
OpenXPKI. Publishing of certi�cates to LDAP database.

(Dated: Version 3rd May 2007)

A reading for OpenXPKI developers who are familiar with details of LDAP

server operation

First Step. Reproducing of the OpenCA functionality

OpenXPKI, 2007

Draft document

CONTENTS

Abbreviations 2

1. Introduction 2

2. LDAP server con�guration 3

3. LDAP-publishing options in OpenXPKI server con�guration 4

4. LDAP attributes and object classes supported in OpenXPKI work�ow 6

5. How it works 13

6. Functionality and features which seem to be important but not added yet 14

6.1. Architecture 14

6.2. Development framework 14

6.3. Compatibility 14

6.4. Functionality 14

6.5. Consistency 15

7. Bypassed obstacles which probably should not be bypassed 16

2

ABBREVIATIONS

LDAP: Lightweight Directory Access Protocol.

DN: Distinguished Name.

RDN: Relative Distinguished name.

L: Locality.

S: State.

O: Organization.

OU: Organizational Unit.

C: Country.

CN: Common name.

SN: Surname.

S: State.

UID: Unique identi�er.

DC: Domain component.

1. INTRODUCTION

This document describes the current implementation of publishing issued certi�cates to

LDAP database in OpenXPKI (working version was committed in 828 svn trunk).

The purposes of the document:

1. To outline problems

2. To stimulate a discussion

3. To develop a plan of adding new functionality and development framework components

or changing the current implementation

3

The OpenCA Guide and the text of OpenCA LDAP.pm module were used as a base while

writing OpenXPKI work�ow code for certi�cate publishing to LDAP database.

That is why this document has a lot of references to the OpenCA Guide.

2. LDAP SERVER CONFIGURATION

Before you start working with OpenXPKI's LDAP code please be sure that your LDAP

server knows the following objectclasses:

• pkiUser

• pkiCA

Those classes include attributes to store certi�cates and revocation lists. If you are using

OpenLDAP v.2.3.34_1 the simplest way is to use the following directives in slapd.conf

(directories are FreeBSD speci�c in this example):

include /usr/local/etc/openldap/schema/core.schema

include /usr/local/etc/openldap/schema/cosine.schema

include /usr/local/etc/openldap/schema/inetorgperson.schema

include /usr/local/etc/openldap/schema/openca.schema

Core, Cosine and Inetorgperson schemas are included with the openldap package.

As for "openca.schema" it is borrowed from the OpenCA and modi�ed to exclude object

classes and attributes already de�ned in previously included schema �les.

At the moment OpenXPKI uses the following set of objects de�ned in the openca.schema:

attributetype (1.2.840.113549.1.9.2 NAME 'unstructuredName'

EQUALITY caseIgnoreMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})

attributetype (1.2.840.113549.1.9.8 NAME 'unstructuredAddress'

EQUALITY caseIgnoreMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})

objectclass (1.3.6.1.4.1.18227.2.1.1 NAME 'opencaUniquelyIdentifiedUser'

SUP top AUXILIARY MAY (serialNumber))

4

objectclass (1.3.6.1.4.1.18227.2.1.2 NAME 'opencaEmailAddress'

SUP top AUXILIARY MAY (mail $ emailAddress))

objectclass (1.3.6.1.4.1.18227.2.1.3 NAME 'opencaSCEPDevice'

SUP top AUXILIARY MAY (unstructuredName $ unstructuredAddress))

At the moment OpenXPKI does not support TLS and SASL in LDAP-publishing work�ow

(only simple bind using rootdn and password). The LDAP server which is supposed to store

issued by OpenXPKI certi�cates must be con�gured to permit connection without TLS and

SASL.

3. LDAP-PUBLISHING OPTIONS IN OPENXPKI SERVER CONFIGURATION

LDAP-publishing options in OpenXPKI server con�guration are stored in

ldappublic.xml which is included to the realm section of the con�g.xml.

