Consistently use "superuser" instead of "super user"
[pgsql.git] / src / include / access / nbtree.h
blob42c66fac57c4953fce41a773ea2bfdc1f359f064
1 /*-------------------------------------------------------------------------
3 * nbtree.h
4 * header file for postgres btree access method implementation.
7 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
10 * src/include/access/nbtree.h
12 *-------------------------------------------------------------------------
14 #ifndef NBTREE_H
15 #define NBTREE_H
17 #include "access/amapi.h"
18 #include "access/itup.h"
19 #include "access/sdir.h"
20 #include "access/tableam.h"
21 #include "access/xlogreader.h"
22 #include "catalog/pg_am_d.h"
23 #include "catalog/pg_index.h"
24 #include "lib/stringinfo.h"
25 #include "storage/bufmgr.h"
26 #include "storage/shm_toc.h"
28 /* There's room for a 16-bit vacuum cycle ID in BTPageOpaqueData */
29 typedef uint16 BTCycleId;
32 * BTPageOpaqueData -- At the end of every page, we store a pointer
33 * to both siblings in the tree. This is used to do forward/backward
34 * index scans. The next-page link is also critical for recovery when
35 * a search has navigated to the wrong page due to concurrent page splits
36 * or deletions; see src/backend/access/nbtree/README for more info.
38 * In addition, we store the page's btree level (counting upwards from
39 * zero at a leaf page) as well as some flag bits indicating the page type
40 * and status. If the page is deleted, a BTDeletedPageData struct is stored
41 * in the page's tuple area, while a standard BTPageOpaqueData struct is
42 * stored in the page special area.
44 * We also store a "vacuum cycle ID". When a page is split while VACUUM is
45 * processing the index, a nonzero value associated with the VACUUM run is
46 * stored into both halves of the split page. (If VACUUM is not running,
47 * both pages receive zero cycleids.) This allows VACUUM to detect whether
48 * a page was split since it started, with a small probability of false match
49 * if the page was last split some exact multiple of MAX_BT_CYCLE_ID VACUUMs
50 * ago. Also, during a split, the BTP_SPLIT_END flag is cleared in the left
51 * (original) page, and set in the right page, but only if the next page
52 * to its right has a different cycleid.
54 * NOTE: the BTP_LEAF flag bit is redundant since level==0 could be tested
55 * instead.
57 * NOTE: the btpo_level field used to be a union type in order to allow
58 * deleted pages to store a 32-bit safexid in the same field. We now store
59 * 64-bit/full safexid values using BTDeletedPageData instead.
62 typedef struct BTPageOpaqueData
64 BlockNumber btpo_prev; /* left sibling, or P_NONE if leftmost */
65 BlockNumber btpo_next; /* right sibling, or P_NONE if rightmost */
66 uint32 btpo_level; /* tree level --- zero for leaf pages */
67 uint16 btpo_flags; /* flag bits, see below */
68 BTCycleId btpo_cycleid; /* vacuum cycle ID of latest split */
69 } BTPageOpaqueData;
71 typedef BTPageOpaqueData *BTPageOpaque;
73 /* Bits defined in btpo_flags */
74 #define BTP_LEAF (1 << 0) /* leaf page, i.e. not internal page */
75 #define BTP_ROOT (1 << 1) /* root page (has no parent) */
76 #define BTP_DELETED (1 << 2) /* page has been deleted from tree */
77 #define BTP_META (1 << 3) /* meta-page */
78 #define BTP_HALF_DEAD (1 << 4) /* empty, but still in tree */
79 #define BTP_SPLIT_END (1 << 5) /* rightmost page of split group */
80 #define BTP_HAS_GARBAGE (1 << 6) /* page has LP_DEAD tuples (deprecated) */
81 #define BTP_INCOMPLETE_SPLIT (1 << 7) /* right sibling's downlink is missing */
82 #define BTP_HAS_FULLXID (1 << 8) /* contains BTDeletedPageData */
85 * The max allowed value of a cycle ID is a bit less than 64K. This is
86 * for convenience of pg_filedump and similar utilities: we want to use
87 * the last 2 bytes of special space as an index type indicator, and
88 * restricting cycle ID lets btree use that space for vacuum cycle IDs
89 * while still allowing index type to be identified.
91 #define MAX_BT_CYCLE_ID 0xFF7F
95 * The Meta page is always the first page in the btree index.
96 * Its primary purpose is to point to the location of the btree root page.
97 * We also point to the "fast" root, which is the current effective root;
98 * see README for discussion.
101 typedef struct BTMetaPageData
103 uint32 btm_magic; /* should contain BTREE_MAGIC */
104 uint32 btm_version; /* nbtree version (always <= BTREE_VERSION) */
105 BlockNumber btm_root; /* current root location */
106 uint32 btm_level; /* tree level of the root page */
107 BlockNumber btm_fastroot; /* current "fast" root location */
108 uint32 btm_fastlevel; /* tree level of the "fast" root page */
109 /* remaining fields only valid when btm_version >= BTREE_NOVAC_VERSION */
111 /* number of deleted, non-recyclable pages during last cleanup */
112 uint32 btm_last_cleanup_num_delpages;
113 /* number of heap tuples during last cleanup (deprecated) */
114 float8 btm_last_cleanup_num_heap_tuples;
116 bool btm_allequalimage; /* are all columns "equalimage"? */
117 } BTMetaPageData;
119 #define BTPageGetMeta(p) \
120 ((BTMetaPageData *) PageGetContents(p))
123 * The current Btree version is 4. That's what you'll get when you create
124 * a new index.
126 * Btree version 3 was used in PostgreSQL v11. It is mostly the same as
127 * version 4, but heap TIDs were not part of the keyspace. Index tuples
128 * with duplicate keys could be stored in any order. We continue to
129 * support reading and writing Btree versions 2 and 3, so that they don't
130 * need to be immediately re-indexed at pg_upgrade. In order to get the
131 * new heapkeyspace semantics, however, a REINDEX is needed.
133 * Deduplication is safe to use when the btm_allequalimage field is set to
134 * true. It's safe to read the btm_allequalimage field on version 3, but
135 * only version 4 indexes make use of deduplication. Even version 4
136 * indexes created on PostgreSQL v12 will need a REINDEX to make use of
137 * deduplication, though, since there is no other way to set
138 * btm_allequalimage to true (pg_upgrade hasn't been taught to set the
139 * metapage field).
141 * Btree version 2 is mostly the same as version 3. There are two new
142 * fields in the metapage that were introduced in version 3. A version 2
143 * metapage will be automatically upgraded to version 3 on the first
144 * insert to it. INCLUDE indexes cannot use version 2.
146 #define BTREE_METAPAGE 0 /* first page is meta */
147 #define BTREE_MAGIC 0x053162 /* magic number in metapage */
148 #define BTREE_VERSION 4 /* current version number */
149 #define BTREE_MIN_VERSION 2 /* minimum supported version */
150 #define BTREE_NOVAC_VERSION 3 /* version with all meta fields set */
153 * Maximum size of a btree index entry, including its tuple header.
