Fix a memory leak in dumping functions with TRANSFORMs
[pgsql.git] / src / backend / catalog / dependency.c
blob2afc550540c227da164e099b3ef280fc6a2e74d0
1 /*-------------------------------------------------------------------------
3 * dependency.c
4 * Routines to support inter-object dependencies.
7 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/catalog/dependency.c
13 *-------------------------------------------------------------------------
15 #include "postgres.h"
17 #include "access/genam.h"
18 #include "access/htup_details.h"
19 #include "access/table.h"
20 #include "access/xact.h"
21 #include "catalog/catalog.h"
22 #include "catalog/dependency.h"
23 #include "catalog/heap.h"
24 #include "catalog/index.h"
25 #include "catalog/objectaccess.h"
26 #include "catalog/pg_am.h"
27 #include "catalog/pg_amop.h"
28 #include "catalog/pg_amproc.h"
29 #include "catalog/pg_attrdef.h"
30 #include "catalog/pg_authid.h"
31 #include "catalog/pg_auth_members.h"
32 #include "catalog/pg_cast.h"
33 #include "catalog/pg_collation.h"
34 #include "catalog/pg_constraint.h"
35 #include "catalog/pg_conversion.h"
36 #include "catalog/pg_database.h"
37 #include "catalog/pg_default_acl.h"
38 #include "catalog/pg_depend.h"
39 #include "catalog/pg_event_trigger.h"
40 #include "catalog/pg_extension.h"
41 #include "catalog/pg_foreign_data_wrapper.h"
42 #include "catalog/pg_foreign_server.h"
43 #include "catalog/pg_init_privs.h"
44 #include "catalog/pg_language.h"
45 #include "catalog/pg_largeobject.h"
46 #include "catalog/pg_namespace.h"
47 #include "catalog/pg_opclass.h"
48 #include "catalog/pg_operator.h"
49 #include "catalog/pg_opfamily.h"
50 #include "catalog/pg_parameter_acl.h"
51 #include "catalog/pg_policy.h"
52 #include "catalog/pg_proc.h"
53 #include "catalog/pg_publication.h"
54 #include "catalog/pg_publication_namespace.h"
55 #include "catalog/pg_publication_rel.h"
56 #include "catalog/pg_rewrite.h"
57 #include "catalog/pg_statistic_ext.h"
58 #include "catalog/pg_subscription.h"
59 #include "catalog/pg_tablespace.h"
60 #include "catalog/pg_transform.h"
61 #include "catalog/pg_trigger.h"
62 #include "catalog/pg_ts_config.h"
63 #include "catalog/pg_ts_dict.h"
64 #include "catalog/pg_ts_parser.h"
65 #include "catalog/pg_ts_template.h"
66 #include "catalog/pg_type.h"
67 #include "catalog/pg_user_mapping.h"
68 #include "commands/comment.h"
69 #include "commands/defrem.h"
70 #include "commands/event_trigger.h"
71 #include "commands/extension.h"
72 #include "commands/policy.h"
73 #include "commands/publicationcmds.h"
74 #include "commands/seclabel.h"
75 #include "commands/sequence.h"
76 #include "commands/trigger.h"
77 #include "commands/typecmds.h"
78 #include "funcapi.h"
79 #include "miscadmin.h"
80 #include "nodes/nodeFuncs.h"
81 #include "parser/parsetree.h"
82 #include "rewrite/rewriteRemove.h"
83 #include "storage/lmgr.h"
84 #include "utils/fmgroids.h"
85 #include "utils/lsyscache.h"
86 #include "utils/syscache.h"
90 * Deletion processing requires additional state for each ObjectAddress that
91 * it's planning to delete. For simplicity and code-sharing we make the
92 * ObjectAddresses code support arrays with or without this extra state.
94 typedef struct
96 int flags; /* bitmask, see bit definitions below */
97 ObjectAddress dependee; /* object whose deletion forced this one */
98 } ObjectAddressExtra;
100 /* ObjectAddressExtra flag bits */
101 #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
102 #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
103 #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
104 #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
105 #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
106 #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
107 #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
108 #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
109 #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
112 /* expansible list of ObjectAddresses */
113 struct ObjectAddresses
115 ObjectAddress *refs; /* => palloc'd array */
116 ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
117 int numrefs; /* current number of references */
118 int maxrefs; /* current size of palloc'd array(s) */
121 /* typedef ObjectAddresses appears in dependency.h */
123 /* threaded list of ObjectAddresses, for recursion detection */
124 typedef struct ObjectAddressStack
126 const ObjectAddress *object; /* object being visited */
127 int flags; /* its current flag bits */
128 struct ObjectAddressStack *next; /* next outer stack level */
129 } ObjectAddressStack;
131 /* temporary storage in findDependentObjects */
132 typedef struct
134 ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
135 int subflags; /* flags to pass down when recursing to obj */
136 } ObjectAddressAndFlags;
138 /* for find_expr_references_walker */
139 typedef struct
141 ObjectAddresses *addrs; /* addresses being accumulated */
142 List *rtables; /* list of rangetables to resolve Vars */
143 } find_expr_references_context;
146 static void findDependentObjects(const ObjectAddress *object,
147 int objflags,
148 int flags,
149 ObjectAddressStack *stack,
150 ObjectAddresses *targetObjects,
151 const ObjectAddresses *pendingObjects,
152 Relation *depRel);
153 static void reportDependentObjects(const ObjectAddresses *targetObjects,
154 DropBehavior behavior,
155 int flags,
156 const ObjectAddress *origObject);
157 static void deleteOneObject(const ObjectAddress *object,
158 Relation *depRel, int32 flags);
159 static void doDeletion(const ObjectAddress *object, int flags);
160 static bool find_expr_references_walker(Node *node,
161 find_expr_references_context *context);
162 static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
163 find_expr_references_context *context);
164 static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
165 static int object_address_comparator(const void *a, const void *b);
166 static void add_object_address(Oid classId, Oid objectId, int32 subId,
167 ObjectAddresses *addrs);
168 static void add_exact_object_address_extra(const ObjectAddress *object,
169 const ObjectAddressExtra *extra,
170 ObjectAddresses *addrs);
171 static bool object_address_present_add_flags(const ObjectAddress *object,
172 int flags,
173 ObjectAddresses *addrs);
174 static bool stack_address_present_add_flags(const ObjectAddress *object,
175 int flags,
176 ObjectAddressStack *stack);
177 static void DeleteInitPrivs(const ObjectAddress *object);
181 * Go through the objects given running the final actions on them, and execute
182 * the actual deletion.
184 static void
185 deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
186 int flags)
188 int i;
191 * Keep track of objects for event triggers, if necessary.
193 if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
195 for (i = 0; i < targetObjects->numrefs; i++)
197 const ObjectAddress *thisobj = &targetObjects->refs[i];
198 const ObjectAddressExtra *extra = &targetObjects->extras[i];
199 bool original = false;
200 bool normal = false;
202 if (extra->flags & DEPFLAG_ORIGINAL)
203 original = true;
204 if (extra->flags & DEPFLAG_NORMAL)
205 normal = true;
206 if (extra->flags & DEPFLAG_REVERSE)
207 normal = true;
209 if (EventTriggerSupportsObject(thisobj))
211 EventTriggerSQLDropAddObject(thisobj, original, normal);
217 * Delete all the objects in the proper order, except that if told to, we
218 * should skip the original object(s).
220 for (i = 0; i < targetObjects->numrefs; i++)
222 ObjectAddress *thisobj = targetObjects->refs + i;
223 ObjectAddressExtra *thisextra = targetObjects->extras + i;
225 if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
226 (thisextra->flags & DEPFLAG_ORIGINAL))
227 continue;
229 deleteOneObject(thisobj, depRel, flags);
234 * performDeletion: attempt to drop the specified object. If CASCADE
235 * behavior is specified, also drop any dependent objects (recursively).
236 * If RESTRICT behavior is specified, error out if there are any dependent
237 * objects, except for those that should be implicitly dropped anyway
238 * according to the dependency type.
240 * This is the outer control routine for all forms of DROP that drop objects
241 * that can participate in dependencies. Note that performMultipleDeletions
242 * is a variant on the same theme; if you change anything here you'll likely
243 * need to fix that too.
245 * Bits in the flags argument can include:
247 * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
248 * direct result of a user-initiated action. For example, when a temporary
249 * schema is cleaned out so that a new backend can use it, or when a column
250 * default is dropped as an intermediate step while adding a new one, that's
251 * an internal operation. On the other hand, when we drop something because
252 * the user issued a DROP statement against it, that's not internal. Currently
253 * this suppresses calling event triggers and making some permissions checks.
255 * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
256 * not currently work for anything except dropping indexes; don't set it for
257 * other object types or you may get strange results.
259 * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
261 * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
262 * but only what depends on it/them.
264 * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
265 * deleting objects that are part of an extension. This should generally
266 * be used only when dropping temporary objects.
268 * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
269 * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
272 void
273 performDeletion(const ObjectAddress *object,
274 DropBehavior behavior, int flags)
276 Relation depRel;
277 ObjectAddresses *targetObjects;
280 * We save some cycles by opening pg_depend just once and passing the
281 * Relation pointer down to all the recursive deletion steps.
283 depRel = table_open(DependRelationId, RowExclusiveLock);
286 * Acquire deletion lock on the target object. (Ideally the caller has
287 * done this already, but many places are sloppy about it.)
289 AcquireDeletionLock(object, 0);
292 * Construct a list of objects to delete (ie, the given object plus
293 * everything directly or indirectly dependent on it).
295 targetObjects = new_object_addresses();
297 findDependentObjects(object,
298 DEPFLAG_ORIGINAL,
299 flags,
300 NULL, /* empty stack */
301 targetObjects,
302 NULL, /* no pendingObjects */
303 &depRel);
306 * Check if deletion is allowed, and report about cascaded deletes.
308 reportDependentObjects(targetObjects,
309 behavior,
310 flags,
311 object);
313 /* do the deed */
314 deleteObjectsInList(targetObjects, &depRel, flags);
316 /* And clean up */
317 free_object_addresses(targetObjects);
319 table_close(depRel, RowExclusiveLock);
323 * performMultipleDeletions: Similar to performDeletion, but act on multiple
324 * objects at once.
326 * The main difference from issuing multiple performDeletion calls is that the
327 * list of objects that would be implicitly dropped, for each object to be
328 * dropped, is the union of the implicit-object list for all objects. This
329 * makes each check be more relaxed.
331 void
332 performMultipleDeletions(const ObjectAddresses *objects,
333 DropBehavior behavior, int flags)
335 Relation depRel;
336 ObjectAddresses *targetObjects;
337 int i;
339 /* No work if no objects... */
340 if (objects->numrefs <= 0)
341 return;
344 * We save some cycles by opening pg_depend just once and passing the
345 * Relation pointer down to all the recursive deletion steps.
