1 /*-------------------------------------------------------------------------
4 * Hardware-dependent implementation of spinlocks.
6 * NOTE: none of the macros in this file are intended to be called directly.
7 * Call them through the hardware-independent macros in spin.h.
9 * The following hardware-dependent macros must be provided for each
12 * void S_INIT_LOCK(slock_t *lock)
13 * Initialize a spinlock (to the unlocked state).
15 * int S_LOCK(slock_t *lock)
16 * Acquire a spinlock, waiting if necessary.
17 * Time out and abort() if unable to acquire the lock in a
18 * "reasonable" amount of time --- typically ~ 1 minute.
19 * Should return number of "delays"; see s_lock.c
21 * void S_UNLOCK(slock_t *lock)
22 * Unlock a previously acquired lock.
24 * bool S_LOCK_FREE(slock_t *lock)
25 * Tests if the lock is free. Returns true if free, false if locked.
26 * This does *not* change the state of the lock.
28 * void SPIN_DELAY(void)
29 * Delay operation to occur inside spinlock wait loop.
31 * Note to implementors: there are default implementations for all these
32 * macros at the bottom of the file. Check if your platform can use
33 * these or needs to override them.
35 * Usually, S_LOCK() is implemented in terms of even lower-level macros
36 * TAS() and TAS_SPIN():
38 * int TAS(slock_t *lock)
39 * Atomic test-and-set instruction. Attempt to acquire the lock,
40 * but do *not* wait. Returns 0 if successful, nonzero if unable
41 * to acquire the lock.
43 * int TAS_SPIN(slock_t *lock)
44 * Like TAS(), but this version is used when waiting for a lock
45 * previously found to be contended. By default, this is the
46 * same as TAS(), but on some architectures it's better to poll a
47 * contended lock using an unlocked instruction and retry the
48 * atomic test-and-set only when it appears free.
50 * TAS() and TAS_SPIN() are NOT part of the API, and should never be called
53 * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report
54 * failure to acquire a lock even when the lock is not locked. For example,
55 * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must
56 * always be used, even if you are certain the lock is free.
58 * It is the responsibility of these macros to make sure that the compiler
59 * does not re-order accesses to shared memory to precede the actual lock
60 * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this
61 * was the caller's responsibility, which meant that callers had to use
62 * volatile-qualified pointers to refer to both the spinlock itself and the
63 * shared data being accessed within the spinlocked critical section. This
64 * was notationally awkward, easy to forget (and thus error-prone), and
65 * prevented some useful compiler optimizations. For these reasons, we
66 * now require that the macros themselves prevent compiler re-ordering,
67 * so that the caller doesn't need to take special precautions.
69 * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and
70 * S_UNLOCK() macros must further include hardware-level memory fence
71 * instructions to prevent similar re-ordering at the hardware level.
72 * TAS() and TAS_SPIN() must guarantee that loads and stores issued after
73 * the macro are not executed until the lock has been obtained. Conversely,
74 * S_UNLOCK() must guarantee that loads and stores issued before the macro
75 * have been executed before the lock is released.
77 * On most supported platforms, TAS() uses a tas() function written
78 * in assembly language to execute a hardware atomic-test-and-set
79 * instruction. Equivalent OS-supplied mutex routines could be used too.
81 * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not
82 * defined), then we fall back on an emulation that uses SysV semaphores
83 * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS()
84 * implementation, because of the cost of a kernel call per lock or unlock.
85 * An old report is that Postgres spends around 40% of its time in semop(2)
86 * when using the SysV semaphore code.
89 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
90 * Portions Copyright (c) 1994, Regents of the University of California
92 * src/include/storage/s_lock.h
94 *-------------------------------------------------------------------------
100 #error "s_lock.h may not be included from frontend code"
103 #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */
105 #if defined(__GNUC__) || defined(__INTEL_COMPILER)
106 /*************************************************************************
107 * All the gcc inlines
108 * Gcc consistently defines the CPU as __cpu__.
