_y + 1.0f;
610 uint y1 = (uint)fy;
611 uint y2 = y1;
612 float yr = 2.0f * (fy - y1) - 1.0f;
613 yr = sin(yr * M_PI_2);
614 yr = sin(yr * M_PI_2);
615 yr = 0.5f * (yr + 1.0f);
616 float yri = 1.0f - yr;
618 if (y1 > 0) {
619 y1--;
620 if (y2 >= sy) y2--;
623 uint corner_a = c[x1 + sx * y1];
624 uint corner_b = c[x1 + sx * y2];
625 uint corner_c = c[x2 + sx * y1];
626 uint corner_d = c[x2 + sx * y2];
628 /* Bitmask of which curve maps are chosen, so that we do not bother
629 * calculating a curve which won't be used. */
630 uint corner_bits = 0;
631 corner_bits |= 1 << corner_a;
632 corner_bits |= 1 << corner_b;
633 corner_bits |= 1 << corner_c;
634 corner_bits |= 1 << corner_d;
636 Height *h = &_height_map.height(x, y);
638 /* Do not touch sea level */
639 if (*h < I2H(1)) continue;
641 /* Only scale above sea level */
642 *h -= I2H(1);
644 /* Apply all curve maps that are used on this tile. */
645 for (uint t = 0; t < lengthof(curve_maps); t++) {
646 if (!HasBit(corner_bits, t)) continue;
648 [[maybe_unused]] bool found = false;
649 const ControlPoint *cm = curve_maps[t].list;
650 for (uint i = 0; i < curve_maps[t].length - 1; i++) {
651 const ControlPoint &p1 = cm[i];
652 const ControlPoint &p2 = cm[i + 1];
654 if (*h >= p1.x && *h < p2.x) {
655 ht[t] = p1.y + (*h - p1.x) * (p2.y - p1.y) / (p2.x - p1.x);
656 #ifdef WITH_ASSERT
657 found = true;
658 #endif
659 break;
662 assert(found);
665 /* Apply interpolation of curve map results. */
666 *h = (Height)((ht[corner_a] * yri + ht[corner_b] * yr) * xri + (ht[corner_c] * yri + ht[corner_d] * yr) * xr);
668 /* Readd sea level */
669 *h += I2H(1);
674 /** Adjusts heights in height map to contain required amount of water tiles */
675 static void HeightMapAdjustWaterLevel(Amplitude water_percent, Height h_max_new)
677 Height h_min, h_max, h_avg, h_water_level;
678 int64_t water_tiles, desired_water_tiles;
679 int *hist;
681 HeightMapGetMinMaxAvg(&h_min, &h_max, &h_avg);
683 /* Allocate histogram buffer and clear its cells */
684 int *hist_buf = CallocT<int>(h_max - h_min + 1);
685 /* Fill histogram */
686 hist = HeightMapMakeHistogram(h_min, h_max, hist_buf);
688 /* How many water tiles do we want? */
689 desired_water_tiles = A2I(((int64_t)water_percent) * (int64_t)(_height_map.size_x * _height_map.size_y));
691 /* Raise water_level and accumulate values from histogram until we reach required number of water tiles */
692 for (h_water_level = h_min, water_tiles = 0; h_water_level < h_max; h_water_level++) {
693 water_tiles += hist[h_water_level];
694 if (water_tiles >= desired_water_tiles) break;
697 /* We now have the proper water level value.
698 * Transform the height map into new (normalized) height map:
699 * values from range: h_min..h_water_level will become negative so it will be clamped to 0
700 * values from range: h_water_level..h_max are transformed into 0..h_max_new
701 * where h_max_new is depending on terrain type and map size.
703 for (Height &h : _height_map.h) {
704 /* Transform height from range h_water_level..h_max into 0..h_max_new range */
705 h = (Height)(((int)h_max_new) * (h - h_water_level) / (h_max - h_water_level)) + I2H(1);
706 /* Make sure all values are in the proper range (0..h_max_new) */
707 if (h < 0) h = I2H(0);
708 if (h >= h_max_new) h = h_max_new - 1;
711 free(hist_buf);
714 static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime);
717 * This routine sculpts in from the edge a random amount, again a Perlin
718 * sequence, to avoid the rigid flat-edge slopes that were present before. The
719 * Perlin noise map doesn't know where we are going to slice across, and so we
720 * often cut straight through high terrain. The smoothing routine makes it
721 * legal, gradually increasing up from the edge to the original terrain height.