347 depRel = table_open(DependRelationId, RowExclusiveLock);
350 * Construct a list of objects to delete (ie, the given objects plus
351 * everything directly or indirectly dependent on them). Note that
352 * because we pass the whole objects list as pendingObjects context, we
353 * won't get a failure from trying to delete an object that is internally
354 * dependent on another one in the list; we'll just skip that object and
355 * delete it when we reach its owner.
357 targetObjects = new_object_addresses();
359 for (i = 0; i < objects->numrefs; i++)
361 const ObjectAddress *thisobj = objects->refs + i;
364 * Acquire deletion lock on each target object. (Ideally the caller
365 * has done this already, but many places are sloppy about it.)
367 AcquireDeletionLock(thisobj, flags);
369 findDependentObjects(thisobj,
370 DEPFLAG_ORIGINAL,
371 flags,
372 NULL, /* empty stack */
373 targetObjects,
374 objects,
375 &depRel);
379 * Check if deletion is allowed, and report about cascaded deletes.
381 * If there's exactly one object being deleted, report it the same way as
382 * in performDeletion(), else we have to be vaguer.
384 reportDependentObjects(targetObjects,
385 behavior,
386 flags,
387 (objects->numrefs == 1 ? objects->refs : NULL));
389 /* do the deed */
390 deleteObjectsInList(targetObjects, &depRel, flags);
392 /* And clean up */
393 free_object_addresses(targetObjects);
395 table_close(depRel, RowExclusiveLock);
399 * findDependentObjects - find all objects that depend on 'object'
401 * For every object that depends on the starting object, acquire a deletion
402 * lock on the object, add it to targetObjects (if not already there),
403 * and recursively find objects that depend on it. An object's dependencies
404 * will be placed into targetObjects before the object itself; this means
405 * that the finished list's order represents a safe deletion order.
407 * The caller must already have a deletion lock on 'object' itself,
408 * but must not have added it to targetObjects. (Note: there are corner
409 * cases where we won't add the object either, and will also release the
410 * caller-taken lock. This is a bit ugly, but the API is set up this way
411 * to allow easy rechecking of an object's liveness after we lock it. See
412 * notes within the function.)
414 * When dropping a whole object (subId = 0), we find dependencies for
415 * its sub-objects too.
417 * object: the object to add to targetObjects and find dependencies on
418 * objflags: flags to be ORed into the object's targetObjects entry
419 * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
420 * stack: list of objects being visited in current recursion; topmost item
421 * is the object that we recursed from (NULL for external callers)
422 * targetObjects: list of objects that are scheduled to be deleted
423 * pendingObjects: list of other objects slated for destruction, but
424 * not necessarily in targetObjects yet (can be NULL if none)
425 * *depRel: already opened pg_depend relation
427 * Note: objflags describes the reason for visiting this particular object
428 * at this time, and is not passed down when recursing. The flags argument
429 * is passed down, since it describes what we're doing overall.
431 static void
432 findDependentObjects(const ObjectAddress *object,
433 int objflags,
434 int flags,
435 ObjectAddressStack *stack,
436 ObjectAddresses *targetObjects,
437 const ObjectAddresses *pendingObjects,
438 Relation *depRel)
440 ScanKeyData key[3];
441 int nkeys;
442 SysScanDesc scan;
443 HeapTuple tup;
444 ObjectAddress otherObject;
445 ObjectAddress owningObject;
446 ObjectAddress partitionObject;
447 ObjectAddressAndFlags *dependentObjects;
448 int numDependentObjects;
449 int maxDependentObjects;
450 ObjectAddressStack mystack;
451 ObjectAddressExtra extra;
454 * If the target object is already being visited in an outer recursion
455 * level, just report the current objflags back to that level and exit.
456 * This is needed to avoid infinite recursion in the face of circular
457 * dependencies.
459 * The stack check alone would result in dependency loops being broken at
460 * an arbitrary point, ie, the first member object of the loop to be
461 * visited is the last one to be deleted. This is obviously unworkable.
462 * However, the check for internal dependency below guarantees that we
463 * will not break a loop at an internal dependency: if we enter the loop
464 * at an "owned" object we will switch and start at the "owning" object
465 * instead. We could probably hack something up to avoid breaking at an
466 * auto dependency, too, if we had to. However there are no known cases
467 * where that would be necessary.
469 if (stack_address_present_add_flags(object, objflags, stack))
470 return;
473 * since this function recurses, it could be driven to stack overflow,
474 * because of the deep dependency tree, not only due to dependency loops.
476 check_stack_depth();
479 * It's also possible that the target object has already been completely
480 * processed and put into targetObjects. If so, again we just add the
481 * specified objflags to its entry and return.
483 * (Note: in these early-exit cases we could release the caller-taken
484 * lock, since the object is presumably now locked multiple times; but it
485 * seems not worth the cycles.)
487 if (object_address_present_add_flags(object, objflags, targetObjects))
488 return;
491 * If the target object is pinned, we can just error out immediately; it
492 * won't have any objects recorded as depending on it.
494 if (IsPinnedObject(object->classId, object->objectId))
495 ereport(ERROR,
496 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
497 errmsg("cannot drop %s because it is required by the database system",
498 getObjectDescription(object, false))));
501 * The target object might be internally dependent on some other object
502 * (its "owner"), and/or be a member of an extension (also considered its
503 * owner). If so, and if we aren't recursing from the owning object, we
504 * have to transform this deletion request into a deletion request of the
505 * owning object. (We'll eventually recurse back to this object, but the
506 * owning object has to be visited first so it will be deleted after.) The
507 * way to find out about this is to scan the pg_depend entries that show
508 * what this object depends on.
510 ScanKeyInit(&key[0],
511 Anum_pg_depend_classid,
512 BTEqualStrategyNumber, F_OIDEQ,
513 ObjectIdGetDatum(object->classId));
514 ScanKeyInit(&key[1],
515 Anum_pg_depend_objid,
516 BTEqualStrategyNumber, F_OIDEQ,
517 ObjectIdGetDatum(object->objectId));
518 if (object->objectSubId != 0)
520 /* Consider only dependencies of this sub-object */
521 ScanKeyInit(&key[2],
522 Anum_pg_depend_objsubid,
523 BTEqualStrategyNumber, F_INT4EQ,
524 Int32GetDatum(object->objectSubId));
525 nkeys = 3;
527 else
529 /* Consider dependencies of this object and any sub-objects it has */
530 nkeys = 2;
533 scan = systable_beginscan(*depRel, DependDependerIndexId, true,
534 NULL, nkeys, key);
536 /* initialize variables that loop may fill */
537 memset(&owningObject, 0, sizeof(owningObject));
538 memset(&partitionObject, 0, sizeof(partitionObject));
540 while (HeapTupleIsValid(tup = systable_getnext(scan)))
542 Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
544 otherObject.classId = foundDep->refclassid;
545 otherObject.objectId = foundDep->refobjid;
546 otherObject.objectSubId = foundDep->refobjsubid;
549 * When scanning dependencies of a whole object, we may find rows
550 * linking sub-objects of the object to the object itself. (Normally,
551 * such a dependency is implicit, but we must make explicit ones in
552 * some cases involving partitioning.) We must ignore such rows to
553 * avoid infinite recursion.
555 if (otherObject.classId == object->classId &&
556 otherObject.objectId == object->objectId &&
557 object->objectSubId == 0)
558 continue;
560 switch (foundDep->deptype)
562 case DEPENDENCY_NORMAL:
563 case DEPENDENCY_AUTO:
564 case DEPENDENCY_AUTO_EXTENSION:
565 /* no problem */
566 break;
568 case DEPENDENCY_EXTENSION:
571 * If told to, ignore EXTENSION dependencies altogether. This
572 * flag is normally used to prevent dropping extensions during
573 * temporary-object cleanup, even if a temp object was created
574 * during an extension script.
576 if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
577 break;
580 * If the other object is the extension currently being
581 * created/altered, ignore this dependency and continue with
582 * the deletion. This allows dropping of an extension's
583 * objects within the extension's scripts, as well as corner
584 * cases such as dropping a transient object created within
585 * such a script.
587 if (creating_extension &&
588 otherObject.classId == ExtensionRelationId &&
589 otherObject.objectId == CurrentExtensionObject)
590 break;
592 /* Otherwise, treat this like an internal dependency */
593 /* FALL THRU */
595 case DEPENDENCY_INTERNAL:
598 * This object is part of the internal implementation of
599 * another object, or is part of the extension that is the
600 * other object. We have three cases:
602 * 1. At the outermost recursion level, we must disallow the
603 * DROP. However, if the owning object is listed in
604 * pendingObjects, just release the caller's lock and return;
605 * we'll eventually complete the DROP when we reach that entry
606 * in the pending list.
608 * Note: the above statement is true only if this pg_depend
609 * entry still exists by then; in principle, therefore, we
610 * could miss deleting an item the user told us to delete.
611 * However, no inconsistency can result: since we're at outer
612 * level, there is no object depending on this one.
614 if (stack == NULL)
616 if (pendingObjects &&
617 object_address_present(&otherObject, pendingObjects))
619 systable_endscan(scan);
620 /* need to release caller's lock; see notes below */
621 ReleaseDeletionLock(object);
622 return;
626 * We postpone actually issuing the error message until
627 * after this loop, so that we can make the behavior
628 * independent of the ordering of pg_depend entries, at
629 * least if there's not more than one INTERNAL and one
630 * EXTENSION dependency. (If there's more, we'll complain
631 * about a random one of them.) Prefer to complain about
632 * EXTENSION, since that's generally a more important
633 * dependency.
635 if (!OidIsValid(owningObject.classId) ||
636 foundDep->deptype == DEPENDENCY_EXTENSION)
637 owningObject = otherObject;
638 break;
642 * 2. When recursing from the other end of this dependency,
643 * it's okay to continue with the deletion. This holds when
644 * recursing from a whole object that includes the nominal
645 * other end as a component, too. Since there can be more
646 * than one "owning" object, we have to allow matches that are
647 * more than one level down in the stack.
649 if (stack_address_present_add_flags(&otherObject, 0, stack))
650 break;
653 * 3. Not all the owning objects have been visited, so
654 * transform this deletion request into a delete of this
655 * owning object.
657 * First, release caller's lock on this object and get
658 * deletion lock on the owning object. (We must release
659 * caller's lock to avoid deadlock against a concurrent
660 * deletion of the owning object.)
662 ReleaseDeletionLock(object);
663 AcquireDeletionLock(&otherObject, 0);
666 * The owning object might have been deleted while we waited
667 * to lock it; if so, neither it nor the current object are
668 * interesting anymore. We test this by checking the
669 * pg_depend entry (see notes below).
671 if (!systable_recheck_tuple(scan, tup))
673 systable_endscan(scan);
674 ReleaseDeletionLock(&otherObject);
675 return;
679 * One way or the other, we're done with the scan; might as
680 * well close it down before recursing, to reduce peak
681 * resource consumption.
683 systable_endscan(scan);
686 * Okay, recurse to the owning object instead of proceeding.
