2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
38 #include <isl/space.h>
39 #include <isl/local_space.h>
40 #include <isl/constraint.h>
45 #include <isl/union_set.h>
46 #include <isl/union_map.h>
47 #include <isl/schedule_node.h>
51 #include "expr_access_type.h"
58 #include "value_bounds.h"
60 /* pet_scop with extra information that is used during parsing and printing.
62 * In particular, we keep track of conditions under which we want
63 * to skip the rest of the current loop iteration (skip[pet_skip_now])
64 * and of conditions under which we want to skip subsequent
65 * loop iterations (skip[pet_skip_later]).
67 * The conditions are represented as index expressions defined
68 * over the outer loop iterators. The index expression is either
69 * a boolean affine expression or an access to a variable, which
70 * is assumed to attain values zero and one. The condition holds
71 * if the variable has value one or if the affine expression
72 * has value one (typically for only part of the domain).
74 * A missing condition (skip[type] == NULL) means that we don't want
77 * Additionally, we keep track of the original input file
78 * inside pet_transform_C_source.
83 isl_multi_pw_aff
*skip
[2];
87 /* Construct a pet_stmt with given domain and statement number from a pet_tree.
88 * The input domain is anonymous and is the same as the domains
89 * of the access expressions inside "tree".
90 * These domains are modified to include the name of the statement.
91 * This name is given by tree->label if it is non-NULL.
92 * Otherwise, the name is constructed as S_<id>.
94 struct pet_stmt
*pet_stmt_from_pet_tree(__isl_take isl_set
*domain
,
95 int id
, __isl_take pet_tree
*tree
)
97 struct pet_stmt
*stmt
;
102 isl_multi_pw_aff
*add_name
;
105 if (!domain
|| !tree
)
108 ctx
= pet_tree_get_ctx(tree
);
109 stmt
= isl_calloc_type(ctx
, struct pet_stmt
);
114 label
= isl_id_copy(tree
->label
);
116 snprintf(name
, sizeof(name
), "S_%d", id
);
117 label
= isl_id_alloc(ctx
, name
, NULL
);
119 domain
= isl_set_set_tuple_id(domain
, label
);
120 space
= isl_set_get_space(domain
);
121 space
= pet_nested_remove_from_space(space
);
122 ma
= pet_prefix_projection(space
, isl_space_dim(space
, isl_dim_set
));
124 add_name
= isl_multi_pw_aff_from_multi_aff(ma
);
125 tree
= pet_tree_update_domain(tree
, add_name
);
127 stmt
->loc
= pet_tree_get_loc(tree
);
128 stmt
->domain
= domain
;
131 if (!stmt
->domain
|| !stmt
->body
)
132 return pet_stmt_free(stmt
);
136 isl_set_free(domain
);
141 void *pet_stmt_free(struct pet_stmt
*stmt
)
148 pet_loc_free(stmt
->loc
);
149 isl_set_free(stmt
->domain
);
150 pet_tree_free(stmt
->body
);
152 for (i
= 0; i
< stmt
->n_arg
; ++i
)
153 pet_expr_free(stmt
->args
[i
]);
160 /* Return the iteration space of "stmt".
162 * If the statement has arguments, then stmt->domain is a wrapped map
163 * mapping the iteration domain to the values of the arguments
164 * for which this statement is executed.
165 * In this case, we need to extract the domain space of this wrapped map.
167 __isl_give isl_space
*pet_stmt_get_space(struct pet_stmt
*stmt
)
174 space
= isl_set_get_space(stmt
->domain
);
175 if (isl_space_is_wrapping(space
))
176 space
= isl_space_domain(isl_space_unwrap(space
));
181 static void stmt_dump(struct pet_stmt
*stmt
, int indent
)
188 fprintf(stderr
, "%*s%d\n", indent
, "", pet_loc_get_line(stmt
->loc
));
189 fprintf(stderr
, "%*s", indent
, "");
190 isl_set_dump(stmt
->domain
);
191 pet_tree_dump_with_indent(stmt
->body
, indent
);
192 for (i
= 0; i
< stmt
->n_arg
; ++i
)
193 pet_expr_dump_with_indent(stmt
->args
[i
], indent
+ 2);
196 void pet_stmt_dump(struct pet_stmt
*stmt
)
201 /* Allocate a new pet_type with the given "name" and "definition".
203 struct pet_type
*pet_type_alloc(isl_ctx
*ctx
, const char *name
,
204 const char *definition
)
206 struct pet_type
*type
;
208 type
= isl_alloc_type(ctx
, struct pet_type
);
212 type
->name
= strdup(name
);
213 type
->definition
= strdup(definition
);
215 if (!type
->name
|| !type
->definition
)
216 return pet_type_free(type
);
221 /* Free "type" and return NULL.
223 struct pet_type
*pet_type_free(struct pet_type
*type
)
229 free(type
->definition
);
235 struct pet_array
*pet_array_free(struct pet_array
*array
)
240 isl_set_free(array
->context
);
241 isl_set_free(array
->extent
);
242 isl_set_free(array
->value_bounds
);
243 free(array
->element_type
);
249 void pet_array_dump(struct pet_array
*array
)
254 isl_set_dump(array
->context
);
255 isl_set_dump(array
->extent
);
256 isl_set_dump(array
->value_bounds
);
257 fprintf(stderr
, "%s%s%s\n", array
->element_type
,
258 array
->element_is_record
? " element-is-record" : "",
259 array
->live_out
? " live-out" : "");
262 /* Alloc a pet_scop structure, with extra room for information that
263 * is only used during parsing.
265 struct pet_scop
*pet_scop_alloc(isl_ctx
*ctx
)
267 return &isl_calloc_type(ctx
, struct pet_scop_ext
)->scop
;
270 /* Construct a pet_scop in the given space, with the given schedule and
271 * room for n statements.
273 * The context is initialized as a universe set in "space".
275 * Since no information on the location is known at this point,
276 * scop->loc is initialized with pet_loc_dummy.
278 static struct pet_scop
*scop_alloc(__isl_take isl_space
*space
, int n
,
279 __isl_take isl_schedule
*schedule
)
282 struct pet_scop
*scop
;
284 if (!space
|| !schedule
)
287 ctx
= isl_space_get_ctx(space
);
288 scop
= pet_scop_alloc(ctx
);
292 scop
->context
= isl_set_universe(isl_space_copy(space
));
293 scop
->context_value
= isl_set_universe(isl_space_params(space
));
294 scop
->stmts
= isl_calloc_array(ctx
, struct pet_stmt
*, n
);
295 scop
->schedule
= schedule
;
296 if (!scop
->context
|| !scop
->stmts
)
297 return pet_scop_free(scop
);
299 scop
->loc
= &pet_loc_dummy
;
304 isl_space_free(space
);
305 isl_schedule_free(schedule
);
309 /* Construct a pet_scop in the given space containing 0 statements
310 * (and therefore an empty iteration domain).
312 struct pet_scop
*pet_scop_empty(__isl_take isl_space
*space
)
314 isl_schedule
*schedule
;
316 schedule
= isl_schedule_empty(isl_space_copy(space
));
318 return scop_alloc(space
, 0, schedule
);
321 /* Given either an iteration domain or a wrapped map with
322 * the iteration domain in the domain and some arguments
323 * in the range, return the iteration domain.
324 * That is, drop the arguments if there are any.
326 static __isl_give isl_set
*drop_arguments(__isl_take isl_set
*domain
)
328 if (isl_set_is_wrapping(domain
))
329 domain
= isl_map_domain(isl_set_unwrap(domain
));
333 /* Update "context" with the constraints imposed on the outer iteration
334 * domain by access expression "expr".
335 * "context" lives in an anonymous space, while the domain of the access
336 * relation of "expr" refers to a particular statement.
337 * This reference therefore needs to be stripped off.
339 static __isl_give isl_set
*access_extract_context(__isl_keep pet_expr
*expr
,
340 __isl_take isl_set
*context
)
342 isl_multi_pw_aff
*mpa
;
345 mpa
= pet_expr_access_get_index(expr
);
346 domain
= drop_arguments(isl_multi_pw_aff_domain(mpa
));
347 domain
= isl_set_reset_tuple_id(domain
);
348 context
= isl_set_intersect(context
, domain
);
352 /* Update "context" with the constraints imposed on the outer iteration
355 * "context" lives in an anonymous space, while the domains of
356 * the access relations in "expr" refer to a particular statement.
357 * This reference therefore needs to be stripped off.
359 * If "expr" represents a conditional operator, then a parameter or outer
360 * iterator value needs to be valid for the condition and
361 * for at least one of the remaining two arguments.
362 * If the condition is an affine expression, then we can be a bit more specific.
363 * The value then has to be valid for the second argument for
364 * non-zero accesses and valid for the third argument for zero accesses.
366 * If "expr" represents a kill statement, then its argument is the entire
367 * extent of the array being killed. Do not update "context" based
368 * on this argument as that would impose constraints that ensure that
369 * the array is non-empty.
371 static __isl_give isl_set
*expr_extract_context(__isl_keep pet_expr
*expr
,
372 __isl_take isl_set
*context
)
376 if (expr
->type
== pet_expr_op
&& expr
->op
== pet_op_kill
)
379 if (expr
->type
== pet_expr_op
&& expr
->op
== pet_op_cond
) {
381 isl_set
*context1
, *context2
;
383 is_aff
= pet_expr_is_affine(expr
->args
[0]);
387 context
= expr_extract_context(expr
->args
[0], context
);
388 context1
= expr_extract_context(expr
->args
[1],
389 isl_set_copy(context
));
390 context2
= expr_extract_context(expr
->args
[2], context
);
393 isl_multi_pw_aff
*mpa
;
397 mpa
= pet_expr_access_get_index(expr
->args
[0]);
398 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, 0);
399 isl_multi_pw_aff_free(mpa
);
400 zero_set
= drop_arguments(isl_pw_aff_zero_set(pa
));
401 zero_set
= isl_set_reset_tuple_id(zero_set
);
402 context1
= isl_set_subtract(context1
,
403 isl_set_copy(zero_set
));
404 context2
= isl_set_intersect(context2
, zero_set
);
407 context
= isl_set_union(context1
, context2
);
408 context
= isl_set_coalesce(context
);
413 for (i
= 0; i
< expr
->n_arg
; ++i
)
414 context
= expr_extract_context(expr
->args
[i
], context
);
416 if (expr
->type
== pet_expr_access
)
417 context
= access_extract_context(expr
, context
);
421 isl_set_free(context
);
425 /* Is "stmt" an assume statement with an affine assumption?
427 isl_bool
pet_stmt_is_affine_assume(struct pet_stmt
*stmt
)
430 return isl_bool_error
;
431 return pet_tree_is_affine_assume(stmt
->body
);
434 /* Given an assume statement "stmt" with an access argument,
435 * return the index expression of the argument.
437 __isl_give isl_multi_pw_aff
*pet_stmt_assume_get_index(struct pet_stmt
*stmt
)
441 return pet_tree_assume_get_index(stmt
->body
);
444 /* Assuming "stmt" is an assume statement with an affine assumption,
445 * return the assumption as a set.
447 __isl_give isl_set
*pet_stmt_assume_get_affine_condition(struct pet_stmt
*stmt
)
449 isl_multi_pw_aff
*index
;
452 index
= pet_stmt_assume_get_index(stmt
);
453 pa
= isl_multi_pw_aff_get_pw_aff(index
, 0);
454 isl_multi_pw_aff_free(index
);
455 return isl_pw_aff_non_zero_set(pa
);
458 /* Update "context" with the constraints imposed on the outer iteration
461 * If the statement is an assume statement with an affine expression,
462 * then intersect "context" with that expression.
463 * Otherwise, if the statement body is an expression tree,
464 * then intersect "context" with the context of this expression.
465 * Note that we cannot safely extract a context from subtrees
466 * of the statement body since we cannot tell when those subtrees
467 * are executed, if at all.
