2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
13 #include <afsconfig.h>
14 #include "afs/param.h"
17 #include "afs/sysincludes.h" /*Standard vendor system headers */
18 #include "afsincludes.h" /*AFS-based standard headers */
19 #include "afs/afs_stats.h" /* statistics */
20 #include "afs/afs_cbqueue.h"
21 #include "afs/afs_osidnlc.h"
25 /* Forward declarations. */
26 static void afs_GetDownD(int anumber
, int *aneedSpace
, afs_int32 buckethint
);
27 static int afs_FreeDiscardedDCache(void);
28 static void afs_DiscardDCache(struct dcache
*);
29 static void afs_FreeDCache(struct dcache
*);
31 static afs_int32
afs_DCGetBucket(struct vcache
*);
32 static void afs_DCAdjustSize(struct dcache
*, afs_int32
, afs_int32
);
33 static void afs_DCMoveBucket(struct dcache
*, afs_int32
, afs_int32
);
34 static void afs_DCSizeInit(void);
35 static afs_int32
afs_DCWhichBucket(afs_int32
, afs_int32
);
38 * --------------------- Exported definitions ---------------------
41 afs_int32 afs_blocksUsed_0
; /*!< 1K blocks in cache - in theory is zero */
42 afs_int32 afs_blocksUsed_1
; /*!< 1K blocks in cache */
43 afs_int32 afs_blocksUsed_2
; /*!< 1K blocks in cache */
44 afs_int32 afs_pct1
= -1;
45 afs_int32 afs_pct2
= -1;
46 afs_uint32 afs_tpct1
= 0;
47 afs_uint32 afs_tpct2
= 0;
48 afs_uint32 splitdcache
= 0;
50 afs_lock_t afs_xdcache
; /*!< Lock: alloc new disk cache entries */
51 afs_int32 afs_freeDCList
; /*!< Free list for disk cache entries */
52 afs_int32 afs_freeDCCount
; /*!< Count of elts in freeDCList */
53 afs_int32 afs_discardDCList
; /*!< Discarded disk cache entries */
54 afs_int32 afs_discardDCCount
; /*!< Count of elts in discardDCList */
55 struct dcache
*afs_freeDSList
; /*!< Free list for disk slots */
56 struct dcache
*afs_Initial_freeDSList
; /*!< Initial list for above */
57 afs_dcache_id_t cacheInode
; /*!< Inode for CacheItems file */
58 struct osi_file
*afs_cacheInodep
= 0; /*!< file for CacheItems inode */
59 struct afs_q afs_DLRU
; /*!< dcache LRU */
60 afs_int32 afs_dhashsize
= 1024;
61 afs_int32
*afs_dvhashTbl
; /*!< Data cache hash table: hashed by FID + chunk number. */
62 afs_int32
*afs_dchashTbl
; /*!< Data cache hash table: hashed by FID. */
63 afs_int32
*afs_dvnextTbl
; /*!< Dcache hash table links */
64 afs_int32
*afs_dcnextTbl
; /*!< Dcache hash table links */
65 struct dcache
**afs_indexTable
; /*!< Pointers to dcache entries */
66 afs_hyper_t
*afs_indexTimes
; /*!< Dcache entry Access times */
67 afs_int32
*afs_indexUnique
; /*!< dcache entry Fid.Unique */
68 unsigned char *afs_indexFlags
; /*!< (only one) Is there data there? */
69 afs_hyper_t afs_indexCounter
; /*!< Fake time for marking index
71 afs_int32 afs_cacheFiles
= 0; /*!< Size of afs_indexTable */
72 afs_int32 afs_cacheBlocks
; /*!< 1K blocks in cache */
73 afs_int32 afs_cacheStats
; /*!< Stat entries in cache */
74 afs_int32 afs_blocksUsed
; /*!< Number of blocks in use */
75 afs_int32 afs_blocksDiscarded
; /*!<Blocks freed but not truncated */
76 afs_int32 afs_fsfragsize
= AFS_MIN_FRAGSIZE
; /*!< Underlying Filesystem minimum unit
77 *of disk allocation usually 1K
78 *this value is (truefrag -1 ) to
79 *save a bunch of subtracts... */
80 #ifdef AFS_64BIT_CLIENT
81 #ifdef AFS_VM_RDWR_ENV
82 afs_size_t afs_vmMappingEnd
; /* !< For large files (>= 2GB) the VM
83 * mapping an 32bit addressing machines
84 * can only be used below the 2 GB
85 * line. From this point upwards we
86 * must do direct I/O into the cache
87 * files. The value should be on a
89 #endif /* AFS_VM_RDWR_ENV */
90 #endif /* AFS_64BIT_CLIENT */
92 /* The following is used to ensure that new dcache's aren't obtained when
93 * the cache is nearly full.