688 * We do not need to stack the current object; we want the
689 * traversal order to be as if the original reference had
690 * linked to the owning object instead of this one.
692 * The dependency type is a "reverse" dependency: we need to
693 * delete the owning object if this one is to be deleted, but
694 * this linkage is never a reason for an automatic deletion.
696 findDependentObjects(&otherObject,
697 DEPFLAG_REVERSE,
698 flags,
699 stack,
700 targetObjects,
701 pendingObjects,
702 depRel);
705 * The current target object should have been added to
706 * targetObjects while processing the owning object; but it
707 * probably got only the flag bits associated with the
708 * dependency we're looking at. We need to add the objflags
709 * that were passed to this recursion level, too, else we may
710 * get a bogus failure in reportDependentObjects (if, for
711 * example, we were called due to a partition dependency).
713 * If somehow the current object didn't get scheduled for
714 * deletion, bleat. (That would imply that somebody deleted
715 * this dependency record before the recursion got to it.)
716 * Another idea would be to reacquire lock on the current
717 * object and resume trying to delete it, but it seems not
718 * worth dealing with the race conditions inherent in that.
720 if (!object_address_present_add_flags(object, objflags,
721 targetObjects))
722 elog(ERROR, "deletion of owning object %s failed to delete %s",
723 getObjectDescription(&otherObject, false),
724 getObjectDescription(object, false));
726 /* And we're done here. */
727 return;
729 case DEPENDENCY_PARTITION_PRI:
732 * Remember that this object has a partition-type dependency.
733 * After the dependency scan, we'll complain if we didn't find
734 * a reason to delete one of its partition dependencies.
736 objflags |= DEPFLAG_IS_PART;
739 * Also remember the primary partition owner, for error
740 * messages. If there are multiple primary owners (which
741 * there should not be), we'll report a random one of them.
743 partitionObject = otherObject;
744 break;
746 case DEPENDENCY_PARTITION_SEC:
749 * Only use secondary partition owners in error messages if we
750 * find no primary owner (which probably shouldn't happen).
752 if (!(objflags & DEPFLAG_IS_PART))
753 partitionObject = otherObject;
756 * Remember that this object has a partition-type dependency.
757 * After the dependency scan, we'll complain if we didn't find
758 * a reason to delete one of its partition dependencies.
760 objflags |= DEPFLAG_IS_PART;
761 break;
763 default:
764 elog(ERROR, "unrecognized dependency type '%c' for %s",
765 foundDep->deptype, getObjectDescription(object, false));
766 break;
770 systable_endscan(scan);
773 * If we found an INTERNAL or EXTENSION dependency when we're at outer
774 * level, complain about it now. If we also found a PARTITION dependency,
775 * we prefer to report the PARTITION dependency. This is arbitrary but
776 * seems to be more useful in practice.
778 if (OidIsValid(owningObject.classId))
780 char *otherObjDesc;
782 if (OidIsValid(partitionObject.classId))
783 otherObjDesc = getObjectDescription(&partitionObject, false);
784 else
785 otherObjDesc = getObjectDescription(&owningObject, false);
787 ereport(ERROR,
788 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
789 errmsg("cannot drop %s because %s requires it",
790 getObjectDescription(object, false), otherObjDesc),
791 errhint("You can drop %s instead.", otherObjDesc)));
795 * Next, identify all objects that directly depend on the current object.
796 * To ensure predictable deletion order, we collect them up in
797 * dependentObjects and sort the list before actually recursing. (The
798 * deletion order would be valid in any case, but doing this ensures
799 * consistent output from DROP CASCADE commands, which is helpful for
800 * regression testing.)
802 maxDependentObjects = 128; /* arbitrary initial allocation */
803 dependentObjects = (ObjectAddressAndFlags *)
804 palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
805 numDependentObjects = 0;
807 ScanKeyInit(&key[0],
808 Anum_pg_depend_refclassid,
809 BTEqualStrategyNumber, F_OIDEQ,
810 ObjectIdGetDatum(object->classId));
811 ScanKeyInit(&key[1],
812 Anum_pg_depend_refobjid,
813 BTEqualStrategyNumber, F_OIDEQ,
814 ObjectIdGetDatum(object->objectId));
815 if (object->objectSubId != 0)
817 ScanKeyInit(&key[2],
818 Anum_pg_depend_refobjsubid,
819 BTEqualStrategyNumber, F_INT4EQ,
820 Int32GetDatum(object->objectSubId));
821 nkeys = 3;
823 else
824 nkeys = 2;
826 scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
827 NULL, nkeys, key);
829 while (HeapTupleIsValid(tup = systable_getnext(scan)))
831 Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
832 int subflags;
834 otherObject.classId = foundDep->classid;
835 otherObject.objectId = foundDep->objid;
836 otherObject.objectSubId = foundDep->objsubid;
839 * If what we found is a sub-object of the current object, just ignore
840 * it. (Normally, such a dependency is implicit, but we must make
841 * explicit ones in some cases involving partitioning.)
843 if (otherObject.classId == object->classId &&
844 otherObject.objectId == object->objectId &&
845 object->objectSubId == 0)
846 continue;
849 * Must lock the dependent object before recursing to it.
851 AcquireDeletionLock(&otherObject, 0);
854 * The dependent object might have been deleted while we waited to
855 * lock it; if so, we don't need to do anything more with it. We can
856 * test this cheaply and independently of the object's type by seeing
857 * if the pg_depend tuple we are looking at is still live. (If the
858 * object got deleted, the tuple would have been deleted too.)
860 if (!systable_recheck_tuple(scan, tup))
862 /* release the now-useless lock */
863 ReleaseDeletionLock(&otherObject);
864 /* and continue scanning for dependencies */
865 continue;
869 * We do need to delete it, so identify objflags to be passed down,
870 * which depend on the dependency type.
872 switch (foundDep->deptype)
874 case DEPENDENCY_NORMAL:
875 subflags = DEPFLAG_NORMAL;
876 break;
877 case DEPENDENCY_AUTO:
878 case DEPENDENCY_AUTO_EXTENSION:
879 subflags = DEPFLAG_AUTO;
880 break;
881 case DEPENDENCY_INTERNAL:
882 subflags = DEPFLAG_INTERNAL;
883 break;
884 case DEPENDENCY_PARTITION_PRI:
885 case DEPENDENCY_PARTITION_SEC:
886 subflags = DEPFLAG_PARTITION;
887 break;
888 case DEPENDENCY_EXTENSION:
889 subflags = DEPFLAG_EXTENSION;
890 break;
891 default:
892 elog(ERROR, "unrecognized dependency type '%c' for %s",
893 foundDep->deptype, getObjectDescription(object, false));
894 subflags = 0; /* keep compiler quiet */
895 break;
898 /* And add it to the pending-objects list */
899 if (numDependentObjects >= maxDependentObjects)
901 /* enlarge array if needed */
902 maxDependentObjects *= 2;
903 dependentObjects = (ObjectAddressAndFlags *)
904 repalloc(dependentObjects,
905 maxDependentObjects * sizeof(ObjectAddressAndFlags));
908 dependentObjects[numDependentObjects].obj = otherObject;
909 dependentObjects[numDependentObjects].subflags = subflags;
910 numDependentObjects++;
913 systable_endscan(scan);
916 * Now we can sort the dependent objects into a stable visitation order.
917 * It's safe to use object_address_comparator here since the obj field is
918 * first within ObjectAddressAndFlags.
920 if (numDependentObjects > 1)
921 qsort(dependentObjects, numDependentObjects,
922 sizeof(ObjectAddressAndFlags),
923 object_address_comparator);
926 * Now recurse to the dependent objects. We must visit them first since
927 * they have to be deleted before the current object.
929 mystack.object = object; /* set up a new stack level */
930 mystack.flags = objflags;
931 mystack.next = stack;
933 for (int i = 0; i < numDependentObjects; i++)
935 ObjectAddressAndFlags *depObj = dependentObjects + i;
937 findDependentObjects(&depObj->obj,
938 depObj->subflags,
939 flags,
940 &mystack,
941 targetObjects,
942 pendingObjects,
943 depRel);
946 pfree(dependentObjects);
949 * Finally, we can add the target object to targetObjects. Be careful to
950 * include any flags that were passed back down to us from inner recursion
951 * levels. Record the "dependee" as being either the most important
952 * partition owner if there is one, else the object we recursed from, if
953 * any. (The logic in reportDependentObjects() is such that it can only
954 * need one of those objects.)
956 extra.flags = mystack.flags;
957 if (extra.flags & DEPFLAG_IS_PART)
958 extra.dependee = partitionObject;
959 else if (stack)
960 extra.dependee = *stack->object;
961 else
962 memset(&extra.dependee, 0, sizeof(extra.dependee));
963 add_exact_object_address_extra(object, &extra, targetObjects);
967 * reportDependentObjects - report about dependencies, and fail if RESTRICT
969 * Tell the user about dependent objects that we are going to delete
970 * (or would need to delete, but are prevented by RESTRICT mode);
971 * then error out if there are any and it's not CASCADE mode.
973 * targetObjects: list of objects that are scheduled to be deleted
974 * behavior: RESTRICT or CASCADE
975 * flags: other flags for the deletion operation
976 * origObject: base object of deletion, or NULL if not available
977 * (the latter case occurs in DROP OWNED)
979 static void
980 reportDependentObjects(const ObjectAddresses *targetObjects,
981 DropBehavior behavior,
982 int flags,
983 const ObjectAddress *origObject)
985 int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
986 bool ok = true;
987 StringInfoData clientdetail;
988 StringInfoData logdetail;
989 int numReportedClient = 0;
990 int numNotReportedClient = 0;
991 int i;
994 * If we need to delete any partition-dependent objects, make sure that
995 * we're deleting at least one of their partition dependencies, too. That
996 * can be detected by checking that we reached them by a PARTITION
997 * dependency at some point.
999 * We just report the first such object, as in most cases the only way to
1000 * trigger this complaint is to explicitly try to delete one partition of
1001 * a partitioned object.
1003 for (i = 0; i < targetObjects->numrefs; i++)
1005 const ObjectAddressExtra *extra = &targetObjects->extras[i];
1007 if ((extra->flags & DEPFLAG_IS_PART) &&
1008 !(extra->flags & DEPFLAG_PARTITION))
1010 const ObjectAddress *object = &targetObjects->refs[i];
1011 char *otherObjDesc = getObjectDescription(&extra->dependee,
1012 false);
1014 ereport(ERROR,
1015 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1016 errmsg("cannot drop %s because %s requires it",
1017 getObjectDescription(object, false), otherObjDesc),
1018 errhint("You can drop %s instead.", otherObjDesc)));
1023 * If no error is to be thrown, and the msglevel is too low to be shown to
1024 * either client or server log, there's no need to do any of the rest of
1025 * the work.
1027 if (behavior == DROP_CASCADE &&
1028 !message_level_is_interesting(msglevel))
1029 return;
1032 * We limit the number of dependencies reported to the client to
1033 * MAX_REPORTED_DEPS, since client software may not deal well with
1034 * enormous error strings. The server log always gets a full report.