155 * We actually need to be able to fit three items on every page,
156 * so restrict any one item to 1/3 the per-page available space.
158 * There are rare cases where _bt_truncate() will need to enlarge
159 * a heap index tuple to make space for a tiebreaker heap TID
160 * attribute, which we account for here.
162 #define BTMaxItemSize(page) \
163 MAXALIGN_DOWN((PageGetPageSize(page) - \
164 MAXALIGN(SizeOfPageHeaderData + \
165 3*sizeof(ItemIdData) + \
166 3*sizeof(ItemPointerData)) - \
167 MAXALIGN(sizeof(BTPageOpaqueData))) / 3)
168 #define BTMaxItemSizeNoHeapTid(page) \
169 MAXALIGN_DOWN((PageGetPageSize(page) - \
170 MAXALIGN(SizeOfPageHeaderData + 3*sizeof(ItemIdData)) - \
171 MAXALIGN(sizeof(BTPageOpaqueData))) / 3)
174 * MaxTIDsPerBTreePage is an upper bound on the number of heap TIDs tuples
175 * that may be stored on a btree leaf page. It is used to size the
176 * per-page temporary buffers.
178 * Note: we don't bother considering per-tuple overheads here to keep
179 * things simple (value is based on how many elements a single array of
180 * heap TIDs must have to fill the space between the page header and
181 * special area). The value is slightly higher (i.e. more conservative)
182 * than necessary as a result, which is considered acceptable.
184 #define MaxTIDsPerBTreePage \
185 (int) ((BLCKSZ - SizeOfPageHeaderData - sizeof(BTPageOpaqueData)) / \
186 sizeof(ItemPointerData))
189 * The leaf-page fillfactor defaults to 90% but is user-adjustable.
190 * For pages above the leaf level, we use a fixed 70% fillfactor.
191 * The fillfactor is applied during index build and when splitting
192 * a rightmost page; when splitting non-rightmost pages we try to
193 * divide the data equally. When splitting a page that's entirely
194 * filled with a single value (duplicates), the effective leaf-page
195 * fillfactor is 96%, regardless of whether the page is a rightmost
196 * page.
198 #define BTREE_MIN_FILLFACTOR 10
199 #define BTREE_DEFAULT_FILLFACTOR 90
200 #define BTREE_NONLEAF_FILLFACTOR 70
201 #define BTREE_SINGLEVAL_FILLFACTOR 96
204 * In general, the btree code tries to localize its knowledge about
205 * page layout to a couple of routines. However, we need a special
206 * value to indicate "no page number" in those places where we expect
207 * page numbers. We can use zero for this because we never need to
208 * make a pointer to the metadata page.
211 #define P_NONE 0
214 * Macros to test whether a page is leftmost or rightmost on its tree level,
215 * as well as other state info kept in the opaque data.
217 #define P_LEFTMOST(opaque) ((opaque)->btpo_prev == P_NONE)
218 #define P_RIGHTMOST(opaque) ((opaque)->btpo_next == P_NONE)
219 #define P_ISLEAF(opaque) (((opaque)->btpo_flags & BTP_LEAF) != 0)
220 #define P_ISROOT(opaque) (((opaque)->btpo_flags & BTP_ROOT) != 0)
221 #define P_ISDELETED(opaque) (((opaque)->btpo_flags & BTP_DELETED) != 0)
222 #define P_ISMETA(opaque) (((opaque)->btpo_flags & BTP_META) != 0)
223 #define P_ISHALFDEAD(opaque) (((opaque)->btpo_flags & BTP_HALF_DEAD) != 0)
224 #define P_IGNORE(opaque) (((opaque)->btpo_flags & (BTP_DELETED|BTP_HALF_DEAD)) != 0)
225 #define P_HAS_GARBAGE(opaque) (((opaque)->btpo_flags & BTP_HAS_GARBAGE) != 0)
226 #define P_INCOMPLETE_SPLIT(opaque) (((opaque)->btpo_flags & BTP_INCOMPLETE_SPLIT) != 0)
227 #define P_HAS_FULLXID(opaque) (((opaque)->btpo_flags & BTP_HAS_FULLXID) != 0)
230 * BTDeletedPageData is the page contents of a deleted page
232 typedef struct BTDeletedPageData
234 FullTransactionId safexid; /* See BTPageIsRecyclable() */
235 } BTDeletedPageData;
237 static inline void
238 BTPageSetDeleted(Page page, FullTransactionId safexid)
240 BTPageOpaque opaque;
241 PageHeader header;
242 BTDeletedPageData *contents;
244 opaque = (BTPageOpaque) PageGetSpecialPointer(page);
245 header = ((PageHeader) page);
247 opaque->btpo_flags &= ~BTP_HALF_DEAD;
248 opaque->btpo_flags |= BTP_DELETED | BTP_HAS_FULLXID;
249 header->pd_lower = MAXALIGN(SizeOfPageHeaderData) +
250 sizeof(BTDeletedPageData);
251 header->pd_upper = header->pd_special;
253 /* Set safexid in deleted page */
254 contents = ((BTDeletedPageData *) PageGetContents(page));
255 contents->safexid = safexid;
258 static inline FullTransactionId
259 BTPageGetDeleteXid(Page page)
261 BTPageOpaque opaque;
262 BTDeletedPageData *contents;
264 /* We only expect to be called with a deleted page */
265 Assert(!PageIsNew(page));
266 opaque = (BTPageOpaque) PageGetSpecialPointer(page);
267 Assert(P_ISDELETED(opaque));
269 /* pg_upgrade'd deleted page -- must be safe to delete now */
270 if (!P_HAS_FULLXID(opaque))
271 return FirstNormalFullTransactionId;
273 /* Get safexid from deleted page */
274 contents = ((BTDeletedPageData *) PageGetContents(page));
275 return contents->safexid;
279 * Is an existing page recyclable?
281 * This exists to centralize the policy on which deleted pages are now safe to
282 * re-use. However, _bt_pendingfsm_finalize() duplicates some of the same
283 * logic because it doesn't work directly with pages -- keep the two in sync.
285 * Note: PageIsNew() pages are always safe to recycle, but we can't deal with
286 * them here (caller is responsible for that case themselves). Caller might
287 * well need special handling for new pages anyway.
289 static inline bool
290 BTPageIsRecyclable(Page page)
292 BTPageOpaque opaque;
294 Assert(!PageIsNew(page));
296 /* Recycling okay iff page is deleted and safexid is old enough */
297 opaque = (BTPageOpaque) PageGetSpecialPointer(page);
298 if (P_ISDELETED(opaque))
301 * The page was deleted, but when? If it was just deleted, a scan
302 * might have seen the downlink to it, and will read the page later.
303 * As long as that can happen, we must keep the deleted page around as
304 * a tombstone.