95 int afs_WaitForCacheDrain
= 0;
96 int afs_TruncateDaemonRunning
= 0;
97 int afs_CacheTooFull
= 0;
99 afs_int32 afs_dcentries
; /*!< In-memory dcache entries */
102 int dcacheDisabled
= 0;
104 struct afs_cacheOps afs_UfsCacheOps
= {
105 #ifndef HAVE_STRUCT_LABEL_SUPPORT
118 .truncate
= osi_UFSTruncate
,
119 .fread
= afs_osi_Read
,
120 .fwrite
= afs_osi_Write
,
121 .close
= osi_UFSClose
,
122 .vreadUIO
= afs_UFSReadUIO
,
123 .vwriteUIO
= afs_UFSWriteUIO
,
124 .GetDSlot
= afs_UFSGetDSlot
,
125 .GetVolSlot
= afs_UFSGetVolSlot
,
126 .HandleLink
= afs_UFSHandleLink
,
130 struct afs_cacheOps afs_MemCacheOps
= {
131 #ifndef HAVE_STRUCT_LABEL_SUPPORT
133 afs_MemCacheTruncate
,
143 .open
= afs_MemCacheOpen
,
144 .truncate
= afs_MemCacheTruncate
,
145 .fread
= afs_MemReadBlk
,
146 .fwrite
= afs_MemWriteBlk
,
147 .close
= afs_MemCacheClose
,
148 .vreadUIO
= afs_MemReadUIO
,
149 .vwriteUIO
= afs_MemWriteUIO
,
150 .GetDSlot
= afs_MemGetDSlot
,
151 .GetVolSlot
= afs_MemGetVolSlot
,
152 .HandleLink
= afs_MemHandleLink
,
156 int cacheDiskType
; /*Type of backing disk for cache */
157 struct afs_cacheOps
*afs_cacheType
;
161 * The PFlush algorithm makes use of the fact that Fid.Unique is not used in
162 * below hash algorithms. Change it if need be so that flushing algorithm
163 * doesn't move things from one hash chain to another.
165 /*Vnode, Chunk -> Hash table index */
166 int DCHash(struct VenusFid
*fid
, afs_int32 chunk
)
170 buf
[0] = fid
->Fid
.Volume
;
171 buf
[1] = fid
->Fid
.Vnode
;
173 return opr_jhash(buf
, 3, 0) & (afs_dhashsize
- 1);
175 /*Vnode -> Other hash table index */
176 int DVHash(struct VenusFid
*fid
)
178 return opr_jhash_int2(fid
->Fid
.Volume
, fid
->Fid
.Vnode
, 0) &
183 * Where is this vcache's entry associated dcache located/
184 * \param avc The vcache entry.
185 * \return Bucket index:
190 afs_DCGetBucket(struct vcache
*avc
)
195 /* This should be replaced with some sort of user configurable function */
196 if (avc
->f
.states
& CRO
) {
198 } else if (avc
->f
.states
& CBackup
) {
208 * Readjust a dcache's size.
210 * \param adc The dcache to be adjusted.
211 * \param oldSize Old size for the dcache.
212 * \param newSize The new size to be adjusted to.
216 afs_DCAdjustSize(struct dcache
*adc
, afs_int32 oldSize
, afs_int32 newSize
)
218 afs_int32 adjustSize
= newSize
- oldSize
;
226 afs_blocksUsed_0
+= adjustSize
;
227 afs_stats_cmperf
.cacheBucket0_Discarded
+= oldSize
;
230 afs_blocksUsed_1
+= adjustSize
;
231 afs_stats_cmperf
.cacheBucket1_Discarded
+= oldSize
;
234 afs_blocksUsed_2
+= adjustSize
;
235 afs_stats_cmperf
.cacheBucket2_Discarded
+= oldSize
;
243 * Move a dcache from one bucket to another.
245 * \param adc Operate on this dcache.
246 * \param size Size in bucket (?).
247 * \param newBucket Destination bucket.
251 afs_DCMoveBucket(struct dcache
*adc
, afs_int32 size
, afs_int32 newBucket
)
256 /* Substract size from old bucket. */
260 afs_blocksUsed_0
-= size
;
263 afs_blocksUsed_1
-= size
;
266 afs_blocksUsed_2
-= size
;
270 /* Set new bucket and increase destination bucket size. */
271 adc
->bucket
= newBucket
;
276 afs_blocksUsed_0
+= size
;
279 afs_blocksUsed_1
+= size
;
282 afs_blocksUsed_2
+= size
;
290 * Init split caches size.