1036 #define MAX_REPORTED_DEPS 100
1038 initStringInfo(&clientdetail);
1039 initStringInfo(&logdetail);
1042 * We process the list back to front (ie, in dependency order not deletion
1043 * order), since this makes for a more understandable display.
1045 for (i = targetObjects->numrefs - 1; i >= 0; i--)
1047 const ObjectAddress *obj = &targetObjects->refs[i];
1048 const ObjectAddressExtra *extra = &targetObjects->extras[i];
1049 char *objDesc;
1051 /* Ignore the original deletion target(s) */
1052 if (extra->flags & DEPFLAG_ORIGINAL)
1053 continue;
1055 /* Also ignore sub-objects; we'll report the whole object elsewhere */
1056 if (extra->flags & DEPFLAG_SUBOBJECT)
1057 continue;
1059 objDesc = getObjectDescription(obj, false);
1061 /* An object being dropped concurrently doesn't need to be reported */
1062 if (objDesc == NULL)
1063 continue;
1066 * If, at any stage of the recursive search, we reached the object via
1067 * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1068 * okay to delete it even in RESTRICT mode.
1070 if (extra->flags & (DEPFLAG_AUTO |
1071 DEPFLAG_INTERNAL |
1072 DEPFLAG_PARTITION |
1073 DEPFLAG_EXTENSION))
1076 * auto-cascades are reported at DEBUG2, not msglevel. We don't
1077 * try to combine them with the regular message because the
1078 * results are too confusing when client_min_messages and
1079 * log_min_messages are different.
1081 ereport(DEBUG2,
1082 (errmsg_internal("drop auto-cascades to %s",
1083 objDesc)));
1085 else if (behavior == DROP_RESTRICT)
1087 char *otherDesc = getObjectDescription(&extra->dependee,
1088 false);
1090 if (otherDesc)
1092 if (numReportedClient < MAX_REPORTED_DEPS)
1094 /* separate entries with a newline */
1095 if (clientdetail.len != 0)
1096 appendStringInfoChar(&clientdetail, '\n');
1097 appendStringInfo(&clientdetail, _("%s depends on %s"),
1098 objDesc, otherDesc);
1099 numReportedClient++;
1101 else
1102 numNotReportedClient++;
1103 /* separate entries with a newline */
1104 if (logdetail.len != 0)
1105 appendStringInfoChar(&logdetail, '\n');
1106 appendStringInfo(&logdetail, _("%s depends on %s"),
1107 objDesc, otherDesc);
1108 pfree(otherDesc);
1110 else
1111 numNotReportedClient++;
1112 ok = false;
1114 else
1116 if (numReportedClient < MAX_REPORTED_DEPS)
1118 /* separate entries with a newline */
1119 if (clientdetail.len != 0)
1120 appendStringInfoChar(&clientdetail, '\n');
1121 appendStringInfo(&clientdetail, _("drop cascades to %s"),
1122 objDesc);
1123 numReportedClient++;
1125 else
1126 numNotReportedClient++;
1127 /* separate entries with a newline */
1128 if (logdetail.len != 0)
1129 appendStringInfoChar(&logdetail, '\n');
1130 appendStringInfo(&logdetail, _("drop cascades to %s"),
1131 objDesc);
1134 pfree(objDesc);
1137 if (numNotReportedClient > 0)
1138 appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1139 "(see server log for list)",
1140 "\nand %d other objects "
1141 "(see server log for list)",
1142 numNotReportedClient),
1143 numNotReportedClient);
1145 if (!ok)
1147 if (origObject)
1148 ereport(ERROR,
1149 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1150 errmsg("cannot drop %s because other objects depend on it",
1151 getObjectDescription(origObject, false)),
1152 errdetail_internal("%s", clientdetail.data),
1153 errdetail_log("%s", logdetail.data),
1154 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1155 else
1156 ereport(ERROR,
1157 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1158 errmsg("cannot drop desired object(s) because other objects depend on them"),
1159 errdetail_internal("%s", clientdetail.data),
1160 errdetail_log("%s", logdetail.data),
1161 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1163 else if (numReportedClient > 1)
1165 ereport(msglevel,
1166 (errmsg_plural("drop cascades to %d other object",
1167 "drop cascades to %d other objects",
1168 numReportedClient + numNotReportedClient,
1169 numReportedClient + numNotReportedClient),
1170 errdetail_internal("%s", clientdetail.data),
1171 errdetail_log("%s", logdetail.data)));
1173 else if (numReportedClient == 1)
1175 /* we just use the single item as-is */
1176 ereport(msglevel,
1177 (errmsg_internal("%s", clientdetail.data)));
1180 pfree(clientdetail.data);
1181 pfree(logdetail.data);
1185 * Drop an object by OID. Works for most catalogs, if no special processing
1186 * is needed.
1188 static void
1189 DropObjectById(const ObjectAddress *object)
1191 int cacheId;
1192 Relation rel;
1193 HeapTuple tup;
1195 cacheId = get_object_catcache_oid(object->classId);
1197 rel = table_open(object->classId, RowExclusiveLock);
1200 * Use the system cache for the oid column, if one exists.
1202 if (cacheId >= 0)
1204 tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1205 if (!HeapTupleIsValid(tup))
1206 elog(ERROR, "cache lookup failed for %s %u",
1207 get_object_class_descr(object->classId), object->objectId);
1209 CatalogTupleDelete(rel, &tup->t_self);
1211 ReleaseSysCache(tup);
1213 else
1215 ScanKeyData skey[1];
1216 SysScanDesc scan;
1218 ScanKeyInit(&skey[0],
1219 get_object_attnum_oid(object->classId),
1220 BTEqualStrategyNumber, F_OIDEQ,
1221 ObjectIdGetDatum(object->objectId));
1223 scan = systable_beginscan(rel, get_object_oid_index(object->classId), true,
1224 NULL, 1, skey);
1226 /* we expect exactly one match */
1227 tup = systable_getnext(scan);
1228 if (!HeapTupleIsValid(tup))
1229 elog(ERROR, "could not find tuple for %s %u",
1230 get_object_class_descr(object->classId), object->objectId);
1232 CatalogTupleDelete(rel, &tup->t_self);
1234 systable_endscan(scan);
1237 table_close(rel, RowExclusiveLock);
1241 * deleteOneObject: delete a single object for performDeletion.
1243 * *depRel is the already-open pg_depend relation.
1245 static void
1246 deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1248 ScanKeyData key[3];
1249 int nkeys;
1250 SysScanDesc scan;
1251 HeapTuple tup;
1253 /* DROP hook of the objects being removed */
1254 InvokeObjectDropHookArg(object->classId, object->objectId,
1255 object->objectSubId, flags);
1258 * Close depRel if we are doing a drop concurrently. The object deletion
1259 * subroutine will commit the current transaction, so we can't keep the
1260 * relation open across doDeletion().
1262 if (flags & PERFORM_DELETION_CONCURRENTLY)
1263 table_close(*depRel, RowExclusiveLock);
1266 * Delete the object itself, in an object-type-dependent way.
1268 * We used to do this after removing the outgoing dependency links, but it
1269 * seems just as reasonable to do it beforehand. In the concurrent case
1270 * we *must* do it in this order, because we can't make any transactional
1271 * updates before calling doDeletion() --- they'd get committed right
1272 * away, which is not cool if the deletion then fails.
1274 doDeletion(object, flags);
1277 * Reopen depRel if we closed it above
1279 if (flags & PERFORM_DELETION_CONCURRENTLY)
1280 *depRel = table_open(DependRelationId, RowExclusiveLock);
1283 * Now remove any pg_depend records that link from this object to others.
1284 * (Any records linking to this object should be gone already.)
1286 * When dropping a whole object (subId = 0), remove all pg_depend records
1287 * for its sub-objects too.
1289 ScanKeyInit(&key[0],
1290 Anum_pg_depend_classid,
1291 BTEqualStrategyNumber, F_OIDEQ,
1292 ObjectIdGetDatum(object->classId));
1293 ScanKeyInit(&key[1],
1294 Anum_pg_depend_objid,
1295 BTEqualStrategyNumber, F_OIDEQ,
1296 ObjectIdGetDatum(object->objectId));
1297 if (object->objectSubId != 0)
1299 ScanKeyInit(&key[2],
1300 Anum_pg_depend_objsubid,
1301 BTEqualStrategyNumber, F_INT4EQ,
1302 Int32GetDatum(object->objectSubId));
1303 nkeys = 3;
1305 else
1306 nkeys = 2;
1308 scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1309 NULL, nkeys, key);
1311 while (HeapTupleIsValid(tup = systable_getnext(scan)))
1313 CatalogTupleDelete(*depRel, &tup->t_self);
1316 systable_endscan(scan);
1319 * Delete shared dependency references related to this object. Again, if
1320 * subId = 0, remove records for sub-objects too.
1322 deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1323 object->objectSubId);
1327 * Delete any comments, security labels, or initial privileges associated
1328 * with this object. (This is a convenient place to do these things,
1329 * rather than having every object type know to do it.) As above, all
1330 * these functions must remove records for sub-objects too if the subid is
1331 * zero.
1333 DeleteComments(object->objectId, object->classId, object->objectSubId);
1334 DeleteSecurityLabel(object);
1335 DeleteInitPrivs(object);
1338 * CommandCounterIncrement here to ensure that preceding changes are all
1339 * visible to the next deletion step.
1341 CommandCounterIncrement();
1344 * And we're done!