306 * For that check if the deletion XID could still be visible to
307 * anyone. If not, then no scan that's still in progress could have
308 * seen its downlink, and we can recycle it.
310 * XXX: If we had the heap relation we could be more aggressive about
311 * recycling deleted pages in non-catalog relations. For now we just
312 * pass NULL. That is at least simple and consistent.
314 return GlobalVisCheckRemovableFullXid(NULL, BTPageGetDeleteXid(page));
317 return false;
321 * BTVacState and BTPendingFSM are private nbtree.c state used during VACUUM.
322 * They are exported for use by page deletion related code in nbtpage.c.
324 typedef struct BTPendingFSM
326 BlockNumber target; /* Page deleted by current VACUUM */
327 FullTransactionId safexid; /* Page's BTDeletedPageData.safexid */
328 } BTPendingFSM;
330 typedef struct BTVacState
332 IndexVacuumInfo *info;
333 IndexBulkDeleteResult *stats;
334 IndexBulkDeleteCallback callback;
335 void *callback_state;
336 BTCycleId cycleid;
337 MemoryContext pagedelcontext;
340 * _bt_pendingfsm_finalize() state
342 int bufsize; /* pendingpages space (in # elements) */
343 int maxbufsize; /* max bufsize that respects work_mem */
344 BTPendingFSM *pendingpages; /* One entry per newly deleted page */
345 int npendingpages; /* current # valid pendingpages */
346 } BTVacState;
349 * Lehman and Yao's algorithm requires a ``high key'' on every non-rightmost
350 * page. The high key is not a tuple that is used to visit the heap. It is
351 * a pivot tuple (see "Notes on B-Tree tuple format" below for definition).
352 * The high key on a page is required to be greater than or equal to any
353 * other key that appears on the page. If we find ourselves trying to
354 * insert a key that is strictly > high key, we know we need to move right
355 * (this should only happen if the page was split since we examined the
356 * parent page).
358 * Our insertion algorithm guarantees that we can use the initial least key
359 * on our right sibling as the high key. Once a page is created, its high
360 * key changes only if the page is split.
362 * On a non-rightmost page, the high key lives in item 1 and data items
363 * start in item 2. Rightmost pages have no high key, so we store data
364 * items beginning in item 1.
367 #define P_HIKEY ((OffsetNumber) 1)
368 #define P_FIRSTKEY ((OffsetNumber) 2)
369 #define P_FIRSTDATAKEY(opaque) (P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY)
372 * Notes on B-Tree tuple format, and key and non-key attributes:
374 * INCLUDE B-Tree indexes have non-key attributes. These are extra
375 * attributes that may be returned by index-only scans, but do not influence
376 * the order of items in the index (formally, non-key attributes are not
377 * considered to be part of the key space). Non-key attributes are only
378 * present in leaf index tuples whose item pointers actually point to heap
379 * tuples (non-pivot tuples). _bt_check_natts() enforces the rules
380 * described here.
382 * Non-pivot tuple format (plain/non-posting variant):
384 * t_tid | t_info | key values | INCLUDE columns, if any
386 * t_tid points to the heap TID, which is a tiebreaker key column as of
387 * BTREE_VERSION 4.
389 * Non-pivot tuples complement pivot tuples, which only have key columns.
390 * The sole purpose of pivot tuples is to represent how the key space is
391 * separated. In general, any B-Tree index that has more than one level
392 * (i.e. any index that does not just consist of a metapage and a single
393 * leaf root page) must have some number of pivot tuples, since pivot
394 * tuples are used for traversing the tree. Suffix truncation can omit
395 * trailing key columns when a new pivot is formed, which makes minus
396 * infinity their logical value. Since BTREE_VERSION 4 indexes treat heap
397 * TID as a trailing key column that ensures that all index tuples are
398 * physically unique, it is necessary to represent heap TID as a trailing
399 * key column in pivot tuples, though very often this can be truncated
400 * away, just like any other key column. (Actually, the heap TID is
401 * omitted rather than truncated, since its representation is different to
402 * the non-pivot representation.)
404 * Pivot tuple format:
406 * t_tid | t_info | key values | [heap TID]
408 * We store the number of columns present inside pivot tuples by abusing
409 * their t_tid offset field, since pivot tuples never need to store a real
410 * offset (pivot tuples generally store a downlink in t_tid, though). The
411 * offset field only stores the number of columns/attributes when the
412 * INDEX_ALT_TID_MASK bit is set, which doesn't count the trailing heap
413 * TID column sometimes stored in pivot tuples -- that's represented by
414 * the presence of BT_PIVOT_HEAP_TID_ATTR. The INDEX_ALT_TID_MASK bit in
415 * t_info is always set on BTREE_VERSION 4 pivot tuples, since
416 * BTreeTupleIsPivot() must work reliably on heapkeyspace versions.
418 * In version 2 or version 3 (!heapkeyspace) indexes, INDEX_ALT_TID_MASK
419 * might not be set in pivot tuples. BTreeTupleIsPivot() won't work
420 * reliably as a result. The number of columns stored is implicitly the
421 * same as the number of columns in the index, just like any non-pivot
422 * tuple. (The number of columns stored should not vary, since suffix
423 * truncation of key columns is unsafe within any !heapkeyspace index.)
425 * The 12 least significant bits from t_tid's offset number are used to
426 * represent the number of key columns within a pivot tuple. This leaves 4
427 * status bits (BT_STATUS_OFFSET_MASK bits), which are shared by all tuples
428 * that have the INDEX_ALT_TID_MASK bit set (set in t_info) to store basic
429 * tuple metadata. BTreeTupleIsPivot() and BTreeTupleIsPosting() use the
430 * BT_STATUS_OFFSET_MASK bits.
432 * Sometimes non-pivot tuples also use a representation that repurposes
433 * t_tid to store metadata rather than a TID. PostgreSQL v13 introduced a
434 * new non-pivot tuple format to support deduplication: posting list
435 * tuples. Deduplication merges together multiple equal non-pivot tuples
436 * into a logically equivalent, space efficient representation. A posting
437 * list is an array of ItemPointerData elements. Non-pivot tuples are
438 * merged together to form posting list tuples lazily, at the point where
439 * we'd otherwise have to split a leaf page.
441 * Posting tuple format (alternative non-pivot tuple representation):
443 * t_tid | t_info | key values | posting list (TID array)
445 * Posting list tuples are recognized as such by having the
446 * INDEX_ALT_TID_MASK status bit set in t_info and the BT_IS_POSTING status
447 * bit set in t_tid's offset number. These flags redefine the content of
448 * the posting tuple's t_tid to store the location of the posting list
449 * (instead of a block number), as well as the total number of heap TIDs
450 * present in the tuple (instead of a real offset number).
452 * The 12 least significant bits from t_tid's offset number are used to
453 * represent the number of heap TIDs present in the tuple, leaving 4 status
454 * bits (the BT_STATUS_OFFSET_MASK bits). Like any non-pivot tuple, the
455 * number of columns stored is always implicitly the total number in the
456 * index (in practice there can never be non-key columns stored, since
457 * deduplication is not supported with INCLUDE indexes).
