Rework the way the ReinitSeparation command is called. The old way was way too danger...
[openttd-joker.git] / src / articulated_vehicles.cpp
blobdaa5fdcb95e4819a73940b4d0e704b3e541e3a8c
1 /* $Id$ */
3 /*
4 * This file is part of OpenTTD.
5 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
6 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
7 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8 */
10 /** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
12 #include "stdafx.h"
13 #include "train.h"
14 #include "roadveh.h"
15 #include "vehicle_func.h"
16 #include "engine_func.h"
17 #include "company_func.h"
18 #include "newgrf.h"
20 #include "table/strings.h"
22 #include "safeguards.h"
24 static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
26 /**
27 * Determines the next articulated part to attach
28 * @param index Position in chain
29 * @param front_type Front engine type
30 * @param front Front engine
31 * @param mirrored Returns whether the part shall be flipped.
32 * @return engine to add or INVALID_ENGINE
34 static EngineID GetNextArticulatedPart(uint index, EngineID front_type, Vehicle *front = nullptr, bool *mirrored = nullptr)
36 assert(front == nullptr || front->engine_type == front_type);
38 const Engine *front_engine = Engine::Get(front_type);
40 uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, index, 0, front_type, front);
41 if (callback == CALLBACK_FAILED) return INVALID_ENGINE;
43 if (front_engine->GetGRF()->grf_version < 8) {
44 /* 8 bits, bit 7 for mirroring */
45 callback = GB(callback, 0, 8);
46 if (callback == 0xFF) return INVALID_ENGINE;
47 if (mirrored != nullptr) *mirrored = HasBit(callback, 7);
48 callback = GB(callback, 0, 7);
49 } else {
50 /* 15 bits, bit 14 for mirroring */
51 if (callback == 0x7FFF) return INVALID_ENGINE;
52 if (mirrored != nullptr) *mirrored = HasBit(callback, 14);
53 callback = GB(callback, 0, 14);
56 return GetNewEngineID(front_engine->GetGRF(), front_engine->type, callback);
59 /**
60 * Does a NewGRF report that this should be an articulated vehicle?
61 * @param engine_type The engine to check.
62 * @return True iff the articulated engine callback flag is set.
64 bool IsArticulatedEngine(EngineID engine_type)
66 return HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE);
69 /**
70 * Count the number of articulated parts of an engine.
71 * @param engine_type The engine to get the number of parts of.
72 * @param purchase_window Whether we are in the scope of the purchase window or not, i.e. whether we cannot allocate vehicles.
73 * @return The number of parts.
75 uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
77 if (!HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
79 /* If we can't allocate a vehicle now, we can't allocate it in the command
80 * either, so it doesn't matter how many articulated parts there are. */
81 if (!Vehicle::CanAllocateItem()) return 0;
83 Vehicle *v = nullptr;
84 if (!purchase_window) {
85 v = new Vehicle();
86 v->engine_type = engine_type;
87 v->owner = _current_company;
90 uint i;
91 for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
92 if (GetNextArticulatedPart(i, engine_type, v) == INVALID_ENGINE) break;
95 delete v;
97 return i - 1;
102 * Returns the default (non-refitted) capacity of a specific EngineID.
103 * @param engine the EngineID of interest
104 * @param cargo_type returns the default cargo type, if needed
105 * @return capacity
107 static inline uint16 GetVehicleDefaultCapacity(EngineID engine, CargoID *cargo_type)
109 const Engine *e = Engine::Get(engine);
110 CargoID cargo = (e->CanCarryCargo() ? e->GetDefaultCargoType() : (CargoID)CT_INVALID);
111 if (cargo_type != nullptr) *cargo_type = cargo;
112 if (cargo == CT_INVALID) return 0;
113 return e->GetDisplayDefaultCapacity();
117 * Returns all cargoes a vehicle can carry.
118 * @param engine the EngineID of interest
119 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
120 * @return bit set of CargoIDs
122 static inline uint32 GetAvailableVehicleCargoTypes(EngineID engine, bool include_initial_cargo_type)
124 const Engine *e = Engine::Get(engine);
125 if (!e->CanCarryCargo()) return 0;
127 uint32 cargoes = e->info.refit_mask;
129 if (include_initial_cargo_type) {
130 SetBit(cargoes, e->GetDefaultCargoType());
133 return cargoes;
137 * Get the capacity of the parts of a given engine.
138 * @param engine The engine to get the capacities from.
139 * @return The cargo capacities.
141 CargoArray GetCapacityOfArticulatedParts(EngineID engine)
143 CargoArray capacity;
144 const Engine *e = Engine::Get(engine);
146 CargoID cargo_type;
147 uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, &cargo_type);
148 if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
150 if (!e->IsGroundVehicle()) return capacity;
152 if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
154 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
155 EngineID artic_engine = GetNextArticulatedPart(i, engine);
156 if (artic_engine == INVALID_ENGINE) break;
158 cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
159 if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
162 return capacity;
166 * Get the default cargoes and refits of an articulated vehicle.