469 static __isl_give isl_set
*stmt_extract_context(struct pet_stmt
*stmt
,
470 __isl_take isl_set
*context
)
476 affine
= pet_stmt_is_affine_assume(stmt
);
478 return isl_set_free(context
);
482 cond
= pet_stmt_assume_get_affine_condition(stmt
);
483 cond
= isl_set_reset_tuple_id(cond
);
484 return isl_set_intersect(context
, cond
);
487 for (i
= 0; i
< stmt
->n_arg
; ++i
)
488 context
= expr_extract_context(stmt
->args
[i
], context
);
490 if (pet_tree_get_type(stmt
->body
) != pet_tree_expr
)
493 body
= pet_tree_expr_get_expr(stmt
->body
);
494 context
= expr_extract_context(body
, context
);
500 /* Construct a pet_scop in the given space that contains the given pet_stmt.
501 * The initial schedule consists of only the iteration domain.
503 struct pet_scop
*pet_scop_from_pet_stmt(__isl_take isl_space
*space
,
504 struct pet_stmt
*stmt
)
506 struct pet_scop
*scop
;
508 isl_union_set
*domain
;
509 isl_schedule
*schedule
;
512 isl_space_free(space
);
516 set
= pet_nested_remove_from_set(isl_set_copy(stmt
->domain
));
517 domain
= isl_union_set_from_set(set
);
518 schedule
= isl_schedule_from_domain(domain
);
520 scop
= scop_alloc(space
, 1, schedule
);
524 scop
->context
= stmt_extract_context(stmt
, scop
->context
);
528 scop
->stmts
[0] = stmt
;
529 scop
->loc
= pet_loc_copy(stmt
->loc
);
532 return pet_scop_free(scop
);
541 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
542 * does it represent an affine expression?
544 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff
*mpa
)
548 has_id
= isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
);
555 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
557 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
558 __isl_take isl_set
*dom
)
561 pa
= isl_set_indicator_function(set
);
562 pa
= isl_pw_aff_intersect_domain(pa
, dom
);
566 /* Return "lhs || rhs", defined on the shared definition domain.
568 static __isl_give isl_pw_aff
*pw_aff_or(__isl_take isl_pw_aff
*lhs
,
569 __isl_take isl_pw_aff
*rhs
)
574 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
575 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
576 cond
= isl_set_union(isl_pw_aff_non_zero_set(lhs
),
577 isl_pw_aff_non_zero_set(rhs
));
578 cond
= isl_set_coalesce(cond
);
579 return indicator_function(cond
, dom
);
582 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
583 * ext may be equal to either ext1 or ext2.
585 * The two skips that need to be combined are assumed to be affine expressions.
587 * We need to skip in ext if we need to skip in either ext1 or ext2.
588 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
590 static struct pet_scop_ext
*combine_skips(struct pet_scop_ext
*ext
,
591 struct pet_scop_ext
*ext1
, struct pet_scop_ext
*ext2
,
594 isl_pw_aff
*skip
, *skip1
, *skip2
;
598 if (!ext1
->skip
[type
] && !ext2
->skip
[type
])
600 if (!ext1
->skip
[type
]) {
603 ext
->skip
[type
] = ext2
->skip
[type
];
604 ext2
->skip
[type
] = NULL
;
607 if (!ext2
->skip
[type
]) {
610 ext
->skip
[type
] = ext1
->skip
[type
];
611 ext1
->skip
[type
] = NULL
;
615 if (!multi_pw_aff_is_affine(ext1
->skip
[type
]) ||
616 !multi_pw_aff_is_affine(ext2
->skip
[type
]))
617 isl_die(isl_multi_pw_aff_get_ctx(ext1
->skip
[type
]),
618 isl_error_internal
, "can only combine affine skips",
621 skip1
= isl_multi_pw_aff_get_pw_aff(ext1
->skip
[type
], 0);
622 skip2
= isl_multi_pw_aff_get_pw_aff(ext2
->skip
[type
], 0);
623 skip
= pw_aff_or(skip1
, skip2
);
624 isl_multi_pw_aff_free(ext1
->skip
[type
]);
625 ext1
->skip
[type
] = NULL
;
626 isl_multi_pw_aff_free(ext2
->skip
[type
]);
627 ext2
->skip
[type
] = NULL
;
628 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
629 if (!ext
->skip
[type
])
634 pet_scop_free(&ext
->scop
);
638 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
639 * where type takes on the values pet_skip_now and pet_skip_later.
640 * scop may be equal to either scop1 or scop2.
642 static struct pet_scop
*scop_combine_skips(struct pet_scop
*scop
,
643 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
645 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
646 struct pet_scop_ext
*ext1
= (struct pet_scop_ext
*) scop1
;
647 struct pet_scop_ext
*ext2
= (struct pet_scop_ext
*) scop2
;
649 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_now
);
650 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_later
);
654 /* Update start and end of scop->loc to include the region from "start"
655 * to "end". In particular, if scop->loc == &pet_loc_dummy, then "scop"
656 * does not have any offset information yet and we simply take the information
657 * from "start" and "end". Otherwise, we update loc using "start" and "end".
659 struct pet_scop
*pet_scop_update_start_end(struct pet_scop
*scop
,
660 unsigned start
, unsigned end
)
665 if (scop
->loc
== &pet_loc_dummy
)
666 scop
->loc
= pet_loc_alloc(isl_set_get_ctx(scop
->context
),
667 start
, end
, -1, strdup(""));
669 scop
->loc
= pet_loc_update_start_end(scop
->loc
, start
, end
);
672 return pet_scop_free(scop
);
677 /* Update start and end of scop->loc to include the region identified
680 struct pet_scop
*pet_scop_update_start_end_from_loc(struct pet_scop
*scop
,
681 __isl_keep pet_loc
*loc
)
683 return pet_scop_update_start_end(scop
, pet_loc_get_start(loc
),
684 pet_loc_get_end(loc
));
687 /* Replace the location of "scop" by "loc".
689 struct pet_scop
*pet_scop_set_loc(struct pet_scop
*scop
,
690 __isl_take pet_loc
*loc
)
695 pet_loc_free(scop
->loc
);
705 /* Does "implication" appear in the list of implications of "scop"?
707 static int is_known_implication(struct pet_scop
*scop
,
708 struct pet_implication
*implication
)
712 for (i
= 0; i
< scop
->n_implication
; ++i
) {
713 struct pet_implication
*pi
= scop
->implications
[i
];
716 if (pi
->satisfied
!= implication
->satisfied
)
718 equal
= isl_map_is_equal(pi
->extension
, implication
->extension
);
728 /* Store the concatenation of the implications of "scop1" and "scop2"
729 * in "scop", removing duplicates (i.e., implications in "scop2" that
730 * already appear in "scop1").
732 static struct pet_scop
*scop_collect_implications(isl_ctx
*ctx
,
733 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
740 if (scop2
->n_implication
== 0) {
741 scop
->n_implication
= scop1
->n_implication
;
742 scop
->implications
= scop1
->implications
;
743 scop1
->n_implication
= 0;
744 scop1
->implications
= NULL
;
748 if (scop1
->n_implication
== 0) {
749 scop
->n_implication
= scop2
->n_implication
;
750 scop
->implications
= scop2
->implications
;
751 scop2
->n_implication
= 0;
752 scop2
->implications
= NULL
;
756 scop
->implications
= isl_calloc_array(ctx
, struct pet_implication
*,
757 scop1
->n_implication
+ scop2
->n_implication
);
758 if (!scop
->implications
)
759 return pet_scop_free(scop
);
761 for (i
= 0; i
< scop1
->n_implication
; ++i
) {
762 scop
->implications
[i
] = scop1
->implications
[i
];
763 scop1
->implications
[i
] = NULL
;
766 scop
->n_implication
= scop1
->n_implication
;
767 j
= scop1
->n_implication
;
768 for (i
= 0; i
< scop2
->n_implication
; ++i
) {
771 known
= is_known_implication(scop
, scop2
->implications
[i
]);
773 return pet_scop_free(scop
);
776 scop
->implications
[j
++] = scop2
->implications
[i
];
777 scop2
->implications
[i
] = NULL
;
779 scop
->n_implication
= j
;
784 /* Combine the offset information of "scop1" and "scop2" into "scop".
786 static struct pet_scop
*scop_combine_start_end(struct pet_scop
*scop
,
787 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
789 if (scop1
->loc
!= &pet_loc_dummy
)
790 scop
= pet_scop_update_start_end_from_loc(scop
, scop1
->loc
);
791 if (scop2
->loc
!= &pet_loc_dummy
)
792 scop
= pet_scop_update_start_end_from_loc(scop
, scop2
->loc
);
796 /* Create and return an independence that filters out the dependences
797 * in "filter" with local variables "local".
799 static struct pet_independence
*new_independence(
800 __isl_take isl_union_map
*filter
, __isl_take isl_union_set
*local
)
803 struct pet_independence
*independence
;
805 if (!filter
|| !local
)
807 ctx
= isl_union_map_get_ctx(filter
);
808 independence
= isl_alloc_type(ctx
, struct pet_independence
);
812 independence
->filter
= filter
;
813 independence
->local
= local
;
817 isl_union_map_free(filter
);
818 isl_union_set_free(local
);
822 /* Add an independence that filters out the dependences
823 * in "filter" with local variables "local" to "scop".
825 struct pet_scop
*pet_scop_add_independence(struct pet_scop
*scop
,
826 __isl_take isl_union_map
*filter
, __isl_take isl_union_set
*local
)
829 struct pet_independence
*independence
;
830 struct pet_independence
**independences
;
832 ctx
= isl_union_map_get_ctx(filter
);
833 independence
= new_independence(filter
, local
);
834 if (!scop
|| !independence
)
837 independences
= isl_realloc_array(ctx
, scop
->independences
,
838 struct pet_independence
*,
839 scop
->n_independence
+ 1);
842 scop
->independences
= independences
;
843 scop
->independences
[scop
->n_independence
] = independence
;
844 scop
->n_independence
++;
848 pet_independence_free(independence
);
853 /* Store the concatenation of the independences of "scop1" and "scop2"
856 static struct pet_scop
*scop_collect_independences(isl_ctx
*ctx
,
857 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
864 if (scop2
->n_independence
== 0) {
865 scop
->n_independence
= scop1
->n_independence
;
866 scop
->independences
= scop1
->independences
;
867 scop1
->n_independence
= 0;
868 scop1
->independences
= NULL
;
872 if (scop1
->n_independence
== 0) {
873 scop
->n_independence
= scop2
->n_independence
;
874 scop
->independences
= scop2
->independences
;
875 scop2
->n_independence
= 0;
876 scop2
->independences
= NULL
;
880 scop
->independences
= isl_calloc_array(ctx
, struct pet_independence
*,
881 scop1
->n_independence
+ scop2
->n_independence
);
882 if (!scop
->independences
)
883 return pet_scop_free(scop
);
885 for (i
= 0; i
< scop1
->n_independence
; ++i
) {
886 scop
->independences
[i
] = scop1
->independences
[i
];
887 scop1
->independences
[i
] = NULL
;
890 off
= scop1
->n_independence
;
891 for (i
= 0; i
< scop2
->n_independence
; ++i
) {
892 scop
->independences
[off
+ i
] = scop2
->independences
[i
];
893 scop2
->independences
[i
] = NULL
;
895 scop
->n_independence
= scop1
->n_independence
+ scop2
->n_independence
;
900 /* Construct a pet_scop with the given schedule
901 * that contains the offset information,
902 * arrays, statements and skip information in "scop1" and "scop2".