Options marked "not used" does not a�ect the current version of LDAP-work�ow

<ldap_su�x>: LDAP database su�x which will be used to store certi�cates

<ldap_server>: LDAP server hostname

<ldap_port>: LDAP server port

<ldap_version>: LDAP version (not used, assumed to be 3)

<ldap_tls>: Use TLS if set to "yes" (not used)

<ldap_sasl>: Use SASL framework if set to "yes" (not used)

<ldap_chain>: Path to the certi�cates to be used in TLS session (not used)

<ldap_login>: The bind DN of the user which OpenXPKI uses to speak to LDAP server.

<ldap_password>: User's password

Example of using those options:

<ldap_suffix>dc=OpenXPKI,dc=org</ldap_suffix>

<ldap_server>panther3.ipmce.ru</ldap_server>

5

<ldap_port>389</ldap_port>

<ldap_version>3</ldap_version>

<ldap_tls>no</ldap_tls>

<ldap_sasl>no</ldap_sasl>

<ldap_chain>chain</ldap_chain>

<ldap_login>cn=Manager,dc=OpenXPKI,dc=org</ldap_login>

<ldap_password>secret</ldap_password>

The following options are also stored in ldappublic.xml and used to control the work�ow:

<ldap_enable>: Activates LDAP-publishing work�ow if set to "yes". Work�ow is

spawned just after the certi�cate issued is stored in SQL database.

<ldap_excluded_roles>: Comma-separated list of certi�cate roles which will not be

published (say "CA Operator, RA Operator").

Examples of using those options to enable publishing of all the certi�cates to the LDAP:

<ldap_enable>yes</ldap_enable>

<ldap_excluded_roles>publish_all_roles</ldap_excluded_roles>

6

4. LDAP ATTRIBUTES AND OBJECT CLASSES SUPPORTED IN OPENXPKI

WORKFLOW

LDAP attributes and object classes supported in OpenXPKI are listed in tables 1, 2 and

3. "Supported" here means that those attributes are added while creating new nodes in

LDAP-tree during LDAP-publishing of the certi�cate issued by OpenXPKI.

The word "schema" in this section is used to specify the part of ldappublic.xml

OpenXPKI con�guration �le where all the attributes and classes are enumerated and grouped

according to structures shown in tables 1, 2 and 3. Schema-�les (included in slapd.conf for

OpenLDAP) are used for the other purpose - they just describes classes and attributes which

LDAP server accepts.

The �rst table (default part of the schema) is used to create intermediate nodes of the

DN. The second table (certi�cate part of the schema) is used to create nodes which are

supposed to keep certi�cates. The third table (ca part of the schema - not used at the

moment) is used to create nodes which are supposed to keep ca certi�cates (and maybe CRL

?).

The �rst column contains the attributes which may be included in DN. The second column

shows attributes which must be included if the attribute from the �rst column is detected

in some RDN. Attributes listed in the third column may be included in such a case. The

last column shows object classes which OpenXPKI will add to the node being created.

Attribute values are added in three ways:

1. They extracted from the certi�cate DN

2. They extracted from the certi�cate Alternative Names

3. They substituted arti�cially according to some prede�ned rules

Examples of using those methods:

1. The certi�cate DN is CN=John+SN=Smith,DC=OpenXPKI,DC=org. While

adding the node with this DN the work�ow activity detects the attribute name CN

which requires the attribute SN to be added too. Activity extracts attribute value

"Smith" from the DN.

7

2. The certi�cate DN is CN=John+SN=Smith,DC=OpenXPKI,DC=org. While

adding the node with this DN the work�ow activity detects the attribute name

CN which permits mail to be added too. Activity extracts attribute value

"smith@openxpki.org" from the proper certi�cate alternative name.

3. The certi�cate DN is CN=John Smith,DC=OpenXPKI,DC=org. While adding

the node with this DN the work�ow activity detects the attribute name CN

which requires the attribute SN to be added too. Activity adds attribute value

"NOT SUBSTITUTED YET". In the same situation OpenCA LDAP-module

splitted CN to two �elds "John" and "Smith" and substituted the second one as SN

attribute value. It seems reasonable to plan supporting this substitution (and maybe

some others like extracting CN from mail) in OpenXPKI too.