167 * The refits are linked to a cargo rather than an articulated part to prevent a long list of parts.
168 * @param engine Model to investigate.
169 * @param[out] cargoes Total amount of units that can be transported, summed by cargo.
170 * @param[out] refits Whether a (possibly partial) refit for each cargo is possible.
172 void GetArticulatedVehicleCargoesAndRefits(EngineID engine, CargoArray *cargoes, uint32 *refits)
174 cargoes->Clear();
175 *refits = 0;
177 const Engine *e = Engine::Get(engine);
179 CargoID cargo_type;
180 uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, &cargo_type);
181 if (cargo_type < NUM_CARGO && cargo_capacity > 0) {
182 (*cargoes)[cargo_type] += cargo_capacity;
183 if (IsEngineRefittable(engine)) SetBit(*refits, cargo_type);
186 if (!e->IsGroundVehicle() || !HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
188 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
189 EngineID artic_engine = GetNextArticulatedPart(i, engine);
190 if (artic_engine == INVALID_ENGINE) break;
192 cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
193 if (cargo_type < NUM_CARGO && cargo_capacity > 0) {
194 (*cargoes)[cargo_type] += cargo_capacity;
195 if (IsEngineRefittable(artic_engine)) SetBit(*refits, cargo_type);
201 * Checks whether any of the articulated parts is refittable
202 * @param engine the first part
203 * @return true if refittable
205 bool IsArticulatedVehicleRefittable(EngineID engine)
207 if (IsEngineRefittable(engine)) return true;
209 const Engine *e = Engine::Get(engine);
210 if (!e->IsGroundVehicle()) return false;
212 if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return false;
214 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
215 EngineID artic_engine = GetNextArticulatedPart(i, engine);
216 if (artic_engine == INVALID_ENGINE) break;
218 if (IsEngineRefittable(artic_engine)) return true;
221 return false;
225 * Merges the refit_masks of all articulated parts.
226 * @param engine the first part
227 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
228 * @param union_mask returns bit mask of CargoIDs which are a refit option for at least one articulated part
229 * @param intersection_mask returns bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
231 void GetArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type, uint32 *union_mask, uint32 *intersection_mask)
233 const Engine *e = Engine::Get(engine);
234 uint32 veh_cargoes = GetAvailableVehicleCargoTypes(engine, include_initial_cargo_type);
235 *union_mask = veh_cargoes;
236 *intersection_mask = (veh_cargoes != 0) ? veh_cargoes : UINT32_MAX;
238 if (!e->IsGroundVehicle()) return;
239 if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
241 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
242 EngineID artic_engine = GetNextArticulatedPart(i, engine);
243 if (artic_engine == INVALID_ENGINE) break;
245 veh_cargoes = GetAvailableVehicleCargoTypes(artic_engine, include_initial_cargo_type);
246 *union_mask |= veh_cargoes;
247 if (veh_cargoes != 0) *intersection_mask &= veh_cargoes;
252 * Ors the refit_masks of all articulated parts.
253 * @param engine the first part
254 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
255 * @return bit mask of CargoIDs which are a refit option for at least one articulated part
257 uint32 GetUnionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
259 uint32 union_mask, intersection_mask;
260 GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
261 return union_mask;
265 * Ands the refit_masks of all articulated parts.
266 * @param engine the first part
267 * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
268 * @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
270 uint32 GetIntersectionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
272 uint32 union_mask, intersection_mask;
273 GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
274 return intersection_mask;
279 * Tests if all parts of an articulated vehicle are refitted to the same cargo.
280 * Note: Vehicles not carrying anything are ignored
281 * @param v the first vehicle in the chain
282 * @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
283 * @return true if some parts are carrying different cargoes, false if all parts are carrying the same (nothing is also the same)
285 bool IsArticulatedVehicleCarryingDifferentCargoes(const Vehicle *v, CargoID *cargo_type)
287 CargoID first_cargo = CT_INVALID;
289 do {
290 if (v->cargo_type != CT_INVALID && v->GetEngine()->CanCarryCargo()) {
291 if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
292 if (first_cargo != v->cargo_type) {
293 if (cargo_type != nullptr) *cargo_type = CT_INVALID;
294 return true;
298 v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : nullptr;
299 } while (v != nullptr);
301 if (cargo_type != nullptr) *cargo_type = first_cargo;
302 return false;
306 * Checks whether the specs of freshly build articulated vehicles are consistent with the information specified in the purchase list.
307 * Only essential information is checked to leave room for magic tricks/workarounds to grfcoders.
308 * It checks:
309 * For autoreplace/-renew:
310 * - Default cargo type (without capacity)
311 * - intersection and union of refit masks.