904 static struct pet_scop
*pet_scop_add(isl_ctx
*ctx
,
905 __isl_take isl_schedule
*schedule
, struct pet_scop
*scop1
,
906 struct pet_scop
*scop2
)
910 struct pet_scop
*scop
= NULL
;
912 if (!scop1
|| !scop2
)
915 if (scop1
->n_stmt
== 0) {
916 scop2
= scop_combine_skips(scop2
, scop1
, scop2
);
917 pet_scop_free(scop1
);
918 isl_schedule_free(schedule
);
922 if (scop2
->n_stmt
== 0) {
923 scop1
= scop_combine_skips(scop1
, scop1
, scop2
);
924 pet_scop_free(scop2
);
925 isl_schedule_free(schedule
);
929 space
= isl_set_get_space(scop1
->context
);
930 scop
= scop_alloc(space
, scop1
->n_stmt
+ scop2
->n_stmt
,
931 isl_schedule_copy(schedule
));
935 scop
->arrays
= isl_calloc_array(ctx
, struct pet_array
*,
936 scop1
->n_array
+ scop2
->n_array
);
939 scop
->n_array
= scop1
->n_array
+ scop2
->n_array
;
941 for (i
= 0; i
< scop1
->n_stmt
; ++i
) {
942 scop
->stmts
[i
] = scop1
->stmts
[i
];
943 scop1
->stmts
[i
] = NULL
;
946 for (i
= 0; i
< scop2
->n_stmt
; ++i
) {
947 scop
->stmts
[scop1
->n_stmt
+ i
] = scop2
->stmts
[i
];
948 scop2
->stmts
[i
] = NULL
;
951 for (i
= 0; i
< scop1
->n_array
; ++i
) {
952 scop
->arrays
[i
] = scop1
->arrays
[i
];
953 scop1
->arrays
[i
] = NULL
;
956 for (i
= 0; i
< scop2
->n_array
; ++i
) {
957 scop
->arrays
[scop1
->n_array
+ i
] = scop2
->arrays
[i
];
958 scop2
->arrays
[i
] = NULL
;
961 scop
= scop_collect_implications(ctx
, scop
, scop1
, scop2
);
962 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop1
->context
));
963 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop2
->context
));
964 scop
= scop_combine_skips(scop
, scop1
, scop2
);
965 scop
= scop_combine_start_end(scop
, scop1
, scop2
);
966 scop
= scop_collect_independences(ctx
, scop
, scop1
, scop2
);
968 pet_scop_free(scop1
);
969 pet_scop_free(scop2
);
970 isl_schedule_free(schedule
);
973 pet_scop_free(scop1
);
974 pet_scop_free(scop2
);
976 isl_schedule_free(schedule
);
980 /* Apply the skip condition "skip" to "scop".
981 * That is, make sure "scop" is not executed when the condition holds.
983 * If "skip" is an affine expression, we add the conditions under
984 * which the expression is zero to the context and the skip conditions
986 * Otherwise, we add a filter on the variable attaining the value zero.
988 static struct pet_scop
*restrict_skip(struct pet_scop
*scop
,
989 __isl_take isl_multi_pw_aff
*skip
)
998 is_aff
= multi_pw_aff_is_affine(skip
);
1003 return pet_scop_filter(scop
, skip
, 0);
1005 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
1006 isl_multi_pw_aff_free(skip
);
1007 zero
= isl_pw_aff_zero_set(pa
);
1008 scop
= pet_scop_restrict(scop
, zero
);
1012 isl_multi_pw_aff_free(skip
);
1013 return pet_scop_free(scop
);
1016 /* Construct a pet_scop that contains the arrays, statements and
1017 * skip information in "scop1" and "scop2", where the two scops
1018 * are executed "in sequence". That is, breaks and continues
1019 * in scop1 have an effect on scop2 and the schedule of the result
1020 * is the sequence of the schedules of "scop1" and "scop2".
1022 struct pet_scop
*pet_scop_add_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1023 struct pet_scop
*scop2
)
1025 isl_schedule
*schedule
;
1027 if (!scop1
|| !scop2
)
1030 if (scop1
&& pet_scop_has_skip(scop1
, pet_skip_now
))
1031 scop2
= restrict_skip(scop2
,
1032 pet_scop_get_skip(scop1
, pet_skip_now
));
1033 schedule
= isl_schedule_sequence(isl_schedule_copy(scop1
->schedule
),
1034 isl_schedule_copy(scop2
->schedule
));
1035 return pet_scop_add(ctx
, schedule
, scop1
, scop2
);
1037 pet_scop_free(scop1
);
1038 pet_scop_free(scop2
);
1042 /* Construct a pet_scop that contains the arrays, statements and
1043 * skip information in "scop1" and "scop2", where the two scops
1044 * are executed "in parallel". That is, any break or continue
1045 * in scop1 has no effect on scop2 and the schedule of the result
1046 * is the set of the schedules of "scop1" and "scop2".
1048 struct pet_scop
*pet_scop_add_par(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1049 struct pet_scop
*scop2
)
1051 isl_schedule
*schedule
;
1053 if (!scop1
|| !scop2
)
1056 schedule
= isl_schedule_set(isl_schedule_copy(scop1
->schedule
),
1057 isl_schedule_copy(scop2
->schedule
));
1058 return pet_scop_add(ctx
, schedule
, scop1
, scop2
);
1060 pet_scop_free(scop1
);
1061 pet_scop_free(scop2
);
1065 void *pet_implication_free(struct pet_implication
*implication
)
1070 isl_map_free(implication
->extension
);
1076 void *pet_independence_free(struct pet_independence
*independence
)
1081 isl_union_map_free(independence
->filter
);
1082 isl_union_set_free(independence
->local
);
1088 struct pet_scop
*pet_scop_free(struct pet_scop
*scop
)
1091 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1095 pet_loc_free(scop
->loc
);
1096 isl_set_free(scop
->context
);
1097 isl_set_free(scop
->context_value
);
1098 isl_schedule_free(scop
->schedule
);
1100 for (i
= 0; i
< scop
->n_type
; ++i
)
1101 pet_type_free(scop
->types
[i
]);
1104 for (i
= 0; i
< scop
->n_array
; ++i
)
1105 pet_array_free(scop
->arrays
[i
]);
1108 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1109 pet_stmt_free(scop
->stmts
[i
]);
1111 if (scop
->implications
)
1112 for (i
= 0; i
< scop
->n_implication
; ++i
)
1113 pet_implication_free(scop
->implications
[i
]);
1114 free(scop
->implications
);
1115 if (scop
->independences
)
1116 for (i
= 0; i
< scop
->n_independence
; ++i
)
1117 pet_independence_free(scop
->independences
[i
]);
1118 free(scop
->independences
);
1119 isl_multi_pw_aff_free(ext
->skip
[pet_skip_now
]);
1120 isl_multi_pw_aff_free(ext
->skip
[pet_skip_later
]);
1125 void pet_type_dump(struct pet_type
*type
)
1130 fprintf(stderr
, "%s -> %s\n", type
->name
, type
->definition
);
1133 void pet_implication_dump(struct pet_implication
*implication
)
1138 fprintf(stderr
, "%d\n", implication
->satisfied
);
1139 isl_map_dump(implication
->extension
);
1142 void pet_scop_dump(struct pet_scop
*scop
)
1145 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1150 isl_set_dump(scop
->context
);
1151 isl_set_dump(scop
->context_value
);
1152 isl_schedule_dump(scop
->schedule
);
1153 for (i
= 0; i
< scop
->n_type
; ++i
)
1154 pet_type_dump(scop
->types
[i
]);
1155 for (i
= 0; i
< scop
->n_array
; ++i
)
1156 pet_array_dump(scop
->arrays
[i
]);
1157 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1158 pet_stmt_dump(scop
->stmts
[i
]);
1159 for (i
= 0; i
< scop
->n_implication
; ++i
)
1160 pet_implication_dump(scop
->implications
[i
]);
1163 fprintf(stderr
, "skip\n");
1164 isl_multi_pw_aff_dump(ext
->skip
[0]);
1165 isl_multi_pw_aff_dump(ext
->skip
[1]);
1169 /* Return 1 if the two pet_arrays are equivalent.
1171 * We don't compare element_size as this may be target dependent.
1173 int pet_array_is_equal(struct pet_array
*array1
, struct pet_array
*array2
)
1175 if (!array1
|| !array2
)
1178 if (!isl_set_is_equal(array1
->context
, array2
->context
))
1180 if (!isl_set_is_equal(array1
->extent
, array2
->extent
))
1182 if (!!array1
->value_bounds
!= !!array2
->value_bounds
)
1184 if (array1
->value_bounds
&&
1185 !isl_set_is_equal(array1
->value_bounds
, array2
->value_bounds
))
1187 if (strcmp(array1
->element_type
, array2
->element_type
))
1189 if (array1
->element_is_record
!= array2
->element_is_record
)
1191 if (array1
->live_out
!= array2
->live_out
)
1193 if (array1
->uniquely_defined
!= array2
->uniquely_defined
)
1195 if (array1
->declared
!= array2
->declared
)
1197 if (array1
->exposed
!= array2
->exposed
)
1203 /* Return 1 if the two pet_stmts are equivalent.
1205 int pet_stmt_is_equal(struct pet_stmt
*stmt1
, struct pet_stmt
*stmt2
)
1209 if (!stmt1
|| !stmt2
)
1212 if (pet_loc_get_line(stmt1
->loc
) != pet_loc_get_line(stmt2
->loc
))
1214 if (!isl_set_is_equal(stmt1
->domain
, stmt2
->domain
))
1216 if (!pet_tree_is_equal(stmt1
->body
, stmt2
->body
))
1218 if (stmt1
->n_arg
!= stmt2
->n_arg
)
1220 for (i
= 0; i
< stmt1
->n_arg
; ++i
) {
1221 if (!pet_expr_is_equal(stmt1
->args
[i
], stmt2
->args
[i
]))
1228 /* Return 1 if the two pet_types are equivalent.
1230 * We only compare the names of the types since the exact representation
1231 * of the definition may depend on the version of clang being used.
1233 int pet_type_is_equal(struct pet_type
*type1
, struct pet_type
*type2
)
1235 if (!type1
|| !type2
)
1238 if (strcmp(type1
->name
, type2
->name
))
1244 /* Return 1 if the two pet_implications are equivalent.
1246 int pet_implication_is_equal(struct pet_implication
*implication1
,
1247 struct pet_implication
*implication2
)
1249 if (!implication1
|| !implication2
)
1252 if (implication1
->satisfied
!= implication2
->satisfied
)
1254 if (!isl_map_is_equal(implication1
->extension
, implication2
->extension
))
1260 /* Return 1 if the two pet_independences are equivalent.
1262 int pet_independence_is_equal(struct pet_independence
*independence1
,
1263 struct pet_independence
*independence2
)
1265 if (!independence1
|| !independence2
)
1268 if (!isl_union_map_is_equal(independence1
->filter
,
1269 independence2
->filter
))
1271 if (!isl_union_set_is_equal(independence1
->local
, independence2
->local
))
1277 /* Return 1 if the two pet_scops are equivalent.
1279 int pet_scop_is_equal(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1284 if (!scop1
|| !scop2
)
1287 if (!isl_set_is_equal(scop1
->context
, scop2
->context
))
1289 if (!isl_set_is_equal(scop1
->context_value
, scop2
->context_value
))
1291 equal
= isl_schedule_plain_is_equal(scop1
->schedule
, scop2
->schedule
);
1297 if (scop1
->n_type
!= scop2
->n_type
)
1299 for (i
= 0; i
< scop1
->n_type
; ++i
)
1300 if (!pet_type_is_equal(scop1
->types
[i
], scop2
->types
[i
]))
1303 if (scop1
->n_array
!= scop2
->n_array
)
1305 for (i
= 0; i
< scop1
->n_array
; ++i
)
1306 if (!pet_array_is_equal(scop1
->arrays
[i
], scop2
->arrays
[i
]))
1309 if (scop1
->n_stmt
!= scop2
->n_stmt
)
1311 for (i
= 0; i
< scop1
->n_stmt
; ++i
)
1312 if (!pet_stmt_is_equal(scop1
->stmts
[i
], scop2
->stmts
[i
]))
1315 if (scop1
->n_implication
!= scop2
->n_implication
)
1317 for (i
= 0; i
< scop1
->n_implication
; ++i
)
1318 if (!pet_implication_is_equal(scop1
->implications
[i
],
1319 scop2
->implications
[i
]))
1322 if (scop1
->n_independence
!= scop2
->n_independence
)
1324 for (i
= 0; i
< scop1
->n_independence
; ++i
)
1325 if (!pet_independence_is_equal(scop1
->independences
[i
],
1326 scop2
->independences
[i
]))
1332 /* Does the set "extent" reference a virtual array, i.e.,
1333 * one with user pointer equal to NULL?