The con�guration described in tables 1, 2 and 3 is borrowed from OpenCA

ldap.xml.template and is an object to discuss and change in the way that better matches

OpenXPKI roadmap. At the moment it is used in LDAP-publishing wor�ow without

changes.

An example of adding the node "ou=Security,o=ipmce,dc=openxpki,dc=org"

in the work�ow adding a new certi�cate with DN

"cn=John,ou=Security,o=ipmce,dc=openxpki,dc=org" is shown in Fig.2. Perl

module AddMissingNode.pm parses the DN, detects OU attribute in the third RDN and

then acts like this:

1. looks for the OU attribute in default part of the realm schema;

2. extracts the proper list of Must and May attributes from the schema;

3. extracts the values of the attributes from the certi�cate and adds the node using

Net::LDAP->add method with prepaired set of parameters, including names of object

classes also extracted from realm schema.

8

Table 1. Attributes supported by schema "default"

Attribute in RDN MUST attributes MAY attributes Object Classes

(top - always)

serialNumber serialNumber cn ou o l device

pkiCA

cn cn ou st l

mail

emailAddress

organizationalRole

opencaEmailAddress

pkiCA

sn cn ou st l

mail

emailAddress

organizationalRole

opencaEmailAddress

pkiCA

emailAddress cn ou st l

mail

emailAddress

organizationalRole

opencaEmailAddress

pkiCA

mail cn ou st l

mail

emailAddress

organizationalRole

opencaEmailAddress

pkiCA

uid cn sn uid

mail

emailAddress

ou o st l

opencaEmailAddress

pkiUser

dc dc dcObject

pkiUser

pkiCA

unstructuredName cn unstructuredName

unstructuredAddress

serialNumber

ou o l

device

opencaSCEPDevice

pkiUser

9

Table 1. (continued)

Attribute in RDN MUST attributes MAY attributes Object Classes

(top - always)

unstructuredAddress cn unstructuredName

unstructuredAddress

serialNumber

ou o l

device

opencaSCEPDevice

pkiUser

ou ou l st organizationalUnit

pkiUser

pkiCA

o o l st organization

pkiUser

pkiCA

c c country

pkiUser

pkiCA

l l l locality

pkiUser

pkiCA

st st st locality

pkiUser

pkiCA

10

Table 2. Attributes supported by schema "certi�cate"

Attribute in RDN MUST attributes MAY attributes Object Classes

(top - always)

serialNumber cn sn serialNumber

mail

emailAddress

ou o st l

opencaEmailAddress

opencaUniquelyIdenti�edUser

pkiUser

cn cn sn mail

emailAddress

ou o st l

opencaEmailAddress

pkiUser

sn cn sn mail

emailAddress

ou o st l

opencaEmailAddress

pkiUser

emailAddress cn sn mail

emailAddress

ou o st l

opencaEmailAddress

pkiUser

mail cn sn mail

emailAddress

ou o st l

opencaEmailAddress

pkiUser

uid cn sn uid

mail

emailAddress

ou o st l

opencaEmailAddress

pkiUser

dc dc dcObject

pkiUser

unstructuredName cn unstructuredName

unstructuredAddress

serialNumber

ou o l

device

opencaSCEPDevice

pkiUser

11

Table 2. (continued)

Attribute in RDN MUST attributes MAY attributes Object Classes

(top - always)

unstructuredAddress cn unstructuredName

unstructuredAddress

serialNumber

ou o l

device

opencaSCEPDevice

pkiUser

ou ou l st organizationalUnit

pkiUser

o o l st organization

pkiUser

c c country

pkiUser

l l l locality

pkiUser

st st st locality

pkiUser

Table 3. Attributes supported by schema "ca"

