1 /*-------------------------------------------------------------------------
4 * Routines to support inter-object dependencies.
7 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
11 * src/backend/catalog/dependency.c
13 *-------------------------------------------------------------------------
17 #include "access/genam.h"
18 #include "access/htup_details.h"
19 #include "access/table.h"
20 #include "access/xact.h"
21 #include "catalog/catalog.h"
22 #include "catalog/dependency.h"
23 #include "catalog/heap.h"
24 #include "catalog/index.h"
25 #include "catalog/objectaccess.h"
26 #include "catalog/pg_am.h"
27 #include "catalog/pg_amop.h"
28 #include "catalog/pg_amproc.h"
29 #include "catalog/pg_attrdef.h"
30 #include "catalog/pg_authid.h"
31 #include "catalog/pg_auth_members.h"
32 #include "catalog/pg_cast.h"
33 #include "catalog/pg_collation.h"
34 #include "catalog/pg_constraint.h"
35 #include "catalog/pg_conversion.h"
36 #include "catalog/pg_database.h"
37 #include "catalog/pg_default_acl.h"
38 #include "catalog/pg_depend.h"
39 #include "catalog/pg_event_trigger.h"
40 #include "catalog/pg_extension.h"
41 #include "catalog/pg_foreign_data_wrapper.h"
42 #include "catalog/pg_foreign_server.h"
43 #include "catalog/pg_init_privs.h"
44 #include "catalog/pg_language.h"
45 #include "catalog/pg_largeobject.h"
46 #include "catalog/pg_namespace.h"
47 #include "catalog/pg_opclass.h"
48 #include "catalog/pg_operator.h"
49 #include "catalog/pg_opfamily.h"
50 #include "catalog/pg_parameter_acl.h"
51 #include "catalog/pg_policy.h"
52 #include "catalog/pg_proc.h"
53 #include "catalog/pg_publication.h"
54 #include "catalog/pg_publication_namespace.h"
55 #include "catalog/pg_publication_rel.h"
56 #include "catalog/pg_rewrite.h"
57 #include "catalog/pg_statistic_ext.h"
58 #include "catalog/pg_subscription.h"
59 #include "catalog/pg_tablespace.h"
60 #include "catalog/pg_transform.h"
61 #include "catalog/pg_trigger.h"
62 #include "catalog/pg_ts_config.h"
63 #include "catalog/pg_ts_dict.h"
64 #include "catalog/pg_ts_parser.h"
65 #include "catalog/pg_ts_template.h"
66 #include "catalog/pg_type.h"
67 #include "catalog/pg_user_mapping.h"
68 #include "commands/comment.h"
69 #include "commands/defrem.h"
70 #include "commands/event_trigger.h"
71 #include "commands/extension.h"
72 #include "commands/policy.h"
73 #include "commands/publicationcmds.h"
74 #include "commands/seclabel.h"
75 #include "commands/sequence.h"
76 #include "commands/trigger.h"
77 #include "commands/typecmds.h"
79 #include "miscadmin.h"
80 #include "nodes/nodeFuncs.h"
81 #include "parser/parsetree.h"
82 #include "rewrite/rewriteRemove.h"
83 #include "storage/lmgr.h"
84 #include "utils/fmgroids.h"
85 #include "utils/lsyscache.h"
86 #include "utils/syscache.h"
90 * Deletion processing requires additional state for each ObjectAddress that
91 * it's planning to delete. For simplicity and code-sharing we make the
92 * ObjectAddresses code support arrays with or without this extra state.
96 int flags
; /* bitmask, see bit definitions below */
97 ObjectAddress dependee
; /* object whose deletion forced this one */
100 /* ObjectAddressExtra flag bits */
101 #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
102 #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
103 #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
104 #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
105 #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
106 #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
107 #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
108 #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
109 #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
112 /* expansible list of ObjectAddresses */
113 struct ObjectAddresses
115 ObjectAddress
*refs
; /* => palloc'd array */
116 ObjectAddressExtra
*extras
; /* => palloc'd array, or NULL if not used */
117 int numrefs
; /* current number of references */
118 int maxrefs
; /* current size of palloc'd array(s) */
121 /* typedef ObjectAddresses appears in dependency.h */
123 /* threaded list of ObjectAddresses, for recursion detection */
124 typedef struct ObjectAddressStack
126 const ObjectAddress
*object
; /* object being visited */
127 int flags
; /* its current flag bits */
128 struct ObjectAddressStack
*next
; /* next outer stack level */
129 } ObjectAddressStack
;
131 /* temporary storage in findDependentObjects */
134 ObjectAddress obj
; /* object to be deleted --- MUST BE FIRST */
135 int subflags
; /* flags to pass down when recursing to obj */
136 } ObjectAddressAndFlags
;
138 /* for find_expr_references_walker */
141 ObjectAddresses
*addrs
; /* addresses being accumulated */
142 List
*rtables
; /* list of rangetables to resolve Vars */
143 } find_expr_references_context
;
146 static void findDependentObjects(const ObjectAddress
*object
,
149 ObjectAddressStack
*stack
,
150 ObjectAddresses
*targetObjects
,
151 const ObjectAddresses
*pendingObjects
,
153 static void reportDependentObjects(const ObjectAddresses
*targetObjects
,
154 DropBehavior behavior
,
156 const ObjectAddress
*origObject
);
157 static void deleteOneObject(const ObjectAddress
*object
,
158 Relation
*depRel
, int32 flags
);
159 static void doDeletion(const ObjectAddress
*object
, int flags
);
160 static bool find_expr_references_walker(Node
*node
,
161 find_expr_references_context
*context
);
162 static void process_function_rte_ref(RangeTblEntry
*rte
, AttrNumber attnum
,
163 find_expr_references_context
*context
);
164 static void eliminate_duplicate_dependencies(ObjectAddresses
*addrs
);
165 static int object_address_comparator(const void *a
, const void *b
);
166 static void add_object_address(Oid classId
, Oid objectId
, int32 subId
,
167 ObjectAddresses
*addrs
);
168 static void add_exact_object_address_extra(const ObjectAddress
*object
,
169 const ObjectAddressExtra
*extra
,
170 ObjectAddresses
*addrs
);
171 static bool object_address_present_add_flags(const ObjectAddress
*object
,
173 ObjectAddresses
*addrs
);
174 static bool stack_address_present_add_flags(const ObjectAddress
*object
,
176 ObjectAddressStack
*stack
);
177 static void DeleteInitPrivs(const ObjectAddress
*object
);
181 * Go through the objects given running the final actions on them, and execute
182 * the actual deletion.
185 deleteObjectsInList(ObjectAddresses
*targetObjects
, Relation
*depRel
,
191 * Keep track of objects for event triggers, if necessary.
193 if (trackDroppedObjectsNeeded() && !(flags
& PERFORM_DELETION_INTERNAL
))
195 for (i
= 0; i
< targetObjects
->numrefs
; i
++)
197 const ObjectAddress
*thisobj
= &targetObjects
->refs
[i
];
198 const ObjectAddressExtra
*extra
= &targetObjects
->extras
[i
];
199 bool original
= false;
202 if (extra
->flags
& DEPFLAG_ORIGINAL
)
204 if (extra
->flags
& DEPFLAG_NORMAL
)
206 if (extra
->flags
& DEPFLAG_REVERSE
)
209 if (EventTriggerSupportsObject(thisobj
))
211 EventTriggerSQLDropAddObject(thisobj
, original
, normal
);
217 * Delete all the objects in the proper order, except that if told to, we
218 * should skip the original object(s).
220 for (i
= 0; i
< targetObjects
->numrefs
; i
++)
222 ObjectAddress
*thisobj
= targetObjects
->refs
+ i
;
223 ObjectAddressExtra
*thisextra
= targetObjects
->extras
+ i
;
225 if ((flags
& PERFORM_DELETION_SKIP_ORIGINAL
) &&
226 (thisextra
->flags
& DEPFLAG_ORIGINAL
))
229 deleteOneObject(thisobj
, depRel
, flags
);
234 * performDeletion: attempt to drop the specified object. If CASCADE
235 * behavior is specified, also drop any dependent objects (recursively).
236 * If RESTRICT behavior is specified, error out if there are any dependent
237 * objects, except for those that should be implicitly dropped anyway
238 * according to the dependency type.
240 * This is the outer control routine for all forms of DROP that drop objects
241 * that can participate in dependencies. Note that performMultipleDeletions
242 * is a variant on the same theme; if you change anything here you'll likely
243 * need to fix that too.
245 * Bits in the flags argument can include:
247 * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
248 * direct result of a user-initiated action. For example, when a temporary
249 * schema is cleaned out so that a new backend can use it, or when a column
250 * default is dropped as an intermediate step while adding a new one, that's
251 * an internal operation. On the other hand, when we drop something because
252 * the user issued a DROP statement against it, that's not internal. Currently
253 * this suppresses calling event triggers and making some permissions checks.
255 * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
256 * not currently work for anything except dropping indexes; don't set it for
257 * other object types or you may get strange results.
259 * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
261 * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
262 * but only what depends on it/them.
264 * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
265 * deleting objects that are part of an extension. This should generally
266 * be used only when dropping temporary objects.
268 * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
269 * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
273 performDeletion(const ObjectAddress
*object
,
274 DropBehavior behavior
, int flags
)
277 ObjectAddresses
*targetObjects
;
280 * We save some cycles by opening pg_depend just once and passing the
281 * Relation pointer down to all the recursive deletion steps.
283 depRel
= table_open(DependRelationId
, RowExclusiveLock
);
286 * Acquire deletion lock on the target object. (Ideally the caller has
287 * done this already, but many places are sloppy about it.)
289 AcquireDeletionLock(object
, 0);
292 * Construct a list of objects to delete (ie, the given object plus
293 * everything directly or indirectly dependent on it).
295 targetObjects
= new_object_addresses();
297 findDependentObjects(object
,
300 NULL
, /* empty stack */
302 NULL
, /* no pendingObjects */
306 * Check if deletion is allowed, and report about cascaded deletes.
308 reportDependentObjects(targetObjects
,
314 deleteObjectsInList(targetObjects
, &depRel
, flags
);
317 free_object_addresses(targetObjects
);
319 table_close(depRel
, RowExclusiveLock
);
323 * performMultipleDeletions: Similar to performDeletion, but act on multiple
326 * The main difference from issuing multiple performDeletion calls is that the
327 * list of objects that would be implicitly dropped, for each object to be
328 * dropped, is the union of the implicit-object list for all objects. This
329 * makes each check be more relaxed.
332 performMultipleDeletions(const ObjectAddresses
*objects
,
333 DropBehavior behavior
, int flags
)
336 ObjectAddresses
*targetObjects
;
339 /* No work if no objects... */
340 if (objects
->numrefs
<= 0)
344 * We save some cycles by opening pg_depend just once and passing the
345 * Relation pointer down to all the recursive deletion steps.
