Consistently use "superuser" instead of "super user"
[pgsql.git] / src / include / storage / buf_internals.h
blob33fcaf5c9a871272e0e231d564fb7fdac5e64f48
1 /*-------------------------------------------------------------------------
3 * buf_internals.h
4 * Internal definitions for buffer manager and the buffer replacement
5 * strategy.
8 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
9 * Portions Copyright (c) 1994, Regents of the University of California
11 * src/include/storage/buf_internals.h
13 *-------------------------------------------------------------------------
15 #ifndef BUFMGR_INTERNALS_H
16 #define BUFMGR_INTERNALS_H
18 #include "port/atomics.h"
19 #include "storage/buf.h"
20 #include "storage/bufmgr.h"
21 #include "storage/condition_variable.h"
22 #include "storage/latch.h"
23 #include "storage/lwlock.h"
24 #include "storage/shmem.h"
25 #include "storage/smgr.h"
26 #include "storage/spin.h"
27 #include "utils/relcache.h"
30 * Buffer state is a single 32-bit variable where following data is combined.
32 * - 18 bits refcount
33 * - 4 bits usage count
34 * - 10 bits of flags
36 * Combining these values allows to perform some operations without locking
37 * the buffer header, by modifying them together with a CAS loop.
39 * The definition of buffer state components is below.
41 #define BUF_REFCOUNT_ONE 1
42 #define BUF_REFCOUNT_MASK ((1U << 18) - 1)
43 #define BUF_USAGECOUNT_MASK 0x003C0000U
44 #define BUF_USAGECOUNT_ONE (1U << 18)
45 #define BUF_USAGECOUNT_SHIFT 18
46 #define BUF_FLAG_MASK 0xFFC00000U
48 /* Get refcount and usagecount from buffer state */
49 #define BUF_STATE_GET_REFCOUNT(state) ((state) & BUF_REFCOUNT_MASK)
50 #define BUF_STATE_GET_USAGECOUNT(state) (((state) & BUF_USAGECOUNT_MASK) >> BUF_USAGECOUNT_SHIFT)
53 * Flags for buffer descriptors
55 * Note: BM_TAG_VALID essentially means that there is a buffer hashtable
56 * entry associated with the buffer's tag.
58 #define BM_LOCKED (1U << 22) /* buffer header is locked */
59 #define BM_DIRTY (1U << 23) /* data needs writing */
60 #define BM_VALID (1U << 24) /* data is valid */
61 #define BM_TAG_VALID (1U << 25) /* tag is assigned */
62 #define BM_IO_IN_PROGRESS (1U << 26) /* read or write in progress */
63 #define BM_IO_ERROR (1U << 27) /* previous I/O failed */
64 #define BM_JUST_DIRTIED (1U << 28) /* dirtied since write started */
65 #define BM_PIN_COUNT_WAITER (1U << 29) /* have waiter for sole pin */
66 #define BM_CHECKPOINT_NEEDED (1U << 30) /* must write for checkpoint */
67 #define BM_PERMANENT (1U << 31) /* permanent buffer (not unlogged,
68 * or init fork) */
70 * The maximum allowed value of usage_count represents a tradeoff between
71 * accuracy and speed of the clock-sweep buffer management algorithm. A
72 * large value (comparable to NBuffers) would approximate LRU semantics.
73 * But it can take as many as BM_MAX_USAGE_COUNT+1 complete cycles of
74 * clock sweeps to find a free buffer, so in practice we don't want the
75 * value to be very large.
77 #define BM_MAX_USAGE_COUNT 5
80 * Buffer tag identifies which disk block the buffer contains.
82 * Note: the BufferTag data must be sufficient to determine where to write the
83 * block, without reference to pg_class or pg_tablespace entries. It's
84 * possible that the backend flushing the buffer doesn't even believe the
85 * relation is visible yet (its xact may have started before the xact that
86 * created the rel). The storage manager must be able to cope anyway.
88 * Note: if there's any pad bytes in the struct, INIT_BUFFERTAG will have
89 * to be fixed to zero them, since this struct is used as a hash key.
91 typedef struct buftag
93 RelFileNode rnode; /* physical relation identifier */
94 ForkNumber forkNum;
95 BlockNumber blockNum; /* blknum relative to begin of reln */
96 } BufferTag;
98 #define CLEAR_BUFFERTAG(a) \
99 ( \
100 (a).rnode.spcNode = InvalidOid, \
101 (a).rnode.dbNode = InvalidOid, \
102 (a).rnode.relNode = InvalidOid, \
103 (a).forkNum = InvalidForkNumber, \
104 (a).blockNum = InvalidBlockNumber \
107 #define INIT_BUFFERTAG(a,xx_rnode,xx_forkNum,xx_blockNum) \
109 (a).rnode = (xx_rnode), \
110 (a).forkNum = (xx_forkNum), \
111 (a).blockNum = (xx_blockNum) \
114 #define BUFFERTAGS_EQUAL(a,b) \
116 RelFileNodeEquals((a).rnode, (b).rnode) && \
117 (a).blockNum == (b).blockNum && \
118 (a).forkNum == (b).forkNum \
122 * The shared buffer mapping table is partitioned to reduce contention.