1349 * doDeletion: actually delete a single object
1351 static void
1352 doDeletion(const ObjectAddress *object, int flags)
1354 switch (object->classId)
1356 case RelationRelationId:
1358 char relKind = get_rel_relkind(object->objectId);
1360 if (relKind == RELKIND_INDEX ||
1361 relKind == RELKIND_PARTITIONED_INDEX)
1363 bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1364 bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1366 Assert(object->objectSubId == 0);
1367 index_drop(object->objectId, concurrent, concurrent_lock_mode);
1369 else
1371 if (object->objectSubId != 0)
1372 RemoveAttributeById(object->objectId,
1373 object->objectSubId);
1374 else
1375 heap_drop_with_catalog(object->objectId);
1379 * for a sequence, in addition to dropping the heap, also
1380 * delete pg_sequence tuple
1382 if (relKind == RELKIND_SEQUENCE)
1383 DeleteSequenceTuple(object->objectId);
1384 break;
1387 case ProcedureRelationId:
1388 RemoveFunctionById(object->objectId);
1389 break;
1391 case TypeRelationId:
1392 RemoveTypeById(object->objectId);
1393 break;
1395 case ConstraintRelationId:
1396 RemoveConstraintById(object->objectId);
1397 break;
1399 case AttrDefaultRelationId:
1400 RemoveAttrDefaultById(object->objectId);
1401 break;
1403 case LargeObjectRelationId:
1404 LargeObjectDrop(object->objectId);
1405 break;
1407 case OperatorRelationId:
1408 RemoveOperatorById(object->objectId);
1409 break;
1411 case RewriteRelationId:
1412 RemoveRewriteRuleById(object->objectId);
1413 break;
1415 case TriggerRelationId:
1416 RemoveTriggerById(object->objectId);
1417 break;
1419 case StatisticExtRelationId:
1420 RemoveStatisticsById(object->objectId);
1421 break;
1423 case TSConfigRelationId:
1424 RemoveTSConfigurationById(object->objectId);
1425 break;
1427 case ExtensionRelationId:
1428 RemoveExtensionById(object->objectId);
1429 break;
1431 case PolicyRelationId:
1432 RemovePolicyById(object->objectId);
1433 break;
1435 case PublicationNamespaceRelationId:
1436 RemovePublicationSchemaById(object->objectId);
1437 break;
1439 case PublicationRelRelationId:
1440 RemovePublicationRelById(object->objectId);
1441 break;
1443 case PublicationRelationId:
1444 RemovePublicationById(object->objectId);
1445 break;
1447 case CastRelationId:
1448 case CollationRelationId:
1449 case ConversionRelationId:
1450 case LanguageRelationId:
1451 case OperatorClassRelationId:
1452 case OperatorFamilyRelationId:
1453 case AccessMethodRelationId:
1454 case AccessMethodOperatorRelationId:
1455 case AccessMethodProcedureRelationId:
1456 case NamespaceRelationId:
1457 case TSParserRelationId:
1458 case TSDictionaryRelationId:
1459 case TSTemplateRelationId:
1460 case ForeignDataWrapperRelationId:
1461 case ForeignServerRelationId:
1462 case UserMappingRelationId:
1463 case DefaultAclRelationId:
1464 case EventTriggerRelationId:
1465 case TransformRelationId:
1466 case AuthMemRelationId:
1467 DropObjectById(object);
1468 break;
1471 * These global object types are not supported here.
1473 case AuthIdRelationId:
1474 case DatabaseRelationId:
1475 case TableSpaceRelationId:
1476 case SubscriptionRelationId:
1477 case ParameterAclRelationId:
1478 elog(ERROR, "global objects cannot be deleted by doDeletion");
1479 break;
1481 default:
1482 elog(ERROR, "unsupported object class: %u", object->classId);
1487 * AcquireDeletionLock - acquire a suitable lock for deleting an object
1489 * Accepts the same flags as performDeletion (though currently only
1490 * PERFORM_DELETION_CONCURRENTLY does anything).
1492 * We use LockRelation for relations, and otherwise LockSharedObject or
1493 * LockDatabaseObject as appropriate for the object type.
1495 void
1496 AcquireDeletionLock(const ObjectAddress *object, int flags)
1498 if (object->classId == RelationRelationId)
1501 * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1502 * the index for the moment. index_drop() will promote the lock once
1503 * it's safe to do so. In all other cases we need full exclusive
1504 * lock.
1506 if (flags & PERFORM_DELETION_CONCURRENTLY)
1507 LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1508 else
1509 LockRelationOid(object->objectId, AccessExclusiveLock);
1511 else if (object->classId == AuthMemRelationId)
1512 LockSharedObject(object->classId, object->objectId, 0,
1513 AccessExclusiveLock);
1514 else
1516 /* assume we should lock the whole object not a sub-object */
1517 LockDatabaseObject(object->classId, object->objectId, 0,
1518 AccessExclusiveLock);
1523 * ReleaseDeletionLock - release an object deletion lock
1525 * Companion to AcquireDeletionLock.
1527 void
1528 ReleaseDeletionLock(const ObjectAddress *object)
1530 if (object->classId == RelationRelationId)
1531 UnlockRelationOid(object->objectId, AccessExclusiveLock);
1532 else
1533 /* assume we should lock the whole object not a sub-object */
1534 UnlockDatabaseObject(object->classId, object->objectId, 0,
1535 AccessExclusiveLock);
1539 * recordDependencyOnExpr - find expression dependencies
1541 * This is used to find the dependencies of rules, constraint expressions,
1542 * etc.
1544 * Given an expression or query in node-tree form, find all the objects
1545 * it refers to (tables, columns, operators, functions, etc). Record
1546 * a dependency of the specified type from the given depender object
1547 * to each object mentioned in the expression.
1549 * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1550 * It can be NIL if no such variables are expected.
1552 void
1553 recordDependencyOnExpr(const ObjectAddress *depender,
1554 Node *expr, List *rtable,
1555 DependencyType behavior)
1557 find_expr_references_context context;
1559 context.addrs = new_object_addresses();
1561 /* Set up interpretation for Vars at varlevelsup = 0 */
1562 context.rtables = list_make1(rtable);
1564 /* Scan the expression tree for referenceable objects */
1565 find_expr_references_walker(expr, &context);
1567 /* Remove any duplicates */
1568 eliminate_duplicate_dependencies(context.addrs);
1570 /* And record 'em */
1571 recordMultipleDependencies(depender,
1572 context.addrs->refs, context.addrs->numrefs,
1573 behavior);
1575 free_object_addresses(context.addrs);
1579 * recordDependencyOnSingleRelExpr - find expression dependencies
1581 * As above, but only one relation is expected to be referenced (with
1582 * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1583 * range table. An additional frammish is that dependencies on that
1584 * relation's component columns will be marked with 'self_behavior',
1585 * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1586 * is true, those dependencies are reversed so that the columns are made
1587 * to depend on the table not vice versa.
1589 * NOTE: the caller should ensure that a whole-table dependency on the
1590 * specified relation is created separately, if one is needed. In particular,
1591 * a whole-row Var "relation.*" will not cause this routine to emit any
1592 * dependency item. This is appropriate behavior for subexpressions of an
1593 * ordinary query, so other cases need to cope as necessary.
1595 void
1596 recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1597 Node *expr, Oid relId,
1598 DependencyType behavior,
1599 DependencyType self_behavior,
1600 bool reverse_self)
1602 find_expr_references_context context;
1603 RangeTblEntry rte = {0};
1605 context.addrs = new_object_addresses();
1607 /* We gin up a rather bogus rangetable list to handle Vars */
1608 rte.type = T_RangeTblEntry;
1609 rte.rtekind = RTE_RELATION;
1610 rte.relid = relId;
1611 rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1612 rte.rellockmode = AccessShareLock;
1614 context.rtables = list_make1(list_make1(&rte));
1616 /* Scan the expression tree for referenceable objects */
1617 find_expr_references_walker(expr, &context);
1619 /* Remove any duplicates */
1620 eliminate_duplicate_dependencies(context.addrs);
1622 /* Separate self-dependencies if necessary */
1623 if ((behavior != self_behavior || reverse_self) &&
1624 context.addrs->numrefs > 0)
1626 ObjectAddresses *self_addrs;
1627 ObjectAddress *outobj;
1628 int oldref,
1629 outrefs;
1631 self_addrs = new_object_addresses();
1633 outobj = context.addrs->refs;
1634 outrefs = 0;
1635 for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1637 ObjectAddress *thisobj = context.addrs->refs + oldref;
1639 if (thisobj->classId == RelationRelationId &&
1640 thisobj->objectId == relId)
1642 /* Move this ref into self_addrs */
1643 add_exact_object_address(thisobj, self_addrs);
1645 else
1647 /* Keep it in context.addrs */
1648 *outobj = *thisobj;
1649 outobj++;
1650 outrefs++;
1653 context.addrs->numrefs = outrefs;
1655 /* Record the self-dependencies with the appropriate direction */
1656 if (!reverse_self)
1657 recordMultipleDependencies(depender,
1658 self_addrs->refs, self_addrs->numrefs,
1659 self_behavior);
1660 else
1662 /* Can't use recordMultipleDependencies, so do it the hard way */
1663 int selfref;
1665 for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1667 ObjectAddress *thisobj = self_addrs->refs + selfref;
1669 recordDependencyOn(thisobj, depender, self_behavior);
1673 free_object_addresses(self_addrs);
1676 /* Record the external dependencies */
1677 recordMultipleDependencies(depender,
1678 context.addrs->refs, context.addrs->numrefs,
1679 behavior);
1681 free_object_addresses(context.addrs);
1685 * Recursively search an expression tree for object references.
1687 * Note: in many cases we do not need to create dependencies on the datatypes
1688 * involved in an expression, because we'll have an indirect dependency via
1689 * some other object. For instance Var nodes depend on a column which depends
1690 * on the datatype, and OpExpr nodes depend on the operator which depends on
1691 * the datatype. However we do need a type dependency if there is no such
1692 * indirect dependency, as for example in Const and CoerceToDomain nodes.
1694 * Similarly, we don't need to create dependencies on collations except where
1695 * the collation is being freshly introduced to the expression.
1697 static bool
1698 find_expr_references_walker(Node *node,
1699 find_expr_references_context *context)
1701 if (node == NULL)
1702 return false;
1703 if (IsA(node, Var))
1705 Var *var = (Var *) node;
1706 List *rtable;
1707 RangeTblEntry *rte;
1709 /* Find matching rtable entry, or complain if not found */
1710 if (var->varlevelsup >= list_length(context->rtables))
1711 elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1712 rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1713 if (var->varno <= 0 || var->varno > list_length(rtable))
1714 elog(ERROR, "invalid varno %d", var->varno);
1715 rte = rt_fetch(var->varno, rtable);
1718 * A whole-row Var references no specific columns, so adds no new
1719 * dependency. (We assume that there is a whole-table dependency
1720 * arising from each underlying rangetable entry. While we could
1721 * record such a dependency when finding a whole-row Var that
1722 * references a relation directly, it's quite unclear how to extend
1723 * that to whole-row Vars for JOINs, so it seems better to leave the
1724 * responsibility with the range table. Note that this poses some
1725 * risks for identifying dependencies of stand-alone expressions:
1726 * whole-table references may need to be created separately.)
1728 if (var->varattno == InvalidAttrNumber)
1729 return false;
1730 if (rte->rtekind == RTE_RELATION)
1732 /* If it's a plain relation, reference this column */
1733 add_object_address(RelationRelationId, rte->relid, var->varattno,
1734 context->addrs);
1736 else if (rte->rtekind == RTE_FUNCTION)
1738 /* Might need to add a dependency on a composite type's column */
1739 /* (done out of line, because it's a bit bulky) */
1740 process_function_rte_ref(rte, var->varattno, context);
1744 * Vars referencing other RTE types require no additional work. In
1745 * particular, a join alias Var can be ignored, because it must
1746 * reference a merged USING column. The relevant join input columns
1747 * will also be referenced in the join qual, and any type coercion
1748 * functions involved in the alias expression will be dealt with when
1749 * we scan the RTE itself.
1751 return false;
1753 else if (IsA(node, Const))
1755 Const *con = (Const *) node;
1756 Oid objoid;
1758 /* A constant must depend on the constant's datatype */
1759 add_object_address(TypeRelationId, con->consttype, 0,
1760 context->addrs);
1763 * We must also depend on the constant's collation: it could be
1764 * different from the datatype's, if a CollateExpr was const-folded to
1765 * a simple constant. However we can save work in the most common
1766 * case where the collation is "default", since we know that's pinned.