347 depRel
= table_open(DependRelationId
, RowExclusiveLock
);
350 * Construct a list of objects to delete (ie, the given objects plus
351 * everything directly or indirectly dependent on them). Note that
352 * because we pass the whole objects list as pendingObjects context, we
353 * won't get a failure from trying to delete an object that is internally
354 * dependent on another one in the list; we'll just skip that object and
355 * delete it when we reach its owner.
357 targetObjects
= new_object_addresses();
359 for (i
= 0; i
< objects
->numrefs
; i
++)
361 const ObjectAddress
*thisobj
= objects
->refs
+ i
;
364 * Acquire deletion lock on each target object. (Ideally the caller
365 * has done this already, but many places are sloppy about it.)
367 AcquireDeletionLock(thisobj
, flags
);
369 findDependentObjects(thisobj
,
372 NULL
, /* empty stack */
379 * Check if deletion is allowed, and report about cascaded deletes.
381 * If there's exactly one object being deleted, report it the same way as
382 * in performDeletion(), else we have to be vaguer.
384 reportDependentObjects(targetObjects
,
387 (objects
->numrefs
== 1 ? objects
->refs
: NULL
));
390 deleteObjectsInList(targetObjects
, &depRel
, flags
);
393 free_object_addresses(targetObjects
);
395 table_close(depRel
, RowExclusiveLock
);
399 * findDependentObjects - find all objects that depend on 'object'
401 * For every object that depends on the starting object, acquire a deletion
402 * lock on the object, add it to targetObjects (if not already there),
403 * and recursively find objects that depend on it. An object's dependencies
404 * will be placed into targetObjects before the object itself; this means
405 * that the finished list's order represents a safe deletion order.
407 * The caller must already have a deletion lock on 'object' itself,
408 * but must not have added it to targetObjects. (Note: there are corner
409 * cases where we won't add the object either, and will also release the
410 * caller-taken lock. This is a bit ugly, but the API is set up this way
411 * to allow easy rechecking of an object's liveness after we lock it. See
412 * notes within the function.)
414 * When dropping a whole object (subId = 0), we find dependencies for
415 * its sub-objects too.
417 * object: the object to add to targetObjects and find dependencies on
418 * objflags: flags to be ORed into the object's targetObjects entry
419 * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
420 * stack: list of objects being visited in current recursion; topmost item
421 * is the object that we recursed from (NULL for external callers)
422 * targetObjects: list of objects that are scheduled to be deleted
423 * pendingObjects: list of other objects slated for destruction, but
424 * not necessarily in targetObjects yet (can be NULL if none)
425 * *depRel: already opened pg_depend relation
427 * Note: objflags describes the reason for visiting this particular object
428 * at this time, and is not passed down when recursing. The flags argument
429 * is passed down, since it describes what we're doing overall.
432 findDependentObjects(const ObjectAddress
*object
,
435 ObjectAddressStack
*stack
,
436 ObjectAddresses
*targetObjects
,
437 const ObjectAddresses
*pendingObjects
,
444 ObjectAddress otherObject
;
445 ObjectAddress owningObject
;
446 ObjectAddress partitionObject
;
447 ObjectAddressAndFlags
*dependentObjects
;
448 int numDependentObjects
;
449 int maxDependentObjects
;
450 ObjectAddressStack mystack
;
451 ObjectAddressExtra extra
;
454 * If the target object is already being visited in an outer recursion
455 * level, just report the current objflags back to that level and exit.
456 * This is needed to avoid infinite recursion in the face of circular
459 * The stack check alone would result in dependency loops being broken at
460 * an arbitrary point, ie, the first member object of the loop to be
461 * visited is the last one to be deleted. This is obviously unworkable.
462 * However, the check for internal dependency below guarantees that we
463 * will not break a loop at an internal dependency: if we enter the loop
464 * at an "owned" object we will switch and start at the "owning" object
465 * instead. We could probably hack something up to avoid breaking at an
466 * auto dependency, too, if we had to. However there are no known cases
467 * where that would be necessary.
469 if (stack_address_present_add_flags(object
, objflags
, stack
))
473 * since this function recurses, it could be driven to stack overflow,
474 * because of the deep dependency tree, not only due to dependency loops.
479 * It's also possible that the target object has already been completely
480 * processed and put into targetObjects. If so, again we just add the
481 * specified objflags to its entry and return.
483 * (Note: in these early-exit cases we could release the caller-taken
484 * lock, since the object is presumably now locked multiple times; but it
485 * seems not worth the cycles.)
487 if (object_address_present_add_flags(object
, objflags
, targetObjects
))
491 * If the target object is pinned, we can just error out immediately; it
492 * won't have any objects recorded as depending on it.
494 if (IsPinnedObject(object
->classId
, object
->objectId
))
496 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST
),
497 errmsg("cannot drop %s because it is required by the database system",
498 getObjectDescription(object
, false))));
501 * The target object might be internally dependent on some other object
502 * (its "owner"), and/or be a member of an extension (also considered its
503 * owner). If so, and if we aren't recursing from the owning object, we
504 * have to transform this deletion request into a deletion request of the
505 * owning object. (We'll eventually recurse back to this object, but the
506 * owning object has to be visited first so it will be deleted after.) The
507 * way to find out about this is to scan the pg_depend entries that show
508 * what this object depends on.
511 Anum_pg_depend_classid
,
512 BTEqualStrategyNumber
, F_OIDEQ
,
513 ObjectIdGetDatum(object
->classId
));
515 Anum_pg_depend_objid
,
516 BTEqualStrategyNumber
, F_OIDEQ
,
517 ObjectIdGetDatum(object
->objectId
));
518 if (object
->objectSubId
!= 0)
520 /* Consider only dependencies of this sub-object */
522 Anum_pg_depend_objsubid
,
523 BTEqualStrategyNumber
, F_INT4EQ
,
524 Int32GetDatum(object
->objectSubId
));
529 /* Consider dependencies of this object and any sub-objects it has */
533 scan
= systable_beginscan(*depRel
, DependDependerIndexId
, true,
536 /* initialize variables that loop may fill */
537 memset(&owningObject
, 0, sizeof(owningObject
));
538 memset(&partitionObject
, 0, sizeof(partitionObject
));
540 while (HeapTupleIsValid(tup
= systable_getnext(scan
)))
542 Form_pg_depend foundDep
= (Form_pg_depend
) GETSTRUCT(tup
);
544 otherObject
.classId
= foundDep
->refclassid
;
545 otherObject
.objectId
= foundDep
->refobjid
;
546 otherObject
.objectSubId
= foundDep
->refobjsubid
;
549 * When scanning dependencies of a whole object, we may find rows
550 * linking sub-objects of the object to the object itself. (Normally,
551 * such a dependency is implicit, but we must make explicit ones in
552 * some cases involving partitioning.) We must ignore such rows to
553 * avoid infinite recursion.
555 if (otherObject
.classId
== object
->classId
&&
556 otherObject
.objectId
== object
->objectId
&&
557 object
->objectSubId
== 0)
560 switch (foundDep
->deptype
)
562 case DEPENDENCY_NORMAL
:
563 case DEPENDENCY_AUTO
:
564 case DEPENDENCY_AUTO_EXTENSION
:
568 case DEPENDENCY_EXTENSION
:
571 * If told to, ignore EXTENSION dependencies altogether. This
572 * flag is normally used to prevent dropping extensions during
573 * temporary-object cleanup, even if a temp object was created
574 * during an extension script.
576 if (flags
& PERFORM_DELETION_SKIP_EXTENSIONS
)
580 * If the other object is the extension currently being
581 * created/altered, ignore this dependency and continue with
582 * the deletion. This allows dropping of an extension's
583 * objects within the extension's scripts, as well as corner
584 * cases such as dropping a transient object created within
587 if (creating_extension
&&
588 otherObject
.classId
== ExtensionRelationId
&&
589 otherObject
.objectId
== CurrentExtensionObject
)
592 /* Otherwise, treat this like an internal dependency */
595 case DEPENDENCY_INTERNAL
:
598 * This object is part of the internal implementation of
599 * another object, or is part of the extension that is the
600 * other object. We have three cases:
602 * 1. At the outermost recursion level, we must disallow the
603 * DROP. However, if the owning object is listed in
604 * pendingObjects, just release the caller's lock and return;
605 * we'll eventually complete the DROP when we reach that entry
606 * in the pending list.
608 * Note: the above statement is true only if this pg_depend
609 * entry still exists by then; in principle, therefore, we
610 * could miss deleting an item the user told us to delete.
611 * However, no inconsistency can result: since we're at outer
612 * level, there is no object depending on this one.
616 if (pendingObjects
&&
617 object_address_present(&otherObject
, pendingObjects
))
619 systable_endscan(scan
);
620 /* need to release caller's lock; see notes below */
621 ReleaseDeletionLock(object
);
626 * We postpone actually issuing the error message until
627 * after this loop, so that we can make the behavior
628 * independent of the ordering of pg_depend entries, at
629 * least if there's not more than one INTERNAL and one
630 * EXTENSION dependency. (If there's more, we'll complain
631 * about a random one of them.) Prefer to complain about
632 * EXTENSION, since that's generally a more important
635 if (!OidIsValid(owningObject
.classId
) ||
636 foundDep
->deptype
== DEPENDENCY_EXTENSION
)
637 owningObject
= otherObject
;
642 * 2. When recursing from the other end of this dependency,
643 * it's okay to continue with the deletion. This holds when
644 * recursing from a whole object that includes the nominal
645 * other end as a component, too. Since there can be more
646 * than one "owning" object, we have to allow matches that are
647 * more than one level down in the stack.
649 if (stack_address_present_add_flags(&otherObject
, 0, stack
))
653 * 3. Not all the owning objects have been visited, so
654 * transform this deletion request into a delete of this
657 * First, release caller's lock on this object and get
658 * deletion lock on the owning object. (We must release
659 * caller's lock to avoid deadlock against a concurrent
660 * deletion of the owning object.)
662 ReleaseDeletionLock(object
);
663 AcquireDeletionLock(&otherObject
, 0);
666 * The owning object might have been deleted while we waited
667 * to lock it; if so, neither it nor the current object are
668 * interesting anymore. We test this by checking the
669 * pg_depend entry (see notes below).
671 if (!systable_recheck_tuple(scan
, tup
))
673 systable_endscan(scan
);
674 ReleaseDeletionLock(&otherObject
);
679 * One way or the other, we're done with the scan; might as
680 * well close it down before recursing, to reduce peak
681 * resource consumption.
683 systable_endscan(scan
);
686 * Okay, recurse to the owning object instead of proceeding.
688 * We do not need to stack the current object; we want the
689 * traversal order to be as if the original reference had
690 * linked to the owning object instead of this one.
692 * The dependency type is a "reverse" dependency: we need to
693 * delete the owning object if this one is to be deleted, but
694 * this linkage is never a reason for an automatic deletion.
696 findDependentObjects(&otherObject
,
705 * The current target object should have been added to
706 * targetObjects while processing the owning object; but it
707 * probably got only the flag bits associated with the
708 * dependency we're looking at. We need to add the objflags
709 * that were passed to this recursion level, too, else we may
710 * get a bogus failure in reportDependentObjects (if, for
711 * example, we were called due to a partition dependency).