295 afs_blocksUsed_0
= afs_blocksUsed_1
= afs_blocksUsed_2
= 0;
304 afs_DCWhichBucket(afs_int32 phase
, afs_int32 bucket
)
309 afs_pct1
= afs_blocksUsed_1
/ (afs_cacheBlocks
/ 100);
310 afs_pct2
= afs_blocksUsed_2
/ (afs_cacheBlocks
/ 100);
312 /* Short cut: if we don't know about it, try to kill it */
313 if (phase
< 2 && afs_blocksUsed_0
)
316 if (afs_pct1
> afs_tpct1
)
318 if (afs_pct2
> afs_tpct2
)
320 return 0; /* unlikely */
325 * Warn about failing to store a file.
327 * \param acode Associated error code.
328 * \param avolume Volume involved.
329 * \param aflags How to handle the output:
330 * aflags & 1: Print out on console
331 * aflags & 2: Print out on controlling tty
333 * \note Environment: Call this from close call when vnodeops is RCS unlocked.
337 afs_StoreWarn(afs_int32 acode
, afs_int32 avolume
,
340 static char problem_fmt
[] =
341 "afs: failed to store file in volume %d (%s)\n";
342 static char problem_fmt_w_error
[] =
343 "afs: failed to store file in volume %d (error %d)\n";
344 static char netproblems
[] = "network problems";
345 static char partfull
[] = "partition full";
346 static char overquota
[] = "over quota";
348 AFS_STATCNT(afs_StoreWarn
);
354 afs_warn(problem_fmt
, avolume
, netproblems
);
356 afs_warnuser(problem_fmt
, avolume
, netproblems
);
357 } else if (acode
== ENOSPC
) {
362 afs_warn(problem_fmt
, avolume
, partfull
);
364 afs_warnuser(problem_fmt
, avolume
, partfull
);
367 /* EDQUOT doesn't exist on solaris and won't be sent by the server.
368 * Instead ENOSPC will be sent...
370 if (acode
== EDQUOT
) {
375 afs_warn(problem_fmt
, avolume
, overquota
);
377 afs_warnuser(problem_fmt
, avolume
, overquota
);
385 afs_warn(problem_fmt_w_error
, avolume
, acode
);
387 afs_warnuser(problem_fmt_w_error
, avolume
, acode
);
392 * Try waking up truncation daemon, if it's worth it.
395 afs_MaybeWakeupTruncateDaemon(void)
397 if (!afs_CacheTooFull
&& afs_CacheIsTooFull()) {
398 afs_CacheTooFull
= 1;
399 if (!afs_TruncateDaemonRunning
)
400 afs_osi_Wakeup((int *)afs_CacheTruncateDaemon
);
401 } else if (!afs_TruncateDaemonRunning
402 && afs_blocksDiscarded
> CM_MAXDISCARDEDCHUNKS
) {
403 afs_osi_Wakeup((int *)afs_CacheTruncateDaemon
);
410 * Keep statistics on run time for afs_CacheTruncateDaemon. This is a
411 * struct so we need only export one symbol for AIX.
413 static struct CTD_stats
{
414 osi_timeval_t CTD_beforeSleep
;
415 osi_timeval_t CTD_afterSleep
;
416 osi_timeval_t CTD_sleepTime
;
417 osi_timeval_t CTD_runTime
;
421 u_int afs_min_cache
= 0;
424 * If there are waiters for the cache to drain, wake them if
425 * the number of free or discarded cache blocks reaches the
426 * CM_CACHESIZEDDRAINEDPCT limit.
429 * This routine must be called with the afs_xdcache lock held
433 afs_WakeCacheWaitersIfDrained(void)
435 if (afs_WaitForCacheDrain
) {
436 if ((afs_blocksUsed
- afs_blocksDiscarded
) <=
437 PERCENT(CM_CACHESIZEDRAINEDPCT
, afs_cacheBlocks
)) {
438 afs_WaitForCacheDrain
= 0;
439 afs_osi_Wakeup(&afs_WaitForCacheDrain
);
445 * Keeps the cache clean and free by truncating uneeded files, when used.