109 * Other compilers use __cpu or __cpu__ so we test for both in those cases.
113 * Standard gcc asm format (assuming "volatile slock_t *lock"):
115 __asm__ __volatile__(
119 : "=r"(_res), "+m"(*lock) // return register, in/out lock value
120 : "r"(lock) // lock pointer, in input register
121 : "memory", "cc"); // show clobbered registers here
123 * The output-operands list (after first colon) should always include
124 * "+m"(*lock), whether or not the asm code actually refers to this
125 * operand directly. This ensures that gcc believes the value in the
126 * lock variable is used and set by the asm code. Also, the clobbers
127 * list (after third colon) should always include "memory"; this prevents
128 * gcc from thinking it can cache the values of shared-memory fields
129 * across the asm code. Add "cc" if your asm code changes the condition
130 * code register, and also list any temp registers the code uses.
135 #ifdef __i386__ /* 32-bit i386 */
136 #define HAS_TEST_AND_SET
138 typedef unsigned char slock_t
;
140 #define TAS(lock) tas(lock)
142 static __inline__
int
143 tas(volatile slock_t
*lock
)
145 register slock_t _res
= 1;
148 * Use a non-locking test before asserting the bus lock. Note that the
149 * extra test appears to be a small loss on some x86 platforms and a small
150 * win on others; it's by no means clear that we should keep it.
152 * When this was last tested, we didn't have separate TAS() and TAS_SPIN()
153 * macros. Nowadays it probably would be better to do a non-locking test
154 * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the
155 * testing to verify that. Without some empirical evidence, better to
158 __asm__
__volatile__(
164 : "+q"(_res
), "+m"(*lock
)
170 #define SPIN_DELAY() spin_delay()
172 static __inline__
void
176 * This sequence is equivalent to the PAUSE instruction ("rep" is
177 * ignored by old IA32 processors if the following instruction is
178 * not a string operation); the IA-32 Architecture Software
179 * Developer's Manual, Vol. 3, Section 7.7.2 describes why using
180 * PAUSE in the inner loop of a spin lock is necessary for good
183 * The PAUSE instruction improves the performance of IA-32
184 * processors supporting Hyper-Threading Technology when
185 * executing spin-wait loops and other routines where one
186 * thread is accessing a shared lock or semaphore in a tight
187 * polling loop. When executing a spin-wait loop, the
188 * processor can suffer a severe performance penalty when
189 * exiting the loop because it detects a possible memory order
190 * violation and flushes the core processor's pipeline. The
191 * PAUSE instruction provides a hint to the processor that the
192 * code sequence is a spin-wait loop. The processor uses this
193 * hint to avoid the memory order violation and prevent the
194 * pipeline flush. In addition, the PAUSE instruction
195 * de-pipelines the spin-wait loop to prevent it from
196 * consuming execution resources excessively.
198 __asm__
__volatile__(
202 #endif /* __i386__ */
205 #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */
206 #define HAS_TEST_AND_SET
208 typedef unsigned char slock_t
;
210 #define TAS(lock) tas(lock)
213 * On Intel EM64T, it's a win to use a non-locking test before the xchg proper,
214 * but only when spinning.
216 * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T
217 * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is
219 * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
221 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
223 static __inline__
int
224 tas(volatile slock_t
*lock
)
226 register slock_t _res
= 1;
228 __asm__
__volatile__(
231 : "+q"(_res
), "+m"(*lock
)
237 #define SPIN_DELAY() spin_delay()
239 static __inline__
void
243 * Adding a PAUSE in the spin delay loop is demonstrably a no-op on
244 * Opteron, but it may be of some use on EM64T, so we keep it.
246 __asm__
__volatile__(
250 #endif /* __x86_64__ */
253 #if defined(__ia64__) || defined(__ia64)
255 * Intel Itanium, gcc or Intel's compiler.