Attribute in RDN MUST attributes MAY attributes Object Classes

(top - always)

serialNumber cn serialNumber

ou o l

device

pkiCA

cn cn ou st l organizationalRole

pkiCA

sn cn ou st l organizationalRole

pkiCA

12

Table 3. (continued)

Attribute in RDN MUST attributes MAY attributes Object Classes

(top - always)

emailAddress cn ou st l

mail

emailAddress

organizationalRole

opencaEmailAddress

pkiCA

mail cn ou st l

mail

emailAddress

organizationalRole

opencaEmailAddress

pkiCA

dc dc dcObject

pkiCA

ou ou l st organizationalUnit

pkiCA

o o l st organization

pkiCA

c c country

pkiCA

l l l locality

pkiCA

st st st locality

pkiCA

13

5. HOW IT WORKS

The work�ow de�nition for LDAP publishing is shown in Fig. 1.

Figure 1. Work�ow de�nition for LDAP publishing in OpenXPKI.

The procedure of adding LDAP node is shown in Fig. 2.

Figs. 3 and 4 describes the procedure of publishing a certi�cate in OpenXPKI work�ow

14

6. FUNCTIONALITY AND FEATURES WHICH SEEM TO BE IMPORTANT BUT

NOT ADDED YET

Let us point out some LDAP-work�ow problems which deserve to be discussed. The

interesting thing is priority in implementation schedule.

6.1. Architecture

Is it worth to separate utilities interacting with LDAP server (like bind/unbind,

start_tls) to perl module LDAP.pm as it was done in OpenCA and initialize it at the

stage of starting the OpenXPKI server? In that case all work�ow modules dealing with

LDAP will not spend time and memory to create new Net::LDAP instances.

6.2. Development framework

1. Tests for LDAP-publishing

2. If LDAP-work�ow activity code is not quite suitable for tests, change it (split the

massive chunk of code to functions etc.)

3. Invent a better way to wait for child work�ows coming to SUCCESS state

4. HOWTO and FAQ for using LDAP in OpenXPKI;

5. Con�guring LDAP at deployment stage;

6.3. Compatibility

Tests for LDAP protocol version 2.0 (shall we support it?)

6.4. Functionality

1. Multi-su�x support

2. Using TLS to communicate with LDAP server

3. Using SASL to connect to LDAP server

15

4. Adding mail attribute values from the certi�cate to the existing node

5. Check if adding the node failed

6. Substitute SN (say "Gut") from the second �eld of CN (say "Alles Gut") if SN is

missing

7. Substitute CN (say "Jan") from the mail pre�x (say "jan@openxpki.org") if CN is

missing

6.5. Consistency

1. Check if OpenXPKI LDAP schema matches LDAP-server schema

2. Check if OpenXPKI LDAP schema speci�ed in ldappublic.xml matches DN templates

in pro�le.xml

3. Check if OpenXPKI LDAP schema speci�ed in ldappublic.xml permits to process all

cases of DN built with pro�le.xml templates

4. Check if OpenXPKI LDAP schema speci�ed in ldappublic.xml does not cause prepair-

ing more than one structural stack of objectclasses for the node to be created

16

7. BYPASSED OBSTACLES WHICH PROBABLY SHOULD NOT BE BYPASSED

While working on LDAP-publishing code some strange things were detected in

OpenXPKI. We could not �nd reasons for them but made some guesses and used

workaround. May be somebody knows the true cause of troubles we had. Here they are:

1. Contrary to actions each condition method is called 3 times while doing a work�ow

step (as far as stderr.log is truthful). That is why all "Condition" modules in LDAP

work�ow just use context parameters created by the previous actions.

2. Sometimes checks of mutually exclusive conditions triggers exceptions. It looks like the

value of condition is altered between two checks and both exclusive conditions appear to

be valid (or not valid) simultaneously. So work�ow factory cannot decide which action

must be performed. Happens often during "waiting_for_child". This and previous

obstacle are the reasons why at the moment the parent work�ows are con�gured in

such a way that they just wait a certain number of seconds before checking that all

children are in SUCCESS state and stop forever if that check fails.