713 * If somehow the current object didn't get scheduled for
714 * deletion, bleat. (That would imply that somebody deleted
715 * this dependency record before the recursion got to it.)
716 * Another idea would be to reacquire lock on the current
717 * object and resume trying to delete it, but it seems not
718 * worth dealing with the race conditions inherent in that.
720 if (!object_address_present_add_flags(object
, objflags
,
722 elog(ERROR
, "deletion of owning object %s failed to delete %s",
723 getObjectDescription(&otherObject
, false),
724 getObjectDescription(object
, false));
726 /* And we're done here. */
729 case DEPENDENCY_PARTITION_PRI
:
732 * Remember that this object has a partition-type dependency.
733 * After the dependency scan, we'll complain if we didn't find
734 * a reason to delete one of its partition dependencies.
736 objflags
|= DEPFLAG_IS_PART
;
739 * Also remember the primary partition owner, for error
740 * messages. If there are multiple primary owners (which
741 * there should not be), we'll report a random one of them.
743 partitionObject
= otherObject
;
746 case DEPENDENCY_PARTITION_SEC
:
749 * Only use secondary partition owners in error messages if we
750 * find no primary owner (which probably shouldn't happen).
752 if (!(objflags
& DEPFLAG_IS_PART
))
753 partitionObject
= otherObject
;
756 * Remember that this object has a partition-type dependency.
757 * After the dependency scan, we'll complain if we didn't find
758 * a reason to delete one of its partition dependencies.
760 objflags
|= DEPFLAG_IS_PART
;
764 elog(ERROR
, "unrecognized dependency type '%c' for %s",
765 foundDep
->deptype
, getObjectDescription(object
, false));
770 systable_endscan(scan
);
773 * If we found an INTERNAL or EXTENSION dependency when we're at outer
774 * level, complain about it now. If we also found a PARTITION dependency,
775 * we prefer to report the PARTITION dependency. This is arbitrary but
776 * seems to be more useful in practice.
778 if (OidIsValid(owningObject
.classId
))
782 if (OidIsValid(partitionObject
.classId
))
783 otherObjDesc
= getObjectDescription(&partitionObject
, false);
785 otherObjDesc
= getObjectDescription(&owningObject
, false);
788 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST
),
789 errmsg("cannot drop %s because %s requires it",
790 getObjectDescription(object
, false), otherObjDesc
),
791 errhint("You can drop %s instead.", otherObjDesc
)));
795 * Next, identify all objects that directly depend on the current object.
796 * To ensure predictable deletion order, we collect them up in
797 * dependentObjects and sort the list before actually recursing. (The
798 * deletion order would be valid in any case, but doing this ensures
799 * consistent output from DROP CASCADE commands, which is helpful for
800 * regression testing.)
802 maxDependentObjects
= 128; /* arbitrary initial allocation */
803 dependentObjects
= (ObjectAddressAndFlags
*)
804 palloc(maxDependentObjects
* sizeof(ObjectAddressAndFlags
));
805 numDependentObjects
= 0;
808 Anum_pg_depend_refclassid
,
809 BTEqualStrategyNumber
, F_OIDEQ
,
810 ObjectIdGetDatum(object
->classId
));
812 Anum_pg_depend_refobjid
,
813 BTEqualStrategyNumber
, F_OIDEQ
,
814 ObjectIdGetDatum(object
->objectId
));
815 if (object
->objectSubId
!= 0)
818 Anum_pg_depend_refobjsubid
,
819 BTEqualStrategyNumber
, F_INT4EQ
,
820 Int32GetDatum(object
->objectSubId
));
826 scan
= systable_beginscan(*depRel
, DependReferenceIndexId
, true,
829 while (HeapTupleIsValid(tup
= systable_getnext(scan
)))
831 Form_pg_depend foundDep
= (Form_pg_depend
) GETSTRUCT(tup
);
834 otherObject
.classId
= foundDep
->classid
;
835 otherObject
.objectId
= foundDep
->objid
;
836 otherObject
.objectSubId
= foundDep
->objsubid
;
839 * If what we found is a sub-object of the current object, just ignore
840 * it. (Normally, such a dependency is implicit, but we must make
841 * explicit ones in some cases involving partitioning.)
843 if (otherObject
.classId
== object
->classId
&&
844 otherObject
.objectId
== object
->objectId
&&
845 object
->objectSubId
== 0)
849 * Must lock the dependent object before recursing to it.
851 AcquireDeletionLock(&otherObject
, 0);
854 * The dependent object might have been deleted while we waited to
855 * lock it; if so, we don't need to do anything more with it. We can
856 * test this cheaply and independently of the object's type by seeing
857 * if the pg_depend tuple we are looking at is still live. (If the
858 * object got deleted, the tuple would have been deleted too.)
860 if (!systable_recheck_tuple(scan
, tup
))
862 /* release the now-useless lock */
863 ReleaseDeletionLock(&otherObject
);
864 /* and continue scanning for dependencies */
869 * We do need to delete it, so identify objflags to be passed down,
870 * which depend on the dependency type.
872 switch (foundDep
->deptype
)
874 case DEPENDENCY_NORMAL
:
875 subflags
= DEPFLAG_NORMAL
;
877 case DEPENDENCY_AUTO
:
878 case DEPENDENCY_AUTO_EXTENSION
:
879 subflags
= DEPFLAG_AUTO
;
881 case DEPENDENCY_INTERNAL
:
882 subflags
= DEPFLAG_INTERNAL
;
884 case DEPENDENCY_PARTITION_PRI
:
885 case DEPENDENCY_PARTITION_SEC
:
886 subflags
= DEPFLAG_PARTITION
;
888 case DEPENDENCY_EXTENSION
:
889 subflags
= DEPFLAG_EXTENSION
;
892 elog(ERROR
, "unrecognized dependency type '%c' for %s",
893 foundDep
->deptype
, getObjectDescription(object
, false));
894 subflags
= 0; /* keep compiler quiet */
898 /* And add it to the pending-objects list */
899 if (numDependentObjects
>= maxDependentObjects
)
901 /* enlarge array if needed */
902 maxDependentObjects
*= 2;
903 dependentObjects
= (ObjectAddressAndFlags
*)
904 repalloc(dependentObjects
,
905 maxDependentObjects
* sizeof(ObjectAddressAndFlags
));
908 dependentObjects
[numDependentObjects
].obj
= otherObject
;
909 dependentObjects
[numDependentObjects
].subflags
= subflags
;
910 numDependentObjects
++;
913 systable_endscan(scan
);
916 * Now we can sort the dependent objects into a stable visitation order.
917 * It's safe to use object_address_comparator here since the obj field is
918 * first within ObjectAddressAndFlags.
920 if (numDependentObjects
> 1)
921 qsort(dependentObjects
, numDependentObjects
,
922 sizeof(ObjectAddressAndFlags
),
923 object_address_comparator
);
926 * Now recurse to the dependent objects. We must visit them first since
927 * they have to be deleted before the current object.
929 mystack
.object
= object
; /* set up a new stack level */
930 mystack
.flags
= objflags
;
931 mystack
.next
= stack
;
933 for (int i
= 0; i
< numDependentObjects
; i
++)
935 ObjectAddressAndFlags
*depObj
= dependentObjects
+ i
;
937 findDependentObjects(&depObj
->obj
,
946 pfree(dependentObjects
);
949 * Finally, we can add the target object to targetObjects. Be careful to
950 * include any flags that were passed back down to us from inner recursion
951 * levels. Record the "dependee" as being either the most important
952 * partition owner if there is one, else the object we recursed from, if
953 * any. (The logic in reportDependentObjects() is such that it can only
954 * need one of those objects.)
956 extra
.flags
= mystack
.flags
;
957 if (extra
.flags
& DEPFLAG_IS_PART
)
958 extra
.dependee
= partitionObject
;
960 extra
.dependee
= *stack
->object
;
962 memset(&extra
.dependee
, 0, sizeof(extra
.dependee
));
963 add_exact_object_address_extra(object
, &extra
, targetObjects
);
967 * reportDependentObjects - report about dependencies, and fail if RESTRICT
969 * Tell the user about dependent objects that we are going to delete
970 * (or would need to delete, but are prevented by RESTRICT mode);
971 * then error out if there are any and it's not CASCADE mode.
973 * targetObjects: list of objects that are scheduled to be deleted
974 * behavior: RESTRICT or CASCADE
975 * flags: other flags for the deletion operation
976 * origObject: base object of deletion, or NULL if not available
977 * (the latter case occurs in DROP OWNED)
980 reportDependentObjects(const ObjectAddresses
*targetObjects
,
981 DropBehavior behavior
,
983 const ObjectAddress
*origObject
)
985 int msglevel
= (flags
& PERFORM_DELETION_QUIETLY
) ? DEBUG2
: NOTICE
;
987 StringInfoData clientdetail
;
988 StringInfoData logdetail
;
989 int numReportedClient
= 0;
990 int numNotReportedClient
= 0;
994 * If we need to delete any partition-dependent objects, make sure that
995 * we're deleting at least one of their partition dependencies, too. That
996 * can be detected by checking that we reached them by a PARTITION
997 * dependency at some point.
999 * We just report the first such object, as in most cases the only way to
1000 * trigger this complaint is to explicitly try to delete one partition of
1001 * a partitioned object.
1003 for (i
= 0; i
< targetObjects
->numrefs
; i
++)
1005 const ObjectAddressExtra
*extra
= &targetObjects
->extras
[i
];
1007 if ((extra
->flags
& DEPFLAG_IS_PART
) &&
1008 !(extra
->flags
& DEPFLAG_PARTITION
))
1010 const ObjectAddress
*object
= &targetObjects
->refs
[i
];
1011 char *otherObjDesc
= getObjectDescription(&extra
->dependee
,
1015 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST
),
1016 errmsg("cannot drop %s because %s requires it",
1017 getObjectDescription(object
, false), otherObjDesc
),
1018 errhint("You can drop %s instead.", otherObjDesc
)));
1023 * If no error is to be thrown, and the msglevel is too low to be shown to
1024 * either client or server log, there's no need to do any of the rest of
1027 if (behavior
== DROP_CASCADE
&&
1028 !message_level_is_interesting(msglevel
))
1032 * We limit the number of dependencies reported to the client to
1033 * MAX_REPORTED_DEPS, since client software may not deal well with
1034 * enormous error strings. The server log always gets a full report.
1036 #define MAX_REPORTED_DEPS 100
1038 initStringInfo(&clientdetail
);
1039 initStringInfo(&logdetail
);
1042 * We process the list back to front (ie, in dependency order not deletion
1043 * order), since this makes for a more understandable display.