1768 if (OidIsValid(con->constcollid) &&
1769 con->constcollid != DEFAULT_COLLATION_OID)
1770 add_object_address(CollationRelationId, con->constcollid, 0,
1771 context->addrs);
1774 * If it's a regclass or similar literal referring to an existing
1775 * object, add a reference to that object. (Currently, only the
1776 * regclass and regconfig cases have any likely use, but we may as
1777 * well handle all the OID-alias datatypes consistently.)
1779 if (!con->constisnull)
1781 switch (con->consttype)
1783 case REGPROCOID:
1784 case REGPROCEDUREOID:
1785 objoid = DatumGetObjectId(con->constvalue);
1786 if (SearchSysCacheExists1(PROCOID,
1787 ObjectIdGetDatum(objoid)))
1788 add_object_address(ProcedureRelationId, objoid, 0,
1789 context->addrs);
1790 break;
1791 case REGOPEROID:
1792 case REGOPERATOROID:
1793 objoid = DatumGetObjectId(con->constvalue);
1794 if (SearchSysCacheExists1(OPEROID,
1795 ObjectIdGetDatum(objoid)))
1796 add_object_address(OperatorRelationId, objoid, 0,
1797 context->addrs);
1798 break;
1799 case REGCLASSOID:
1800 objoid = DatumGetObjectId(con->constvalue);
1801 if (SearchSysCacheExists1(RELOID,
1802 ObjectIdGetDatum(objoid)))
1803 add_object_address(RelationRelationId, objoid, 0,
1804 context->addrs);
1805 break;
1806 case REGTYPEOID:
1807 objoid = DatumGetObjectId(con->constvalue);
1808 if (SearchSysCacheExists1(TYPEOID,
1809 ObjectIdGetDatum(objoid)))
1810 add_object_address(TypeRelationId, objoid, 0,
1811 context->addrs);
1812 break;
1813 case REGCOLLATIONOID:
1814 objoid = DatumGetObjectId(con->constvalue);
1815 if (SearchSysCacheExists1(COLLOID,
1816 ObjectIdGetDatum(objoid)))
1817 add_object_address(CollationRelationId, objoid, 0,
1818 context->addrs);
1819 break;
1820 case REGCONFIGOID:
1821 objoid = DatumGetObjectId(con->constvalue);
1822 if (SearchSysCacheExists1(TSCONFIGOID,
1823 ObjectIdGetDatum(objoid)))
1824 add_object_address(TSConfigRelationId, objoid, 0,
1825 context->addrs);
1826 break;
1827 case REGDICTIONARYOID:
1828 objoid = DatumGetObjectId(con->constvalue);
1829 if (SearchSysCacheExists1(TSDICTOID,
1830 ObjectIdGetDatum(objoid)))
1831 add_object_address(TSDictionaryRelationId, objoid, 0,
1832 context->addrs);
1833 break;
1835 case REGNAMESPACEOID:
1836 objoid = DatumGetObjectId(con->constvalue);
1837 if (SearchSysCacheExists1(NAMESPACEOID,
1838 ObjectIdGetDatum(objoid)))
1839 add_object_address(NamespaceRelationId, objoid, 0,
1840 context->addrs);
1841 break;
1844 * Dependencies for regrole should be shared among all
1845 * databases, so explicitly inhibit to have dependencies.
1847 case REGROLEOID:
1848 ereport(ERROR,
1849 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1850 errmsg("constant of the type %s cannot be used here",
1851 "regrole")));
1852 break;
1855 return false;
1857 else if (IsA(node, Param))
1859 Param *param = (Param *) node;
1861 /* A parameter must depend on the parameter's datatype */
1862 add_object_address(TypeRelationId, param->paramtype, 0,
1863 context->addrs);
1864 /* and its collation, just as for Consts */
1865 if (OidIsValid(param->paramcollid) &&
1866 param->paramcollid != DEFAULT_COLLATION_OID)
1867 add_object_address(CollationRelationId, param->paramcollid, 0,
1868 context->addrs);
1870 else if (IsA(node, FuncExpr))
1872 FuncExpr *funcexpr = (FuncExpr *) node;
1874 add_object_address(ProcedureRelationId, funcexpr->funcid, 0,
1875 context->addrs);
1876 /* fall through to examine arguments */
1878 else if (IsA(node, OpExpr))
1880 OpExpr *opexpr = (OpExpr *) node;
1882 add_object_address(OperatorRelationId, opexpr->opno, 0,
1883 context->addrs);
1884 /* fall through to examine arguments */
1886 else if (IsA(node, DistinctExpr))
1888 DistinctExpr *distinctexpr = (DistinctExpr *) node;
1890 add_object_address(OperatorRelationId, distinctexpr->opno, 0,
1891 context->addrs);
1892 /* fall through to examine arguments */
1894 else if (IsA(node, NullIfExpr))
1896 NullIfExpr *nullifexpr = (NullIfExpr *) node;
1898 add_object_address(OperatorRelationId, nullifexpr->opno, 0,
1899 context->addrs);
1900 /* fall through to examine arguments */
1902 else if (IsA(node, ScalarArrayOpExpr))
1904 ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1906 add_object_address(OperatorRelationId, opexpr->opno, 0,
1907 context->addrs);
1908 /* fall through to examine arguments */
1910 else if (IsA(node, Aggref))
1912 Aggref *aggref = (Aggref *) node;
1914 add_object_address(ProcedureRelationId, aggref->aggfnoid, 0,
1915 context->addrs);
1916 /* fall through to examine arguments */
1918 else if (IsA(node, WindowFunc))
1920 WindowFunc *wfunc = (WindowFunc *) node;
1922 add_object_address(ProcedureRelationId, wfunc->winfnoid, 0,
1923 context->addrs);
1924 /* fall through to examine arguments */
1926 else if (IsA(node, SubscriptingRef))
1928 SubscriptingRef *sbsref = (SubscriptingRef *) node;
1931 * The refexpr should provide adequate dependency on refcontainertype,
1932 * and that type in turn depends on refelemtype. However, a custom
1933 * subscripting handler might set refrestype to something different
1934 * from either of those, in which case we'd better record it.
1936 if (sbsref->refrestype != sbsref->refcontainertype &&
1937 sbsref->refrestype != sbsref->refelemtype)
1938 add_object_address(TypeRelationId, sbsref->refrestype, 0,
1939 context->addrs);
1940 /* fall through to examine arguments */
1942 else if (IsA(node, SubPlan))
1944 /* Extra work needed here if we ever need this case */
1945 elog(ERROR, "already-planned subqueries not supported");
1947 else if (IsA(node, FieldSelect))
1949 FieldSelect *fselect = (FieldSelect *) node;
1950 Oid argtype = getBaseType(exprType((Node *) fselect->arg));
1951 Oid reltype = get_typ_typrelid(argtype);
1954 * We need a dependency on the specific column named in FieldSelect,
1955 * assuming we can identify the pg_class OID for it. (Probably we
1956 * always can at the moment, but in future it might be possible for
1957 * argtype to be RECORDOID.) If we can make a column dependency then
1958 * we shouldn't need a dependency on the column's type; but if we
1959 * can't, make a dependency on the type, as it might not appear
1960 * anywhere else in the expression.
1962 if (OidIsValid(reltype))
1963 add_object_address(RelationRelationId, reltype, fselect->fieldnum,
1964 context->addrs);
1965 else
1966 add_object_address(TypeRelationId, fselect->resulttype, 0,
1967 context->addrs);
1968 /* the collation might not be referenced anywhere else, either */
1969 if (OidIsValid(fselect->resultcollid) &&
1970 fselect->resultcollid != DEFAULT_COLLATION_OID)
1971 add_object_address(CollationRelationId, fselect->resultcollid, 0,
1972 context->addrs);
1974 else if (IsA(node, FieldStore))
1976 FieldStore *fstore = (FieldStore *) node;
1977 Oid reltype = get_typ_typrelid(fstore->resulttype);
1979 /* similar considerations to FieldSelect, but multiple column(s) */
1980 if (OidIsValid(reltype))
1982 ListCell *l;
1984 foreach(l, fstore->fieldnums)
1985 add_object_address(RelationRelationId, reltype, lfirst_int(l),
1986 context->addrs);
1988 else
1989 add_object_address(TypeRelationId, fstore->resulttype, 0,
1990 context->addrs);
1992 else if (IsA(node, RelabelType))
1994 RelabelType *relab = (RelabelType *) node;
1996 /* since there is no function dependency, need to depend on type */
1997 add_object_address(TypeRelationId, relab->resulttype, 0,
1998 context->addrs);
1999 /* the collation might not be referenced anywhere else, either */
2000 if (OidIsValid(relab->resultcollid) &&
2001 relab->resultcollid != DEFAULT_COLLATION_OID)
2002 add_object_address(CollationRelationId, relab->resultcollid, 0,
2003 context->addrs);
2005 else if (IsA(node, CoerceViaIO))
2007 CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2009 /* since there is no exposed function, need to depend on type */
2010 add_object_address(TypeRelationId, iocoerce->resulttype, 0,
2011 context->addrs);
2012 /* the collation might not be referenced anywhere else, either */
2013 if (OidIsValid(iocoerce->resultcollid) &&
2014 iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2015 add_object_address(CollationRelationId, iocoerce->resultcollid, 0,
2016 context->addrs);
2018 else if (IsA(node, ArrayCoerceExpr))
2020 ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2022 /* as above, depend on type */
2023 add_object_address(TypeRelationId, acoerce->resulttype, 0,
2024 context->addrs);
2025 /* the collation might not be referenced anywhere else, either */
2026 if (OidIsValid(acoerce->resultcollid) &&
2027 acoerce->resultcollid != DEFAULT_COLLATION_OID)
2028 add_object_address(CollationRelationId, acoerce->resultcollid, 0,
2029 context->addrs);
2030 /* fall through to examine arguments */
2032 else if (IsA(node, ConvertRowtypeExpr))
2034 ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2036 /* since there is no function dependency, need to depend on type */
2037 add_object_address(TypeRelationId, cvt->resulttype, 0,
2038 context->addrs);
2040 else if (IsA(node, CollateExpr))
2042 CollateExpr *coll = (CollateExpr *) node;
2044 add_object_address(CollationRelationId, coll->collOid, 0,
2045 context->addrs);
2047 else if (IsA(node, RowExpr))
2049 RowExpr *rowexpr = (RowExpr *) node;
2051 add_object_address(TypeRelationId, rowexpr->row_typeid, 0,
2052 context->addrs);
2054 else if (IsA(node, RowCompareExpr))
2056 RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2057 ListCell *l;
2059 foreach(l, rcexpr->opnos)
2061 add_object_address(OperatorRelationId, lfirst_oid(l), 0,
2062 context->addrs);
2064 foreach(l, rcexpr->opfamilies)
2066 add_object_address(OperatorFamilyRelationId, lfirst_oid(l), 0,
2067 context->addrs);
2069 /* fall through to examine arguments */
2071 else if (IsA(node, CoerceToDomain))
2073 CoerceToDomain *cd = (CoerceToDomain *) node;
2075 add_object_address(TypeRelationId, cd->resulttype, 0,
2076 context->addrs);
2078 else if (IsA(node, NextValueExpr))
2080 NextValueExpr *nve = (NextValueExpr *) node;
2082 add_object_address(RelationRelationId, nve->seqid, 0,
2083 context->addrs);
2085 else if (IsA(node, OnConflictExpr))
2087 OnConflictExpr *onconflict = (OnConflictExpr *) node;
2089 if (OidIsValid(onconflict->constraint))
2090 add_object_address(ConstraintRelationId, onconflict->constraint, 0,
2091 context->addrs);
2092 /* fall through to examine arguments */
2094 else if (IsA(node, SortGroupClause))
2096 SortGroupClause *sgc = (SortGroupClause *) node;
2098 add_object_address(OperatorRelationId, sgc->eqop, 0,
2099 context->addrs);
2100 if (OidIsValid(sgc->sortop))
2101 add_object_address(OperatorRelationId, sgc->sortop, 0,
2102 context->addrs);
2103 return false;
2105 else if (IsA(node, WindowClause))
2107 WindowClause *wc = (WindowClause *) node;
2109 if (OidIsValid(wc->startInRangeFunc))
2110 add_object_address(ProcedureRelationId, wc->startInRangeFunc, 0,
2111 context->addrs);
2112 if (OidIsValid(wc->endInRangeFunc))
2113 add_object_address(ProcedureRelationId, wc->endInRangeFunc, 0,
2114 context->addrs);
2115 if (OidIsValid(wc->inRangeColl) &&
2116 wc->inRangeColl != DEFAULT_COLLATION_OID)
2117 add_object_address(CollationRelationId, wc->inRangeColl, 0,
2118 context->addrs);
2119 /* fall through to examine substructure */
2121 else if (IsA(node, CTECycleClause))
2123 CTECycleClause *cc = (CTECycleClause *) node;
2125 if (OidIsValid(cc->cycle_mark_type))
2126 add_object_address(TypeRelationId, cc->cycle_mark_type, 0,
2127 context->addrs);
2128 if (OidIsValid(cc->cycle_mark_collation))
2129 add_object_address(CollationRelationId, cc->cycle_mark_collation, 0,
2130 context->addrs);
2131 if (OidIsValid(cc->cycle_mark_neop))
2132 add_object_address(OperatorRelationId, cc->cycle_mark_neop, 0,
2133 context->addrs);
2134 /* fall through to examine substructure */
2136 else if (IsA(node, Query))
2138 /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2139 Query *query = (Query *) node;
2140 ListCell *lc;
2141 bool result;
2144 * Add whole-relation refs for each plain relation mentioned in the
2145 * subquery's rtable, and ensure we add refs for any type-coercion
2146 * functions used in join alias lists.