459 #define INDEX_ALT_TID_MASK INDEX_AM_RESERVED_BIT
461 /* Item pointer offset bit masks */
462 #define BT_OFFSET_MASK 0x0FFF
463 #define BT_STATUS_OFFSET_MASK 0xF000
464 /* BT_STATUS_OFFSET_MASK status bits */
465 #define BT_PIVOT_HEAP_TID_ATTR 0x1000
466 #define BT_IS_POSTING 0x2000
469 * Note: BTreeTupleIsPivot() can have false negatives (but not false
470 * positives) when used with !heapkeyspace indexes
472 static inline bool
473 BTreeTupleIsPivot(IndexTuple itup)
475 if ((itup->t_info & INDEX_ALT_TID_MASK) == 0)
476 return false;
477 /* absence of BT_IS_POSTING in offset number indicates pivot tuple */
478 if ((ItemPointerGetOffsetNumberNoCheck(&itup->t_tid) & BT_IS_POSTING) != 0)
479 return false;
481 return true;
484 static inline bool
485 BTreeTupleIsPosting(IndexTuple itup)
487 if ((itup->t_info & INDEX_ALT_TID_MASK) == 0)
488 return false;
489 /* presence of BT_IS_POSTING in offset number indicates posting tuple */
490 if ((ItemPointerGetOffsetNumberNoCheck(&itup->t_tid) & BT_IS_POSTING) == 0)
491 return false;
493 return true;
496 static inline void
497 BTreeTupleSetPosting(IndexTuple itup, uint16 nhtids, int postingoffset)
499 Assert(nhtids > 1);
500 Assert((nhtids & BT_STATUS_OFFSET_MASK) == 0);
501 Assert((size_t) postingoffset == MAXALIGN(postingoffset));
502 Assert(postingoffset < INDEX_SIZE_MASK);
503 Assert(!BTreeTupleIsPivot(itup));
505 itup->t_info |= INDEX_ALT_TID_MASK;
506 ItemPointerSetOffsetNumber(&itup->t_tid, (nhtids | BT_IS_POSTING));
507 ItemPointerSetBlockNumber(&itup->t_tid, postingoffset);
510 static inline uint16
511 BTreeTupleGetNPosting(IndexTuple posting)
513 OffsetNumber existing;
515 Assert(BTreeTupleIsPosting(posting));
517 existing = ItemPointerGetOffsetNumberNoCheck(&posting->t_tid);
518 return (existing & BT_OFFSET_MASK);
521 static inline uint32
522 BTreeTupleGetPostingOffset(IndexTuple posting)
524 Assert(BTreeTupleIsPosting(posting));
526 return ItemPointerGetBlockNumberNoCheck(&posting->t_tid);
529 static inline ItemPointer
530 BTreeTupleGetPosting(IndexTuple posting)
532 return (ItemPointer) ((char *) posting +
533 BTreeTupleGetPostingOffset(posting));
536 static inline ItemPointer
537 BTreeTupleGetPostingN(IndexTuple posting, int n)
539 return BTreeTupleGetPosting(posting) + n;
543 * Get/set downlink block number in pivot tuple.
545 * Note: Cannot assert that tuple is a pivot tuple. If we did so then
546 * !heapkeyspace indexes would exhibit false positive assertion failures.
548 static inline BlockNumber
549 BTreeTupleGetDownLink(IndexTuple pivot)
551 return ItemPointerGetBlockNumberNoCheck(&pivot->t_tid);
554 static inline void
555 BTreeTupleSetDownLink(IndexTuple pivot, BlockNumber blkno)
557 ItemPointerSetBlockNumber(&pivot->t_tid, blkno);
561 * Get number of attributes within tuple.
563 * Note that this does not include an implicit tiebreaker heap TID
564 * attribute, if any. Note also that the number of key attributes must be
565 * explicitly represented in all heapkeyspace pivot tuples.
567 * Note: This is defined as a macro rather than an inline function to
568 * avoid including rel.h.
570 #define BTreeTupleGetNAtts(itup, rel) \
572 (BTreeTupleIsPivot(itup)) ? \
574 ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) & BT_OFFSET_MASK \
577 IndexRelationGetNumberOfAttributes(rel) \
581 * Set number of key attributes in tuple.
583 * The heap TID tiebreaker attribute bit may also be set here, indicating that
584 * a heap TID value will be stored at the end of the tuple (i.e. using the
585 * special pivot tuple representation).
587 static inline void
588 BTreeTupleSetNAtts(IndexTuple itup, uint16 nkeyatts, bool heaptid)
590 Assert(nkeyatts <= INDEX_MAX_KEYS);
591 Assert((nkeyatts & BT_STATUS_OFFSET_MASK) == 0);
592 Assert(!heaptid || nkeyatts > 0);
593 Assert(!BTreeTupleIsPivot(itup) || nkeyatts == 0);
595 itup->t_info |= INDEX_ALT_TID_MASK;
597 if (heaptid)
598 nkeyatts |= BT_PIVOT_HEAP_TID_ATTR;
600 /* BT_IS_POSTING bit is deliberately unset here */
601 ItemPointerSetOffsetNumber(&itup->t_tid, nkeyatts);
602 Assert(BTreeTupleIsPivot(itup));
606 * Get/set leaf page's "top parent" link from its high key. Used during page
607 * deletion.
609 * Note: Cannot assert that tuple is a pivot tuple. If we did so then
610 * !heapkeyspace indexes would exhibit false positive assertion failures.
612 static inline BlockNumber
613 BTreeTupleGetTopParent(IndexTuple leafhikey)
615 return ItemPointerGetBlockNumberNoCheck(&leafhikey->t_tid);
618 static inline void
619 BTreeTupleSetTopParent(IndexTuple leafhikey, BlockNumber blkno)
621 ItemPointerSetBlockNumber(&leafhikey->t_tid, blkno);
622 BTreeTupleSetNAtts(leafhikey, 0, false);
626 * Get tiebreaker heap TID attribute, if any.
628 * This returns the first/lowest heap TID in the case of a posting list tuple.
630 static inline ItemPointer
631 BTreeTupleGetHeapTID(IndexTuple itup)
633 if (BTreeTupleIsPivot(itup))
635 /* Pivot tuple heap TID representation? */
636 if ((ItemPointerGetOffsetNumberNoCheck(&itup->t_tid) &
637 BT_PIVOT_HEAP_TID_ATTR) != 0)
638 return (ItemPointer) ((char *) itup + IndexTupleSize(itup) -
639 sizeof(ItemPointerData));
641 /* Heap TID attribute was truncated */
642 return NULL;
644 else if (BTreeTupleIsPosting(itup))
645 return BTreeTupleGetPosting(itup);
647 return &itup->t_tid;
651 * Get maximum heap TID attribute, which could be the only TID in the case of
652 * a non-pivot tuple that does not have a posting list tuple.