450 afs_CacheTruncateDaemon(void)
452 osi_timeval_t CTD_tmpTime
;
456 PERCENT((100 - CM_DCACHECOUNTFREEPCT
+ CM_DCACHEEXTRAPCT
), afs_cacheFiles
);
458 (((10 * AFS_CHUNKSIZE(0)) + afs_fsfragsize
) & ~afs_fsfragsize
) >> 10;
460 osi_GetuTime(&CTD_stats
.CTD_afterSleep
);
461 afs_TruncateDaemonRunning
= 1;
463 cb_lowat
= PERCENT((CM_DCACHESPACEFREEPCT
- CM_DCACHEEXTRAPCT
), afs_cacheBlocks
);
464 ObtainWriteLock(&afs_xdcache
, 266);
465 if (afs_CacheTooFull
|| afs_WaitForCacheDrain
) {
466 int space_needed
, slots_needed
;
467 /* if we get woken up, we should try to clean something out */
468 for (counter
= 0; counter
< 10; counter
++) {
470 afs_blocksUsed
- afs_blocksDiscarded
- cb_lowat
;
471 if (space_needed
< 0)
474 dc_hiwat
- afs_freeDCCount
- afs_discardDCCount
;
475 if (slots_needed
< 0)
477 if (slots_needed
|| space_needed
)
478 afs_GetDownD(slots_needed
, &space_needed
, 0);
479 if ((space_needed
<= 0) && (slots_needed
<= 0)) {
482 if (afs_termState
== AFSOP_STOP_TRUNCDAEMON
)
485 if (!afs_CacheIsTooFull()) {
486 afs_CacheTooFull
= 0;
487 afs_WakeCacheWaitersIfDrained();
489 } /* end of cache cleanup */
490 ReleaseWriteLock(&afs_xdcache
);
493 * This is a defensive check to try to avoid starving threads
494 * that may need the global lock so thay can help free some
495 * cache space. If this thread won't be sleeping or truncating
496 * any cache files then give up the global lock so other
497 * threads get a chance to run.
499 if ((afs_termState
!= AFSOP_STOP_TRUNCDAEMON
) && afs_CacheTooFull
500 && (!afs_blocksDiscarded
|| afs_WaitForCacheDrain
)) {
501 afs_osi_Wait(100, 0, 0); /* 100 milliseconds */
505 * This is where we free the discarded cache elements.
507 while (afs_blocksDiscarded
&& !afs_WaitForCacheDrain
508 && (afs_termState
!= AFSOP_STOP_TRUNCDAEMON
)) {
509 int code
= afs_FreeDiscardedDCache();
511 /* If we can't free any discarded dcache entries, that's okay.
512 * We're just doing this in the background; if someone needs
513 * discarded entries freed, they will try it themselves and/or
514 * signal us that the cache is too full. In any case, we'll
515 * try doing this again the next time we run through the loop.
521 /* See if we need to continue to run. Someone may have
522 * signalled us while we were executing.
524 if (!afs_WaitForCacheDrain
&& !afs_CacheTooFull
525 && (afs_termState
!= AFSOP_STOP_TRUNCDAEMON
)) {
526 /* Collect statistics on truncate daemon. */
527 CTD_stats
.CTD_nSleeps
++;
528 osi_GetuTime(&CTD_stats
.CTD_beforeSleep
);
529 afs_stats_GetDiff(CTD_tmpTime
, CTD_stats
.CTD_afterSleep
,
530 CTD_stats
.CTD_beforeSleep
);
531 afs_stats_AddTo(CTD_stats
.CTD_runTime
, CTD_tmpTime
);
533 afs_TruncateDaemonRunning
= 0;
534 afs_osi_Sleep((int *)afs_CacheTruncateDaemon
);
535 afs_TruncateDaemonRunning
= 1;
537 osi_GetuTime(&CTD_stats
.CTD_afterSleep
);
538 afs_stats_GetDiff(CTD_tmpTime
, CTD_stats
.CTD_beforeSleep
,
539 CTD_stats
.CTD_afterSleep
);
540 afs_stats_AddTo(CTD_stats
.CTD_sleepTime
, CTD_tmpTime
);
542 if (afs_termState
== AFSOP_STOP_TRUNCDAEMON
) {
543 afs_termState
= AFSOP_STOP_AFSDB
;
544 afs_osi_Wakeup(&afs_termState
);
552 * Make adjustment for the new size in the disk cache entry
554 * \note Major Assumptions Here:
555 * Assumes that frag size is an integral power of two, less one,
556 * and that this is a two's complement machine. I don't
557 * know of any filesystems which violate this assumption...
559 * \param adc Ptr to dcache entry.
560 * \param anewsize New size desired.
565 afs_AdjustSize(struct dcache
*adc
, afs_int32 newSize
)
569 AFS_STATCNT(afs_AdjustSize
);
571 if (newSize
> afs_OtherCSize
&& !(adc
->f
.fid
.Fid
.Vnode
& 1)) {
572 /* No non-dir cache files should be larger than the chunk size.