722 * By cutting parts of this away, it gives a far more irregular edge to the
723 * map-edge. Sometimes it works beautifully with the existing sea & lakes, and
724 * creates a very realistic coastline. Other times the variation is less, and
725 * the map-edge shows its cliff-like roots.
727 * This routine may be extended to randomly sculpt the height of the terrain
728 * near the edge. This will have the coast edge at low level (1-3), rising in
729 * smoothed steps inland to about 15 tiles in. This should make it look as
730 * though the map has been built for the map size, rather than a slice through
731 * a larger map.
733 * Please note that all the small numbers; 53, 101, 167, etc. are small primes
734 * to help give the perlin noise a bit more of a random feel.
736 static void HeightMapCoastLines(uint8_t water_borders)
738 int smallest_size = std::min(_settings_game.game_creation.map_x, _settings_game.game_creation.map_y);
739 const int margin = 4;
740 int y, x;
741 double max_x;
742 double max_y;
744 /* Lower to sea level */
745 for (y = 0; y <= _height_map.size_y; y++) {
746 if (HasBit(water_borders, BORDER_NE)) {
747 /* Top right */
748 max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.9, 53) + 0.25) * 5 + (perlin_coast_noise_2D(y, y, 0.35, 179) + 1) * 12);
749 max_x = std::max((smallest_size * smallest_size / 64) + max_x, (smallest_size * smallest_size / 64) + margin - max_x);
750 if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
751 for (x = 0; x < max_x; x++) {
752 _height_map.height(x, y) = 0;
756 if (HasBit(water_borders, BORDER_SW)) {
757 /* Bottom left */
758 max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.85, 101) + 0.3) * 6 + (perlin_coast_noise_2D(y, y, 0.45, 67) + 0.75) * 8);
759 max_x = std::max((smallest_size * smallest_size / 64) + max_x, (smallest_size * smallest_size / 64) + margin - max_x);
760 if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
761 for (x = _height_map.size_x; x > (_height_map.size_x - 1 - max_x); x--) {
762 _height_map.height(x, y) = 0;
767 /* Lower to sea level */
768 for (x = 0; x <= _height_map.size_x; x++) {
769 if (HasBit(water_borders, BORDER_NW)) {
770 /* Top left */
771 max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 2, 0.9, 167) + 0.4) * 5 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.4, 211) + 0.7) * 9);
772 max_y = std::max((smallest_size * smallest_size / 64) + max_y, (smallest_size * smallest_size / 64) + margin - max_y);
773 if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
774 for (y = 0; y < max_y; y++) {
775 _height_map.height(x, y) = 0;
779 if (HasBit(water_borders, BORDER_SE)) {
780 /* Bottom right */
781 max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.85, 71) + 0.25) * 6 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.35, 193) + 0.75) * 12);
782 max_y = std::max((smallest_size * smallest_size / 64) + max_y, (smallest_size * smallest_size / 64) + margin - max_y);
783 if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
784 for (y = _height_map.size_y; y > (_height_map.size_y - 1 - max_y); y--) {
785 _height_map.height(x, y) = 0;
791 /** Start at given point, move in given direction, find and Smooth coast in that direction */
792 static void HeightMapSmoothCoastInDirection(int org_x, int org_y, int dir_x, int dir_y)
794 const int max_coast_dist_from_edge = 35;
795 const int max_coast_Smooth_depth = 35;
797 int x, y;
798 int ed; // coast distance from edge
799 int depth;
801 Height h_prev = I2H(1);
802 Height h;
804 assert(IsValidXY(org_x, org_y));
806 /* Search for the coast (first non-water tile) */
807 for (x = org_x, y = org_y, ed = 0; IsValidXY(x, y) && ed < max_coast_dist_from_edge; x += dir_x, y += dir_y, ed++) {
808 /* Coast found? */
809 if (_height_map.height(x, y) >= I2H(1)) break;
811 /* Coast found in the neighborhood? */
812 if (IsValidXY(x + dir_y, y + dir_x) && _height_map.height(x + dir_y, y + dir_x) > 0) break;
814 /* Coast found in the neighborhood on the other side */
815 if (IsValidXY(x - dir_y, y - dir_x) && _height_map.height(x - dir_y, y - dir_x) > 0) break;
818 /* Coast found or max_coast_dist_from_edge has been reached.