313 void CheckConsistencyOfArticulatedVehicle(const Vehicle *v)
315 const Engine *engine = v->GetEngine();
317 uint32 purchase_refit_union, purchase_refit_intersection;
318 GetArticulatedRefitMasks(v->engine_type, true, &purchase_refit_union, &purchase_refit_intersection);
319 CargoArray purchase_default_capacity = GetCapacityOfArticulatedParts(v->engine_type);
321 uint32 real_refit_union = 0;
322 uint32 real_refit_intersection = UINT_MAX;
323 CargoArray real_default_capacity;
325 do {
326 uint32 refit_mask = GetAvailableVehicleCargoTypes(v->engine_type, true);
327 real_refit_union |= refit_mask;
328 if (refit_mask != 0) real_refit_intersection &= refit_mask;
330 assert(v->cargo_type < NUM_CARGO);
331 real_default_capacity[v->cargo_type] += v->cargo_cap;
333 v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : nullptr;
334 } while (v != nullptr);
336 /* Check whether the vehicle carries more cargoes than expected */
337 bool carries_more = false;
338 for (CargoID cid = 0; cid < NUM_CARGO; cid++) {
339 if (real_default_capacity[cid] != 0 && purchase_default_capacity[cid] == 0) {
340 carries_more = true;
341 break;
345 /* show a warning once for each GRF after each game load */
346 if (real_refit_union != purchase_refit_union || real_refit_intersection != purchase_refit_intersection || carries_more) {
347 ShowNewGrfVehicleError(engine->index, STR_NEWGRF_BUGGY, STR_NEWGRF_BUGGY_ARTICULATED_CARGO, GBUG_VEH_REFIT, false);
352 * Add the remaining articulated parts to the given vehicle.
353 * @param first The head of the articulated bit.
355 void AddArticulatedParts(Vehicle *first)
357 VehicleType type = first->type;
358 if (!HasBit(EngInfo(first->engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
360 Vehicle *v = first;
361 for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
362 bool flip_image;
363 EngineID engine_type = GetNextArticulatedPart(i, first->engine_type, first, &flip_image);
364 if (engine_type == INVALID_ENGINE) return;
366 /* In the (very rare) case the GRF reported wrong number of articulated parts
367 * and we run out of available vehicles, bail out. */
368 if (!Vehicle::CanAllocateItem()) return;
370 GroundVehicleCache *gcache = v->GetGroundVehicleCache();
371 gcache->first_engine = v->engine_type; // Needs to be set before first callback
373 const Engine *e_artic = Engine::Get(engine_type);
374 switch (type) {
375 default: NOT_REACHED();
377 case VEH_TRAIN: {
378 Train *front = Train::From(first);
379 Train *t = new Train();
380 v->SetNext(t);
381 v = t;
383 t->subtype = 0;
384 t->track = front->track;
385 t->railtype = front->railtype;
387 t->spritenum = e_artic->u.rail.image_index;
388 if (e_artic->CanCarryCargo()) {
389 t->cargo_type = e_artic->GetDefaultCargoType();
390 t->cargo_cap = e_artic->u.rail.capacity; // Callback 36 is called when the consist is finished
391 } else {
392 t->cargo_type = front->cargo_type; // Needed for livery selection
393 t->cargo_cap = 0;
395 t->refit_cap = 0;
397 t->SetArticulatedPart();
398 break;
401 case VEH_ROAD: {
402 RoadVehicle *front = RoadVehicle::From(first);
403 RoadVehicle *rv = new RoadVehicle();
404 v->SetNext(rv);
405 v = rv;
407 rv->subtype = 0;
408 gcache->cached_veh_length = VEHICLE_LENGTH; // Callback is called when the consist is finished
409 rv->state = RVSB_IN_DEPOT;
411 rv->roadtype = front->roadtype;
412 rv->compatible_roadtypes = front->compatible_roadtypes;
414 rv->spritenum = e_artic->u.road.image_index;
415 if (e_artic->CanCarryCargo()) {
416 rv->cargo_type = e_artic->GetDefaultCargoType();
417 rv->cargo_cap = e_artic->u.road.capacity; // Callback 36 is called when the consist is finished
418 } else {
419 rv->cargo_type = front->cargo_type; // Needed for livery selection
420 rv->cargo_cap = 0;
422 rv->refit_cap = 0;
424 rv->SetArticulatedPart();
425 break;
429 /* get common values from first engine */
430 v->direction = first->direction;
431 v->owner = first->owner;
432 v->tile = first->tile;
433 v->x_pos = first->x_pos;
434 v->y_pos = first->y_pos;
435 v->z_pos = first->z_pos;
436 v->date_of_last_service = first->date_of_last_service;
437 v->build_year = first->build_year;
438 v->vehstatus = first->vehstatus & ~VS_STOPPED;
440 v->cargo_subtype = 0;
441 v->max_age = 0;
442 v->engine_type = engine_type;
443 v->value = 0;
444 v->sprite_seq.Set(SPR_IMG_QUERY);
445 v->random_bits = VehicleRandomBits();
447 if (flip_image) v->spritenum++;
449 v->UpdatePosition();