573 * (Directory blobs are fetched in a single chunk file, so directories
574 * can be larger.) If someone is requesting that a chunk is larger than
575 * the chunk size, something strange is happening. Log a message about
576 * it, to give a hint to subsequent strange behavior, if any occurs. */
580 afs_warn("afs: Warning: dcache %d is very large (%d > %d). This "
581 "should not happen, but trying to continue regardless. If "
582 "AFS starts hanging or behaving strangely, this might be "
584 adc
->index
, newSize
, afs_OtherCSize
);
588 adc
->dflags
|= DFEntryMod
;
589 oldSize
= ((adc
->f
.chunkBytes
+ afs_fsfragsize
) ^ afs_fsfragsize
) >> 10; /* round up */
590 adc
->f
.chunkBytes
= newSize
;
593 newSize
= ((newSize
+ afs_fsfragsize
) ^ afs_fsfragsize
) >> 10; /* round up */
594 afs_DCAdjustSize(adc
, oldSize
, newSize
);
595 if ((newSize
> oldSize
) && !AFS_IS_DISCONNECTED
) {
597 /* We're growing the file, wakeup the daemon */
598 afs_MaybeWakeupTruncateDaemon();
600 afs_blocksUsed
+= (newSize
- oldSize
);
601 afs_stats_cmperf
.cacheBlocksInUse
= afs_blocksUsed
; /* XXX */
606 * This routine is responsible for moving at least one entry (but up
607 * to some number of them) from the LRU queue to the free queue.
609 * \param anumber Number of entries that should ideally be moved.
610 * \param aneedSpace How much space we need (1K blocks);
613 * The anumber parameter is just a hint; at least one entry MUST be
614 * moved, or we'll panic. We must be called with afs_xdcache
615 * write-locked. We should try to satisfy both anumber and aneedspace,
616 * whichever is more demanding - need to do several things:
617 * 1. only grab up to anumber victims if aneedSpace <= 0, not
618 * the whole set of MAXATONCE.
619 * 2. dynamically choose MAXATONCE to reflect severity of
620 * demand: something like (*aneedSpace >> (logChunk - 9))
622 * \note N.B. if we're called with aneedSpace <= 0 and anumber > 0, that
623 * indicates that the cache is not properly configured/tuned or
624 * something. We should be able to automatically correct that problem.
627 #define MAXATONCE 16 /* max we can obtain at once */
629 afs_GetDownD(int anumber
, int *aneedSpace
, afs_int32 buckethint
)
633 struct VenusFid
*afid
;
638 afs_uint32 victims
[MAXATONCE
];
639 struct dcache
*victimDCs
[MAXATONCE
];
640 afs_hyper_t victimTimes
[MAXATONCE
]; /* youngest (largest LRU time) first */
641 afs_uint32 victimPtr
; /* next free item in victim arrays */
642 afs_hyper_t maxVictimTime
; /* youngest (largest LRU time) victim */
643 afs_uint32 maxVictimPtr
; /* where it is */
647 AFS_STATCNT(afs_GetDownD
);
649 if (CheckLock(&afs_xdcache
) != -1)
650 osi_Panic("getdownd nolock");
651 /* decrement anumber first for all dudes in free list */
652 /* SHOULD always decrement anumber first, even if aneedSpace >0,
653 * because we should try to free space even if anumber <=0 */
654 if (!aneedSpace
|| *aneedSpace
<= 0) {
655 anumber
-= afs_freeDCCount
;
657 return; /* enough already free */
661 /* bounds check parameter */
662 if (anumber
> MAXATONCE
)
663 anumber
= MAXATONCE
; /* all we can do */
665 /* rewrite so phases include a better eligiblity for gc test*/
667 * The phase variable manages reclaims. Set to 0, the first pass,
668 * we don't reclaim active entries, or other than target bucket.
669 * Set to 1, we reclaim even active ones in target bucket.
670 * Set to 2, we reclaim any inactive one.