3. Serialization of dbi hash in PersistSerti�cate.pm in order to pass certi�cate attributes

to LDAP-work�ow via context meets problems: passing utf8 symbols crashes. It looks

like it happens not due to wrong work of Serialize module (it passes utf8 tests). It could

be that while processing of the context parameters, the work�ow factory alteres utf8

�ags. A following workaround is implemented for now: once again get a PEM-encoded

certi�cate from the context, extract its attributes, and use them.

17

�
�
�
�
�
�
�
�
	

��
�
�
�

��

�
�
��
�
�
�
�

�
�

�
�

�
�

�
�	

�
�

�
�
�
�

�
�
�

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� �

� �

� �

������

��������	
�������

������������������������������	
�������

��������� ������	��
	�����	

��������� ����	����

��������� ����	��

������������������������	
�

�������

��������	���
����

�

���������������	����������	������
�	���������
�	�����

�����������������	��

�����������������������������	��������������

���������������!"������������	��

����������������������������������#�������������

�����������������������������$�������

�����������������������������$�%&��

��������������'�

������������'�

����������()�

�

����������

���������

�	��
�
��������

�	��
�
����

�����������
�

�����������

�	��
�
��������

�	��
�
����

������������
�

������������

�����������

�	��
�
��������

�	��
�
����

�����������

�	��
�
�����
���

�	��
�
����

�������������

���������
���
�����

����������� ��
����������	��
	�����	
��� ��
������

����������
���
�����

����������!	�	����

����������� ��
��������	������� ��
������

����������� ��
��������	����� ��
������

�����������!	�	����

�����������

��"#$��%&#'��()*

+

,

Figure 2. Adding LDAP node in OpenXPKI.

18

Action: Details:

Spawning CreateCSR work�ow using OpenXPKI client

⇓

Spawning Certi�cateIssue work�ow from CreateCSR work�ow

⇓

Spawning LDAP-publishing work�ow from Certi�cateIssue work�ow

⇓

Importing certi�cate data from context:

• Getting certi�cate parameters from con-

text

• Checking if the role marked as excluded

and setting in context the 'permission' �ag

• Parsing the certi�cate using OpenX-

PKI::Crypto::X509

• Checking if the LDAP node exists at that

DN and setting the �ag to context

• Getting a PEM-coded certi�cate con-

text(parameter = > 'certi�cate')

• Getting a role context(parameter = >

'role') to check if we have to stop pub-

lishing due to role restrictions speci�ed in

<ldap_excluded_roles> option

• Getting a mail adresses from the certi�f-

cate alternative names

• Getting the certi�cate DN to use it for

LDAP-search

⇓

TO BE CONTINUED ON THE NEXT PAGE

Figure 3. Certi�cate LDAP-publishing work�ow schematic. Part 1.

19

LDAP publishing - we have all the parameters imported

⇓
Adding Node:

• Checking if 'node_exist' �ag is set to 'yes' and going to AddNode stage if not

• Checking if role 'permission' �ag is set to 'yes' and stop publishing if not

• Parsing the certi�cate DN

• Process all the RDNS

� Build the truncated DN ending with the RDN being processed

� Get all attributes in RDN

� Get object classes for all attributes according to schema

� Get attributes values looking sequencely through three hashes

1. hash of the current RDN

2. hash of the extra attribures

3. hash of all previously processed attributes in DN

� Add a node using truncated DN and built set of attributes

⇓
Adding the certi�cate to existing LDAP node:

• pkiUser attribute is added to existing LDAP node if necessary

• Multiple certi�cates are supported but doubling is blocked

⇓
SUCCESS STATE: This is the last state of the work�ow even if the certi�cate was not

published due to role exclusion. After the LDAP-publishing work�ow is �nished

Certi�cateIssue work�ow meets the condition check_child_�nished and �nishes itself. Then

CreateCSR work�ow that spawned issuing does the same thing and �nally all three work�ows

are in SUCCESS state.

Figure 4. Certi�cate LDAP-publishing work�ow schematic. Part 2.