123 * To determine which partition lock a given tag requires, compute the tag's
124 * hash code with BufTableHashCode(), then apply BufMappingPartitionLock().
125 * NB: NUM_BUFFER_PARTITIONS must be a power of 2!
127 #define BufTableHashPartition(hashcode) \
128 ((hashcode) % NUM_BUFFER_PARTITIONS)
129 #define BufMappingPartitionLock(hashcode) \
130 (&MainLWLockArray[BUFFER_MAPPING_LWLOCK_OFFSET + \
131 BufTableHashPartition(hashcode)].lock)
132 #define BufMappingPartitionLockByIndex(i) \
133 (&MainLWLockArray[BUFFER_MAPPING_LWLOCK_OFFSET + (i)].lock)
136 * BufferDesc -- shared descriptor/state data for a single shared buffer.
138 * Note: Buffer header lock (BM_LOCKED flag) must be held to examine or change
139 * the tag, state or wait_backend_pid fields. In general, buffer header lock
140 * is a spinlock which is combined with flags, refcount and usagecount into
141 * single atomic variable. This layout allow us to do some operations in a
142 * single atomic operation, without actually acquiring and releasing spinlock;
143 * for instance, increase or decrease refcount. buf_id field never changes
144 * after initialization, so does not need locking. freeNext is protected by
145 * the buffer_strategy_lock not buffer header lock. The LWLock can take care
146 * of itself. The buffer header lock is *not* used to control access to the
147 * data in the buffer!
149 * It's assumed that nobody changes the state field while buffer header lock
150 * is held. Thus buffer header lock holder can do complex updates of the
151 * state variable in single write, simultaneously with lock release (cleaning
152 * BM_LOCKED flag). On the other hand, updating of state without holding
153 * buffer header lock is restricted to CAS, which insure that BM_LOCKED flag
154 * is not set. Atomic increment/decrement, OR/AND etc. are not allowed.
156 * An exception is that if we have the buffer pinned, its tag can't change
157 * underneath us, so we can examine the tag without locking the buffer header.
158 * Also, in places we do one-time reads of the flags without bothering to
159 * lock the buffer header; this is generally for situations where we don't
160 * expect the flag bit being tested to be changing.
162 * We can't physically remove items from a disk page if another backend has
163 * the buffer pinned. Hence, a backend may need to wait for all other pins
164 * to go away. This is signaled by storing its own PID into
165 * wait_backend_pid and setting flag bit BM_PIN_COUNT_WAITER. At present,
166 * there can be only one such waiter per buffer.
168 * We use this same struct for local buffer headers, but the locks are not
169 * used and not all of the flag bits are useful either. To avoid unnecessary
170 * overhead, manipulations of the state field should be done without actual
171 * atomic operations (i.e. only pg_atomic_read_u32() and
172 * pg_atomic_unlocked_write_u32()).
174 * Be careful to avoid increasing the size of the struct when adding or
175 * reordering members. Keeping it below 64 bytes (the most common CPU
176 * cache line size) is fairly important for performance.
178 * Per-buffer I/O condition variables are currently kept outside this struct in
179 * a separate array. They could be moved in here and still fit within that
180 * limit on common systems, but for now that is not done.
182 typedef struct BufferDesc
184 BufferTag tag; /* ID of page contained in buffer */
185 int buf_id; /* buffer's index number (from 0) */
187 /* state of the tag, containing flags, refcount and usagecount */
188 pg_atomic_uint32 state;
190 int wait_backend_pid; /* backend PID of pin-count waiter */
191 int freeNext; /* link in freelist chain */
192 LWLock content_lock; /* to lock access to buffer contents */
193 } BufferDesc;
196 * Concurrent access to buffer headers has proven to be more efficient if
197 * they're cache line aligned. So we force the start of the BufferDescriptors
198 * array to be on a cache line boundary and force the elements to be cache
199 * line sized.
201 * XXX: As this is primarily matters in highly concurrent workloads which
202 * probably all are 64bit these days, and the space wastage would be a bit
203 * more noticeable on 32bit systems, we don't force the stride to be cache
204 * line sized on those. If somebody does actual performance testing, we can
205 * reevaluate.
207 * Note that local buffer descriptors aren't forced to be aligned - as there's
208 * no concurrent access to those it's unlikely to be beneficial.
210 * We use a 64-byte cache line size here, because that's the most common
211 * size. Making it bigger would be a waste of memory. Even if running on a
212 * platform with either 32 or 128 byte line sizes, it's good to align to
213 * boundaries and avoid false sharing.