671 * Set to 3, we reclaim even active ones. On Solaris, we also reclaim
672 * entries whose corresponding vcache has a nonempty multiPage list, when
681 for (i
= 0; i
< afs_cacheFiles
; i
++)
682 /* turn off all flags */
683 afs_indexFlags
[i
] &= ~IFFlag
;
685 while (anumber
> 0 || (aneedSpace
&& *aneedSpace
> 0)) {
686 /* find oldest entries for reclamation */
687 maxVictimPtr
= victimPtr
= 0;
688 hzero(maxVictimTime
);
689 curbucket
= afs_DCWhichBucket(phase
, buckethint
);
690 /* select victims from access time array */
691 for (i
= 0; i
< afs_cacheFiles
; i
++) {
692 if (afs_indexFlags
[i
] & (IFDataMod
| IFFree
| IFDiscarded
)) {
693 /* skip if dirty or already free */
696 tdc
= afs_indexTable
[i
];
697 if (tdc
&& (curbucket
!= tdc
->bucket
) && (phase
< 4))
699 /* Wrong bucket; can't use it! */
702 if (tdc
&& (tdc
->refCount
!= 0)) {
703 /* Referenced; can't use it! */
706 hset(vtime
, afs_indexTimes
[i
]);
708 /* if we've already looked at this one, skip it */
709 if (afs_indexFlags
[i
] & IFFlag
)
712 if (victimPtr
< MAXATONCE
) {
713 /* if there's at least one free victim slot left */
714 victims
[victimPtr
] = i
;
715 hset(victimTimes
[victimPtr
], vtime
);
716 if (hcmp(vtime
, maxVictimTime
) > 0) {
717 hset(maxVictimTime
, vtime
);
718 maxVictimPtr
= victimPtr
;
721 } else if (hcmp(vtime
, maxVictimTime
) < 0) {
723 * We're older than youngest victim, so we replace at
726 /* find youngest (largest LRU) victim */
729 osi_Panic("getdownd local");
731 hset(victimTimes
[j
], vtime
);
732 /* recompute maxVictimTime */
733 hset(maxVictimTime
, vtime
);
734 for (j
= 0; j
< victimPtr
; j
++)
735 if (hcmp(maxVictimTime
, victimTimes
[j
]) < 0) {
736 hset(maxVictimTime
, victimTimes
[j
]);
742 /* now really reclaim the victims */
743 j
= 0; /* flag to track if we actually got any of the victims */
744 /* first, hold all the victims, since we're going to release the lock
745 * during the truncate operation.
747 for (i
= 0; i
< victimPtr
; i
++) {
748 tdc
= afs_GetValidDSlot(victims
[i
]);
749 /* We got tdc->tlock(R) here */
750 if (tdc
&& tdc
->refCount
== 1)
755 ReleaseReadLock(&tdc
->tlock
);
760 for (i
= 0; i
< victimPtr
; i
++) {
761 /* q is first elt in dcache entry */
763 /* now, since we're dropping the afs_xdcache lock below, we
764 * have to verify, before proceeding, that there are no other
765 * references to this dcache entry, even now. Note that we
766 * compare with 1, since we bumped it above when we called
767 * afs_GetValidDSlot to preserve the entry's identity.
769 if (tdc
&& tdc
->refCount
== 1) {
770 unsigned char chunkFlags
;
771 afs_size_t tchunkoffset
= 0;
773 /* xdcache is lower than the xvcache lock */
774 ReleaseWriteLock(&afs_xdcache
);
775 ObtainReadLock(&afs_xvcache
);
776 tvc
= afs_FindVCache(afid
, 0, 0 /* no stats, no vlru */ );
777 ReleaseReadLock(&afs_xvcache
);
778 ObtainWriteLock(&afs_xdcache
, 527);
780 if (tdc
->refCount
> 1)
783 tchunkoffset
= AFS_CHUNKTOBASE(tdc
->f
.chunk
);
784 chunkFlags
= afs_indexFlags
[tdc
->index
];
785 if (((phase
& 1) == 0) && osi_Active(tvc
))
787 if (((phase
& 1) == 1) && osi_Active(tvc
)
788 && (tvc
->f
.states
& CDCLock
)
789 && (chunkFlags
& IFAnyPages
))
791 if (chunkFlags
& IFDataMod
)
793 afs_Trace4(afs_iclSetp
, CM_TRACE_GETDOWND
,
794 ICL_TYPE_POINTER
, tvc
, ICL_TYPE_INT32
, skip
,
795 ICL_TYPE_INT32
, tdc
->index
, ICL_TYPE_OFFSET
,
796 ICL_HANDLE_OFFSET(tchunkoffset
));
798 #if defined(AFS_SUN5_ENV)
800 * Now we try to invalidate pages. We do this only for
801 * Solaris. For other platforms, it's OK to recycle a
802 * dcache entry out from under a page, because the strategy
803 * function can call afs_GetDCache().