257 * Itanium has weak memory ordering, but we rely on the compiler to enforce
258 * strict ordering of accesses to volatile data. In particular, while the
259 * xchg instruction implicitly acts as a memory barrier with 'acquire'
260 * semantics, we do not have an explicit memory fence instruction in the
261 * S_UNLOCK macro. We use a regular assignment to clear the spinlock, and
262 * trust that the compiler marks the generated store instruction with the
265 * Testing shows that assumption to hold on gcc, although I could not find
266 * any explicit statement on that in the gcc manual. In Intel's compiler,
267 * the -m[no-]serialize-volatile option controls that, and testing shows that
268 * it is enabled by default.
270 * While icc accepts gcc asm blocks on x86[_64], this is not true on ia64
271 * (at least not in icc versions before 12.x). So we have to carry a separate
272 * compiler-intrinsic-based implementation for it.
274 #define HAS_TEST_AND_SET
276 typedef unsigned int slock_t
;
278 #define TAS(lock) tas(lock)
280 /* On IA64, it's a win to use a non-locking test before the xchg proper */
281 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
283 #ifndef __INTEL_COMPILER
285 static __inline__
int
286 tas(volatile slock_t
*lock
)
290 __asm__
__volatile__(
292 : "=r"(ret
), "+m"(*lock
)
298 #else /* __INTEL_COMPILER */
300 static __inline__
int
301 tas(volatile slock_t
*lock
)
305 ret
= _InterlockedExchange(lock
,1); /* this is a xchg asm macro */
310 /* icc can't use the regular gcc S_UNLOCK() macro either in this case */
311 #define S_UNLOCK(lock) \
312 do { __memory_barrier(); *(lock) = 0; } while (0)
314 #endif /* __INTEL_COMPILER */
315 #endif /* __ia64__ || __ia64 */
319 * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available.
321 * We use the int-width variant of the builtin because it works on more chips
324 #if defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(__aarch64)
325 #ifdef HAVE_GCC__SYNC_INT32_TAS
326 #define HAS_TEST_AND_SET
328 #define TAS(lock) tas(lock)
332 static __inline__
int
333 tas(volatile slock_t
*lock
)
335 return __sync_lock_test_and_set(lock
, 1);
338 #define S_UNLOCK(lock) __sync_lock_release(lock)
340 #endif /* HAVE_GCC__SYNC_INT32_TAS */
341 #endif /* __arm__ || __arm || __aarch64__ || __aarch64 */
345 * RISC-V likewise uses __sync_lock_test_and_set(int *, int) if available.
348 #ifdef HAVE_GCC__SYNC_INT32_TAS
349 #define HAS_TEST_AND_SET
351 #define TAS(lock) tas(lock)
355 static __inline__
int
356 tas(volatile slock_t
*lock
)
358 return __sync_lock_test_and_set(lock
, 1);
361 #define S_UNLOCK(lock) __sync_lock_release(lock)
363 #endif /* HAVE_GCC__SYNC_INT32_TAS */
367 /* S/390 and S/390x Linux (32- and 64-bit zSeries) */
368 #if defined(__s390__) || defined(__s390x__)
369 #define HAS_TEST_AND_SET
371 typedef unsigned int slock_t
;
373 #define TAS(lock) tas(lock)
375 static __inline__
int
376 tas(volatile slock_t
*lock
)
380 __asm__
__volatile__(
382 : "+d"(_res
), "+m"(*lock
)
388 #endif /* __s390__ || __s390x__ */
391 #if defined(__sparc__) /* Sparc */
393 * Solaris has always run sparc processors in TSO (total store) mode, but
394 * linux didn't use to and the *BSDs still don't. So, be careful about
395 * acquire/release semantics. The CPU will treat superfluous membars as
396 * NOPs, so it's just code space.
398 #define HAS_TEST_AND_SET
400 typedef unsigned char slock_t
;
402 #define TAS(lock) tas(lock)
404 static __inline__
int
405 tas(volatile slock_t
*lock
)
407 register slock_t _res
;
410 * See comment in src/backend/port/tas/sunstudio_sparc.s for why this
411 * uses "ldstub", and that file uses "cas". gcc currently generates
412 * sparcv7-targeted binaries, so "cas" use isn't possible.