1045 for (i
= targetObjects
->numrefs
- 1; i
>= 0; i
--)
1047 const ObjectAddress
*obj
= &targetObjects
->refs
[i
];
1048 const ObjectAddressExtra
*extra
= &targetObjects
->extras
[i
];
1051 /* Ignore the original deletion target(s) */
1052 if (extra
->flags
& DEPFLAG_ORIGINAL
)
1055 /* Also ignore sub-objects; we'll report the whole object elsewhere */
1056 if (extra
->flags
& DEPFLAG_SUBOBJECT
)
1059 objDesc
= getObjectDescription(obj
, false);
1061 /* An object being dropped concurrently doesn't need to be reported */
1062 if (objDesc
== NULL
)
1066 * If, at any stage of the recursive search, we reached the object via
1067 * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1068 * okay to delete it even in RESTRICT mode.
1070 if (extra
->flags
& (DEPFLAG_AUTO
|
1076 * auto-cascades are reported at DEBUG2, not msglevel. We don't
1077 * try to combine them with the regular message because the
1078 * results are too confusing when client_min_messages and
1079 * log_min_messages are different.
1082 (errmsg_internal("drop auto-cascades to %s",
1085 else if (behavior
== DROP_RESTRICT
)
1087 char *otherDesc
= getObjectDescription(&extra
->dependee
,
1092 if (numReportedClient
< MAX_REPORTED_DEPS
)
1094 /* separate entries with a newline */
1095 if (clientdetail
.len
!= 0)
1096 appendStringInfoChar(&clientdetail
, '\n');
1097 appendStringInfo(&clientdetail
, _("%s depends on %s"),
1098 objDesc
, otherDesc
);
1099 numReportedClient
++;
1102 numNotReportedClient
++;
1103 /* separate entries with a newline */
1104 if (logdetail
.len
!= 0)
1105 appendStringInfoChar(&logdetail
, '\n');
1106 appendStringInfo(&logdetail
, _("%s depends on %s"),
1107 objDesc
, otherDesc
);
1111 numNotReportedClient
++;
1116 if (numReportedClient
< MAX_REPORTED_DEPS
)
1118 /* separate entries with a newline */
1119 if (clientdetail
.len
!= 0)
1120 appendStringInfoChar(&clientdetail
, '\n');
1121 appendStringInfo(&clientdetail
, _("drop cascades to %s"),
1123 numReportedClient
++;
1126 numNotReportedClient
++;
1127 /* separate entries with a newline */
1128 if (logdetail
.len
!= 0)
1129 appendStringInfoChar(&logdetail
, '\n');
1130 appendStringInfo(&logdetail
, _("drop cascades to %s"),
1137 if (numNotReportedClient
> 0)
1138 appendStringInfo(&clientdetail
, ngettext("\nand %d other object "
1139 "(see server log for list)",
1140 "\nand %d other objects "
1141 "(see server log for list)",
1142 numNotReportedClient
),
1143 numNotReportedClient
);
1149 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST
),
1150 errmsg("cannot drop %s because other objects depend on it",
1151 getObjectDescription(origObject
, false)),
1152 errdetail_internal("%s", clientdetail
.data
),
1153 errdetail_log("%s", logdetail
.data
),
1154 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1157 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST
),
1158 errmsg("cannot drop desired object(s) because other objects depend on them"),
1159 errdetail_internal("%s", clientdetail
.data
),
1160 errdetail_log("%s", logdetail
.data
),
1161 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1163 else if (numReportedClient
> 1)
1166 (errmsg_plural("drop cascades to %d other object",
1167 "drop cascades to %d other objects",
1168 numReportedClient
+ numNotReportedClient
,
1169 numReportedClient
+ numNotReportedClient
),
1170 errdetail_internal("%s", clientdetail
.data
),
1171 errdetail_log("%s", logdetail
.data
)));
1173 else if (numReportedClient
== 1)
1175 /* we just use the single item as-is */
1177 (errmsg_internal("%s", clientdetail
.data
)));
1180 pfree(clientdetail
.data
);
1181 pfree(logdetail
.data
);
1185 * Drop an object by OID. Works for most catalogs, if no special processing
1189 DropObjectById(const ObjectAddress
*object
)
1195 cacheId
= get_object_catcache_oid(object
->classId
);
1197 rel
= table_open(object
->classId
, RowExclusiveLock
);
1200 * Use the system cache for the oid column, if one exists.
1204 tup
= SearchSysCache1(cacheId
, ObjectIdGetDatum(object
->objectId
));
1205 if (!HeapTupleIsValid(tup
))
1206 elog(ERROR
, "cache lookup failed for %s %u",
1207 get_object_class_descr(object
->classId
), object
->objectId
);
1209 CatalogTupleDelete(rel
, &tup
->t_self
);
1211 ReleaseSysCache(tup
);
1215 ScanKeyData skey
[1];
1218 ScanKeyInit(&skey
[0],
1219 get_object_attnum_oid(object
->classId
),
1220 BTEqualStrategyNumber
, F_OIDEQ
,
1221 ObjectIdGetDatum(object
->objectId
));
1223 scan
= systable_beginscan(rel
, get_object_oid_index(object
->classId
), true,
1226 /* we expect exactly one match */
1227 tup
= systable_getnext(scan
);
1228 if (!HeapTupleIsValid(tup
))
1229 elog(ERROR
, "could not find tuple for %s %u",
1230 get_object_class_descr(object
->classId
), object
->objectId
);
1232 CatalogTupleDelete(rel
, &tup
->t_self
);
1234 systable_endscan(scan
);
1237 table_close(rel
, RowExclusiveLock
);
1241 * deleteOneObject: delete a single object for performDeletion.
1243 * *depRel is the already-open pg_depend relation.
1246 deleteOneObject(const ObjectAddress
*object
, Relation
*depRel
, int flags
)
1253 /* DROP hook of the objects being removed */
1254 InvokeObjectDropHookArg(object
->classId
, object
->objectId
,
1255 object
->objectSubId
, flags
);
1258 * Close depRel if we are doing a drop concurrently. The object deletion
1259 * subroutine will commit the current transaction, so we can't keep the
1260 * relation open across doDeletion().
1262 if (flags
& PERFORM_DELETION_CONCURRENTLY
)
1263 table_close(*depRel
, RowExclusiveLock
);
1266 * Delete the object itself, in an object-type-dependent way.
1268 * We used to do this after removing the outgoing dependency links, but it
1269 * seems just as reasonable to do it beforehand. In the concurrent case
1270 * we *must* do it in this order, because we can't make any transactional
1271 * updates before calling doDeletion() --- they'd get committed right
1272 * away, which is not cool if the deletion then fails.
1274 doDeletion(object
, flags
);
1277 * Reopen depRel if we closed it above
1279 if (flags
& PERFORM_DELETION_CONCURRENTLY
)
1280 *depRel
= table_open(DependRelationId
, RowExclusiveLock
);
1283 * Now remove any pg_depend records that link from this object to others.
1284 * (Any records linking to this object should be gone already.)
1286 * When dropping a whole object (subId = 0), remove all pg_depend records
1287 * for its sub-objects too.
1289 ScanKeyInit(&key
[0],
1290 Anum_pg_depend_classid
,
1291 BTEqualStrategyNumber
, F_OIDEQ
,
1292 ObjectIdGetDatum(object
->classId
));
1293 ScanKeyInit(&key
[1],
1294 Anum_pg_depend_objid
,
1295 BTEqualStrategyNumber
, F_OIDEQ
,
1296 ObjectIdGetDatum(object
->objectId
));
1297 if (object
->objectSubId
!= 0)
1299 ScanKeyInit(&key
[2],
1300 Anum_pg_depend_objsubid
,
1301 BTEqualStrategyNumber
, F_INT4EQ
,
1302 Int32GetDatum(object
->objectSubId
));
1308 scan
= systable_beginscan(*depRel
, DependDependerIndexId
, true,
1311 while (HeapTupleIsValid(tup
= systable_getnext(scan
)))
1313 CatalogTupleDelete(*depRel
, &tup
->t_self
);
1316 systable_endscan(scan
);
1319 * Delete shared dependency references related to this object. Again, if
1320 * subId = 0, remove records for sub-objects too.
1322 deleteSharedDependencyRecordsFor(object
->classId
, object
->objectId
,
1323 object
->objectSubId
);
1327 * Delete any comments, security labels, or initial privileges associated
1328 * with this object. (This is a convenient place to do these things,
1329 * rather than having every object type know to do it.) As above, all
1330 * these functions must remove records for sub-objects too if the subid is
1333 DeleteComments(object
->objectId
, object
->classId
, object
->objectSubId
);
1334 DeleteSecurityLabel(object
);
1335 DeleteInitPrivs(object
);
1338 * CommandCounterIncrement here to ensure that preceding changes are all
1339 * visible to the next deletion step.
1341 CommandCounterIncrement();
1349 * doDeletion: actually delete a single object
1352 doDeletion(const ObjectAddress
*object
, int flags
)
1354 switch (object
->classId
)
1356 case RelationRelationId
:
1358 char relKind
= get_rel_relkind(object
->objectId
);
1360 if (relKind
== RELKIND_INDEX
||
1361 relKind
== RELKIND_PARTITIONED_INDEX
)
1363 bool concurrent
= ((flags
& PERFORM_DELETION_CONCURRENTLY
) != 0);
1364 bool concurrent_lock_mode
= ((flags
& PERFORM_DELETION_CONCURRENT_LOCK
) != 0);
1366 Assert(object
->objectSubId
== 0);
1367 index_drop(object
->objectId
, concurrent
, concurrent_lock_mode
);
1371 if (object
->objectSubId
!= 0)
1372 RemoveAttributeById(object
->objectId
,
1373 object
->objectSubId
);
1375 heap_drop_with_catalog(object
->objectId
);
1379 * for a sequence, in addition to dropping the heap, also
1380 * delete pg_sequence tuple
1382 if (relKind
== RELKIND_SEQUENCE
)
1383 DeleteSequenceTuple(object
->objectId
);
1387 case ProcedureRelationId
:
1388 RemoveFunctionById(object
->objectId
);
1391 case TypeRelationId
:
1392 RemoveTypeById(object
->objectId
);
1395 case ConstraintRelationId
:
1396 RemoveConstraintById(object
->objectId
);
1399 case AttrDefaultRelationId
:
1400 RemoveAttrDefaultById(object
->objectId
);
1403 case LargeObjectRelationId
:
1404 LargeObjectDrop(object
->objectId
);
1407 case OperatorRelationId
:
1408 RemoveOperatorById(object
->objectId
);
1411 case RewriteRelationId
:
1412 RemoveRewriteRuleById(object
->objectId
);
1415 case TriggerRelationId
:
1416 RemoveTriggerById(object
->objectId
);
1419 case StatisticExtRelationId
:
1420 RemoveStatisticsById(object
->objectId
);
1423 case TSConfigRelationId
:
1424 RemoveTSConfigurationById(object
->objectId
);
1427 case ExtensionRelationId
:
1428 RemoveExtensionById(object
->objectId
);
1431 case PolicyRelationId
:
1432 RemovePolicyById(object
->objectId
);
1435 case PublicationNamespaceRelationId
:
1436 RemovePublicationSchemaById(object
->objectId
);
1439 case PublicationRelRelationId
:
1440 RemovePublicationRelById(object
->objectId
);
1443 case PublicationRelationId
:
1444 RemovePublicationById(object
->objectId
);
1447 case CastRelationId
:
1448 case CollationRelationId
:
1449 case ConversionRelationId
:
1450 case LanguageRelationId
:
1451 case OperatorClassRelationId
:
1452 case OperatorFamilyRelationId
:
1453 case AccessMethodRelationId
:
1454 case AccessMethodOperatorRelationId
:
1455 case AccessMethodProcedureRelationId
:
1456 case NamespaceRelationId
:
1457 case TSParserRelationId
:
1458 case TSDictionaryRelationId
:
1459 case TSTemplateRelationId
:
1460 case ForeignDataWrapperRelationId
:
1461 case ForeignServerRelationId
:
1462 case UserMappingRelationId
:
1463 case DefaultAclRelationId
:
1464 case EventTriggerRelationId
:
1465 case TransformRelationId
:
1466 case AuthMemRelationId
:
1467 DropObjectById(object
);
1471 * These global object types are not supported here.