654 * Works with non-pivot tuples only.
656 static inline ItemPointer
657 BTreeTupleGetMaxHeapTID(IndexTuple itup)
659 Assert(!BTreeTupleIsPivot(itup));
661 if (BTreeTupleIsPosting(itup))
663 uint16 nposting = BTreeTupleGetNPosting(itup);
665 return BTreeTupleGetPostingN(itup, nposting - 1);
668 return &itup->t_tid;
672 * Operator strategy numbers for B-tree have been moved to access/stratnum.h,
673 * because many places need to use them in ScanKeyInit() calls.
675 * The strategy numbers are chosen so that we can commute them by
676 * subtraction, thus:
678 #define BTCommuteStrategyNumber(strat) (BTMaxStrategyNumber + 1 - (strat))
681 * When a new operator class is declared, we require that the user
682 * supply us with an amproc procedure (BTORDER_PROC) for determining
683 * whether, for two keys a and b, a < b, a = b, or a > b. This routine
684 * must return < 0, 0, > 0, respectively, in these three cases.
686 * To facilitate accelerated sorting, an operator class may choose to
687 * offer a second procedure (BTSORTSUPPORT_PROC). For full details, see
688 * src/include/utils/sortsupport.h.
690 * To support window frames defined by "RANGE offset PRECEDING/FOLLOWING",
691 * an operator class may choose to offer a third amproc procedure
692 * (BTINRANGE_PROC), independently of whether it offers sortsupport.
693 * For full details, see doc/src/sgml/btree.sgml.
695 * To facilitate B-Tree deduplication, an operator class may choose to
696 * offer a forth amproc procedure (BTEQUALIMAGE_PROC). For full details,
697 * see doc/src/sgml/btree.sgml.
700 #define BTORDER_PROC 1
701 #define BTSORTSUPPORT_PROC 2
702 #define BTINRANGE_PROC 3
703 #define BTEQUALIMAGE_PROC 4
704 #define BTOPTIONS_PROC 5
705 #define BTNProcs 5
708 * We need to be able to tell the difference between read and write
709 * requests for pages, in order to do locking correctly.
712 #define BT_READ BUFFER_LOCK_SHARE
713 #define BT_WRITE BUFFER_LOCK_EXCLUSIVE
716 * BTStackData -- As we descend a tree, we push the location of pivot
717 * tuples whose downlink we are about to follow onto a private stack. If
718 * we split a leaf, we use this stack to walk back up the tree and insert
719 * data into its parent page at the correct location. We also have to
720 * recursively insert into the grandparent page if and when the parent page
721 * splits. Our private stack can become stale due to concurrent page
722 * splits and page deletions, but it should never give us an irredeemably
723 * bad picture.
725 typedef struct BTStackData
727 BlockNumber bts_blkno;
728 OffsetNumber bts_offset;
729 struct BTStackData *bts_parent;
730 } BTStackData;
732 typedef BTStackData *BTStack;
735 * BTScanInsertData is the btree-private state needed to find an initial
736 * position for an indexscan, or to insert new tuples -- an "insertion
737 * scankey" (not to be confused with a search scankey). It's used to descend
738 * a B-Tree using _bt_search.
740 * heapkeyspace indicates if we expect all keys in the index to be physically
741 * unique because heap TID is used as a tiebreaker attribute, and if index may
742 * have truncated key attributes in pivot tuples. This is actually a property
743 * of the index relation itself (not an indexscan). heapkeyspace indexes are
744 * indexes whose version is >= version 4. It's convenient to keep this close
745 * by, rather than accessing the metapage repeatedly.
747 * allequalimage is set to indicate that deduplication is safe for the index.
748 * This is also a property of the index relation rather than an indexscan.
750 * anynullkeys indicates if any of the keys had NULL value when scankey was
751 * built from index tuple (note that already-truncated tuple key attributes
752 * set NULL as a placeholder key value, which also affects value of
753 * anynullkeys). This is a convenience for unique index non-pivot tuple
754 * insertion, which usually temporarily unsets scantid, but shouldn't iff
755 * anynullkeys is true. Value generally matches non-pivot tuple's HasNulls
756 * bit, but may not when inserting into an INCLUDE index (tuple header value
757 * is affected by the NULL-ness of both key and non-key attributes).
759 * When nextkey is false (the usual case), _bt_search and _bt_binsrch will
760 * locate the first item >= scankey. When nextkey is true, they will locate
761 * the first item > scan key.
763 * pivotsearch is set to true by callers that want to re-find a leaf page
764 * using a scankey built from a leaf page's high key. Most callers set this
765 * to false.
767 * scantid is the heap TID that is used as a final tiebreaker attribute. It
768 * is set to NULL when index scan doesn't need to find a position for a
769 * specific physical tuple. Must be set when inserting new tuples into
770 * heapkeyspace indexes, since every tuple in the tree unambiguously belongs
771 * in one exact position (it's never set with !heapkeyspace indexes, though).
772 * Despite the representational difference, nbtree search code considers
773 * scantid to be just another insertion scankey attribute.
775 * scankeys is an array of scan key entries for attributes that are compared
776 * before scantid (user-visible attributes). keysz is the size of the array.
777 * During insertion, there must be a scan key for every attribute, but when
778 * starting a regular index scan some can be omitted. The array is used as a
779 * flexible array member, though it's sized in a way that makes it possible to
780 * use stack allocations. See nbtree/README for full details.
782 typedef struct BTScanInsertData
784 bool heapkeyspace;
785 bool allequalimage;
786 bool anynullkeys;
787 bool nextkey;
788 bool pivotsearch;
789 ItemPointer scantid; /* tiebreaker for scankeys */
790 int keysz; /* Size of scankeys array */
791 ScanKeyData scankeys[INDEX_MAX_KEYS]; /* Must appear last */
792 } BTScanInsertData;
794 typedef BTScanInsertData *BTScanInsert;
797 * BTInsertStateData is a working area used during insertion.
799 * This is filled in after descending the tree to the first leaf page the new
800 * tuple might belong on. Tracks the current position while performing
801 * uniqueness check, before we have determined which exact page to insert
802 * to.
804 * (This should be private to nbtinsert.c, but it's also used by
805 * _bt_binsrch_insert)
807 typedef struct BTInsertStateData
809 IndexTuple itup; /* Item we're inserting */
810 Size itemsz; /* Size of itup -- should be MAXALIGN()'d */
811 BTScanInsert itup_key; /* Insertion scankey */
813 /* Buffer containing leaf page we're likely to insert itup on */
814 Buffer buf;
817 * Cache of bounds within the current buffer. Only used for insertions
818 * where _bt_check_unique is called. See _bt_binsrch_insert and
819 * _bt_findinsertloc for details.
821 bool bounds_valid;
822 OffsetNumber low;
823 OffsetNumber stricthigh;
826 * if _bt_binsrch_insert found the location inside existing posting list,
827 * save the position inside the list. -1 sentinel value indicates overlap
828 * with an existing posting list tuple that has its LP_DEAD bit set.