414 __asm__
__volatile__(
415 " ldstub [%2], %0 \n"
416 : "=r"(_res
), "+m"(*lock
)
419 #if defined(__sparcv7) || defined(__sparc_v7__)
421 * No stbar or membar available, luckily no actually produced hardware
422 * requires a barrier.
424 #elif defined(__sparcv8) || defined(__sparc_v8__)
425 /* stbar is available (and required for both PSO, RMO), membar isn't */
426 __asm__
__volatile__ ("stbar \n":::"memory");
429 * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire
430 * barrier for sparcv8+ upwards.
432 __asm__
__volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory");
437 #if defined(__sparcv7) || defined(__sparc_v7__)
439 * No stbar or membar available, luckily no actually produced hardware
440 * requires a barrier. We fall through to the default gcc definition of
441 * S_UNLOCK in this case.
443 #elif defined(__sparcv8) || defined(__sparc_v8__)
444 /* stbar is available (and required for both PSO, RMO), membar isn't */
445 #define S_UNLOCK(lock) \
448 __asm__ __volatile__ ("stbar \n":::"memory"); \
449 *((volatile slock_t *) (lock)) = 0; \
453 * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate
454 * release barrier for sparcv8+ upwards.
456 #define S_UNLOCK(lock) \
459 __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \
460 *((volatile slock_t *) (lock)) = 0; \
464 #endif /* __sparc__ */
468 #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
469 #define HAS_TEST_AND_SET
471 typedef unsigned int slock_t
;
473 #define TAS(lock) tas(lock)
475 /* On PPC, it's a win to use a non-locking test before the lwarx */
476 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
479 * The second operand of addi can hold a constant zero or a register number,
480 * hence constraint "=&b" to avoid allocating r0. "b" stands for "address
481 * base register"; most operands having this register-or-zero property are
482 * address bases, e.g. the second operand of lwax.
484 * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002,
485 * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop.
486 * On newer machines, we can use lwsync instead for better performance.
488 * Ordinarily, we'd code the branches here using GNU-style local symbols, that
489 * is "1f" referencing "1:" and so on. But some people run gcc on AIX with
490 * IBM's assembler as backend, and IBM's assembler doesn't do local symbols.
491 * So hand-code the branch offsets; fortunately, all PPC instructions are
492 * exactly 4 bytes each, so it's not too hard to count.
494 static __inline__
int
495 tas(volatile slock_t
*lock
)
500 __asm__
__volatile__(
501 #ifdef USE_PPC_LWARX_MUTEX_HINT
502 " lwarx %0,0,%3,1 \n"
507 " bne $+16 \n" /* branch to li %1,1 */
510 " beq $+12 \n" /* branch to lwsync/isync */
512 " b $+12 \n" /* branch to end of asm sequence */
513 #ifdef USE_PPC_LWSYNC
520 : "=&b"(_t
), "=r"(_res
), "+m"(*lock
)
527 * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction.
528 * On newer machines, we can use lwsync instead for better performance.
