From 2d9434255d49653e5b75681ecedade1db7f27720 Mon Sep 17 00:00:00 2001 From: Sven Verdoolaege Date: Tue, 23 May 2006 13:19:47 +0200 Subject: [PATCH] doc: fix typo --- doc/source/pip.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/doc/source/pip.tex b/doc/source/pip.tex index a45cb78..796a0e2 100644 --- a/doc/source/pip.tex +++ b/doc/source/pip.tex @@ -702,15 +702,15 @@ The result is: \end{verbatim} which should be read as: \begin{eqnarray*} - (f',i',j') & = & {\tt if}\; -n''+n'-5 \geq 0 \\ + (f',i',j') & = & {\tt if}\; -n''+n'+5 \geq 0 \\ & & {\tt then} \; (G+3n''-3n'-15, G+n''-n'-5,G-n''+n'+5) \\ & & {\tt else} \; \bot \end{eqnarray*} That is, in the original coordinate system: -\[ (f,i,j) = {\tt if}\; n \geq 5 \; {\tt then} \; (-3n-15, -n-5, n+5) +\[ (f,i,j) = {\tt if}\; n \geq -5 \; {\tt then} \; (-3n-15, -n-5, n+5) \; {\tt else} \; \bot \] I.e., the minimum value for function $f$ is $-3n-15$, and this value -is reached at point $(-n-5, n+5)$. This minimum exists only if $n \ge 5$; +is reached at point $(-n-5, n+5)$. This minimum exists only if $n \ge -5$; otherwise, the feasible set is empty. \subsubsection{Mixed Programming} -- 2.11.4.GIT