215 #define BUFFERDESC_PAD_TO_SIZE (SIZEOF_VOID_P == 8 ? 64 : 1)
217 typedef union BufferDescPadded
219 BufferDesc bufferdesc;
220 char pad[BUFFERDESC_PAD_TO_SIZE];
221 } BufferDescPadded;
223 #define GetBufferDescriptor(id) (&BufferDescriptors[(id)].bufferdesc)
224 #define GetLocalBufferDescriptor(id) (&LocalBufferDescriptors[(id)])
226 #define BufferDescriptorGetBuffer(bdesc) ((bdesc)->buf_id + 1)
228 #define BufferDescriptorGetIOCV(bdesc) \
229 (&(BufferIOCVArray[(bdesc)->buf_id]).cv)
230 #define BufferDescriptorGetContentLock(bdesc) \
231 ((LWLock*) (&(bdesc)->content_lock))
233 extern PGDLLIMPORT ConditionVariableMinimallyPadded *BufferIOCVArray;
236 * The freeNext field is either the index of the next freelist entry,
237 * or one of these special values:
239 #define FREENEXT_END_OF_LIST (-1)
240 #define FREENEXT_NOT_IN_LIST (-2)
243 * Functions for acquiring/releasing a shared buffer header's spinlock. Do
244 * not apply these to local buffers!
246 extern uint32 LockBufHdr(BufferDesc *desc);
247 #define UnlockBufHdr(desc, s) \
248 do { \
249 pg_write_barrier(); \
250 pg_atomic_write_u32(&(desc)->state, (s) & (~BM_LOCKED)); \
251 } while (0)
255 * The PendingWriteback & WritebackContext structure are used to keep
256 * information about pending flush requests to be issued to the OS.
258 typedef struct PendingWriteback
260 /* could store different types of pending flushes here */
261 BufferTag tag;
262 } PendingWriteback;
264 /* struct forward declared in bufmgr.h */
265 typedef struct WritebackContext
267 /* pointer to the max number of writeback requests to coalesce */
268 int *max_pending;
270 /* current number of pending writeback requests */
271 int nr_pending;
273 /* pending requests */
274 PendingWriteback pending_writebacks[WRITEBACK_MAX_PENDING_FLUSHES];
275 } WritebackContext;
277 /* in buf_init.c */
278 extern PGDLLIMPORT BufferDescPadded *BufferDescriptors;
279 extern PGDLLIMPORT WritebackContext BackendWritebackContext;
281 /* in localbuf.c */
282 extern BufferDesc *LocalBufferDescriptors;
284 /* in bufmgr.c */
287 * Structure to sort buffers per file on checkpoints.
289 * This structure is allocated per buffer in shared memory, so it should be
290 * kept as small as possible.
292 typedef struct CkptSortItem
294 Oid tsId;
295 Oid relNode;
296 ForkNumber forkNum;
297 BlockNumber blockNum;
298 int buf_id;
299 } CkptSortItem;
301 extern CkptSortItem *CkptBufferIds;
304 * Internal buffer management routines
306 /* bufmgr.c */
307 extern void WritebackContextInit(WritebackContext *context, int *max_pending);
308 extern void IssuePendingWritebacks(WritebackContext *context);
309 extern void ScheduleBufferTagForWriteback(WritebackContext *context, BufferTag *tag);
311 /* freelist.c */
312 extern BufferDesc *StrategyGetBuffer(BufferAccessStrategy strategy,
313 uint32 *buf_state);
314 extern void StrategyFreeBuffer(BufferDesc *buf);
315 extern bool StrategyRejectBuffer(BufferAccessStrategy strategy,
316 BufferDesc *buf);
318 extern int StrategySyncStart(uint32 *complete_passes, uint32 *num_buf_alloc);
319 extern void StrategyNotifyBgWriter(int bgwprocno);
321 extern Size StrategyShmemSize(void);
322 extern void StrategyInitialize(bool init);
323 extern bool have_free_buffer(void);
325 /* buf_table.c */
326 extern Size BufTableShmemSize(int size);
327 extern void InitBufTable(int size);
328 extern uint32 BufTableHashCode(BufferTag *tagPtr);
329 extern int BufTableLookup(BufferTag *tagPtr, uint32 hashcode);
330 extern int BufTableInsert(BufferTag *tagPtr, uint32 hashcode, int buf_id);
331 extern void BufTableDelete(BufferTag *tagPtr, uint32 hashcode);
333 /* localbuf.c */
334 extern PrefetchBufferResult PrefetchLocalBuffer(SMgrRelation smgr,
335 ForkNumber forkNum,
336 BlockNumber blockNum);
337 extern BufferDesc *LocalBufferAlloc(SMgrRelation smgr, ForkNumber forkNum,
338 BlockNumber blockNum, bool *foundPtr);
339 extern void MarkLocalBufferDirty(Buffer buffer);
340 extern void DropRelFileNodeLocalBuffers(RelFileNode rnode, ForkNumber forkNum,
341 BlockNumber firstDelBlock);
342 extern void DropRelFileNodeAllLocalBuffers(RelFileNode rnode);
343 extern void AtEOXact_LocalBuffers(bool isCommit);
345 #endif /* BUFMGR_INTERNALS_H */