530 #ifdef USE_PPC_LWSYNC
531 #define S_UNLOCK(lock) \
534 __asm__ __volatile__ (" lwsync \n" ::: "memory"); \
535 *((volatile slock_t *) (lock)) = 0; \
538 #define S_UNLOCK(lock) \
541 __asm__ __volatile__ (" sync \n" ::: "memory"); \
542 *((volatile slock_t *) (lock)) = 0; \
544 #endif /* USE_PPC_LWSYNC */
549 /* Linux Motorola 68k */
550 #if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__)
551 #define HAS_TEST_AND_SET
553 typedef unsigned char slock_t
;
555 #define TAS(lock) tas(lock)
557 static __inline__
int
558 tas(volatile slock_t
*lock
)
562 __asm__
__volatile__(
566 : "=d"(rv
), "+m"(*lock
)
572 #endif /* (__mc68000__ || __m68k__) && __linux__ */
576 #if defined(__m88k__)
577 #define HAS_TEST_AND_SET
579 typedef unsigned int slock_t
;
581 #define TAS(lock) tas(lock)
583 static __inline__
int
584 tas(volatile slock_t
*lock
)
586 register slock_t _res
= 1;
588 __asm__
__volatile__(
589 " xmem %0, %2, %%r0 \n"
590 : "+r"(_res
), "+m"(*lock
)
596 #endif /* __m88k__ */
600 * VAXen -- even multiprocessor ones
601 * (thanks to Tom Ivar Helbekkmo)
604 #define HAS_TEST_AND_SET
606 typedef unsigned char slock_t
;
608 #define TAS(lock) tas(lock)
610 static __inline__
int
611 tas(volatile slock_t
*lock
)
615 __asm__
__volatile__(
617 " bbssi $0, (%2), 1f \n"
620 : "=&r"(_res
), "+m"(*lock
)
629 #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */
630 #define HAS_TEST_AND_SET
632 typedef unsigned int slock_t
;
634 #define TAS(lock) tas(lock)
637 * Original MIPS-I processors lacked the LL/SC instructions, but if we are
638 * so unfortunate as to be running on one of those, we expect that the kernel
639 * will handle the illegal-instruction traps and emulate them for us. On
640 * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane
641 * choice because any other synchronization method must involve a kernel
642 * call. Unfortunately, many toolchains still default to MIPS-I as the
643 * codegen target; if the symbol __mips shows that that's the case, we
644 * have to force the assembler to accept LL/SC.
646 * R10000 and up processors require a separate SYNC, which has the same
650 #define MIPS_SET_MIPS2 " .set mips2 \n"
652 #define MIPS_SET_MIPS2
655 static __inline__
int
656 tas(volatile slock_t
*lock
)
658 register volatile slock_t
*_l
= lock
;
662 __asm__
__volatile__(
674 : "=&r" (_res
), "=&r" (_tmp
), "+R" (*_l
)
680 /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */
681 #define S_UNLOCK(lock) \
684 __asm__ __volatile__( \
687 " .set noreorder \n" \
694 *((volatile slock_t *) (lock)) = 0; \
697 #endif /* __mips__ && !__sgi */
700 #if defined(__m32r__) && defined(HAVE_SYS_TAS_H) /* Renesas' M32R */
701 #define HAS_TEST_AND_SET
707 #define TAS(lock) tas(lock)
709 #endif /* __m32r__ */
712 #if defined(__sh__) /* Renesas' SuperH */
713 #define HAS_TEST_AND_SET
715 typedef unsigned char slock_t
;
717 #define TAS(lock) tas(lock)
719 static __inline__
int
720 tas(volatile slock_t
*lock
)
725 * This asm is coded as if %0 could be any register, but actually SuperH
726 * restricts the target of xor-immediate to be R0. That's handled by
727 * the "z" constraint on _res.
729 __asm__
__volatile__(
733 : "=z"(_res
), "+m"(*lock
)
742 /* These live in s_lock.c, but only for gcc */
745 #if defined(__m68k__) && !defined(__linux__) /* non-Linux Motorola 68k */
746 #define HAS_TEST_AND_SET
748 typedef unsigned char slock_t
;
752 * Default implementation of S_UNLOCK() for gcc/icc.
754 * Note that this implementation is unsafe for any platform that can reorder
755 * a memory access (either load or store) after a following store. That
756 * happens not to be possible on x86 and most legacy architectures (some are
757 * single-processor!), but many modern systems have weaker memory ordering.
758 * Those that do must define their own version of S_UNLOCK() rather than
759 * relying on this one.
761 #if !defined(S_UNLOCK)
762 #define S_UNLOCK(lock) \
763 do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0)
766 #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */
771 * ---------------------------------------------------------------------
772 * Platforms that use non-gcc inline assembly:
773 * ---------------------------------------------------------------------
776 #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */
779 #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC, GCC and HP compilers */
783 * See src/backend/port/hpux/tas.c.template for details about LDCWX. Because
784 * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte
785 * struct. The active word in the struct is whichever has the aligned address;
786 * the other three words just sit at -1.