1473 case AuthIdRelationId
:
1474 case DatabaseRelationId
:
1475 case TableSpaceRelationId
:
1476 case SubscriptionRelationId
:
1477 case ParameterAclRelationId
:
1478 elog(ERROR
, "global objects cannot be deleted by doDeletion");
1482 elog(ERROR
, "unsupported object class: %u", object
->classId
);
1487 * AcquireDeletionLock - acquire a suitable lock for deleting an object
1489 * Accepts the same flags as performDeletion (though currently only
1490 * PERFORM_DELETION_CONCURRENTLY does anything).
1492 * We use LockRelation for relations, and otherwise LockSharedObject or
1493 * LockDatabaseObject as appropriate for the object type.
1496 AcquireDeletionLock(const ObjectAddress
*object
, int flags
)
1498 if (object
->classId
== RelationRelationId
)
1501 * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1502 * the index for the moment. index_drop() will promote the lock once
1503 * it's safe to do so. In all other cases we need full exclusive
1506 if (flags
& PERFORM_DELETION_CONCURRENTLY
)
1507 LockRelationOid(object
->objectId
, ShareUpdateExclusiveLock
);
1509 LockRelationOid(object
->objectId
, AccessExclusiveLock
);
1511 else if (object
->classId
== AuthMemRelationId
)
1512 LockSharedObject(object
->classId
, object
->objectId
, 0,
1513 AccessExclusiveLock
);
1516 /* assume we should lock the whole object not a sub-object */
1517 LockDatabaseObject(object
->classId
, object
->objectId
, 0,
1518 AccessExclusiveLock
);
1523 * ReleaseDeletionLock - release an object deletion lock
1525 * Companion to AcquireDeletionLock.
1528 ReleaseDeletionLock(const ObjectAddress
*object
)
1530 if (object
->classId
== RelationRelationId
)
1531 UnlockRelationOid(object
->objectId
, AccessExclusiveLock
);
1533 /* assume we should lock the whole object not a sub-object */
1534 UnlockDatabaseObject(object
->classId
, object
->objectId
, 0,
1535 AccessExclusiveLock
);
1539 * recordDependencyOnExpr - find expression dependencies
1541 * This is used to find the dependencies of rules, constraint expressions,
1544 * Given an expression or query in node-tree form, find all the objects
1545 * it refers to (tables, columns, operators, functions, etc). Record
1546 * a dependency of the specified type from the given depender object
1547 * to each object mentioned in the expression.
1549 * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1550 * It can be NIL if no such variables are expected.
1553 recordDependencyOnExpr(const ObjectAddress
*depender
,
1554 Node
*expr
, List
*rtable
,
1555 DependencyType behavior
)
1557 find_expr_references_context context
;
1559 context
.addrs
= new_object_addresses();
1561 /* Set up interpretation for Vars at varlevelsup = 0 */
1562 context
.rtables
= list_make1(rtable
);
1564 /* Scan the expression tree for referenceable objects */
1565 find_expr_references_walker(expr
, &context
);
1567 /* Remove any duplicates */
1568 eliminate_duplicate_dependencies(context
.addrs
);
1570 /* And record 'em */
1571 recordMultipleDependencies(depender
,
1572 context
.addrs
->refs
, context
.addrs
->numrefs
,
1575 free_object_addresses(context
.addrs
);
1579 * recordDependencyOnSingleRelExpr - find expression dependencies
1581 * As above, but only one relation is expected to be referenced (with
1582 * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1583 * range table. An additional frammish is that dependencies on that
1584 * relation's component columns will be marked with 'self_behavior',
1585 * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1586 * is true, those dependencies are reversed so that the columns are made
1587 * to depend on the table not vice versa.
1589 * NOTE: the caller should ensure that a whole-table dependency on the
1590 * specified relation is created separately, if one is needed. In particular,
1591 * a whole-row Var "relation.*" will not cause this routine to emit any
1592 * dependency item. This is appropriate behavior for subexpressions of an
1593 * ordinary query, so other cases need to cope as necessary.
1596 recordDependencyOnSingleRelExpr(const ObjectAddress
*depender
,
1597 Node
*expr
, Oid relId
,
1598 DependencyType behavior
,
1599 DependencyType self_behavior
,
1602 find_expr_references_context context
;
1603 RangeTblEntry rte
= {0};
1605 context
.addrs
= new_object_addresses();
1607 /* We gin up a rather bogus rangetable list to handle Vars */
1608 rte
.type
= T_RangeTblEntry
;
1609 rte
.rtekind
= RTE_RELATION
;
1611 rte
.relkind
= RELKIND_RELATION
; /* no need for exactness here */
1612 rte
.rellockmode
= AccessShareLock
;
1614 context
.rtables
= list_make1(list_make1(&rte
));
1616 /* Scan the expression tree for referenceable objects */
1617 find_expr_references_walker(expr
, &context
);
1619 /* Remove any duplicates */
1620 eliminate_duplicate_dependencies(context
.addrs
);
1622 /* Separate self-dependencies if necessary */
1623 if ((behavior
!= self_behavior
|| reverse_self
) &&
1624 context
.addrs
->numrefs
> 0)
1626 ObjectAddresses
*self_addrs
;
1627 ObjectAddress
*outobj
;
1631 self_addrs
= new_object_addresses();
1633 outobj
= context
.addrs
->refs
;
1635 for (oldref
= 0; oldref
< context
.addrs
->numrefs
; oldref
++)
1637 ObjectAddress
*thisobj
= context
.addrs
->refs
+ oldref
;
1639 if (thisobj
->classId
== RelationRelationId
&&
1640 thisobj
->objectId
== relId
)
1642 /* Move this ref into self_addrs */
1643 add_exact_object_address(thisobj
, self_addrs
);
1647 /* Keep it in context.addrs */
1653 context
.addrs
->numrefs
= outrefs
;
1655 /* Record the self-dependencies with the appropriate direction */
1657 recordMultipleDependencies(depender
,
1658 self_addrs
->refs
, self_addrs
->numrefs
,
1662 /* Can't use recordMultipleDependencies, so do it the hard way */
1665 for (selfref
= 0; selfref
< self_addrs
->numrefs
; selfref
++)
1667 ObjectAddress
*thisobj
= self_addrs
->refs
+ selfref
;
1669 recordDependencyOn(thisobj
, depender
, self_behavior
);
1673 free_object_addresses(self_addrs
);
1676 /* Record the external dependencies */
1677 recordMultipleDependencies(depender
,
1678 context
.addrs
->refs
, context
.addrs
->numrefs
,
1681 free_object_addresses(context
.addrs
);
1685 * Recursively search an expression tree for object references.
1687 * Note: in many cases we do not need to create dependencies on the datatypes
1688 * involved in an expression, because we'll have an indirect dependency via
1689 * some other object. For instance Var nodes depend on a column which depends
1690 * on the datatype, and OpExpr nodes depend on the operator which depends on
1691 * the datatype. However we do need a type dependency if there is no such
1692 * indirect dependency, as for example in Const and CoerceToDomain nodes.
1694 * Similarly, we don't need to create dependencies on collations except where
1695 * the collation is being freshly introduced to the expression.
1698 find_expr_references_walker(Node
*node
,
1699 find_expr_references_context
*context
)
1705 Var
*var
= (Var
*) node
;
1709 /* Find matching rtable entry, or complain if not found */
1710 if (var
->varlevelsup
>= list_length(context
->rtables
))
1711 elog(ERROR
, "invalid varlevelsup %d", var
->varlevelsup
);
1712 rtable
= (List
*) list_nth(context
->rtables
, var
->varlevelsup
);
1713 if (var
->varno
<= 0 || var
->varno
> list_length(rtable
))
1714 elog(ERROR
, "invalid varno %d", var
->varno
);
1715 rte
= rt_fetch(var
->varno
, rtable
);
1718 * A whole-row Var references no specific columns, so adds no new
1719 * dependency. (We assume that there is a whole-table dependency
1720 * arising from each underlying rangetable entry. While we could
1721 * record such a dependency when finding a whole-row Var that
1722 * references a relation directly, it's quite unclear how to extend
1723 * that to whole-row Vars for JOINs, so it seems better to leave the
1724 * responsibility with the range table. Note that this poses some
1725 * risks for identifying dependencies of stand-alone expressions:
1726 * whole-table references may need to be created separately.)
1728 if (var
->varattno
== InvalidAttrNumber
)
1730 if (rte
->rtekind
== RTE_RELATION
)
1732 /* If it's a plain relation, reference this column */
1733 add_object_address(RelationRelationId
, rte
->relid
, var
->varattno
,
1736 else if (rte
->rtekind
== RTE_FUNCTION
)
1738 /* Might need to add a dependency on a composite type's column */
1739 /* (done out of line, because it's a bit bulky) */
1740 process_function_rte_ref(rte
, var
->varattno
, context
);
1744 * Vars referencing other RTE types require no additional work. In
1745 * particular, a join alias Var can be ignored, because it must
1746 * reference a merged USING column. The relevant join input columns
1747 * will also be referenced in the join qual, and any type coercion
1748 * functions involved in the alias expression will be dealt with when
1749 * we scan the RTE itself.
1753 else if (IsA(node
, Const
))
1755 Const
*con
= (Const
*) node
;
1758 /* A constant must depend on the constant's datatype */
1759 add_object_address(TypeRelationId
, con
->consttype
, 0,
1763 * We must also depend on the constant's collation: it could be
1764 * different from the datatype's, if a CollateExpr was const-folded to
1765 * a simple constant. However we can save work in the most common
1766 * case where the collation is "default", since we know that's pinned.
1768 if (OidIsValid(con
->constcollid
) &&
1769 con
->constcollid
!= DEFAULT_COLLATION_OID
)
1770 add_object_address(CollationRelationId
, con
->constcollid
, 0,
1774 * If it's a regclass or similar literal referring to an existing
1775 * object, add a reference to that object. (Currently, only the
1776 * regclass and regconfig cases have any likely use, but we may as
1777 * well handle all the OID-alias datatypes consistently.)