1334 * A virtual array does not have any members.
1336 static int extent_is_virtual_array(__isl_keep isl_set
*extent
)
1341 if (!isl_set_has_tuple_id(extent
))
1343 if (isl_set_is_wrapping(extent
))
1345 id
= isl_set_get_tuple_id(extent
);
1346 is_virtual
= !isl_id_get_user(id
);
1352 /* Intersect the initial dimensions of "array" with "domain", provided
1353 * that "array" represents a virtual array.
1355 * If "array" is virtual, then We take the preimage of "domain"
1356 * over the projection of the extent of "array" onto its initial dimensions
1357 * and intersect this extent with the result.
1359 static struct pet_array
*virtual_array_intersect_domain_prefix(
1360 struct pet_array
*array
, __isl_take isl_set
*domain
)
1366 if (!array
|| !extent_is_virtual_array(array
->extent
)) {
1367 isl_set_free(domain
);
1371 space
= isl_set_get_space(array
->extent
);
1372 n
= isl_set_dim(domain
, isl_dim_set
);
1373 ma
= pet_prefix_projection(space
, n
);
1374 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1376 array
->extent
= isl_set_intersect(array
->extent
, domain
);
1378 return pet_array_free(array
);
1383 /* Intersect the initial dimensions of the domain of "stmt"
1386 * We take the preimage of "domain" over the projection of the
1387 * domain of "stmt" onto its initial dimensions and intersect
1388 * the domain of "stmt" with the result.
1390 static struct pet_stmt
*stmt_intersect_domain_prefix(struct pet_stmt
*stmt
,
1391 __isl_take isl_set
*domain
)
1400 space
= isl_set_get_space(stmt
->domain
);
1401 n
= isl_set_dim(domain
, isl_dim_set
);
1402 ma
= pet_prefix_projection(space
, n
);
1403 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1405 stmt
->domain
= isl_set_intersect(stmt
->domain
, domain
);
1407 return pet_stmt_free(stmt
);
1411 isl_set_free(domain
);
1412 return pet_stmt_free(stmt
);
1415 /* Intersect the initial dimensions of the domain of "implication"
1418 * We take the preimage of "domain" over the projection of the
1419 * domain of "implication" onto its initial dimensions and intersect
1420 * the domain of "implication" with the result.
1422 static struct pet_implication
*implication_intersect_domain_prefix(
1423 struct pet_implication
*implication
, __isl_take isl_set
*domain
)
1432 space
= isl_map_get_space(implication
->extension
);
1433 n
= isl_set_dim(domain
, isl_dim_set
);
1434 ma
= pet_prefix_projection(isl_space_domain(space
), n
);
1435 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1437 implication
->extension
=
1438 isl_map_intersect_domain(implication
->extension
, domain
);
1439 if (!implication
->extension
)
1440 return pet_implication_free(implication
);
1444 isl_set_free(domain
);
1445 return pet_implication_free(implication
);
1448 /* Intersect the initial dimensions of the domains in "scop" with "domain".
1450 * The extents of the virtual arrays match the iteration domains,
1451 * so if the iteration domain changes, we need to change those extents too.
1453 * The domain of the schedule is intersected with (i.e., replaced by)
1454 * the union of the updated iteration domains.
1456 struct pet_scop
*pet_scop_intersect_domain_prefix(struct pet_scop
*scop
,
1457 __isl_take isl_set
*domain
)
1464 for (i
= 0; i
< scop
->n_array
; ++i
) {
1465 scop
->arrays
[i
] = virtual_array_intersect_domain_prefix(
1466 scop
->arrays
[i
], isl_set_copy(domain
));
1467 if (!scop
->arrays
[i
])
1471 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1472 scop
->stmts
[i
] = stmt_intersect_domain_prefix(scop
->stmts
[i
],
1473 isl_set_copy(domain
));
1474 if (!scop
->stmts
[i
])
1478 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1479 scop
->implications
[i
] =
1480 implication_intersect_domain_prefix(scop
->implications
[i
],
1481 isl_set_copy(domain
));
1482 if (!scop
->implications
[i
])
1483 return pet_scop_free(scop
);
1486 scop
->schedule
= isl_schedule_intersect_domain(scop
->schedule
,
1487 pet_scop_get_instance_set(scop
));
1488 if (!scop
->schedule
)
1491 isl_set_free(domain
);
1494 isl_set_free(domain
);
1495 return pet_scop_free(scop
);
1498 /* Update the context with respect to an embedding into a loop
1499 * with iteration domain "dom".
1500 * The input context lives in the same space as "dom".
1501 * The output context has the inner dimension removed.
1503 * An outer loop iterator value is invalid for the embedding if
1504 * any of the corresponding inner iterator values is invalid.
1505 * That is, an outer loop iterator value is valid only if all the corresponding
1506 * inner iterator values are valid.
1507 * We therefore compute the set of outer loop iterators l
1509 * forall i: dom(l,i) => valid(l,i)
1513 * forall i: not dom(l,i) or valid(l,i)
1517 * not exists i: dom(l,i) and not valid(l,i)
1521 * not exists i: (dom \ valid)(l,i)
1523 * If there are any unnamed parameters in "dom", then we consider
1524 * a parameter value to be valid if it is valid for any value of those
1525 * unnamed parameters. They are therefore projected out at the end.
1527 static __isl_give isl_set
*context_embed(__isl_take isl_set
*context
,
1528 __isl_keep isl_set
*dom
)
1532 pos
= isl_set_dim(context
, isl_dim_set
) - 1;
1533 context
= isl_set_subtract(isl_set_copy(dom
), context
);
1534 context
= isl_set_project_out(context
, isl_dim_set
, pos
, 1);
1535 context
= isl_set_complement(context
);
1536 context
= pet_nested_remove_from_set(context
);
1541 /* Internal data structure for outer_projection_mupa.
1543 * "n" is the number of outer dimensions onto which to project.
1544 * "res" collects the result.
1546 struct pet_outer_projection_data
{
1548 isl_union_pw_multi_aff
*res
;
1551 /* Create a function that maps "set" onto its outer data->n dimensions and
1552 * add it to data->res.
1554 static isl_stat
add_outer_projection(__isl_take isl_set
*set
, void *user
)
1556 struct pet_outer_projection_data
*data
= user
;
1559 isl_pw_multi_aff
*pma
;
1561 dim
= isl_set_dim(set
, isl_dim_set
);
1562 space
= isl_set_get_space(set
);
1563 pma
= isl_pw_multi_aff_project_out_map(space
,
1564 isl_dim_set
, data
->n
, dim
- data
->n
);
1565 data
->res
= isl_union_pw_multi_aff_add_pw_multi_aff(data
->res
, pma
);
1572 /* Create and return a function that maps the sets in "domain"
1573 * onto their outer "n" dimensions.
1575 static __isl_give isl_multi_union_pw_aff
*outer_projection_mupa(
1576 __isl_take isl_union_set
*domain
, int n
)
1578 struct pet_outer_projection_data data
;
1581 space
= isl_union_set_get_space(domain
);
1583 data
.res
= isl_union_pw_multi_aff_empty(space
);
1584 if (isl_union_set_foreach_set(domain
, &add_outer_projection
, &data
) < 0)
1585 data
.res
= isl_union_pw_multi_aff_free(data
.res
);
1587 isl_union_set_free(domain
);
1588 return isl_multi_union_pw_aff_from_union_pw_multi_aff(data
.res
);
1591 /* Embed "schedule" in a loop with schedule "prefix".
1592 * The domain of "prefix" corresponds to the outer dimensions
1593 * of the iteration domains.
1594 * We therefore construct a projection onto these outer dimensions,
1595 * compose it with "prefix" and then add the result as a band schedule.
1597 * If the domain of the schedule is empty, then there is no need
1598 * to insert any node.
1600 static __isl_give isl_schedule
*schedule_embed(
1601 __isl_take isl_schedule
*schedule
, __isl_keep isl_multi_aff
*prefix
)
1605 isl_union_set
*domain
;
1607 isl_multi_union_pw_aff
*mupa
;
1609 domain
= isl_schedule_get_domain(schedule
);
1610 empty
= isl_union_set_is_empty(domain
);
1611 if (empty
< 0 || empty
) {
1612 isl_union_set_free(domain
);
1613 return empty
< 0 ? isl_schedule_free(schedule
) : schedule
;
1616 n
= isl_multi_aff_dim(prefix
, isl_dim_in
);
1617 mupa
= outer_projection_mupa(domain
, n
);
1618 ma
= isl_multi_aff_copy(prefix
);
1619 mupa
= isl_multi_union_pw_aff_apply_multi_aff(mupa
, ma
);
1620 schedule
= isl_schedule_insert_partial_schedule(schedule
, mupa
);
1625 /* Adjust the context and the schedule according to an embedding
1626 * in a loop with iteration domain "dom" and schedule "sched".
1628 struct pet_scop
*pet_scop_embed(struct pet_scop
*scop
, __isl_take isl_set
*dom
,
1629 __isl_take isl_multi_aff
*sched
)
1634 scop
->context
= context_embed(scop
->context
, dom
);
1638 scop
->schedule
= schedule_embed(scop
->schedule
, sched
);
1639 if (!scop
->schedule
)
1643 isl_multi_aff_free(sched
);
1647 isl_multi_aff_free(sched
);
1648 return pet_scop_free(scop
);
1651 /* Add extra conditions to scop->skip[type].
1653 * The new skip condition only holds if it held before
1654 * and the condition is true. It does not hold if it did not hold
1655 * before or the condition is false.
1657 * The skip condition is assumed to be an affine expression.
1659 static struct pet_scop
*pet_scop_restrict_skip(struct pet_scop
*scop
,
1660 enum pet_skip type
, __isl_keep isl_set
*cond
)
1662 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1668 if (!ext
->skip
[type
])
1671 if (!multi_pw_aff_is_affine(ext
->skip
[type
]))
1672 isl_die(isl_multi_pw_aff_get_ctx(ext
->skip
[type
]),
1673 isl_error_internal
, "can only restrict affine skips",
1674 return pet_scop_free(scop
));
1676 skip
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
1677 dom
= isl_pw_aff_domain(isl_pw_aff_copy(skip
));
1678 cond
= isl_set_copy(cond
);
1679 cond
= isl_set_intersect(cond
, isl_pw_aff_non_zero_set(skip
));
1680 skip
= indicator_function(cond
, dom
);
1681 isl_multi_pw_aff_free(ext
->skip
[type
]);
1682 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
1683 if (!ext
->skip
[type
])
1684 return pet_scop_free(scop
);
1689 /* Adjust the context and the skip conditions to the fact that
1690 * the scop was created in a context where "cond" holds.
1692 * An outer loop iterator or parameter value is valid for the result
1693 * if it was valid for the original scop and satisfies "cond" or if it does
1694 * not satisfy "cond" as in this case the scop is not executed
1695 * and the original constraints on these values are irrelevant.
1697 struct pet_scop
*pet_scop_restrict(struct pet_scop
*scop
,
1698 __isl_take isl_set
*cond
)
1700 scop
= pet_scop_restrict_skip(scop
, pet_skip_now
, cond
);
1701 scop
= pet_scop_restrict_skip(scop
, pet_skip_later
, cond
);
1706 scop
->context
= isl_set_intersect(scop
->context
, isl_set_copy(cond
));
1707 scop
->context
= isl_set_union(scop
->context
,
1708 isl_set_complement(isl_set_copy(cond
)));
1709 scop
->context
= isl_set_coalesce(scop
->context
);
1710 scop
->context
= pet_nested_remove_from_set(scop
->context
);
1718 return pet_scop_free(scop
);
1721 /* Insert an argument expression corresponding to "test" in front
1722 * of the list of arguments described by *n_arg and *args.
1724 static int args_insert_access(unsigned *n_arg
, pet_expr
***args
,
1725 __isl_keep isl_multi_pw_aff
*test
)
1728 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(test
);
1734 *args
= isl_calloc_array(ctx
, pet_expr
*, 1);
1739 ext
= isl_calloc_array(ctx
, pet_expr
*, 1 + *n_arg
);
1742 for (i
= 0; i
< *n_arg
; ++i
)
1743 ext
[1 + i
] = (*args
)[i
];
1748 (*args
)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test
));
1755 /* Look through the applications in "scop" for any that can be
1756 * applied to the filter expressed by "map" and "satisified".