819 * Soften the coast slope */
820 for (depth = 0; IsValidXY(x, y) && depth <= max_coast_Smooth_depth; depth++, x += dir_x, y += dir_y) {
821 h = _height_map.height(x, y);
822 h = static_cast<Height>(std::min<uint>(h, h_prev + (4 + depth))); // coast softening formula
823 _height_map.height(x, y) = h;
824 h_prev = h;
828 /** Smooth coasts by modulating height of tiles close to map edges with cosine of distance from edge */
829 static void HeightMapSmoothCoasts(uint8_t water_borders)
831 int x, y;
832 /* First Smooth NW and SE coasts (y close to 0 and y close to size_y) */
833 for (x = 0; x < _height_map.size_x; x++) {
834 if (HasBit(water_borders, BORDER_NW)) HeightMapSmoothCoastInDirection(x, 0, 0, 1);
835 if (HasBit(water_borders, BORDER_SE)) HeightMapSmoothCoastInDirection(x, _height_map.size_y - 1, 0, -1);
837 /* First Smooth NE and SW coasts (x close to 0 and x close to size_x) */
838 for (y = 0; y < _height_map.size_y; y++) {
839 if (HasBit(water_borders, BORDER_NE)) HeightMapSmoothCoastInDirection(0, y, 1, 0);
840 if (HasBit(water_borders, BORDER_SW)) HeightMapSmoothCoastInDirection(_height_map.size_x - 1, y, -1, 0);
845 * This routine provides the essential cleanup necessary before OTTD can
846 * display the terrain. When generated, the terrain heights can jump more than
847 * one level between tiles. This routine smooths out those differences so that
848 * the most it can change is one level. When OTTD can support cliffs, this
849 * routine may not be necessary.
851 static void HeightMapSmoothSlopes(Height dh_max)
853 for (int y = 0; y <= (int)_height_map.size_y; y++) {
854 for (int x = 0; x <= (int)_height_map.size_x; x++) {
855 Height h_max = std::min(_height_map.height(x > 0 ? x - 1 : x, y), _height_map.height(x, y > 0 ? y - 1 : y)) + dh_max;
856 if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
859 for (int y = _height_map.size_y; y >= 0; y--) {
860 for (int x = _height_map.size_x; x >= 0; x--) {
861 Height h_max = std::min(_height_map.height(x < _height_map.size_x ? x + 1 : x, y), _height_map.height(x, y < _height_map.size_y ? y + 1 : y)) + dh_max;
862 if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
868 * Height map terraform post processing:
869 * - water level adjusting
870 * - coast Smoothing
871 * - slope Smoothing
872 * - height histogram redistribution by sine wave transform
874 static void HeightMapNormalize()
876 int sea_level_setting = _settings_game.difficulty.quantity_sea_lakes;
877 const Amplitude water_percent = sea_level_setting != (int)CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY ? _water_percent[sea_level_setting] : _settings_game.game_creation.custom_sea_level * 1024 / 100;
878 const Height h_max_new = TGPGetMaxHeight();
879 const Height roughness = 7 + 3 * _settings_game.game_creation.tgen_smoothness;
881 HeightMapAdjustWaterLevel(water_percent, h_max_new);
883 byte water_borders = _settings_game.construction.freeform_edges ? _settings_game.game_creation.water_borders : 0xF;
884 if (water_borders == BORDERS_RANDOM) water_borders = GB(Random(), 0, 4);
886 HeightMapCoastLines(water_borders);
887 HeightMapSmoothSlopes(roughness);
889 HeightMapSmoothCoasts(water_borders);
890 HeightMapSmoothSlopes(roughness);
892 HeightMapSineTransform(I2H(1), h_max_new);
894 if (_settings_game.game_creation.variety > 0) {
895 HeightMapCurves(_settings_game.game_creation.variety);
898 HeightMapSmoothSlopes(I2H(1));
902 * The Perlin Noise calculation using large primes
903 * The initial number is adjusted by two values; the generation_seed, and the
904 * passed parameter; prime.