1779 if (!con
->constisnull
)
1781 switch (con
->consttype
)
1784 case REGPROCEDUREOID
:
1785 objoid
= DatumGetObjectId(con
->constvalue
);
1786 if (SearchSysCacheExists1(PROCOID
,
1787 ObjectIdGetDatum(objoid
)))
1788 add_object_address(ProcedureRelationId
, objoid
, 0,
1792 case REGOPERATOROID
:
1793 objoid
= DatumGetObjectId(con
->constvalue
);
1794 if (SearchSysCacheExists1(OPEROID
,
1795 ObjectIdGetDatum(objoid
)))
1796 add_object_address(OperatorRelationId
, objoid
, 0,
1800 objoid
= DatumGetObjectId(con
->constvalue
);
1801 if (SearchSysCacheExists1(RELOID
,
1802 ObjectIdGetDatum(objoid
)))
1803 add_object_address(RelationRelationId
, objoid
, 0,
1807 objoid
= DatumGetObjectId(con
->constvalue
);
1808 if (SearchSysCacheExists1(TYPEOID
,
1809 ObjectIdGetDatum(objoid
)))
1810 add_object_address(TypeRelationId
, objoid
, 0,
1813 case REGCOLLATIONOID
:
1814 objoid
= DatumGetObjectId(con
->constvalue
);
1815 if (SearchSysCacheExists1(COLLOID
,
1816 ObjectIdGetDatum(objoid
)))
1817 add_object_address(CollationRelationId
, objoid
, 0,
1821 objoid
= DatumGetObjectId(con
->constvalue
);
1822 if (SearchSysCacheExists1(TSCONFIGOID
,
1823 ObjectIdGetDatum(objoid
)))
1824 add_object_address(TSConfigRelationId
, objoid
, 0,
1827 case REGDICTIONARYOID
:
1828 objoid
= DatumGetObjectId(con
->constvalue
);
1829 if (SearchSysCacheExists1(TSDICTOID
,
1830 ObjectIdGetDatum(objoid
)))
1831 add_object_address(TSDictionaryRelationId
, objoid
, 0,
1835 case REGNAMESPACEOID
:
1836 objoid
= DatumGetObjectId(con
->constvalue
);
1837 if (SearchSysCacheExists1(NAMESPACEOID
,
1838 ObjectIdGetDatum(objoid
)))
1839 add_object_address(NamespaceRelationId
, objoid
, 0,
1844 * Dependencies for regrole should be shared among all
1845 * databases, so explicitly inhibit to have dependencies.
1849 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED
),
1850 errmsg("constant of the type %s cannot be used here",
1857 else if (IsA(node
, Param
))
1859 Param
*param
= (Param
*) node
;
1861 /* A parameter must depend on the parameter's datatype */
1862 add_object_address(TypeRelationId
, param
->paramtype
, 0,
1864 /* and its collation, just as for Consts */
1865 if (OidIsValid(param
->paramcollid
) &&
1866 param
->paramcollid
!= DEFAULT_COLLATION_OID
)
1867 add_object_address(CollationRelationId
, param
->paramcollid
, 0,
1870 else if (IsA(node
, FuncExpr
))
1872 FuncExpr
*funcexpr
= (FuncExpr
*) node
;
1874 add_object_address(ProcedureRelationId
, funcexpr
->funcid
, 0,
1876 /* fall through to examine arguments */
1878 else if (IsA(node
, OpExpr
))
1880 OpExpr
*opexpr
= (OpExpr
*) node
;
1882 add_object_address(OperatorRelationId
, opexpr
->opno
, 0,
1884 /* fall through to examine arguments */
1886 else if (IsA(node
, DistinctExpr
))
1888 DistinctExpr
*distinctexpr
= (DistinctExpr
*) node
;
1890 add_object_address(OperatorRelationId
, distinctexpr
->opno
, 0,
1892 /* fall through to examine arguments */
1894 else if (IsA(node
, NullIfExpr
))
1896 NullIfExpr
*nullifexpr
= (NullIfExpr
*) node
;
1898 add_object_address(OperatorRelationId
, nullifexpr
->opno
, 0,
1900 /* fall through to examine arguments */
1902 else if (IsA(node
, ScalarArrayOpExpr
))
1904 ScalarArrayOpExpr
*opexpr
= (ScalarArrayOpExpr
*) node
;
1906 add_object_address(OperatorRelationId
, opexpr
->opno
, 0,
1908 /* fall through to examine arguments */
1910 else if (IsA(node
, Aggref
))
1912 Aggref
*aggref
= (Aggref
*) node
;
1914 add_object_address(ProcedureRelationId
, aggref
->aggfnoid
, 0,
1916 /* fall through to examine arguments */
1918 else if (IsA(node
, WindowFunc
))
1920 WindowFunc
*wfunc
= (WindowFunc
*) node
;
1922 add_object_address(ProcedureRelationId
, wfunc
->winfnoid
, 0,
1924 /* fall through to examine arguments */
1926 else if (IsA(node
, SubscriptingRef
))
1928 SubscriptingRef
*sbsref
= (SubscriptingRef
*) node
;
1931 * The refexpr should provide adequate dependency on refcontainertype,
1932 * and that type in turn depends on refelemtype. However, a custom
1933 * subscripting handler might set refrestype to something different
1934 * from either of those, in which case we'd better record it.
1936 if (sbsref
->refrestype
!= sbsref
->refcontainertype
&&
1937 sbsref
->refrestype
!= sbsref
->refelemtype
)
1938 add_object_address(TypeRelationId
, sbsref
->refrestype
, 0,
1940 /* fall through to examine arguments */
1942 else if (IsA(node
, SubPlan
))
1944 /* Extra work needed here if we ever need this case */
1945 elog(ERROR
, "already-planned subqueries not supported");
1947 else if (IsA(node
, FieldSelect
))
1949 FieldSelect
*fselect
= (FieldSelect
*) node
;
1950 Oid argtype
= getBaseType(exprType((Node
*) fselect
->arg
));
1951 Oid reltype
= get_typ_typrelid(argtype
);
1954 * We need a dependency on the specific column named in FieldSelect,
1955 * assuming we can identify the pg_class OID for it. (Probably we
1956 * always can at the moment, but in future it might be possible for
1957 * argtype to be RECORDOID.) If we can make a column dependency then
1958 * we shouldn't need a dependency on the column's type; but if we
1959 * can't, make a dependency on the type, as it might not appear
1960 * anywhere else in the expression.
1962 if (OidIsValid(reltype
))
1963 add_object_address(RelationRelationId
, reltype
, fselect
->fieldnum
,
1966 add_object_address(TypeRelationId
, fselect
->resulttype
, 0,
1968 /* the collation might not be referenced anywhere else, either */
1969 if (OidIsValid(fselect
->resultcollid
) &&
1970 fselect
->resultcollid
!= DEFAULT_COLLATION_OID
)
1971 add_object_address(CollationRelationId
, fselect
->resultcollid
, 0,
1974 else if (IsA(node
, FieldStore
))
1976 FieldStore
*fstore
= (FieldStore
*) node
;
1977 Oid reltype
= get_typ_typrelid(fstore
->resulttype
);
1979 /* similar considerations to FieldSelect, but multiple column(s) */
1980 if (OidIsValid(reltype
))
1984 foreach(l
, fstore
->fieldnums
)
1985 add_object_address(RelationRelationId
, reltype
, lfirst_int(l
),
1989 add_object_address(TypeRelationId
, fstore
->resulttype
, 0,
1992 else if (IsA(node
, RelabelType
))
1994 RelabelType
*relab
= (RelabelType
*) node
;
1996 /* since there is no function dependency, need to depend on type */
1997 add_object_address(TypeRelationId
, relab
->resulttype
, 0,
1999 /* the collation might not be referenced anywhere else, either */
2000 if (OidIsValid(relab
->resultcollid
) &&
2001 relab
->resultcollid
!= DEFAULT_COLLATION_OID
)
2002 add_object_address(CollationRelationId
, relab
->resultcollid
, 0,
2005 else if (IsA(node
, CoerceViaIO
))
2007 CoerceViaIO
*iocoerce
= (CoerceViaIO
*) node
;
2009 /* since there is no exposed function, need to depend on type */
2010 add_object_address(TypeRelationId
, iocoerce
->resulttype
, 0,
2012 /* the collation might not be referenced anywhere else, either */
2013 if (OidIsValid(iocoerce
->resultcollid
) &&
2014 iocoerce
->resultcollid
!= DEFAULT_COLLATION_OID
)
2015 add_object_address(CollationRelationId
, iocoerce
->resultcollid
, 0,
2018 else if (IsA(node
, ArrayCoerceExpr
))
2020 ArrayCoerceExpr
*acoerce
= (ArrayCoerceExpr
*) node
;
2022 /* as above, depend on type */
2023 add_object_address(TypeRelationId
, acoerce
->resulttype
, 0,
2025 /* the collation might not be referenced anywhere else, either */
2026 if (OidIsValid(acoerce
->resultcollid
) &&
2027 acoerce
->resultcollid
!= DEFAULT_COLLATION_OID
)
2028 add_object_address(CollationRelationId
, acoerce
->resultcollid
, 0,
2030 /* fall through to examine arguments */
2032 else if (IsA(node
, ConvertRowtypeExpr
))
2034 ConvertRowtypeExpr
*cvt
= (ConvertRowtypeExpr
*) node
;
2036 /* since there is no function dependency, need to depend on type */
2037 add_object_address(TypeRelationId
, cvt
->resulttype
, 0,
2040 else if (IsA(node
, CollateExpr
))
2042 CollateExpr
*coll
= (CollateExpr
*) node
;
2044 add_object_address(CollationRelationId
, coll
->collOid
, 0,
2047 else if (IsA(node
, RowExpr
))
2049 RowExpr
*rowexpr
= (RowExpr
*) node
;
2051 add_object_address(TypeRelationId
, rowexpr
->row_typeid
, 0,
2054 else if (IsA(node
, RowCompareExpr
))
2056 RowCompareExpr
*rcexpr
= (RowCompareExpr
*) node
;
2059 foreach(l
, rcexpr
->opnos
)
2061 add_object_address(OperatorRelationId
, lfirst_oid(l
), 0,
2064 foreach(l
, rcexpr
->opfamilies
)
2066 add_object_address(OperatorFamilyRelationId
, lfirst_oid(l
), 0,
2069 /* fall through to examine arguments */
2071 else if (IsA(node
, CoerceToDomain
))
2073 CoerceToDomain
*cd
= (CoerceToDomain
*) node
;
2075 add_object_address(TypeRelationId
, cd
->resulttype
, 0,
2078 else if (IsA(node
, NextValueExpr
))
2080 NextValueExpr
*nve
= (NextValueExpr
*) node
;
2082 add_object_address(RelationRelationId
, nve
->seqid
, 0,
2085 else if (IsA(node
, OnConflictExpr
))
2087 OnConflictExpr
*onconflict
= (OnConflictExpr
*) node
;
2089 if (OidIsValid(onconflict
->constraint
))
2090 add_object_address(ConstraintRelationId
, onconflict
->constraint
, 0,
2092 /* fall through to examine arguments */
2094 else if (IsA(node
, SortGroupClause
))
2096 SortGroupClause
*sgc
= (SortGroupClause
*) node
;
2098 add_object_address(OperatorRelationId
, sgc
->eqop
, 0,
2100 if (OidIsValid(sgc
->sortop
))
2101 add_object_address(OperatorRelationId
, sgc
->sortop
, 0,
2105 else if (IsA(node
, WindowClause
))
2107 WindowClause
*wc
= (WindowClause
*) node
;
2109 if (OidIsValid(wc
->startInRangeFunc
))
2110 add_object_address(ProcedureRelationId
, wc
->startInRangeFunc
, 0,
2112 if (OidIsValid(wc
->endInRangeFunc
))
2113 add_object_address(ProcedureRelationId
, wc
->endInRangeFunc
, 0,
2115 if (OidIsValid(wc
->inRangeColl
) &&
2116 wc
->inRangeColl
!= DEFAULT_COLLATION_OID
)
2117 add_object_address(CollationRelationId
, wc
->inRangeColl
, 0,
2119 /* fall through to examine substructure */
2121 else if (IsA(node
, CTECycleClause
))
2123 CTECycleClause
*cc
= (CTECycleClause
*) node
;
2125 if (OidIsValid(cc
->cycle_mark_type
))
2126 add_object_address(TypeRelationId
, cc
->cycle_mark_type
, 0,
2128 if (OidIsValid(cc
->cycle_mark_collation
))
2129 add_object_address(CollationRelationId
, cc
->cycle_mark_collation
, 0,
2131 if (OidIsValid(cc
->cycle_mark_neop
))
2132 add_object_address(OperatorRelationId
, cc
->cycle_mark_neop
, 0,
2134 /* fall through to examine substructure */
2136 else if (IsA(node
, Query
))
2138 /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2139 Query
*query
= (Query
*) node
;
2144 * Add whole-relation refs for each plain relation mentioned in the
2145 * subquery's rtable, and ensure we add refs for any type-coercion
2146 * functions used in join alias lists.