1757 * If there is any, then apply it to "map" and return the result.
1758 * Otherwise, return "map".
1759 * "id" is the identifier of the virtual array.
1761 * We only introduce at most one implication for any given virtual array,
1762 * so we can apply the implication and return as soon as we find one.
1764 static __isl_give isl_map
*apply_implications(struct pet_scop
*scop
,
1765 __isl_take isl_map
*map
, __isl_keep isl_id
*id
, int satisfied
)
1769 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1770 struct pet_implication
*pi
= scop
->implications
[i
];
1773 if (pi
->satisfied
!= satisfied
)
1775 pi_id
= isl_map_get_tuple_id(pi
->extension
, isl_dim_in
);
1780 return isl_map_apply_range(map
, isl_map_copy(pi
->extension
));
1786 /* Is the filter expressed by "test" and "satisfied" implied
1787 * by filter "pos" on "domain", with filter "expr", taking into
1788 * account the implications of "scop"?
1790 * For filter on domain implying that expressed by "test" and "satisfied",
1791 * the filter needs to be an access to the same (virtual) array as "test" and
1792 * the filter value needs to be equal to "satisfied".
1793 * Moreover, the filter access relation, possibly extended by
1794 * the implications in "scop" needs to contain "test".
1796 static int implies_filter(struct pet_scop
*scop
,
1797 __isl_keep isl_map
*domain
, int pos
, __isl_keep pet_expr
*expr
,
1798 __isl_keep isl_map
*test
, int satisfied
)
1800 isl_id
*test_id
, *arg_id
;
1807 if (expr
->type
!= pet_expr_access
)
1809 test_id
= isl_map_get_tuple_id(test
, isl_dim_out
);
1810 arg_id
= pet_expr_access_get_id(expr
);
1811 isl_id_free(arg_id
);
1812 isl_id_free(test_id
);
1813 if (test_id
!= arg_id
)
1815 val
= isl_map_plain_get_val_if_fixed(domain
, isl_dim_out
, pos
);
1816 is_int
= isl_val_is_int(val
);
1818 s
= isl_val_get_num_si(val
);
1827 implied
= isl_map_from_multi_pw_aff(pet_expr_access_get_index(expr
));
1828 implied
= apply_implications(scop
, implied
, test_id
, satisfied
);
1829 is_subset
= isl_map_is_subset(test
, implied
);
1830 isl_map_free(implied
);
1835 /* Is the filter expressed by "test" and "satisfied" implied
1836 * by any of the filters on the domain of "stmt", taking into
1837 * account the implications of "scop"?
1839 static int filter_implied(struct pet_scop
*scop
,
1840 struct pet_stmt
*stmt
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
1847 if (!scop
|| !stmt
|| !test
)
1849 if (scop
->n_implication
== 0)
1851 if (stmt
->n_arg
== 0)
1854 domain
= isl_set_unwrap(isl_set_copy(stmt
->domain
));
1855 test_map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test
));
1858 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
1859 implied
= implies_filter(scop
, domain
, i
, stmt
->args
[i
],
1860 test_map
, satisfied
);
1861 if (implied
< 0 || implied
)
1865 isl_map_free(test_map
);
1866 isl_map_free(domain
);
1870 /* Make the statement "stmt" depend on the value of "test"
1871 * being equal to "satisfied" by adjusting stmt->domain.
1873 * The domain of "test" corresponds to the (zero or more) outer dimensions
1874 * of the iteration domain.
1876 * We first extend "test" to apply to the entire iteration domain and
1877 * then check if the filter that we are about to add is implied
1878 * by any of the current filters, possibly taking into account
1879 * the implications in "scop". If so, we leave "stmt" untouched and return.
1881 * Otherwise, we insert an argument corresponding to a read to "test"
1882 * from the iteration domain of "stmt" in front of the list of arguments.
1883 * We also insert a corresponding output dimension in the wrapped
1884 * map contained in stmt->domain, with value set to "satisfied".
1886 static struct pet_stmt
*stmt_filter(struct pet_scop
*scop
,
1887 struct pet_stmt
*stmt
, __isl_take isl_multi_pw_aff
*test
, int satisfied
)
1892 isl_pw_multi_aff
*pma
;
1893 isl_multi_aff
*add_dom
;
1895 isl_local_space
*ls
;
1901 space
= pet_stmt_get_space(stmt
);
1902 n_test_dom
= isl_multi_pw_aff_dim(test
, isl_dim_in
);
1903 space
= isl_space_from_domain(space
);
1904 space
= isl_space_add_dims(space
, isl_dim_out
, n_test_dom
);
1905 add_dom
= isl_multi_aff_zero(isl_space_copy(space
));
1906 ls
= isl_local_space_from_space(isl_space_domain(space
));
1907 for (i
= 0; i
< n_test_dom
; ++i
) {
1909 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1911 add_dom
= isl_multi_aff_set_aff(add_dom
, i
, aff
);
1913 isl_local_space_free(ls
);
1914 test
= isl_multi_pw_aff_pullback_multi_aff(test
, add_dom
);
1916 implied
= filter_implied(scop
, stmt
, test
, satisfied
);
1920 isl_multi_pw_aff_free(test
);
1924 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
1925 pma
= pet_filter_insert_pma(isl_set_get_space(stmt
->domain
),
1927 stmt
->domain
= isl_set_preimage_pw_multi_aff(stmt
->domain
, pma
);
1929 if (args_insert_access(&stmt
->n_arg
, &stmt
->args
, test
) < 0)
1932 isl_multi_pw_aff_free(test
);
1935 isl_multi_pw_aff_free(test
);
1936 return pet_stmt_free(stmt
);
1939 /* Does "scop" have a skip condition of the given "type"?
1941 int pet_scop_has_skip(struct pet_scop
*scop
, enum pet_skip type
)
1943 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1947 return ext
->skip
[type
] != NULL
;
1950 /* Does "scop" have a skip condition of the given "type" that
1951 * is an affine expression?
1953 int pet_scop_has_affine_skip(struct pet_scop
*scop
, enum pet_skip type
)
1955 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1959 if (!ext
->skip
[type
])
1961 return multi_pw_aff_is_affine(ext
->skip
[type
]);
1964 /* Does "scop" have a skip condition of the given "type" that
1965 * is not an affine expression?
1967 int pet_scop_has_var_skip(struct pet_scop
*scop
, enum pet_skip type
)
1969 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1974 if (!ext
->skip
[type
])
1976 aff
= multi_pw_aff_is_affine(ext
->skip
[type
]);
1982 /* Does "scop" have a skip condition of the given "type" that
1983 * is affine and holds on the entire domain?
1985 int pet_scop_has_universal_skip(struct pet_scop
*scop
, enum pet_skip type
)
1987 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1993 is_aff
= pet_scop_has_affine_skip(scop
, type
);
1994 if (is_aff
< 0 || !is_aff
)
1997 pa
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
1998 set
= isl_pw_aff_non_zero_set(pa
);
1999 is_univ
= isl_set_plain_is_universe(set
);
2005 /* Replace scop->skip[type] by "skip".
2007 struct pet_scop
*pet_scop_set_skip(struct pet_scop
*scop
,
2008 enum pet_skip type
, __isl_take isl_multi_pw_aff
*skip
)
2010 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2015 isl_multi_pw_aff_free(ext
->skip
[type
]);
2016 ext
->skip
[type
] = skip
;
2020 isl_multi_pw_aff_free(skip
);
2021 return pet_scop_free(scop
);
2024 /* Return a copy of scop->skip[type].
2026 __isl_give isl_multi_pw_aff
*pet_scop_get_skip(struct pet_scop
*scop
,
2029 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2034 return isl_multi_pw_aff_copy(ext
->skip
[type
]);
2037 /* Assuming scop->skip[type] is an affine expression,
2038 * return the constraints on the outer loop domain for which the skip condition
2041 __isl_give isl_set
*pet_scop_get_affine_skip_domain(struct pet_scop
*scop
,
2044 isl_multi_pw_aff
*skip
;
2047 skip
= pet_scop_get_skip(scop
, type
);
2048 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
2049 isl_multi_pw_aff_free(skip
);
2050 return isl_pw_aff_non_zero_set(pa
);
2053 /* Return the identifier of the variable that is accessed by
2054 * the skip condition of the given type.
2056 * The skip condition is assumed not to be an affine condition.
2058 __isl_give isl_id
*pet_scop_get_skip_id(struct pet_scop
*scop
,
2061 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2066 return isl_multi_pw_aff_get_tuple_id(ext
->skip
[type
], isl_dim_out
);
2069 /* Return an access pet_expr corresponding to the skip condition
2070 * of the given type.
2072 __isl_give pet_expr
*pet_scop_get_skip_expr(struct pet_scop
*scop
,
2075 return pet_expr_from_index(pet_scop_get_skip(scop
, type
));
2078 /* Drop the skip condition scop->skip[type].
2080 void pet_scop_reset_skip(struct pet_scop
*scop
, enum pet_skip type
)
2082 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2087 isl_multi_pw_aff_free(ext
->skip
[type
]);
2088 ext
->skip
[type
] = NULL
;
2091 /* Drop all skip conditions on "scop".
2093 struct pet_scop
*pet_scop_reset_skips(struct pet_scop
*scop
)
2095 pet_scop_reset_skip(scop
, pet_skip_now
);
2096 pet_scop_reset_skip(scop
, pet_skip_later
);
2101 /* Make the skip condition (if any) depend on the value of "test" being
2102 * equal to "satisfied".
2104 * We only support the case where the original skip condition is universal,
2105 * i.e., where skipping is unconditional, and where satisfied == 1.
2106 * In this case, the skip condition is changed to skip only when
2107 * "test" is equal to one.
2109 static struct pet_scop
*pet_scop_filter_skip(struct pet_scop
*scop
,
2110 enum pet_skip type
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2116 if (!pet_scop_has_skip(scop
, type
))
2120 is_univ
= pet_scop_has_universal_skip(scop
, type
);
2122 return pet_scop_free(scop
);
2123 if (satisfied
&& is_univ
) {
2124 isl_multi_pw_aff
*skip
;
2125 skip
= isl_multi_pw_aff_copy(test
);
2126 scop
= pet_scop_set_skip(scop
, type
, skip
);
2130 isl_die(isl_multi_pw_aff_get_ctx(test
), isl_error_internal
,
2131 "skip expression cannot be filtered",
2132 return pet_scop_free(scop
));
2138 /* Make all statements in "scop" depend on the value of "test"
2139 * being equal to "satisfied" by adjusting their domains.
2141 struct pet_scop
*pet_scop_filter(struct pet_scop
*scop
,
2142 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2146 scop
= pet_scop_filter_skip(scop
, pet_skip_now
, test
, satisfied
);
2147 scop
= pet_scop_filter_skip(scop
, pet_skip_later
, test
, satisfied
);
2152 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2153 scop
->stmts
[i
] = stmt_filter(scop
, scop
->stmts
[i
],
2154 isl_multi_pw_aff_copy(test
), satisfied
);
2155 if (!scop
->stmts
[i
])
2159 isl_multi_pw_aff_free(test
);
2162 isl_multi_pw_aff_free(test
);
2163 return pet_scop_free(scop
);
2166 /* Add the parameters of the access expression "expr" to "space".
2168 static int access_collect_params(__isl_keep pet_expr
*expr
, void *user
)
2170 isl_space
*expr_space
;
2171 isl_space
**space
= user
;
2173 expr_space
= pet_expr_access_get_parameter_space(expr
);
2174 *space
= isl_space_align_params(*space
, expr_space
);
2176 return *space
? 0 : -1;
2179 /* Add all parameters in "stmt" to "space" and return the result.