830 int postingoff;
831 } BTInsertStateData;
833 typedef BTInsertStateData *BTInsertState;
836 * State used to representing an individual pending tuple during
837 * deduplication.
839 typedef struct BTDedupInterval
841 OffsetNumber baseoff;
842 uint16 nitems;
843 } BTDedupInterval;
846 * BTDedupStateData is a working area used during deduplication.
848 * The status info fields track the state of a whole-page deduplication pass.
849 * State about the current pending posting list is also tracked.
851 * A pending posting list is comprised of a contiguous group of equal items
852 * from the page, starting from page offset number 'baseoff'. This is the
853 * offset number of the "base" tuple for new posting list. 'nitems' is the
854 * current total number of existing items from the page that will be merged to
855 * make a new posting list tuple, including the base tuple item. (Existing
856 * items may themselves be posting list tuples, or regular non-pivot tuples.)
858 * The total size of the existing tuples to be freed when pending posting list
859 * is processed gets tracked by 'phystupsize'. This information allows
860 * deduplication to calculate the space saving for each new posting list
861 * tuple, and for the entire pass over the page as a whole.
863 typedef struct BTDedupStateData
865 /* Deduplication status info for entire pass over page */
866 bool deduplicate; /* Still deduplicating page? */
867 int nmaxitems; /* Number of max-sized tuples so far */
868 Size maxpostingsize; /* Limit on size of final tuple */
870 /* Metadata about base tuple of current pending posting list */
871 IndexTuple base; /* Use to form new posting list */
872 OffsetNumber baseoff; /* page offset of base */
873 Size basetupsize; /* base size without original posting list */
875 /* Other metadata about pending posting list */
876 ItemPointer htids; /* Heap TIDs in pending posting list */
877 int nhtids; /* Number of heap TIDs in htids array */
878 int nitems; /* Number of existing tuples/line pointers */
879 Size phystupsize; /* Includes line pointer overhead */
882 * Array of tuples to go on new version of the page. Contains one entry
883 * for each group of consecutive items. Note that existing tuples that
884 * will not become posting list tuples do not appear in the array (they
885 * are implicitly unchanged by deduplication pass).
887 int nintervals; /* current number of intervals in array */
888 BTDedupInterval intervals[MaxIndexTuplesPerPage];
889 } BTDedupStateData;
891 typedef BTDedupStateData *BTDedupState;
894 * BTVacuumPostingData is state that represents how to VACUUM (or delete) a
895 * posting list tuple when some (though not all) of its TIDs are to be
896 * deleted.
898 * Convention is that itup field is the original posting list tuple on input,
899 * and palloc()'d final tuple used to overwrite existing tuple on output.
901 typedef struct BTVacuumPostingData
903 /* Tuple that will be/was updated */
904 IndexTuple itup;
905 OffsetNumber updatedoffset;
907 /* State needed to describe final itup in WAL */
908 uint16 ndeletedtids;
909 uint16 deletetids[FLEXIBLE_ARRAY_MEMBER];
910 } BTVacuumPostingData;
912 typedef BTVacuumPostingData *BTVacuumPosting;
915 * BTScanOpaqueData is the btree-private state needed for an indexscan.
916 * This consists of preprocessed scan keys (see _bt_preprocess_keys() for
917 * details of the preprocessing), information about the current location
918 * of the scan, and information about the marked location, if any. (We use
919 * BTScanPosData to represent the data needed for each of current and marked
920 * locations.) In addition we can remember some known-killed index entries
921 * that must be marked before we can move off the current page.
923 * Index scans work a page at a time: we pin and read-lock the page, identify
924 * all the matching items on the page and save them in BTScanPosData, then
925 * release the read-lock while returning the items to the caller for
926 * processing. This approach minimizes lock/unlock traffic. Note that we
927 * keep the pin on the index page until the caller is done with all the items
928 * (this is needed for VACUUM synchronization, see nbtree/README). When we
929 * are ready to step to the next page, if the caller has told us any of the
930 * items were killed, we re-lock the page to mark them killed, then unlock.
931 * Finally we drop the pin and step to the next page in the appropriate
932 * direction.
934 * If we are doing an index-only scan, we save the entire IndexTuple for each
935 * matched item, otherwise only its heap TID and offset. The IndexTuples go
936 * into a separate workspace array; each BTScanPosItem stores its tuple's
937 * offset within that array. Posting list tuples store a "base" tuple once,
938 * allowing the same key to be returned for each TID in the posting list
939 * tuple.
942 typedef struct BTScanPosItem /* what we remember about each match */
944 ItemPointerData heapTid; /* TID of referenced heap item */
945 OffsetNumber indexOffset; /* index item's location within page */
946 LocationIndex tupleOffset; /* IndexTuple's offset in workspace, if any */
947 } BTScanPosItem;
949 typedef struct BTScanPosData
951 Buffer buf; /* if valid, the buffer is pinned */
953 XLogRecPtr lsn; /* pos in the WAL stream when page was read */
954 BlockNumber currPage; /* page referenced by items array */
955 BlockNumber nextPage; /* page's right link when we scanned it */
958 * moreLeft and moreRight track whether we think there may be matching
959 * index entries to the left and right of the current page, respectively.
960 * We can clear the appropriate one of these flags when _bt_checkkeys()
961 * returns continuescan = false.
963 bool moreLeft;
964 bool moreRight;
967 * If we are doing an index-only scan, nextTupleOffset is the first free
968 * location in the associated tuple storage workspace.
970 int nextTupleOffset;
973 * The items array is always ordered in index order (ie, increasing
974 * indexoffset). When scanning backwards it is convenient to fill the
975 * array back-to-front, so we start at the last slot and fill downwards.
976 * Hence we need both a first-valid-entry and a last-valid-entry counter.
977 * itemIndex is a cursor showing which entry was last returned to caller.