2148 * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2149 * RTEs, subqueries, etc, so no need to do that here. But we must
2150 * tell it not to visit join alias lists, or we'll add refs for join
2151 * input columns whether or not they are actually used in our query.
2153 * Note: we don't need to worry about collations mentioned in
2154 * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2155 * collations referenced in other parts of the Query. We do have to
2156 * worry about collations mentioned in RTE_FUNCTION, but we take care
2157 * of those when we recurse to the RangeTblFunction node(s).
2159 foreach(lc
, query
->rtable
)
2161 RangeTblEntry
*rte
= (RangeTblEntry
*) lfirst(lc
);
2163 switch (rte
->rtekind
)
2166 add_object_address(RelationRelationId
, rte
->relid
, 0,
2172 * Examine joinaliasvars entries only for merged JOIN
2173 * USING columns. Only those entries could contain
2174 * type-coercion functions. Also, their join input
2175 * columns must be referenced in the join quals, so this
2176 * won't accidentally add refs to otherwise-unused join
2177 * input columns. (We want to ref the type coercion
2178 * functions even if the merged column isn't explicitly
2179 * used anywhere, to protect possible expansion of the
2180 * join RTE as a whole-row var, and because it seems like
2181 * a bad idea to allow dropping a function that's present
2182 * in our query tree, whether or not it could get called.)
2184 context
->rtables
= lcons(query
->rtable
, context
->rtables
);
2185 for (int i
= 0; i
< rte
->joinmergedcols
; i
++)
2187 Node
*aliasvar
= list_nth(rte
->joinaliasvars
, i
);
2189 if (!IsA(aliasvar
, Var
))
2190 find_expr_references_walker(aliasvar
, context
);
2192 context
->rtables
= list_delete_first(context
->rtables
);
2200 * If the query is an INSERT or UPDATE, we should create a dependency
2201 * on each target column, to prevent the specific target column from
2202 * being dropped. Although we will visit the TargetEntry nodes again
2203 * during query_tree_walker, we won't have enough context to do this
2204 * conveniently, so do it here.
2206 if (query
->commandType
== CMD_INSERT
||
2207 query
->commandType
== CMD_UPDATE
)
2211 if (query
->resultRelation
<= 0 ||
2212 query
->resultRelation
> list_length(query
->rtable
))
2213 elog(ERROR
, "invalid resultRelation %d",
2214 query
->resultRelation
);
2215 rte
= rt_fetch(query
->resultRelation
, query
->rtable
);
2216 if (rte
->rtekind
== RTE_RELATION
)
2218 foreach(lc
, query
->targetList
)
2220 TargetEntry
*tle
= (TargetEntry
*) lfirst(lc
);
2223 continue; /* ignore junk tlist items */
2224 add_object_address(RelationRelationId
, rte
->relid
, tle
->resno
,
2231 * Add dependencies on constraints listed in query's constraintDeps
2233 foreach(lc
, query
->constraintDeps
)
2235 add_object_address(ConstraintRelationId
, lfirst_oid(lc
), 0,
2239 /* Examine substructure of query */
2240 context
->rtables
= lcons(query
->rtable
, context
->rtables
);
2241 result
= query_tree_walker(query
,
2242 find_expr_references_walker
,
2244 QTW_IGNORE_JOINALIASES
|
2245 QTW_EXAMINE_SORTGROUP
);
2246 context
->rtables
= list_delete_first(context
->rtables
);
2249 else if (IsA(node
, SetOperationStmt
))
2251 SetOperationStmt
*setop
= (SetOperationStmt
*) node
;
2253 /* we need to look at the groupClauses for operator references */
2254 find_expr_references_walker((Node
*) setop
->groupClauses
, context
);
2255 /* fall through to examine child nodes */
2257 else if (IsA(node
, RangeTblFunction
))
2259 RangeTblFunction
*rtfunc
= (RangeTblFunction
*) node
;
2263 * Add refs for any datatypes and collations used in a column
2264 * definition list for a RECORD function. (For other cases, it should
2265 * be enough to depend on the function itself.)
2267 foreach(ct
, rtfunc
->funccoltypes
)
2269 add_object_address(TypeRelationId
, lfirst_oid(ct
), 0,
2272 foreach(ct
, rtfunc
->funccolcollations
)
2274 Oid collid
= lfirst_oid(ct
);
2276 if (OidIsValid(collid
) && collid
!= DEFAULT_COLLATION_OID
)
2277 add_object_address(CollationRelationId
, collid
, 0,
2281 else if (IsA(node
, TableFunc
))
2283 TableFunc
*tf
= (TableFunc
*) node
;
2287 * Add refs for the datatypes and collations used in the TableFunc.
2289 foreach(ct
, tf
->coltypes
)
2291 add_object_address(TypeRelationId
, lfirst_oid(ct
), 0,
2294 foreach(ct
, tf
->colcollations
)
2296 Oid collid
= lfirst_oid(ct
);
2298 if (OidIsValid(collid
) && collid
!= DEFAULT_COLLATION_OID
)
2299 add_object_address(CollationRelationId
, collid
, 0,
2303 else if (IsA(node
, TableSampleClause
))
2305 TableSampleClause
*tsc
= (TableSampleClause
*) node
;
2307 add_object_address(ProcedureRelationId
, tsc
->tsmhandler
, 0,
2309 /* fall through to examine arguments */
2312 return expression_tree_walker(node
, find_expr_references_walker
,
2317 * find_expr_references_walker subroutine: handle a Var reference
2318 * to an RTE_FUNCTION RTE
2321 process_function_rte_ref(RangeTblEntry
*rte
, AttrNumber attnum
,
2322 find_expr_references_context
*context
)
2328 * Identify which RangeTblFunction produces this attnum, and see if it
2329 * returns a composite type. If so, we'd better make a dependency on the
2330 * referenced column of the composite type (or actually, of its associated
2333 foreach(lc
, rte
->functions
)
2335 RangeTblFunction
*rtfunc
= (RangeTblFunction
*) lfirst(lc
);
2337 if (attnum
> atts_done
&&
2338 attnum
<= atts_done
+ rtfunc
->funccolcount
)
2342 /* If it has a coldeflist, it certainly returns RECORD */
2343 if (rtfunc
->funccolnames
!= NIL
)
2344 tupdesc
= NULL
; /* no need to work hard */
2346 tupdesc
= get_expr_result_tupdesc(rtfunc
->funcexpr
, true);
2347 if (tupdesc
&& tupdesc
->tdtypeid
!= RECORDOID
)
2350 * Named composite type, so individual columns could get
2351 * dropped. Make a dependency on this specific column.
2353 Oid reltype
= get_typ_typrelid(tupdesc
->tdtypeid
);
2355 Assert(attnum
- atts_done
<= tupdesc
->natts
);
2356 if (OidIsValid(reltype
)) /* can this fail? */
2357 add_object_address(RelationRelationId
, reltype
,
2362 /* Nothing to do; function's result type is handled elsewhere */
2365 atts_done
+= rtfunc
->funccolcount
;
2368 /* If we get here, must be looking for the ordinality column */
2369 if (rte
->funcordinality
&& attnum
== atts_done
+ 1)
2372 /* this probably can't happen ... */
2374 (errcode(ERRCODE_UNDEFINED_COLUMN
),
2375 errmsg("column %d of relation \"%s\" does not exist",
2376 attnum
, rte
->eref
->aliasname
)));
2380 * Given an array of dependency references, eliminate any duplicates.
2383 eliminate_duplicate_dependencies(ObjectAddresses
*addrs
)
2385 ObjectAddress
*priorobj
;
2390 * We can't sort if the array has "extra" data, because there's no way to
2391 * keep it in sync. Fortunately that combination of features is not
2394 Assert(!addrs
->extras
);
2396 if (addrs
->numrefs
<= 1)
2397 return; /* nothing to do */
2399 /* Sort the refs so that duplicates are adjacent */
2400 qsort(addrs
->refs
, addrs
->numrefs
, sizeof(ObjectAddress
),
2401 object_address_comparator
);
2404 priorobj
= addrs
->refs
;
2406 for (oldref
= 1; oldref
< addrs
->numrefs
; oldref
++)
2408 ObjectAddress
*thisobj
= addrs
->refs
+ oldref
;
2410 if (priorobj
->classId
== thisobj
->classId
&&
2411 priorobj
->objectId
== thisobj
->objectId
)
2413 if (priorobj
->objectSubId
== thisobj
->objectSubId
)
2414 continue; /* identical, so drop thisobj */
2417 * If we have a whole-object reference and a reference to a part
2418 * of the same object, we don't need the whole-object reference
2419 * (for example, we don't need to reference both table foo and
2420 * column foo.bar). The whole-object reference will always appear
2421 * first in the sorted list.