2181 static __isl_give isl_space
*stmt_collect_params(struct pet_stmt
*stmt
,
2182 __isl_take isl_space
*space
)
2187 return isl_space_free(space
);
2189 space
= isl_space_align_params(space
, isl_set_get_space(stmt
->domain
));
2190 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2191 if (pet_expr_foreach_access_expr(stmt
->args
[i
],
2192 &access_collect_params
, &space
) < 0)
2193 space
= isl_space_free(space
);
2194 if (pet_tree_foreach_access_expr(stmt
->body
, &access_collect_params
,
2196 space
= isl_space_free(space
);
2201 /* Add all parameters in "array" to "space" and return the result.
2203 static __isl_give isl_space
*array_collect_params(struct pet_array
*array
,
2204 __isl_take isl_space
*space
)
2207 return isl_space_free(space
);
2209 space
= isl_space_align_params(space
,
2210 isl_set_get_space(array
->context
));
2211 space
= isl_space_align_params(space
, isl_set_get_space(array
->extent
));
2216 /* Add all parameters in "independence" to "space" and return the result.
2218 static __isl_give isl_space
*independence_collect_params(
2219 struct pet_independence
*independence
, __isl_take isl_space
*space
)
2222 return isl_space_free(space
);
2224 space
= isl_space_align_params(space
,
2225 isl_union_map_get_space(independence
->filter
));
2226 space
= isl_space_align_params(space
,
2227 isl_union_set_get_space(independence
->local
));
2232 /* Collect all parameters in "scop" in a parameter space and return the result.
2234 static __isl_give isl_space
*scop_collect_params(struct pet_scop
*scop
)
2242 space
= isl_set_get_space(scop
->context
);
2244 for (i
= 0; i
< scop
->n_array
; ++i
)
2245 space
= array_collect_params(scop
->arrays
[i
], space
);
2247 for (i
= 0; i
< scop
->n_stmt
; ++i
)
2248 space
= stmt_collect_params(scop
->stmts
[i
], space
);
2250 for (i
= 0; i
< scop
->n_independence
; ++i
)
2251 space
= independence_collect_params(scop
->independences
[i
],
2257 /* Add all parameters in "space" to the domain and
2258 * all access relations in "stmt".
2260 static struct pet_stmt
*stmt_propagate_params(struct pet_stmt
*stmt
,
2261 __isl_take isl_space
*space
)
2268 stmt
->domain
= isl_set_align_params(stmt
->domain
,
2269 isl_space_copy(space
));
2271 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2272 stmt
->args
[i
] = pet_expr_align_params(stmt
->args
[i
],
2273 isl_space_copy(space
));
2277 stmt
->body
= pet_tree_align_params(stmt
->body
, isl_space_copy(space
));
2279 if (!stmt
->domain
|| !stmt
->body
)
2282 isl_space_free(space
);
2285 isl_space_free(space
);
2286 return pet_stmt_free(stmt
);
2289 /* Add all parameters in "space" to "array".
2291 static struct pet_array
*array_propagate_params(struct pet_array
*array
,
2292 __isl_take isl_space
*space
)
2297 array
->context
= isl_set_align_params(array
->context
,
2298 isl_space_copy(space
));
2299 array
->extent
= isl_set_align_params(array
->extent
,
2300 isl_space_copy(space
));
2301 if (array
->value_bounds
) {
2302 array
->value_bounds
= isl_set_align_params(array
->value_bounds
,
2303 isl_space_copy(space
));
2304 if (!array
->value_bounds
)
2308 if (!array
->context
|| !array
->extent
)
2311 isl_space_free(space
);
2314 isl_space_free(space
);
2315 return pet_array_free(array
);
2318 /* Add all parameters in "space" to "independence".
2320 static struct pet_independence
*independence_propagate_params(
2321 struct pet_independence
*independence
, __isl_take isl_space
*space
)
2326 independence
->filter
= isl_union_map_align_params(independence
->filter
,
2327 isl_space_copy(space
));
2328 independence
->local
= isl_union_set_align_params(independence
->local
,
2329 isl_space_copy(space
));
2330 if (!independence
->filter
|| !independence
->local
)
2333 isl_space_free(space
);
2334 return independence
;
2336 isl_space_free(space
);
2337 return pet_independence_free(independence
);
2340 /* Add all parameters in "space" to "scop".
2342 static struct pet_scop
*scop_propagate_params(struct pet_scop
*scop
,
2343 __isl_take isl_space
*space
)
2350 scop
->context
= isl_set_align_params(scop
->context
,
2351 isl_space_copy(space
));
2352 scop
->schedule
= isl_schedule_align_params(scop
->schedule
,
2353 isl_space_copy(space
));
2354 if (!scop
->context
|| !scop
->schedule
)
2357 for (i
= 0; i
< scop
->n_array
; ++i
) {
2358 scop
->arrays
[i
] = array_propagate_params(scop
->arrays
[i
],
2359 isl_space_copy(space
));
2360 if (!scop
->arrays
[i
])
2364 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2365 scop
->stmts
[i
] = stmt_propagate_params(scop
->stmts
[i
],
2366 isl_space_copy(space
));
2367 if (!scop
->stmts
[i
])
2371 for (i
= 0; i
< scop
->n_independence
; ++i
) {
2372 scop
->independences
[i
] = independence_propagate_params(
2373 scop
->independences
[i
], isl_space_copy(space
));
2374 if (!scop
->independences
[i
])
2378 isl_space_free(space
);
2381 isl_space_free(space
);
2382 return pet_scop_free(scop
);
2385 /* Update all isl_sets and isl_maps in "scop" such that they all
2386 * have the same parameters.
2388 struct pet_scop
*pet_scop_align_params(struct pet_scop
*scop
)
2395 space
= scop_collect_params(scop
);
2397 scop
= scop_propagate_params(scop
, space
);
2402 /* Add the access relation of the give "type" of the access expression "expr"
2403 * to "accesses" and return the result.
2404 * The domain of the access relation is intersected with "domain".
2405 * If "tag" is set, then the access relation is tagged with
2406 * the corresponding reference identifier.
2408 static __isl_give isl_union_map
*expr_collect_access(__isl_keep pet_expr
*expr
,
2409 enum pet_expr_access_type type
, int tag
,
2410 __isl_take isl_union_map
*accesses
, __isl_keep isl_union_set
*domain
)
2412 isl_union_map
*access
;
2414 access
= pet_expr_access_get_access(expr
, type
);
2415 access
= isl_union_map_intersect_domain(access
,
2416 isl_union_set_copy(domain
));
2418 access
= pet_expr_tag_access(expr
, access
);
2419 return isl_union_map_union(accesses
, access
);
2422 /* Internal data structure for expr_collect_accesses.
2424 * "type" is the type of accesses we want to collect.
2425 * "tag" is set if the access relations should be tagged with
2426 * the corresponding reference identifiers.
2427 * "domain" are constraints on the domain of the access relations.
2428 * "accesses" collects the results.
2430 struct pet_expr_collect_accesses_data
{
2431 enum pet_expr_access_type type
;
2433 isl_union_set
*domain
;
2435 isl_union_map
*accesses
;
2438 /* Add the access relation of the access expression "expr"
2439 * to data->accesses if the access expression is a read and we are collecting
2440 * reads and/or it is a write and we are collecting writes.
2441 * The domains of the access relations are intersected with data->domain.
2442 * If data->tag is set, then the access relations are tagged with
2443 * the corresponding reference identifiers.
2445 * If data->type is pet_expr_access_must_write, then we only add
2446 * the accesses that are definitely performed. Otherwise, we add
2447 * all potential accesses.
2448 * In particular, if the access has any arguments, then in case of
2449 * pet_expr_access_must_write we currently skip the access completely.
2450 * In other cases, we project out the values of the access arguments.
2452 static int expr_collect_accesses(__isl_keep pet_expr
*expr
, void *user
)
2454 struct pet_expr_collect_accesses_data
*data
= user
;
2460 if (pet_expr_is_affine(expr
))
2462 if (data
->type
== pet_expr_access_must_write
&& expr
->n_arg
!= 0)
2465 if ((data
->type
== pet_expr_access_may_read
&& expr
->acc
.read
) ||
2466 ((data
->type
== pet_expr_access_may_write
||
2467 data
->type
== pet_expr_access_must_write
) && expr
->acc
.write
))
2468 data
->accesses
= expr_collect_access(expr
,
2469 data
->type
, data
->tag
,
2470 data
->accesses
, data
->domain
);
2472 return data
->accesses
? 0 : -1;
2475 /* Collect and return all access relations of the given "type" in "stmt".
2476 * If "tag" is set, then the access relations are tagged with
2477 * the corresponding reference identifiers.
2478 * If "type" is pet_expr_access_killed, then "stmt" is a kill statement and
2479 * we simply add the argument of the kill operation.
2481 * If we are looking for definite accesses (pet_expr_access_must_write
2482 * or pet_expr_access_killed), then we only add the accesses that are
2483 * definitely performed. Otherwise, we add all potential accesses.
2484 * In particular, if the statement has any arguments, then if we are looking
2485 * for definite accesses we currently skip the statement completely. Othewise,
2486 * we project out the values of the statement arguments.
2487 * If the statement body is not an expression tree, then we cannot
2488 * know for sure if/when the accesses inside the tree are performed.
2489 * We therefore ignore such statements when we are looking for
2490 * definite accesses.
2492 static __isl_give isl_union_map
*stmt_collect_accesses(struct pet_stmt
*stmt
,
2493 enum pet_expr_access_type type
, int tag
, __isl_take isl_space
*dim
)
2495 struct pet_expr_collect_accesses_data data
= { type
, tag
};
2502 data
.accesses
= isl_union_map_empty(dim
);
2504 if (type
== pet_expr_access_must_write
||
2505 type
== pet_expr_access_killed
)
2510 if (must
&& stmt
->n_arg
> 0)
2511 return data
.accesses
;
2512 if (must
&& pet_tree_get_type(stmt
->body
) != pet_tree_expr
)
2513 return data
.accesses
;
2515 domain
= drop_arguments(isl_set_copy(stmt
->domain
));
2516 data
.domain
= isl_union_set_from_set(domain
);
2518 if (type
== pet_expr_access_killed
) {
2519 pet_expr
*body
, *arg
;
2521 body
= pet_tree_expr_get_expr(stmt
->body
);
2522 arg
= pet_expr_get_arg(body
, 0);
2523 data
.accesses
= expr_collect_access(arg
,
2524 pet_expr_access_killed
, tag
,
2525 data
.accesses
, data
.domain
);
2527 pet_expr_free(body
);
2528 } else if (pet_tree_foreach_access_expr(stmt
->body
,
2529 &expr_collect_accesses
, &data
) < 0)
2530 data
.accesses
= isl_union_map_free(data
.accesses
);
2532 isl_union_set_free(data
.domain
);
2534 return data
.accesses
;
2537 /* Is "stmt" an assignment statement?
2539 int pet_stmt_is_assign(struct pet_stmt
*stmt
)
2543 return pet_tree_is_assign(stmt
->body
);
2546 /* Is "stmt" a kill statement?
2548 int pet_stmt_is_kill(struct pet_stmt
*stmt
)
2552 return pet_tree_is_kill(stmt
->body
);
2555 /* Is "stmt" an assume statement?
2557 int pet_stmt_is_assume(struct pet_stmt
*stmt
)
2561 return pet_tree_is_assume(stmt
->body
);
2564 /* Helper function to add a domain gisted copy of "map" (wrt "set") to "umap".
2566 static __isl_give isl_union_map
*add_gisted(__isl_take isl_union_map
*umap
,
2567 __isl_keep isl_map
*map
, __isl_keep isl_set
*set
)
2571 gist
= isl_map_copy(map
);
2572 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
2573 return isl_union_map_add_map(umap
, gist
);
2576 /* Compute a mapping from all arrays (of structs) in scop
2579 * If "from_outermost" is set, then the domain only consists
2580 * of outermost arrays.
2581 * If "to_innermost" is set, then the range only consists
2582 * of innermost arrays.