979 int firstItem; /* first valid index in items[] */
980 int lastItem; /* last valid index in items[] */
981 int itemIndex; /* current index in items[] */
983 BTScanPosItem items[MaxTIDsPerBTreePage]; /* MUST BE LAST */
984 } BTScanPosData;
986 typedef BTScanPosData *BTScanPos;
988 #define BTScanPosIsPinned(scanpos) \
990 AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
991 !BufferIsValid((scanpos).buf)), \
992 BufferIsValid((scanpos).buf) \
994 #define BTScanPosUnpin(scanpos) \
995 do { \
996 ReleaseBuffer((scanpos).buf); \
997 (scanpos).buf = InvalidBuffer; \
998 } while (0)
999 #define BTScanPosUnpinIfPinned(scanpos) \
1000 do { \
1001 if (BTScanPosIsPinned(scanpos)) \
1002 BTScanPosUnpin(scanpos); \
1003 } while (0)
1005 #define BTScanPosIsValid(scanpos) \
1007 AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
1008 !BufferIsValid((scanpos).buf)), \
1009 BlockNumberIsValid((scanpos).currPage) \
1011 #define BTScanPosInvalidate(scanpos) \
1012 do { \
1013 (scanpos).currPage = InvalidBlockNumber; \
1014 (scanpos).nextPage = InvalidBlockNumber; \
1015 (scanpos).buf = InvalidBuffer; \
1016 (scanpos).lsn = InvalidXLogRecPtr; \
1017 (scanpos).nextTupleOffset = 0; \
1018 } while (0)
1020 /* We need one of these for each equality-type SK_SEARCHARRAY scan key */
1021 typedef struct BTArrayKeyInfo
1023 int scan_key; /* index of associated key in arrayKeyData */
1024 int cur_elem; /* index of current element in elem_values */
1025 int mark_elem; /* index of marked element in elem_values */
1026 int num_elems; /* number of elems in current array value */
1027 Datum *elem_values; /* array of num_elems Datums */
1028 } BTArrayKeyInfo;
1030 typedef struct BTScanOpaqueData
1032 /* these fields are set by _bt_preprocess_keys(): */
1033 bool qual_ok; /* false if qual can never be satisfied */
1034 int numberOfKeys; /* number of preprocessed scan keys */
1035 ScanKey keyData; /* array of preprocessed scan keys */
1037 /* workspace for SK_SEARCHARRAY support */
1038 ScanKey arrayKeyData; /* modified copy of scan->keyData */
1039 int numArrayKeys; /* number of equality-type array keys (-1 if
1040 * there are any unsatisfiable array keys) */
1041 int arrayKeyCount; /* count indicating number of array scan keys
1042 * processed */
1043 BTArrayKeyInfo *arrayKeys; /* info about each equality-type array key */
1044 MemoryContext arrayContext; /* scan-lifespan context for array data */
1046 /* info about killed items if any (killedItems is NULL if never used) */
1047 int *killedItems; /* currPos.items indexes of killed items */
1048 int numKilled; /* number of currently stored items */
1051 * If we are doing an index-only scan, these are the tuple storage
1052 * workspaces for the currPos and markPos respectively. Each is of size
1053 * BLCKSZ, so it can hold as much as a full page's worth of tuples.
1055 char *currTuples; /* tuple storage for currPos */
1056 char *markTuples; /* tuple storage for markPos */
1059 * If the marked position is on the same page as current position, we
1060 * don't use markPos, but just keep the marked itemIndex in markItemIndex
1061 * (all the rest of currPos is valid for the mark position). Hence, to
1062 * determine if there is a mark, first look at markItemIndex, then at
1063 * markPos.
1065 int markItemIndex; /* itemIndex, or -1 if not valid */
1067 /* keep these last in struct for efficiency */
1068 BTScanPosData currPos; /* current position data */
1069 BTScanPosData markPos; /* marked position, if any */
1070 } BTScanOpaqueData;
1072 typedef BTScanOpaqueData *BTScanOpaque;
1075 * We use some private sk_flags bits in preprocessed scan keys. We're allowed
1076 * to use bits 16-31 (see skey.h). The uppermost bits are copied from the
1077 * index's indoption[] array entry for the index attribute.
1079 #define SK_BT_REQFWD 0x00010000 /* required to continue forward scan */
1080 #define SK_BT_REQBKWD 0x00020000 /* required to continue backward scan */
1081 #define SK_BT_INDOPTION_SHIFT 24 /* must clear the above bits */
1082 #define SK_BT_DESC (INDOPTION_DESC << SK_BT_INDOPTION_SHIFT)
1083 #define SK_BT_NULLS_FIRST (INDOPTION_NULLS_FIRST << SK_BT_INDOPTION_SHIFT)
1085 typedef struct BTOptions
1087 int32 varlena_header_; /* varlena header (do not touch directly!) */
1088 int fillfactor; /* page fill factor in percent (0..100) */
1089 float8 vacuum_cleanup_index_scale_factor; /* deprecated */
1090 bool deduplicate_items; /* Try to deduplicate items? */
1091 } BTOptions;
1093 #define BTGetFillFactor(relation) \
1094 (AssertMacro(relation->rd_rel->relkind == RELKIND_INDEX && \
1095 relation->rd_rel->relam == BTREE_AM_OID), \
1096 (relation)->rd_options ? \
1097 ((BTOptions *) (relation)->rd_options)->fillfactor : \
1098 BTREE_DEFAULT_FILLFACTOR)
1099 #define BTGetTargetPageFreeSpace(relation) \
1100 (BLCKSZ * (100 - BTGetFillFactor(relation)) / 100)
1101 #define BTGetDeduplicateItems(relation) \
1102 (AssertMacro(relation->rd_rel->relkind == RELKIND_INDEX && \
1103 relation->rd_rel->relam == BTREE_AM_OID), \
1104 ((relation)->rd_options ? \
1105 ((BTOptions *) (relation)->rd_options)->deduplicate_items : true))
1108 * Constant definition for progress reporting. Phase numbers must match
1109 * btbuildphasename.