2423 if (priorobj
->objectSubId
== 0)
2425 /* replace whole ref with partial */
2426 priorobj
->objectSubId
= thisobj
->objectSubId
;
2430 /* Not identical, so add thisobj to output set */
2432 *priorobj
= *thisobj
;
2436 addrs
->numrefs
= newrefs
;
2440 * qsort comparator for ObjectAddress items
2443 object_address_comparator(const void *a
, const void *b
)
2445 const ObjectAddress
*obja
= (const ObjectAddress
*) a
;
2446 const ObjectAddress
*objb
= (const ObjectAddress
*) b
;
2449 * Primary sort key is OID descending. Most of the time, this will result
2450 * in putting newer objects before older ones, which is likely to be the
2451 * right order to delete in.
2453 if (obja
->objectId
> objb
->objectId
)
2455 if (obja
->objectId
< objb
->objectId
)
2459 * Next sort on catalog ID, in case identical OIDs appear in different
2460 * catalogs. Sort direction is pretty arbitrary here.
2462 if (obja
->classId
< objb
->classId
)
2464 if (obja
->classId
> objb
->classId
)
2468 * Last, sort on object subId.
2470 * We sort the subId as an unsigned int so that 0 (the whole object) will
2471 * come first. This is essential for eliminate_duplicate_dependencies,
2472 * and is also the best order for findDependentObjects.
2474 if ((unsigned int) obja
->objectSubId
< (unsigned int) objb
->objectSubId
)
2476 if ((unsigned int) obja
->objectSubId
> (unsigned int) objb
->objectSubId
)
2482 * Routines for handling an expansible array of ObjectAddress items.
2484 * new_object_addresses: create a new ObjectAddresses array.
2487 new_object_addresses(void)
2489 ObjectAddresses
*addrs
;
2491 addrs
= palloc(sizeof(ObjectAddresses
));
2494 addrs
->maxrefs
= 32;
2495 addrs
->refs
= (ObjectAddress
*)
2496 palloc(addrs
->maxrefs
* sizeof(ObjectAddress
));
2497 addrs
->extras
= NULL
; /* until/unless needed */
2503 * Add an entry to an ObjectAddresses array.
2506 add_object_address(Oid classId
, Oid objectId
, int32 subId
,
2507 ObjectAddresses
*addrs
)
2509 ObjectAddress
*item
;
2511 /* enlarge array if needed */
2512 if (addrs
->numrefs
>= addrs
->maxrefs
)
2514 addrs
->maxrefs
*= 2;
2515 addrs
->refs
= (ObjectAddress
*)
2516 repalloc(addrs
->refs
, addrs
->maxrefs
* sizeof(ObjectAddress
));
2517 Assert(!addrs
->extras
);
2519 /* record this item */
2520 item
= addrs
->refs
+ addrs
->numrefs
;
2521 item
->classId
= classId
;
2522 item
->objectId
= objectId
;
2523 item
->objectSubId
= subId
;
2528 * Add an entry to an ObjectAddresses array.
2530 * As above, but specify entry exactly.
2533 add_exact_object_address(const ObjectAddress
*object
,
2534 ObjectAddresses
*addrs
)
2536 ObjectAddress
*item
;
2538 /* enlarge array if needed */
2539 if (addrs
->numrefs
>= addrs
->maxrefs
)
2541 addrs
->maxrefs
*= 2;
2542 addrs
->refs
= (ObjectAddress
*)
2543 repalloc(addrs
->refs
, addrs
->maxrefs
* sizeof(ObjectAddress
));
2544 Assert(!addrs
->extras
);
2546 /* record this item */
2547 item
= addrs
->refs
+ addrs
->numrefs
;
2553 * Add an entry to an ObjectAddresses array.
2555 * As above, but specify entry exactly and provide some "extra" data too.
2558 add_exact_object_address_extra(const ObjectAddress
*object
,
2559 const ObjectAddressExtra
*extra
,
2560 ObjectAddresses
*addrs
)
2562 ObjectAddress
*item
;
2563 ObjectAddressExtra
*itemextra
;
2565 /* allocate extra space if first time */
2567 addrs
->extras
= (ObjectAddressExtra
*)
2568 palloc(addrs
->maxrefs
* sizeof(ObjectAddressExtra
));
2570 /* enlarge array if needed */
2571 if (addrs
->numrefs
>= addrs
->maxrefs
)
2573 addrs
->maxrefs
*= 2;
2574 addrs
->refs
= (ObjectAddress
*)
2575 repalloc(addrs
->refs
, addrs
->maxrefs
* sizeof(ObjectAddress
));
2576 addrs
->extras
= (ObjectAddressExtra
*)
2577 repalloc(addrs
->extras
, addrs
->maxrefs
* sizeof(ObjectAddressExtra
));
2579 /* record this item */
2580 item
= addrs
->refs
+ addrs
->numrefs
;
2582 itemextra
= addrs
->extras
+ addrs
->numrefs
;
2583 *itemextra
= *extra
;
2588 * Test whether an object is present in an ObjectAddresses array.
2590 * We return "true" if object is a subobject of something in the array, too.
2593 object_address_present(const ObjectAddress
*object
,
2594 const ObjectAddresses
*addrs
)
2598 for (i
= addrs
->numrefs
- 1; i
>= 0; i
--)
2600 const ObjectAddress
*thisobj
= addrs
->refs
+ i
;
2602 if (object
->classId
== thisobj
->classId
&&
2603 object
->objectId
== thisobj
->objectId
)
2605 if (object
->objectSubId
== thisobj
->objectSubId
||
2606 thisobj
->objectSubId
== 0)
2615 * As above, except that if the object is present then also OR the given
2616 * flags into its associated extra data (which must exist).
2619 object_address_present_add_flags(const ObjectAddress
*object
,
2621 ObjectAddresses
*addrs
)
2623 bool result
= false;
2626 for (i
= addrs
->numrefs
- 1; i
>= 0; i
--)
2628 ObjectAddress
*thisobj
= addrs
->refs
+ i
;
2630 if (object
->classId
== thisobj
->classId
&&
2631 object
->objectId
== thisobj
->objectId
)
2633 if (object
->objectSubId
== thisobj
->objectSubId
)
2635 ObjectAddressExtra
*thisextra
= addrs
->extras
+ i
;
2637 thisextra
->flags
|= flags
;
2640 else if (thisobj
->objectSubId
== 0)
2643 * We get here if we find a need to delete a column after
2644 * having already decided to drop its whole table. Obviously
2645 * we no longer need to drop the subobject, so report that we
2646 * found the subobject in the array. But don't plaster its
2647 * flags on the whole object.
2651 else if (object
->objectSubId
== 0)
2654 * We get here if we find a need to delete a whole table after
2655 * having already decided to drop one of its columns. We
2656 * can't report that the whole object is in the array, but we
2657 * should mark the subobject with the whole object's flags.
2659 * It might seem attractive to physically delete the column's
2660 * array entry, or at least mark it as no longer needing
2661 * separate deletion. But that could lead to, e.g., dropping
2662 * the column's datatype before we drop the table, which does
2663 * not seem like a good idea. This is a very rare situation
2664 * in practice, so we just take the hit of doing a separate
2665 * DROP COLUMN action even though we know we're gonna delete
2668 * What we can do, though, is mark this as a subobject so that
2669 * we don't report it separately, which is confusing because
2670 * it's unpredictable whether it happens or not. But do so
2671 * only if flags != 0 (flags == 0 is a read-only probe).
2673 * Because there could be other subobjects of this object in
2674 * the array, this case means we always have to loop through
2675 * the whole array; we cannot exit early on a match.
2677 ObjectAddressExtra
*thisextra
= addrs
->extras
+ i
;
2680 thisextra
->flags
|= (flags
| DEPFLAG_SUBOBJECT
);
2689 * Similar to above, except we search an ObjectAddressStack.
2692 stack_address_present_add_flags(const ObjectAddress
*object
,
2694 ObjectAddressStack
*stack
)
2696 bool result
= false;
2697 ObjectAddressStack
*stackptr
;
2699 for (stackptr
= stack
; stackptr
; stackptr
= stackptr
->next
)
2701 const ObjectAddress
*thisobj
= stackptr
->object
;
2703 if (object
->classId
== thisobj
->classId
&&
2704 object
->objectId
== thisobj
->objectId
)
2706 if (object
->objectSubId
== thisobj
->objectSubId
)
2708 stackptr
->flags
|= flags
;
2711 else if (thisobj
->objectSubId
== 0)
2714 * We're visiting a column with whole table already on stack.
2715 * As in object_address_present_add_flags(), we can skip
2716 * further processing of the subobject, but we don't want to
2717 * propagate flags for the subobject to the whole object.
2721 else if (object
->objectSubId
== 0)
2724 * We're visiting a table with column already on stack. As in
2725 * object_address_present_add_flags(), we should propagate
2726 * flags for the whole object to each of its subobjects.
2729 stackptr
->flags
|= (flags
| DEPFLAG_SUBOBJECT
);
2738 * Record multiple dependencies from an ObjectAddresses array, after first
2739 * removing any duplicates.
2742 record_object_address_dependencies(const ObjectAddress
*depender
,
2743 ObjectAddresses
*referenced
,
2744 DependencyType behavior
)
2746 eliminate_duplicate_dependencies(referenced
);
2747 recordMultipleDependencies(depender
,
2748 referenced
->refs
, referenced
->numrefs
,
2753 * Sort the items in an ObjectAddresses array.
2755 * The major sort key is OID-descending, so that newer objects will be listed
2756 * first in most cases. This is primarily useful for ensuring stable outputs
2757 * from regression tests; it's not recommended if the order of the objects is
2758 * determined by user input, such as the order of targets in a DROP command.
2761 sort_object_addresses(ObjectAddresses
*addrs
)
2763 if (addrs
->numrefs
> 1)
2764 qsort(addrs
->refs
, addrs
->numrefs
,
2765 sizeof(ObjectAddress
),
2766 object_address_comparator
);
2770 * Clean up when done with an ObjectAddresses array.
2773 free_object_addresses(ObjectAddresses
*addrs
)
2777 pfree(addrs
->extras
);
2782 * delete initial ACL for extension objects
2785 DeleteInitPrivs(const ObjectAddress
*object
)
2793 relation
= table_open(InitPrivsRelationId
, RowExclusiveLock
);
2795 ScanKeyInit(&key
[0],
2796 Anum_pg_init_privs_objoid
,
2797 BTEqualStrategyNumber
, F_OIDEQ
,
2798 ObjectIdGetDatum(object
->objectId
));
2799 ScanKeyInit(&key
[1],
2800 Anum_pg_init_privs_classoid
,
2801 BTEqualStrategyNumber
, F_OIDEQ
,
2802 ObjectIdGetDatum(object
->classId
));
2803 if (object
->objectSubId
!= 0)
2805 ScanKeyInit(&key
[2],
2806 Anum_pg_init_privs_objsubid
,
2807 BTEqualStrategyNumber
, F_INT4EQ
,
2808 Int32GetDatum(object
->objectSubId
));
2814 scan
= systable_beginscan(relation
, InitPrivsObjIndexId
, true,
2817 while (HeapTupleIsValid(oldtuple
= systable_getnext(scan
)))
2818 CatalogTupleDelete(relation
, &oldtuple
->t_self
);
2820 systable_endscan(scan
);
2822 table_close(relation
, RowExclusiveLock
);