788 * When using gcc, we can inline the required assembly code.
790 #define HAS_TEST_AND_SET
797 #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15))
799 #if defined(__GNUC__)
801 static __inline__
int
802 tas(volatile slock_t
*lock
)
804 volatile int *lockword
= TAS_ACTIVE_WORD(lock
);
805 register int lockval
;
807 __asm__
__volatile__(
808 " ldcwx 0(0,%2),%0 \n"
809 : "=r"(lockval
), "+m"(*lockword
)
812 return (lockval
== 0);
816 * The hppa implementation doesn't follow the rules of this files and provides
817 * a gcc specific implementation outside of the above defined(__GNUC__). It
818 * does so to avoid duplication between the HP compiler and gcc. So undefine
819 * the generic fallback S_UNLOCK from above.
824 #define S_UNLOCK(lock) \
826 __asm__ __volatile__("" : : : "memory"); \
827 *TAS_ACTIVE_WORD(lock) = -1; \
830 #endif /* __GNUC__ */
832 #define S_INIT_LOCK(lock) \
834 volatile slock_t *lock_ = (lock); \
835 lock_->sema[0] = -1; \
836 lock_->sema[1] = -1; \
837 lock_->sema[2] = -1; \
838 lock_->sema[3] = -1; \
841 #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0)
843 #endif /* __hppa || __hppa__ */
846 #if defined(__hpux) && defined(__ia64) && !defined(__GNUC__)
848 * HP-UX on Itanium, non-gcc/icc compiler
850 * We assume that the compiler enforces strict ordering of loads/stores on
851 * volatile data (see comments on the gcc-version earlier in this file).
852 * Note that this assumption does *not* hold if you use the
853 * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that.
855 * See also Implementing Spinlocks on the Intel Itanium Architecture and
856 * PA-RISC, by Tor Ekqvist and David Graves, for more information. As of
857 * this writing, version 1.0 of the manual is available at:
858 * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf
860 #define HAS_TEST_AND_SET
862 typedef unsigned int slock_t
;
864 #include <ia64/sys/inline.h>
865 #define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE)
866 /* On IA64, it's a win to use a non-locking test before the xchg proper */
867 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
868 #define S_UNLOCK(lock) \
869 do { _Asm_mf(); (*(lock)) = 0; } while (0)
871 #endif /* HPUX on IA64, non gcc/icc */
873 #if defined(_AIX) /* AIX */
877 #define HAS_TEST_AND_SET
879 #include <sys/atomic_op.h>
883 #define TAS(lock) _check_lock((slock_t *) (lock), 0, 1)
884 #define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0)
888 /* These are in sunstudio_(sparc|x86).s */
890 #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc))
891 #define HAS_TEST_AND_SET
893 #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus)
894 typedef unsigned int slock_t
;
896 typedef unsigned char slock_t
;
899 extern slock_t
pg_atomic_cas(volatile slock_t
*lock
, slock_t with
,
902 #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0)
907 typedef LONG slock_t
;
909 #define HAS_TEST_AND_SET
910 #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0))
912 #define SPIN_DELAY() spin_delay()
914 /* If using Visual C++ on Win64, inline assembly is unavailable.
915 * Use a _mm_pause intrinsic instead of rep nop.
918 static __forceinline
void
924 static __forceinline
void
927 /* See comment for gcc code. Same code, MASM syntax */
933 #pragma intrinsic(_ReadWriteBarrier)
935 #define S_UNLOCK(lock) \
936 do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0)
941 #endif /* !defined(HAS_TEST_AND_SET) */
944 /* Blow up if we didn't have any way to do spinlocks */
945 #ifndef HAS_TEST_AND_SET
946 #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@lists.postgresql.org.