2584 static __isl_give isl_union_map
*compute_to_inner(struct pet_scop
*scop
,
2585 int from_outermost
, int to_innermost
)
2588 isl_union_map
*to_inner
;
2593 to_inner
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2595 for (i
= 0; i
< scop
->n_array
; ++i
) {
2596 struct pet_array
*array
= scop
->arrays
[i
];
2600 if (to_innermost
&& array
->element_is_record
)
2603 set
= isl_set_copy(array
->extent
);
2604 map
= isl_set_identity(isl_set_copy(set
));
2606 while (set
&& isl_set_is_wrapping(set
)) {
2610 if (!from_outermost
)
2611 to_inner
= add_gisted(to_inner
, map
, set
);
2613 id
= isl_set_get_tuple_id(set
);
2614 wrapped
= isl_set_unwrap(set
);
2615 wrapped
= isl_map_domain_map(wrapped
);
2616 wrapped
= isl_map_set_tuple_id(wrapped
, isl_dim_in
, id
);
2617 map
= isl_map_apply_domain(map
, wrapped
);
2618 set
= isl_map_domain(isl_map_copy(map
));
2621 map
= isl_map_gist_domain(map
, set
);
2622 to_inner
= isl_union_map_add_map(to_inner
, map
);
2628 /* Compute a mapping from all arrays (of structs) in scop
2629 * to their innermost arrays.
2631 * In particular, for each array of a primitive type, the result
2632 * contains the identity mapping on that array.
2633 * For each array involving member accesses, the result
2634 * contains a mapping from the elements of any intermediate array of structs
2635 * to all corresponding elements of the innermost nested arrays.
2637 static __isl_give isl_union_map
*pet_scop_compute_any_to_inner(
2638 struct pet_scop
*scop
)
2640 return compute_to_inner(scop
, 0, 1);
2643 /* Compute a mapping from all outermost arrays (of structs) in scop
2644 * to their innermost members.
2646 __isl_give isl_union_map
*pet_scop_compute_outer_to_inner(struct pet_scop
*scop
)
2648 return compute_to_inner(scop
, 1, 1);
2651 /* Compute a mapping from all outermost arrays (of structs) in scop
2652 * to their members, including the outermost arrays themselves.
2654 __isl_give isl_union_map
*pet_scop_compute_outer_to_any(struct pet_scop
*scop
)
2656 return compute_to_inner(scop
, 1, 0);
2659 /* Collect and return all access relations of the given "type" in "scop".
2660 * If "type" is pet_expr_access_killed, then we only add the arguments of
2662 * If we are looking for definite accesses (pet_expr_access_must_write
2663 * or pet_expr_access_killed), then we only add the accesses that are
2664 * definitely performed. Otherwise, we add all potential accesses.
2665 * If "tag" is set, then the access relations are tagged with
2666 * the corresponding reference identifiers.
2667 * For accesses to structures, the returned access relation accesses
2668 * all individual fields in the structures.
2670 static __isl_give isl_union_map
*scop_collect_accesses(struct pet_scop
*scop
,
2671 enum pet_expr_access_type type
, int tag
)
2674 isl_union_map
*accesses
;
2675 isl_union_set
*arrays
;
2676 isl_union_map
*to_inner
;
2681 accesses
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2683 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2684 struct pet_stmt
*stmt
= scop
->stmts
[i
];
2685 isl_union_map
*accesses_i
;
2688 if (type
== pet_expr_access_killed
&& !pet_stmt_is_kill(stmt
))
2691 space
= isl_set_get_space(scop
->context
);
2692 accesses_i
= stmt_collect_accesses(stmt
, type
, tag
, space
);
2693 accesses
= isl_union_map_union(accesses
, accesses_i
);
2696 arrays
= isl_union_set_empty(isl_union_map_get_space(accesses
));
2697 for (i
= 0; i
< scop
->n_array
; ++i
) {
2698 isl_set
*extent
= isl_set_copy(scop
->arrays
[i
]->extent
);
2699 arrays
= isl_union_set_add_set(arrays
, extent
);
2701 accesses
= isl_union_map_intersect_range(accesses
, arrays
);
2703 to_inner
= pet_scop_compute_any_to_inner(scop
);
2704 accesses
= isl_union_map_apply_range(accesses
, to_inner
);
2709 /* Return the potential read access relation.
2711 __isl_give isl_union_map
*pet_scop_get_may_reads(struct pet_scop
*scop
)
2713 return scop_collect_accesses(scop
, pet_expr_access_may_read
, 0);
2716 /* Return the potential write access relation.
2718 __isl_give isl_union_map
*pet_scop_get_may_writes(struct pet_scop
*scop
)
2720 return scop_collect_accesses(scop
, pet_expr_access_may_write
, 0);
2723 /* Return the definite write access relation.
2725 __isl_give isl_union_map
*pet_scop_get_must_writes(struct pet_scop
*scop
)
2727 return scop_collect_accesses(scop
, pet_expr_access_must_write
, 0);
2730 /* Return the definite kill access relation.
2732 __isl_give isl_union_map
*pet_scop_get_must_kills(struct pet_scop
*scop
)
2734 return scop_collect_accesses(scop
, pet_expr_access_killed
, 0);
2737 /* Return the tagged potential read access relation.
2739 __isl_give isl_union_map
*pet_scop_get_tagged_may_reads(
2740 struct pet_scop
*scop
)
2742 return scop_collect_accesses(scop
, pet_expr_access_may_read
, 1);
2745 /* Return the tagged potential write access relation.
2747 __isl_give isl_union_map
*pet_scop_get_tagged_may_writes(
2748 struct pet_scop
*scop
)
2750 return scop_collect_accesses(scop
, pet_expr_access_may_write
, 1);
2753 /* Return the tagged definite write access relation.
2755 __isl_give isl_union_map
*pet_scop_get_tagged_must_writes(
2756 struct pet_scop
*scop
)
2758 return scop_collect_accesses(scop
, pet_expr_access_must_write
, 1);
2761 /* Return the tagged definite kill access relation.
2763 __isl_give isl_union_map
*pet_scop_get_tagged_must_kills(
2764 struct pet_scop
*scop
)
2766 return scop_collect_accesses(scop
, pet_expr_access_killed
, 1);
2769 /* Collect and return the set of all statement instances in "scop".
2771 __isl_give isl_union_set
*pet_scop_get_instance_set(struct pet_scop
*scop
)
2775 isl_union_set
*domain
;
2780 domain
= isl_union_set_empty(isl_set_get_space(scop
->context
));
2782 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2783 domain_i
= isl_set_copy(scop
->stmts
[i
]->domain
);
2784 if (scop
->stmts
[i
]->n_arg
> 0)
2785 domain_i
= isl_map_domain(isl_set_unwrap(domain_i
));
2786 domain
= isl_union_set_add_set(domain
, domain_i
);
2792 /* Return the context of "scop".
2794 __isl_give isl_set
*pet_scop_get_context(__isl_keep pet_scop
*scop
)
2799 return isl_set_copy(scop
->context
);
2802 /* Return the schedule of "scop".
2804 __isl_give isl_schedule
*pet_scop_get_schedule(__isl_keep pet_scop
*scop
)
2809 return isl_schedule_copy(scop
->schedule
);
2812 /* Add a reference identifier to all access expressions in "stmt".
2813 * "n_ref" points to an integer that contains the sequence number
2814 * of the next reference.
2816 static struct pet_stmt
*stmt_add_ref_ids(struct pet_stmt
*stmt
, int *n_ref
)
2823 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2824 stmt
->args
[i
] = pet_expr_add_ref_ids(stmt
->args
[i
], n_ref
);
2826 return pet_stmt_free(stmt
);
2829 stmt
->body
= pet_tree_add_ref_ids(stmt
->body
, n_ref
);
2831 return pet_stmt_free(stmt
);
2836 /* Add a reference identifier to all access expressions in "scop".
2838 struct pet_scop
*pet_scop_add_ref_ids(struct pet_scop
*scop
)
2847 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2848 scop
->stmts
[i
] = stmt_add_ref_ids(scop
->stmts
[i
], &n_ref
);
2849 if (!scop
->stmts
[i
])
2850 return pet_scop_free(scop
);
2856 /* Reset the user pointer on all parameter ids in "array".
2858 static struct pet_array
*array_anonymize(struct pet_array
*array
)
2863 array
->context
= isl_set_reset_user(array
->context
);
2864 array
->extent
= isl_set_reset_user(array
->extent
);
2865 if (!array
->context
|| !array
->extent
)
2866 return pet_array_free(array
);
2871 /* Reset the user pointer on all parameter and tuple ids in "stmt".
2873 static struct pet_stmt
*stmt_anonymize(struct pet_stmt
*stmt
)
2882 stmt
->domain
= isl_set_reset_user(stmt
->domain
);
2884 return pet_stmt_free(stmt
);
2886 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2887 stmt
->args
[i
] = pet_expr_anonymize(stmt
->args
[i
]);
2889 return pet_stmt_free(stmt
);
2892 stmt
->body
= pet_tree_anonymize(stmt
->body
);
2894 return pet_stmt_free(stmt
);
2899 /* Reset the user pointer on the tuple ids and all parameter ids
2902 static struct pet_implication
*implication_anonymize(
2903 struct pet_implication
*implication
)
2908 implication
->extension
= isl_map_reset_user(implication
->extension
);
2909 if (!implication
->extension
)
2910 return pet_implication_free(implication
);
2915 /* Reset the user pointer on the tuple ids and all parameter ids
2916 * in "independence".
2918 static struct pet_independence
*independence_anonymize(
2919 struct pet_independence
*independence
)
2924 independence
->filter
= isl_union_map_reset_user(independence
->filter
);
2925 independence
->local
= isl_union_set_reset_user(independence
->local
);
2926 if (!independence
->filter
|| !independence
->local
)
2927 return pet_independence_free(independence
);
2929 return independence
;
2932 /* Reset the user pointer on all parameter and tuple ids in "scop".
2934 struct pet_scop
*pet_scop_anonymize(struct pet_scop
*scop
)
2941 scop
->context
= isl_set_reset_user(scop
->context
);
2942 scop
->context_value
= isl_set_reset_user(scop
->context_value
);
2943 scop
->schedule
= isl_schedule_reset_user(scop
->schedule
);
2944 if (!scop
->context
|| !scop
->context_value
|| !scop
->schedule
)
2945 return pet_scop_free(scop
);
2947 for (i
= 0; i
< scop
->n_array
; ++i
) {
2948 scop
->arrays
[i
] = array_anonymize(scop
->arrays
[i
]);
2949 if (!scop
->arrays
[i
])
2950 return pet_scop_free(scop
);
2953 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2954 scop
->stmts
[i
] = stmt_anonymize(scop
->stmts
[i
]);
2955 if (!scop
->stmts
[i
])
2956 return pet_scop_free(scop
);
2959 for (i
= 0; i
< scop
->n_implication
; ++i
) {
2960 scop
->implications
[i
] =
2961 implication_anonymize(scop
->implications
[i
]);
2962 if (!scop
->implications
[i
])
2963 return pet_scop_free(scop
);
2966 for (i
= 0; i
< scop
->n_independence
; ++i
) {
2967 scop
->independences
[i
] =
2968 independence_anonymize(scop
->independences
[i
]);
2969 if (!scop
->independences
[i
])
2970 return pet_scop_free(scop
);
2976 /* Compute the gist of the iteration domain and all access relations
2977 * of "stmt" based on the constraints on the parameters specified by "context"
2978 * and the constraints on the values of nested accesses specified
2979 * by "value_bounds".
2981 static struct pet_stmt
*stmt_gist(struct pet_stmt
*stmt
,
2982 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*value_bounds
)
2990 domain
= isl_set_copy(stmt
->domain
);
2991 if (stmt
->n_arg
> 0)
2992 domain
= isl_map_domain(isl_set_unwrap(domain
));
2994 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
2996 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2997 stmt
->args
[i
] = pet_expr_gist(stmt
->args
[i
],
2998 domain
, value_bounds
);
3003 stmt
->body
= pet_tree_gist(stmt
->body
, domain
, value_bounds
);
3007 isl_set_free(domain
);
3009 domain
= isl_set_universe(pet_stmt_get_space(stmt
));
3010 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
3011 if (stmt
->n_arg
> 0)
3012 domain
= pet_value_bounds_apply(domain
, stmt
->n_arg
, stmt
->args
,
3014 stmt
->domain
= isl_set_gist(stmt
->domain
, domain
);
3016 return pet_stmt_free(stmt
);
3020 isl_set_free(domain
);
3021 return pet_stmt_free(stmt
);
3024 /* Compute the gist of the extent of the array
3025 * based on the constraints on the parameters specified by "context".