1111 /* PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE is 1 (see progress.h) */
1112 #define PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN 2
1113 #define PROGRESS_BTREE_PHASE_PERFORMSORT_1 3
1114 #define PROGRESS_BTREE_PHASE_PERFORMSORT_2 4
1115 #define PROGRESS_BTREE_PHASE_LEAF_LOAD 5
1118 * external entry points for btree, in nbtree.c
1120 extern void btbuildempty(Relation index);
1121 extern bool btinsert(Relation rel, Datum *values, bool *isnull,
1122 ItemPointer ht_ctid, Relation heapRel,
1123 IndexUniqueCheck checkUnique,
1124 bool indexUnchanged,
1125 struct IndexInfo *indexInfo);
1126 extern IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys);
1127 extern Size btestimateparallelscan(void);
1128 extern void btinitparallelscan(void *target);
1129 extern bool btgettuple(IndexScanDesc scan, ScanDirection dir);
1130 extern int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
1131 extern void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
1132 ScanKey orderbys, int norderbys);
1133 extern void btparallelrescan(IndexScanDesc scan);
1134 extern void btendscan(IndexScanDesc scan);
1135 extern void btmarkpos(IndexScanDesc scan);
1136 extern void btrestrpos(IndexScanDesc scan);
1137 extern IndexBulkDeleteResult *btbulkdelete(IndexVacuumInfo *info,
1138 IndexBulkDeleteResult *stats,
1139 IndexBulkDeleteCallback callback,
1140 void *callback_state);
1141 extern IndexBulkDeleteResult *btvacuumcleanup(IndexVacuumInfo *info,
1142 IndexBulkDeleteResult *stats);
1143 extern bool btcanreturn(Relation index, int attno);
1146 * prototypes for internal functions in nbtree.c
1148 extern bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno);
1149 extern void _bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page);
1150 extern void _bt_parallel_done(IndexScanDesc scan);
1151 extern void _bt_parallel_advance_array_keys(IndexScanDesc scan);
1154 * prototypes for functions in nbtdedup.c
1156 extern void _bt_dedup_pass(Relation rel, Buffer buf, Relation heapRel,
1157 IndexTuple newitem, Size newitemsz,
1158 bool checkingunique);
1159 extern bool _bt_bottomupdel_pass(Relation rel, Buffer buf, Relation heapRel,
1160 Size newitemsz);
1161 extern void _bt_dedup_start_pending(BTDedupState state, IndexTuple base,
1162 OffsetNumber baseoff);
1163 extern bool _bt_dedup_save_htid(BTDedupState state, IndexTuple itup);
1164 extern Size _bt_dedup_finish_pending(Page newpage, BTDedupState state);
1165 extern IndexTuple _bt_form_posting(IndexTuple base, ItemPointer htids,
1166 int nhtids);
1167 extern void _bt_update_posting(BTVacuumPosting vacposting);
1168 extern IndexTuple _bt_swap_posting(IndexTuple newitem, IndexTuple oposting,
1169 int postingoff);
1172 * prototypes for functions in nbtinsert.c
1174 extern bool _bt_doinsert(Relation rel, IndexTuple itup,
1175 IndexUniqueCheck checkUnique, bool indexUnchanged,
1176 Relation heapRel);
1177 extern void _bt_finish_split(Relation rel, Buffer lbuf, BTStack stack);
1178 extern Buffer _bt_getstackbuf(Relation rel, BTStack stack, BlockNumber child);
1181 * prototypes for functions in nbtsplitloc.c
1183 extern OffsetNumber _bt_findsplitloc(Relation rel, Page origpage,
1184 OffsetNumber newitemoff, Size newitemsz, IndexTuple newitem,
1185 bool *newitemonleft);
1188 * prototypes for functions in nbtpage.c
1190 extern void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level,
1191 bool allequalimage);
1192 extern bool _bt_vacuum_needs_cleanup(Relation rel);
1193 extern void _bt_set_cleanup_info(Relation rel, BlockNumber num_delpages);
1194 extern void _bt_upgrademetapage(Page page);
1195 extern Buffer _bt_getroot(Relation rel, int access);
1196 extern Buffer _bt_gettrueroot(Relation rel);
1197 extern int _bt_getrootheight(Relation rel);
1198 extern void _bt_metaversion(Relation rel, bool *heapkeyspace,
1199 bool *allequalimage);
1200 extern void _bt_checkpage(Relation rel, Buffer buf);
1201 extern Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access);
1202 extern Buffer _bt_relandgetbuf(Relation rel, Buffer obuf,
1203 BlockNumber blkno, int access);
1204 extern void _bt_relbuf(Relation rel, Buffer buf);
1205 extern void _bt_lockbuf(Relation rel, Buffer buf, int access);
1206 extern void _bt_unlockbuf(Relation rel, Buffer buf);
1207 extern bool _bt_conditionallockbuf(Relation rel, Buffer buf);
1208 extern void _bt_upgradelockbufcleanup(Relation rel, Buffer buf);
1209 extern void _bt_pageinit(Page page, Size size);
1210 extern void _bt_delitems_vacuum(Relation rel, Buffer buf,
1211 OffsetNumber *deletable, int ndeletable,
1212 BTVacuumPosting *updatable, int nupdatable);
1213 extern void _bt_delitems_delete_check(Relation rel, Buffer buf,
1214 Relation heapRel,
1215 TM_IndexDeleteOp *delstate);
1216 extern void _bt_pagedel(Relation rel, Buffer leafbuf, BTVacState *vstate);
1217 extern void _bt_pendingfsm_init(Relation rel, BTVacState *vstate,
1218 bool cleanuponly);
1219 extern void _bt_pendingfsm_finalize(Relation rel, BTVacState *vstate);
1222 * prototypes for functions in nbtsearch.c
1224 extern BTStack _bt_search(Relation rel, BTScanInsert key, Buffer *bufP,
1225 int access, Snapshot snapshot);
1226 extern Buffer _bt_moveright(Relation rel, BTScanInsert key, Buffer buf,
1227 bool forupdate, BTStack stack, int access, Snapshot snapshot);
1228 extern OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate);
1229 extern int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum);
1230 extern bool _bt_first(IndexScanDesc scan, ScanDirection dir);
1231 extern bool _bt_next(IndexScanDesc scan, ScanDirection dir);
1232 extern Buffer _bt_get_endpoint(Relation rel, uint32 level, bool rightmost,
1233 Snapshot snapshot);
1236 * prototypes for functions in nbtutils.c
1238 extern BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup);
1239 extern void _bt_freestack(BTStack stack);
1240 extern void _bt_preprocess_array_keys(IndexScanDesc scan);
1241 extern void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir);
1242 extern bool _bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir);
1243 extern void _bt_mark_array_keys(IndexScanDesc scan);
1244 extern void _bt_restore_array_keys(IndexScanDesc scan);
1245 extern void _bt_preprocess_keys(IndexScanDesc scan);
1246 extern bool _bt_checkkeys(IndexScanDesc scan, IndexTuple tuple,
1247 int tupnatts, ScanDirection dir, bool *continuescan);
1248 extern void _bt_killitems(IndexScanDesc scan);
1249 extern BTCycleId _bt_vacuum_cycleid(Relation rel);
1250 extern BTCycleId _bt_start_vacuum(Relation rel);
1251 extern void _bt_end_vacuum(Relation rel);
1252 extern void _bt_end_vacuum_callback(int code, Datum arg);
1253 extern Size BTreeShmemSize(void);
1254 extern void BTreeShmemInit(void);
1255 extern bytea *btoptions(Datum reloptions, bool validate);
1256 extern bool btproperty(Oid index_oid, int attno,
1257 IndexAMProperty prop, const char *propname,
1258 bool *res, bool *isnull);
1259 extern char *btbuildphasename(int64 phasenum);
1260 extern IndexTuple _bt_truncate(Relation rel, IndexTuple lastleft,
1261 IndexTuple firstright, BTScanInsert itup_key);
1262 extern int _bt_keep_natts_fast(Relation rel, IndexTuple lastleft,
1263 IndexTuple firstright);
1264 extern bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page,
1265 OffsetNumber offnum);
1266 extern void _bt_check_third_page(Relation rel, Relation heap,
1267 bool needheaptidspace, Page page, IndexTuple newtup);
1268 extern bool _bt_allequalimage(Relation rel, bool debugmessage);
1271 * prototypes for functions in nbtvalidate.c
1273 extern bool btvalidate(Oid opclassoid);
1274 extern void btadjustmembers(Oid opfamilyoid,
1275 Oid opclassoid,
1276 List *operators,
1277 List *functions);
1280 * prototypes for functions in nbtsort.c
1282 extern IndexBuildResult *btbuild(Relation heap, Relation index,
1283 struct IndexInfo *indexInfo);
1284 extern void _bt_parallel_build_main(dsm_segment *seg, shm_toc *toc);
1286 #endif /* NBTREE_H */