805 if (!skip
&& (chunkFlags
& IFAnyPages
)) {
808 ReleaseWriteLock(&afs_xdcache
);
809 ObtainWriteLock(&tvc
->vlock
, 543);
810 if (!QEmpty(&tvc
->multiPage
)) {
811 if (phase
< 3 || osi_VM_MultiPageConflict(tvc
, tdc
)) {
816 /* block locking pages */
817 tvc
->vstates
|= VPageCleaning
;
818 /* block getting new pages */
820 ReleaseWriteLock(&tvc
->vlock
);
821 /* One last recheck */
822 ObtainWriteLock(&afs_xdcache
, 333);
823 chunkFlags
= afs_indexFlags
[tdc
->index
];
824 if (tdc
->refCount
> 1 || (chunkFlags
& IFDataMod
)
825 || (osi_Active(tvc
) && (tvc
->f
.states
& CDCLock
)
826 && (chunkFlags
& IFAnyPages
))) {
828 ReleaseWriteLock(&afs_xdcache
);
831 ReleaseWriteLock(&afs_xdcache
);
833 code
= osi_VM_GetDownD(tvc
, tdc
);
835 ObtainWriteLock(&afs_xdcache
, 269);
836 /* we actually removed all pages, clean and dirty */
838 afs_indexFlags
[tdc
->index
] &=
839 ~(IFDirtyPages
| IFAnyPages
);
842 ReleaseWriteLock(&afs_xdcache
);
844 ObtainWriteLock(&tvc
->vlock
, 544);
845 if (--tvc
->activeV
== 0
846 && (tvc
->vstates
& VRevokeWait
)) {
847 tvc
->vstates
&= ~VRevokeWait
;
848 afs_osi_Wakeup((char *)&tvc
->vstates
);
851 if (tvc
->vstates
& VPageCleaning
) {
852 tvc
->vstates
&= ~VPageCleaning
;
853 afs_osi_Wakeup((char *)&tvc
->vstates
);
856 ReleaseWriteLock(&tvc
->vlock
);
858 #endif /* AFS_SUN5_ENV */
860 ReleaseWriteLock(&afs_xdcache
);
863 afs_PutVCache(tvc
); /*XXX was AFS_FAST_RELE?*/
864 ObtainWriteLock(&afs_xdcache
, 528);
865 if (afs_indexFlags
[tdc
->index
] &
866 (IFDataMod
| IFDirtyPages
| IFAnyPages
))
868 if (tdc
->refCount
> 1)
871 #if defined(AFS_SUN5_ENV)
873 /* no vnode, so IFDirtyPages is spurious (we don't
874 * sweep dcaches on vnode recycling, so we can have
875 * DIRTYPAGES set even when all pages are gone). Just
877 * Hold vcache lock to prevent vnode from being
878 * created while we're clearing IFDirtyPages.
880 afs_indexFlags
[tdc
->index
] &=
881 ~(IFDirtyPages
| IFAnyPages
);
885 /* skip this guy and mark him as recently used */
886 afs_indexFlags
[tdc
->index
] |= IFFlag
;
887 afs_Trace4(afs_iclSetp
, CM_TRACE_GETDOWND
,
888 ICL_TYPE_POINTER
, tvc
, ICL_TYPE_INT32
, 2,
889 ICL_TYPE_INT32
, tdc
->index
, ICL_TYPE_OFFSET
,
890 ICL_HANDLE_OFFSET(tchunkoffset
));
892 /* flush this dude from the data cache and reclaim;
893 * first, make sure no one will care that we damage
894 * it, by removing it from all hash tables. Then,
895 * melt it down for parts. Note that any concurrent
896 * (new possibility!) calls to GetDownD won't touch
897 * this guy because his reference count is > 0. */
898 afs_Trace4(afs_iclSetp
, CM_TRACE_GETDOWND
,
899 ICL_TYPE_POINTER
, tvc
, ICL_TYPE_INT32
, 3,
900 ICL_TYPE_INT32
, tdc
->index
, ICL_TYPE_OFFSET
,
901 ICL_HANDLE_OFFSET(tchunkoffset
));
902 AFS_STATCNT(afs_gget
);
903 afs_HashOutDCache(tdc
, 1);
904 if (tdc
->f
.chunkBytes
!= 0) {
908 (tdc
->f
.chunkBytes
+ afs_fsfragsize
) >> 10;
913 afs_DiscardDCache(tdc
);
918 j
= 1; /* we reclaimed at least one victim */
923 } /* end of for victims loop */
926 /* Phase is 0 and no one was found, so try phase 1 (ignore
927 * osi_Active flag) */
930 for (i
= 0; i
< afs_cacheFiles
; i
++)
931 /* turn off all flags */
932 afs_indexFlags
[i
] &= ~IFFlag
;
935 /* found no one in phases 0-5, we're hosed */
939 } /* big while loop */
947 * Remove adc from any hash tables that would allow it to be located
948 * again by afs_FindDCache or afs_GetDCache.