3027 static struct pet_array
*array_gist(struct pet_array
*array
,
3028 __isl_keep isl_set
*context
)
3033 array
->extent
= isl_set_gist_params(array
->extent
,
3034 isl_set_copy(context
));
3036 return pet_array_free(array
);
3041 /* Compute the gist of all sets and relations in "scop"
3042 * based on the constraints on the parameters specified by "scop->context"
3043 * and the constraints on the values of nested accesses specified
3044 * by "value_bounds".
3046 struct pet_scop
*pet_scop_gist(struct pet_scop
*scop
,
3047 __isl_keep isl_union_map
*value_bounds
)
3054 scop
->context
= isl_set_coalesce(scop
->context
);
3056 return pet_scop_free(scop
);
3058 scop
->schedule
= isl_schedule_gist_domain_params(scop
->schedule
,
3059 isl_set_copy(scop
->context
));
3060 if (!scop
->schedule
)
3061 return pet_scop_free(scop
);
3063 for (i
= 0; i
< scop
->n_array
; ++i
) {
3064 scop
->arrays
[i
] = array_gist(scop
->arrays
[i
], scop
->context
);
3065 if (!scop
->arrays
[i
])
3066 return pet_scop_free(scop
);
3069 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3070 scop
->stmts
[i
] = stmt_gist(scop
->stmts
[i
], scop
->context
,
3072 if (!scop
->stmts
[i
])
3073 return pet_scop_free(scop
);
3079 /* Intersect the context of "scop" with "context".
3080 * To ensure that we don't introduce any unnamed parameters in
3081 * the context of "scop", we first remove the unnamed parameters
3084 struct pet_scop
*pet_scop_restrict_context(struct pet_scop
*scop
,
3085 __isl_take isl_set
*context
)
3090 context
= pet_nested_remove_from_set(context
);
3091 scop
->context
= isl_set_intersect(scop
->context
, context
);
3093 return pet_scop_free(scop
);
3097 isl_set_free(context
);
3098 return pet_scop_free(scop
);
3101 /* Drop the current context of "scop". That is, replace the context
3102 * by a universal set.
3104 struct pet_scop
*pet_scop_reset_context(struct pet_scop
*scop
)
3111 space
= isl_set_get_space(scop
->context
);
3112 isl_set_free(scop
->context
);
3113 scop
->context
= isl_set_universe(space
);
3115 return pet_scop_free(scop
);
3120 /* Append "array" to the arrays of "scop".
3122 struct pet_scop
*pet_scop_add_array(struct pet_scop
*scop
,
3123 struct pet_array
*array
)
3126 struct pet_array
**arrays
;
3128 if (!array
|| !scop
)
3131 ctx
= isl_set_get_ctx(scop
->context
);
3132 arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3136 scop
->arrays
= arrays
;
3137 scop
->arrays
[scop
->n_array
] = array
;
3139 scop
->context
= isl_set_intersect_params(scop
->context
,
3140 isl_set_copy(array
->context
));
3142 return pet_scop_free(scop
);
3146 pet_array_free(array
);
3147 return pet_scop_free(scop
);
3150 /* Create an index expression for an access to a virtual array
3151 * representing the result of a condition.
3152 * Unlike other accessed data, the id of the array is NULL as
3153 * there is no ValueDecl in the program corresponding to the virtual
3155 * The index expression is created as an identity mapping on "space".
3156 * That is, the dimension of the array is the same as that of "space".
3158 __isl_give isl_multi_pw_aff
*pet_create_test_index(__isl_take isl_space
*space
,
3164 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
3165 id
= isl_id_alloc(isl_space_get_ctx(space
), name
, NULL
);
3166 space
= isl_space_map_from_set(space
);
3167 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
3168 return isl_multi_pw_aff_identity(space
);
3171 /* Add an array with the given extent to the list
3172 * of arrays in "scop" and return the extended pet_scop.
3173 * Specifically, the extent is determined by the image of "domain"
3175 * "int_size" is the number of bytes needed to represent values of type "int".
3176 * The array is marked as attaining values 0 and 1 only and
3177 * as each element being assigned at most once.
3179 struct pet_scop
*pet_scop_add_boolean_array(struct pet_scop
*scop
,
3180 __isl_take isl_set
*domain
, __isl_take isl_multi_pw_aff
*index
,
3185 struct pet_array
*array
;
3188 if (!scop
|| !domain
|| !index
)
3191 ctx
= isl_multi_pw_aff_get_ctx(index
);
3192 array
= isl_calloc_type(ctx
, struct pet_array
);
3196 access
= isl_map_from_multi_pw_aff(index
);
3197 access
= isl_map_intersect_domain(access
, domain
);
3198 array
->extent
= isl_map_range(access
);
3199 space
= isl_space_params_alloc(ctx
, 0);
3200 array
->context
= isl_set_universe(space
);
3201 space
= isl_space_set_alloc(ctx
, 0, 1);
3202 array
->value_bounds
= isl_set_universe(space
);
3203 array
->value_bounds
= isl_set_lower_bound_si(array
->value_bounds
,
3205 array
->value_bounds
= isl_set_upper_bound_si(array
->value_bounds
,
3207 array
->element_type
= strdup("int");
3208 array
->element_size
= int_size
;
3209 array
->uniquely_defined
= 1;
3211 if (!array
->extent
|| !array
->context
)
3212 array
= pet_array_free(array
);
3214 scop
= pet_scop_add_array(scop
, array
);
3218 isl_set_free(domain
);
3219 isl_multi_pw_aff_free(index
);
3220 return pet_scop_free(scop
);
3223 /* Create and return an implication on filter values equal to "satisfied"
3224 * with extension "map".
3226 static struct pet_implication
*new_implication(__isl_take isl_map
*map
,
3230 struct pet_implication
*implication
;
3234 ctx
= isl_map_get_ctx(map
);
3235 implication
= isl_alloc_type(ctx
, struct pet_implication
);
3239 implication
->extension
= map
;
3240 implication
->satisfied
= satisfied
;
3248 /* Add an implication on filter values equal to "satisfied"
3249 * with extension "map" to "scop".
3251 struct pet_scop
*pet_scop_add_implication(struct pet_scop
*scop
,
3252 __isl_take isl_map
*map
, int satisfied
)
3255 struct pet_implication
*implication
;
3256 struct pet_implication
**implications
;
3258 implication
= new_implication(map
, satisfied
);
3259 if (!scop
|| !implication
)
3262 ctx
= isl_set_get_ctx(scop
->context
);
3263 implications
= isl_realloc_array(ctx
, scop
->implications
,
3264 struct pet_implication
*,
3265 scop
->n_implication
+ 1);
3268 scop
->implications
= implications
;
3269 scop
->implications
[scop
->n_implication
] = implication
;
3270 scop
->n_implication
++;
3274 pet_implication_free(implication
);
3275 return pet_scop_free(scop
);
3278 /* Create and return a function that maps the iteration domains
3279 * of the statements in "scop" onto their outer "n" dimensions.
3280 * "space" is the parameters space of the created function.
3282 static __isl_give isl_union_pw_multi_aff
*outer_projection(
3283 struct pet_scop
*scop
, __isl_take isl_space
*space
, int n
)
3286 isl_union_pw_multi_aff
*res
;
3288 res
= isl_union_pw_multi_aff_empty(space
);
3291 return isl_union_pw_multi_aff_free(res
);
3293 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3294 struct pet_stmt
*stmt
= scop
->stmts
[i
];
3297 isl_pw_multi_aff
*pma
;
3299 space
= pet_stmt_get_space(stmt
);
3300 ma
= pet_prefix_projection(space
, n
);
3301 pma
= isl_pw_multi_aff_from_multi_aff(ma
);
3302 res
= isl_union_pw_multi_aff_add_pw_multi_aff(res
, pma
);
3308 /* Add an independence to "scop" for the inner iterator of "domain"
3309 * with local variables "local", where "domain" represents the outer
3310 * loop iterators of all statements in "scop".
3311 * If "sign" is positive, then the inner iterator increases.
3312 * Otherwise it decreases.
3314 * The independence is supposed to filter out any dependence of
3315 * an iteration of domain on a previous iteration along the inner dimension.
3316 * We therefore create a mapping from an iteration to later iterations and
3317 * then plug in the projection of the iterations domains of "scop"
3318 * onto the outer loop iterators.
3320 struct pet_scop
*pet_scop_set_independent(struct pet_scop
*scop
,
3321 __isl_keep isl_set
*domain
, __isl_take isl_union_set
*local
, int sign
)
3326 isl_union_map
*independence
;
3327 isl_union_pw_multi_aff
*proj
;
3329 if (!scop
|| !domain
|| !local
)
3332 dim
= isl_set_dim(domain
, isl_dim_set
);
3333 space
= isl_space_map_from_set(isl_set_get_space(domain
));
3334 map
= isl_map_universe(space
);
3335 for (i
= 0; i
+ 1 < dim
; ++i
)
3336 map
= isl_map_equate(map
, isl_dim_in
, i
, isl_dim_out
, i
);
3338 map
= isl_map_order_lt(map
,
3339 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
3341 map
= isl_map_order_gt(map
,
3342 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
3344 independence
= isl_union_map_from_map(map
);
3345 space
= isl_space_params(isl_set_get_space(domain
));
3346 proj
= outer_projection(scop
, space
, dim
);
3347 independence
= isl_union_map_preimage_domain_union_pw_multi_aff(
3348 independence
, isl_union_pw_multi_aff_copy(proj
));
3349 independence
= isl_union_map_preimage_range_union_pw_multi_aff(
3350 independence
, proj
);
3352 scop
= pet_scop_add_independence(scop
, independence
, local
);
3356 isl_union_set_free(local
);
3357 return pet_scop_free(scop
);
3360 /* Given an access expression, check if it is data dependent.
3361 * If so, set *found and abort the search.
3363 static int is_data_dependent(__isl_keep pet_expr
*expr
, void *user
)
3367 if (pet_expr_get_n_arg(expr
) > 0) {
3375 /* Does "scop" contain any data dependent accesses?
3377 * Check the body of each statement for such accesses.
3379 int pet_scop_has_data_dependent_accesses(struct pet_scop
*scop
)
3387 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3388 int r
= pet_tree_foreach_access_expr(scop
->stmts
[i
]->body
,
3389 &is_data_dependent
, &found
);
3390 if (r
< 0 && !found
)
3399 /* Does "scop" contain and data dependent conditions?
3401 int pet_scop_has_data_dependent_conditions(struct pet_scop
*scop
)
3408 for (i
= 0; i
< scop
->n_stmt
; ++i
)
3409 if (scop
->stmts
[i
]->n_arg
> 0)
3415 /* Keep track of the "input" file inside the (extended) "scop".
3417 struct pet_scop
*pet_scop_set_input_file(struct pet_scop
*scop
, FILE *input
)
3419 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3429 /* Print the original code corresponding to "scop" to printer "p".
3431 * pet_scop_print_original can only be called from
3432 * a pet_transform_C_source callback. This means that the input
3433 * file is stored in the extended scop and that the printer prints
3436 __isl_give isl_printer
*pet_scop_print_original(struct pet_scop
*scop
,
3437 __isl_take isl_printer
*p
)
3439 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3441 unsigned start
, end
;
3444 return isl_printer_free(p
);
3447 isl_die(isl_printer_get_ctx(p
), isl_error_invalid
,
3448 "no input file stored in scop",
3449 return isl_printer_free(p
));
3451 output
= isl_printer_get_file(p
);
3453 return isl_printer_free(p
);
3455 start
= pet_loc_get_start(scop
->loc
);
3456 end
= pet_loc_get_end(scop
->loc
);
3457 if (copy(ext
->input
, output
, start
, end
) < 0)
3458 return isl_printer_free(p
);