2148 * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2149 * RTEs, subqueries, etc, so no need to do that here. But we must
2150 * tell it not to visit join alias lists, or we'll add refs for join
2151 * input columns whether or not they are actually used in our query.
2153 * Note: we don't need to worry about collations mentioned in
2154 * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2155 * collations referenced in other parts of the Query. We do have to
2156 * worry about collations mentioned in RTE_FUNCTION, but we take care
2157 * of those when we recurse to the RangeTblFunction node(s).
2159 foreach(lc, query->rtable)
2161 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2163 switch (rte->rtekind)
2165 case RTE_RELATION:
2166 add_object_address(RelationRelationId, rte->relid, 0,
2167 context->addrs);
2168 break;
2169 case RTE_JOIN:
2172 * Examine joinaliasvars entries only for merged JOIN
2173 * USING columns. Only those entries could contain
2174 * type-coercion functions. Also, their join input
2175 * columns must be referenced in the join quals, so this
2176 * won't accidentally add refs to otherwise-unused join
2177 * input columns. (We want to ref the type coercion
2178 * functions even if the merged column isn't explicitly
2179 * used anywhere, to protect possible expansion of the
2180 * join RTE as a whole-row var, and because it seems like
2181 * a bad idea to allow dropping a function that's present
2182 * in our query tree, whether or not it could get called.)
2184 context->rtables = lcons(query->rtable, context->rtables);
2185 for (int i = 0; i < rte->joinmergedcols; i++)
2187 Node *aliasvar = list_nth(rte->joinaliasvars, i);
2189 if (!IsA(aliasvar, Var))
2190 find_expr_references_walker(aliasvar, context);
2192 context->rtables = list_delete_first(context->rtables);
2193 break;
2194 default:
2195 break;
2200 * If the query is an INSERT or UPDATE, we should create a dependency
2201 * on each target column, to prevent the specific target column from
2202 * being dropped. Although we will visit the TargetEntry nodes again
2203 * during query_tree_walker, we won't have enough context to do this
2204 * conveniently, so do it here.
2206 if (query->commandType == CMD_INSERT ||
2207 query->commandType == CMD_UPDATE)
2209 RangeTblEntry *rte;
2211 if (query->resultRelation <= 0 ||
2212 query->resultRelation > list_length(query->rtable))
2213 elog(ERROR, "invalid resultRelation %d",
2214 query->resultRelation);
2215 rte = rt_fetch(query->resultRelation, query->rtable);
2216 if (rte->rtekind == RTE_RELATION)
2218 foreach(lc, query->targetList)
2220 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2222 if (tle->resjunk)
2223 continue; /* ignore junk tlist items */
2224 add_object_address(RelationRelationId, rte->relid, tle->resno,
2225 context->addrs);
2231 * Add dependencies on constraints listed in query's constraintDeps
2233 foreach(lc, query->constraintDeps)
2235 add_object_address(ConstraintRelationId, lfirst_oid(lc), 0,
2236 context->addrs);
2239 /* Examine substructure of query */
2240 context->rtables = lcons(query->rtable, context->rtables);
2241 result = query_tree_walker(query,
2242 find_expr_references_walker,
2243 context,
2244 QTW_IGNORE_JOINALIASES |
2245 QTW_EXAMINE_SORTGROUP);
2246 context->rtables = list_delete_first(context->rtables);
2247 return result;
2249 else if (IsA(node, SetOperationStmt))
2251 SetOperationStmt *setop = (SetOperationStmt *) node;
2253 /* we need to look at the groupClauses for operator references */
2254 find_expr_references_walker((Node *) setop->groupClauses, context);
2255 /* fall through to examine child nodes */
2257 else if (IsA(node, RangeTblFunction))
2259 RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2260 ListCell *ct;
2263 * Add refs for any datatypes and collations used in a column
2264 * definition list for a RECORD function. (For other cases, it should
2265 * be enough to depend on the function itself.)
2267 foreach(ct, rtfunc->funccoltypes)
2269 add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2270 context->addrs);
2272 foreach(ct, rtfunc->funccolcollations)
2274 Oid collid = lfirst_oid(ct);
2276 if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2277 add_object_address(CollationRelationId, collid, 0,
2278 context->addrs);
2281 else if (IsA(node, TableFunc))
2283 TableFunc *tf = (TableFunc *) node;
2284 ListCell *ct;
2287 * Add refs for the datatypes and collations used in the TableFunc.
2289 foreach(ct, tf->coltypes)
2291 add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2292 context->addrs);
2294 foreach(ct, tf->colcollations)
2296 Oid collid = lfirst_oid(ct);
2298 if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2299 add_object_address(CollationRelationId, collid, 0,
2300 context->addrs);
2303 else if (IsA(node, TableSampleClause))
2305 TableSampleClause *tsc = (TableSampleClause *) node;
2307 add_object_address(ProcedureRelationId, tsc->tsmhandler, 0,
2308 context->addrs);
2309 /* fall through to examine arguments */
2312 return expression_tree_walker(node, find_expr_references_walker,
2313 context);
2317 * find_expr_references_walker subroutine: handle a Var reference
2318 * to an RTE_FUNCTION RTE
2320 static void
2321 process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
2322 find_expr_references_context *context)
2324 int atts_done = 0;
2325 ListCell *lc;
2328 * Identify which RangeTblFunction produces this attnum, and see if it
2329 * returns a composite type. If so, we'd better make a dependency on the
2330 * referenced column of the composite type (or actually, of its associated
2331 * relation).
2333 foreach(lc, rte->functions)
2335 RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2337 if (attnum > atts_done &&
2338 attnum <= atts_done + rtfunc->funccolcount)
2340 TupleDesc tupdesc;
2342 /* If it has a coldeflist, it certainly returns RECORD */
2343 if (rtfunc->funccolnames != NIL)
2344 tupdesc = NULL; /* no need to work hard */
2345 else
2346 tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2347 if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2350 * Named composite type, so individual columns could get
2351 * dropped. Make a dependency on this specific column.
2353 Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2355 Assert(attnum - atts_done <= tupdesc->natts);
2356 if (OidIsValid(reltype)) /* can this fail? */
2357 add_object_address(RelationRelationId, reltype,
2358 attnum - atts_done,
2359 context->addrs);
2360 return;
2362 /* Nothing to do; function's result type is handled elsewhere */
2363 return;
2365 atts_done += rtfunc->funccolcount;
2368 /* If we get here, must be looking for the ordinality column */
2369 if (rte->funcordinality && attnum == atts_done + 1)
2370 return;
2372 /* this probably can't happen ... */
2373 ereport(ERROR,
2374 (errcode(ERRCODE_UNDEFINED_COLUMN),
2375 errmsg("column %d of relation \"%s\" does not exist",
2376 attnum, rte->eref->aliasname)));
2380 * Given an array of dependency references, eliminate any duplicates.
2382 static void
2383 eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2385 ObjectAddress *priorobj;
2386 int oldref,
2387 newrefs;
2390 * We can't sort if the array has "extra" data, because there's no way to
2391 * keep it in sync. Fortunately that combination of features is not
2392 * needed.
2394 Assert(!addrs->extras);
2396 if (addrs->numrefs <= 1)
2397 return; /* nothing to do */
2399 /* Sort the refs so that duplicates are adjacent */
2400 qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2401 object_address_comparator);
2403 /* Remove dups */
2404 priorobj = addrs->refs;
2405 newrefs = 1;
2406 for (oldref = 1; oldref < addrs->numrefs; oldref++)
2408 ObjectAddress *thisobj = addrs->refs + oldref;
2410 if (priorobj->classId == thisobj->classId &&
2411 priorobj->objectId == thisobj->objectId)
2413 if (priorobj->objectSubId == thisobj->objectSubId)
2414 continue; /* identical, so drop thisobj */
2417 * If we have a whole-object reference and a reference to a part
2418 * of the same object, we don't need the whole-object reference
2419 * (for example, we don't need to reference both table foo and
2420 * column foo.bar). The whole-object reference will always appear
2421 * first in the sorted list.