905 * prime is used to allow the perlin noise generator to create useful random
906 * numbers from slightly different series.
908 static double int_noise(const long x, const long y, const int prime)
910 long n = x + y * prime + _settings_game.game_creation.generation_seed;
912 n = (n << 13) ^ n;
914 /* Pseudo-random number generator, using several large primes */
915 return 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0;
920 * This routine determines the interpolated value between a and b
922 static inline double linear_interpolate(const double a, const double b, const double x)
924 return a + x * (b - a);
929 * This routine returns the smoothed interpolated noise for an x and y, using
930 * the values from the surrounding positions.
932 static double interpolated_noise(const double x, const double y, const int prime)
934 const int integer_X = (int)x;
935 const int integer_Y = (int)y;
937 const double fractional_X = x - (double)integer_X;
938 const double fractional_Y = y - (double)integer_Y;
940 const double v1 = int_noise(integer_X, integer_Y, prime);
941 const double v2 = int_noise(integer_X + 1, integer_Y, prime);
942 const double v3 = int_noise(integer_X, integer_Y + 1, prime);
943 const double v4 = int_noise(integer_X + 1, integer_Y + 1, prime);
945 const double i1 = linear_interpolate(v1, v2, fractional_X);
946 const double i2 = linear_interpolate(v3, v4, fractional_X);
948 return linear_interpolate(i1, i2, fractional_Y);
953 * This is a similar function to the main perlin noise calculation, but uses
954 * the value p passed as a parameter rather than selected from the predefined
955 * sequences. as you can guess by its title, i use this to create the indented
956 * coastline, which is just another perlin sequence.
958 static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime)
960 double total = 0.0;
962 for (int i = 0; i < 6; i++) {
963 const double frequency = (double)(1 << i);
964 const double amplitude = pow(p, (double)i);
966 total += interpolated_noise((x * frequency) / 64.0, (y * frequency) / 64.0, prime) * amplitude;
969 return total;
973 /** A small helper function to initialize the terrain */
974 static void TgenSetTileHeight(TileIndex tile, int height)
976 SetTileHeight(tile, height);
978 /* Only clear the tiles within the map area. */
979 if (IsInnerTile(tile)) {
980 MakeClear(tile, CLEAR_GRASS, 3);
985 * The main new land generator using Perlin noise. Desert landscape is handled
986 * different to all others to give a desert valley between two high mountains.
987 * Clearly if a low height terrain (flat/very flat) is chosen, then the tropic
988 * areas won't be high enough, and there will be very little tropic on the map.
989 * Thus Tropic works best on Hilly or Mountainous.
991 void GenerateTerrainPerlin()
993 if (!AllocHeightMap()) return;
994 GenerateWorldSetAbortCallback(FreeHeightMap);
996 HeightMapGenerate();
998 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
1000 HeightMapNormalize();
1002 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
1004 /* First make sure the tiles at the north border are void tiles if needed. */
1005 if (_settings_game.construction.freeform_edges) {
1006 for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0));
1007 for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y));
1010 int max_height = H2I(TGPGetMaxHeight());
1012 /* Transfer height map into OTTD map */
1013 for (int y = 0; y < _height_map.size_y; y++) {
1014 for (int x = 0; x < _height_map.size_x; x++) {
1015 TgenSetTileHeight(TileXY(x, y), Clamp(H2I(_height_map.height(x, y)), 0, max_height));
1019 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
1021 FreeHeightMap();
1022 GenerateWorldSetAbortCallback(nullptr);