950 #else /* !HAVE_SPINLOCKS */
954 * Fake spinlock implementation using semaphores --- slow and prone
955 * to fall foul of kernel limits on number of semaphores, so don't use this
956 * unless you must! The subroutines appear in spin.c.
960 extern bool s_lock_free_sema(volatile slock_t
*lock
);
961 extern void s_unlock_sema(volatile slock_t
*lock
);
962 extern void s_init_lock_sema(volatile slock_t
*lock
, bool nested
);
963 extern int tas_sema(volatile slock_t
*lock
);
965 #define S_LOCK_FREE(lock) s_lock_free_sema(lock)
966 #define S_UNLOCK(lock) s_unlock_sema(lock)
967 #define S_INIT_LOCK(lock) s_init_lock_sema(lock, false)
968 #define TAS(lock) tas_sema(lock)
971 #endif /* HAVE_SPINLOCKS */
975 * Default Definitions - override these above as needed.
979 #define S_LOCK(lock) \
980 (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, PG_FUNCNAME_MACRO) : 0)
983 #if !defined(S_LOCK_FREE)
984 #define S_LOCK_FREE(lock) (*(lock) == 0)
985 #endif /* S_LOCK_FREE */
987 #if !defined(S_UNLOCK)
989 * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This
990 * is unsafe if the platform can reorder a memory access (either load or
991 * store) after a following store; platforms where this is possible must
992 * define their own S_UNLOCK. But CPU reordering is not the only concern:
993 * if we simply defined S_UNLOCK() as an inline macro, the compiler might
994 * reorder instructions from inside the critical section to occur after the
995 * lock release. Since the compiler probably can't know what the external
996 * function s_unlock is doing, putting the same logic there should be adequate.
997 * A sufficiently-smart globally optimizing compiler could break that
998 * assumption, though, and the cost of a function call for every spinlock
999 * release may hurt performance significantly, so we use this implementation
1000 * only for platforms where we don't know of a suitable intrinsic. For the
1001 * most part, those are relatively obscure platform/compiler combinations to
1002 * which the PostgreSQL project does not have access.
1004 #define USE_DEFAULT_S_UNLOCK
1005 extern void s_unlock(volatile slock_t
*lock
);
1006 #define S_UNLOCK(lock) s_unlock(lock)
1007 #endif /* S_UNLOCK */
1009 #if !defined(S_INIT_LOCK)
1010 #define S_INIT_LOCK(lock) S_UNLOCK(lock)
1011 #endif /* S_INIT_LOCK */
1013 #if !defined(SPIN_DELAY)
1014 #define SPIN_DELAY() ((void) 0)
1015 #endif /* SPIN_DELAY */
1018 extern int tas(volatile slock_t
*lock
); /* in port/.../tas.s, or
1021 #define TAS(lock) tas(lock)
1024 #if !defined(TAS_SPIN)
1025 #define TAS_SPIN(lock) TAS(lock)
1026 #endif /* TAS_SPIN */
1028 extern slock_t dummy_spinlock
;
1031 * Platform-independent out-of-line support routines
1033 extern int s_lock(volatile slock_t
*lock
, const char *file
, int line
, const char *func
);
1035 /* Support for dynamic adjustment of spins_per_delay */
1036 #define DEFAULT_SPINS_PER_DELAY 100
1038 extern void set_spins_per_delay(int shared_spins_per_delay
);
1039 extern int update_spins_per_delay(int shared_spins_per_delay
);
1042 * Support for spin delay which is useful in various places where
1043 * spinlock-like procedures take place.
1056 init_spin_delay(SpinDelayStatus
*status
,
1057 const char *file
, int line
, const char *func
)
1061 status
->cur_delay
= 0;
1062 status
->file
= file
;
1063 status
->line
= line
;
1064 status
->func
= func
;
1067 #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, PG_FUNCNAME_MACRO)
1068 void perform_spin_delay(SpinDelayStatus
*status
);
1069 void finish_spin_delay(SpinDelayStatus
*status
);
1071 #endif /* S_LOCK_H */