2423 if (priorobj->objectSubId == 0)
2425 /* replace whole ref with partial */
2426 priorobj->objectSubId = thisobj->objectSubId;
2427 continue;
2430 /* Not identical, so add thisobj to output set */
2431 priorobj++;
2432 *priorobj = *thisobj;
2433 newrefs++;
2436 addrs->numrefs = newrefs;
2440 * qsort comparator for ObjectAddress items
2442 static int
2443 object_address_comparator(const void *a, const void *b)
2445 const ObjectAddress *obja = (const ObjectAddress *) a;
2446 const ObjectAddress *objb = (const ObjectAddress *) b;
2449 * Primary sort key is OID descending. Most of the time, this will result
2450 * in putting newer objects before older ones, which is likely to be the
2451 * right order to delete in.
2453 if (obja->objectId > objb->objectId)
2454 return -1;
2455 if (obja->objectId < objb->objectId)
2456 return 1;
2459 * Next sort on catalog ID, in case identical OIDs appear in different
2460 * catalogs. Sort direction is pretty arbitrary here.
2462 if (obja->classId < objb->classId)
2463 return -1;
2464 if (obja->classId > objb->classId)
2465 return 1;
2468 * Last, sort on object subId.
2470 * We sort the subId as an unsigned int so that 0 (the whole object) will
2471 * come first. This is essential for eliminate_duplicate_dependencies,
2472 * and is also the best order for findDependentObjects.
2474 if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2475 return -1;
2476 if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2477 return 1;
2478 return 0;
2482 * Routines for handling an expansible array of ObjectAddress items.
2484 * new_object_addresses: create a new ObjectAddresses array.
2486 ObjectAddresses *
2487 new_object_addresses(void)
2489 ObjectAddresses *addrs;
2491 addrs = palloc(sizeof(ObjectAddresses));
2493 addrs->numrefs = 0;
2494 addrs->maxrefs = 32;
2495 addrs->refs = (ObjectAddress *)
2496 palloc(addrs->maxrefs * sizeof(ObjectAddress));
2497 addrs->extras = NULL; /* until/unless needed */
2499 return addrs;
2503 * Add an entry to an ObjectAddresses array.
2505 static void
2506 add_object_address(Oid classId, Oid objectId, int32 subId,
2507 ObjectAddresses *addrs)
2509 ObjectAddress *item;
2511 /* enlarge array if needed */
2512 if (addrs->numrefs >= addrs->maxrefs)
2514 addrs->maxrefs *= 2;
2515 addrs->refs = (ObjectAddress *)
2516 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2517 Assert(!addrs->extras);
2519 /* record this item */
2520 item = addrs->refs + addrs->numrefs;
2521 item->classId = classId;
2522 item->objectId = objectId;
2523 item->objectSubId = subId;
2524 addrs->numrefs++;
2528 * Add an entry to an ObjectAddresses array.
2530 * As above, but specify entry exactly.
2532 void
2533 add_exact_object_address(const ObjectAddress *object,
2534 ObjectAddresses *addrs)
2536 ObjectAddress *item;
2538 /* enlarge array if needed */
2539 if (addrs->numrefs >= addrs->maxrefs)
2541 addrs->maxrefs *= 2;
2542 addrs->refs = (ObjectAddress *)
2543 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2544 Assert(!addrs->extras);
2546 /* record this item */
2547 item = addrs->refs + addrs->numrefs;
2548 *item = *object;
2549 addrs->numrefs++;
2553 * Add an entry to an ObjectAddresses array.
2555 * As above, but specify entry exactly and provide some "extra" data too.
2557 static void
2558 add_exact_object_address_extra(const ObjectAddress *object,
2559 const ObjectAddressExtra *extra,
2560 ObjectAddresses *addrs)
2562 ObjectAddress *item;
2563 ObjectAddressExtra *itemextra;
2565 /* allocate extra space if first time */
2566 if (!addrs->extras)
2567 addrs->extras = (ObjectAddressExtra *)
2568 palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2570 /* enlarge array if needed */
2571 if (addrs->numrefs >= addrs->maxrefs)
2573 addrs->maxrefs *= 2;
2574 addrs->refs = (ObjectAddress *)
2575 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2576 addrs->extras = (ObjectAddressExtra *)
2577 repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2579 /* record this item */
2580 item = addrs->refs + addrs->numrefs;
2581 *item = *object;
2582 itemextra = addrs->extras + addrs->numrefs;
2583 *itemextra = *extra;
2584 addrs->numrefs++;
2588 * Test whether an object is present in an ObjectAddresses array.
2590 * We return "true" if object is a subobject of something in the array, too.
2592 bool
2593 object_address_present(const ObjectAddress *object,
2594 const ObjectAddresses *addrs)
2596 int i;
2598 for (i = addrs->numrefs - 1; i >= 0; i--)
2600 const ObjectAddress *thisobj = addrs->refs + i;
2602 if (object->classId == thisobj->classId &&
2603 object->objectId == thisobj->objectId)
2605 if (object->objectSubId == thisobj->objectSubId ||
2606 thisobj->objectSubId == 0)
2607 return true;
2611 return false;
2615 * As above, except that if the object is present then also OR the given
2616 * flags into its associated extra data (which must exist).
2618 static bool
2619 object_address_present_add_flags(const ObjectAddress *object,
2620 int flags,
2621 ObjectAddresses *addrs)
2623 bool result = false;
2624 int i;
2626 for (i = addrs->numrefs - 1; i >= 0; i--)
2628 ObjectAddress *thisobj = addrs->refs + i;
2630 if (object->classId == thisobj->classId &&
2631 object->objectId == thisobj->objectId)
2633 if (object->objectSubId == thisobj->objectSubId)
2635 ObjectAddressExtra *thisextra = addrs->extras + i;
2637 thisextra->flags |= flags;
2638 result = true;
2640 else if (thisobj->objectSubId == 0)
2643 * We get here if we find a need to delete a column after
2644 * having already decided to drop its whole table. Obviously
2645 * we no longer need to drop the subobject, so report that we
2646 * found the subobject in the array. But don't plaster its
2647 * flags on the whole object.
2649 result = true;
2651 else if (object->objectSubId == 0)
2654 * We get here if we find a need to delete a whole table after
2655 * having already decided to drop one of its columns. We
2656 * can't report that the whole object is in the array, but we
2657 * should mark the subobject with the whole object's flags.
2659 * It might seem attractive to physically delete the column's
2660 * array entry, or at least mark it as no longer needing
2661 * separate deletion. But that could lead to, e.g., dropping
2662 * the column's datatype before we drop the table, which does
2663 * not seem like a good idea. This is a very rare situation
2664 * in practice, so we just take the hit of doing a separate
2665 * DROP COLUMN action even though we know we're gonna delete
2666 * the table later.
2668 * What we can do, though, is mark this as a subobject so that
2669 * we don't report it separately, which is confusing because
2670 * it's unpredictable whether it happens or not. But do so
2671 * only if flags != 0 (flags == 0 is a read-only probe).
2673 * Because there could be other subobjects of this object in
2674 * the array, this case means we always have to loop through
2675 * the whole array; we cannot exit early on a match.
2677 ObjectAddressExtra *thisextra = addrs->extras + i;
2679 if (flags)
2680 thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2685 return result;
2689 * Similar to above, except we search an ObjectAddressStack.
2691 static bool
2692 stack_address_present_add_flags(const ObjectAddress *object,
2693 int flags,
2694 ObjectAddressStack *stack)
2696 bool result = false;
2697 ObjectAddressStack *stackptr;
2699 for (stackptr = stack; stackptr; stackptr = stackptr->next)
2701 const ObjectAddress *thisobj = stackptr->object;
2703 if (object->classId == thisobj->classId &&
2704 object->objectId == thisobj->objectId)
2706 if (object->objectSubId == thisobj->objectSubId)
2708 stackptr->flags |= flags;
2709 result = true;
2711 else if (thisobj->objectSubId == 0)
2714 * We're visiting a column with whole table already on stack.
2715 * As in object_address_present_add_flags(), we can skip
2716 * further processing of the subobject, but we don't want to
2717 * propagate flags for the subobject to the whole object.
2719 result = true;
2721 else if (object->objectSubId == 0)
2724 * We're visiting a table with column already on stack. As in
2725 * object_address_present_add_flags(), we should propagate
2726 * flags for the whole object to each of its subobjects.
2728 if (flags)
2729 stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2734 return result;
2738 * Record multiple dependencies from an ObjectAddresses array, after first
2739 * removing any duplicates.
2741 void
2742 record_object_address_dependencies(const ObjectAddress *depender,
2743 ObjectAddresses *referenced,
2744 DependencyType behavior)
2746 eliminate_duplicate_dependencies(referenced);
2747 recordMultipleDependencies(depender,
2748 referenced->refs, referenced->numrefs,
2749 behavior);
2753 * Sort the items in an ObjectAddresses array.
2755 * The major sort key is OID-descending, so that newer objects will be listed
2756 * first in most cases. This is primarily useful for ensuring stable outputs
2757 * from regression tests; it's not recommended if the order of the objects is
2758 * determined by user input, such as the order of targets in a DROP command.
2760 void
2761 sort_object_addresses(ObjectAddresses *addrs)
2763 if (addrs->numrefs > 1)
2764 qsort(addrs->refs, addrs->numrefs,
2765 sizeof(ObjectAddress),
2766 object_address_comparator);
2770 * Clean up when done with an ObjectAddresses array.
2772 void
2773 free_object_addresses(ObjectAddresses *addrs)
2775 pfree(addrs->refs);
2776 if (addrs->extras)
2777 pfree(addrs->extras);
2778 pfree(addrs);
2782 * delete initial ACL for extension objects
2784 static void
2785 DeleteInitPrivs(const ObjectAddress *object)
2787 Relation relation;
2788 ScanKeyData key[3];
2789 int nkeys;
2790 SysScanDesc scan;
2791 HeapTuple oldtuple;
2793 relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2795 ScanKeyInit(&key[0],
2796 Anum_pg_init_privs_objoid,
2797 BTEqualStrategyNumber, F_OIDEQ,
2798 ObjectIdGetDatum(object->objectId));
2799 ScanKeyInit(&key[1],
2800 Anum_pg_init_privs_classoid,
2801 BTEqualStrategyNumber, F_OIDEQ,
2802 ObjectIdGetDatum(object->classId));
2803 if (object->objectSubId != 0)
2805 ScanKeyInit(&key[2],
2806 Anum_pg_init_privs_objsubid,
2807 BTEqualStrategyNumber, F_INT4EQ,
2808 Int32GetDatum(object->objectSubId));
2809 nkeys = 3;
2811 else
2812 nkeys = 2;
2814 scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2815 NULL, nkeys, key);
2817 while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2818 CatalogTupleDelete(relation, &oldtuple->t_self);
2820 systable_endscan(scan);
2822 table_close(relation, RowExclusiveLock);