950 * \param adc Pointer to dcache entry to remove from hash tables.
952 * \note Locks: Must have the afs_xdcache lock write-locked to call this function.
956 afs_HashOutDCache(struct dcache
*adc
, int zap
)
960 AFS_STATCNT(afs_glink
);
962 /* we know this guy's in the LRUQ. We'll move dude into DCQ below */
964 /* if this guy is in the hash table, pull him out */
965 if (adc
->f
.fid
.Fid
.Volume
!= 0) {
966 /* remove entry from first hash chains */
967 i
= DCHash(&adc
->f
.fid
, adc
->f
.chunk
);
968 us
= afs_dchashTbl
[i
];
969 if (us
== adc
->index
) {
970 /* first dude in the list */
971 afs_dchashTbl
[i
] = afs_dcnextTbl
[adc
->index
];
973 /* somewhere on the chain */
974 while (us
!= NULLIDX
) {
975 if (afs_dcnextTbl
[us
] == adc
->index
) {
976 /* found item pointing at the one to delete */
977 afs_dcnextTbl
[us
] = afs_dcnextTbl
[adc
->index
];
980 us
= afs_dcnextTbl
[us
];
983 osi_Panic("dcache hc");
985 /* remove entry from *other* hash chain */
986 i
= DVHash(&adc
->f
.fid
);
987 us
= afs_dvhashTbl
[i
];
988 if (us
== adc
->index
) {
989 /* first dude in the list */
990 afs_dvhashTbl
[i
] = afs_dvnextTbl
[adc
->index
];
992 /* somewhere on the chain */
993 while (us
!= NULLIDX
) {
994 if (afs_dvnextTbl
[us
] == adc
->index
) {
995 /* found item pointing at the one to delete */
996 afs_dvnextTbl
[us
] = afs_dvnextTbl
[adc
->index
];
999 us
= afs_dvnextTbl
[us
];
1002 osi_Panic("dcache hv");
1007 /* prevent entry from being found on a reboot (it is already out of
1008 * the hash table, but after a crash, we just look at fid fields of
1009 * stable (old) entries).
1011 adc
->f
.fid
.Fid
.Volume
= 0; /* invalid */
1013 /* mark entry as modified */
1014 adc
->dflags
|= DFEntryMod
;
1019 } /*afs_HashOutDCache */
1022 * Flush the given dcache entry, pulling it from hash chains
1023 * and truncating the associated cache file.
1025 * \param adc Ptr to dcache entry to flush.
1027 * \note Environment:
1028 * This routine must be called with the afs_xdcache lock held
1032 afs_FlushDCache(struct dcache
*adc
)
1034 AFS_STATCNT(afs_FlushDCache
);
1036 * Bump the number of cache files flushed.
1038 afs_stats_cmperf
.cacheFlushes
++;
1040 /* remove from all hash tables */
1041 afs_HashOutDCache(adc
, 1);
1043 /* Free its space; special case null operation, since truncate operation
1044 * in UFS is slow even in this case, and this allows us to pre-truncate
1045 * these files at more convenient times with fewer locks set
1046 * (see afs_GetDownD).
1048 if (adc
->f
.chunkBytes
!= 0) {
1049 afs_DiscardDCache(adc
);
1050 afs_MaybeWakeupTruncateDaemon();
1052 afs_FreeDCache(adc
);
1054 } /*afs_FlushDCache */
1058 * Put a dcache entry on the free dcache entry list.
1060 * \param adc dcache entry to free.
1062 * \note Environment: called with afs_xdcache lock write-locked.
1065 afs_FreeDCache(struct dcache
*adc
)
1067 /* Thread on free list, update free list count and mark entry as
1068 * freed in its indexFlags element. Also, ensure DCache entry gets
1069 * written out (set DFEntryMod).
1072 afs_dvnextTbl
[adc
->index
] = afs_freeDCList
;
1073 afs_freeDCList
= adc
->index
;
1075 afs_indexFlags
[adc
->index
] |= IFFree
;
1076 adc
->dflags
|= DFEntryMod
;
1078 afs_WakeCacheWaitersIfDrained();
1079 } /* afs_FreeDCache */
1082 * Discard the cache element by moving it to the discardDCList.
1083 * This puts the cache element into a quasi-freed state, where
1084 * the space may be reused, but the file has not been truncated.
1086 * \note Major Assumptions Here:
1087 * Assumes that frag size is an integral power of two, less one,
1088 * and that this is a two's complement machine. I don't
1089 * know of any filesystems which violate this assumption...
1091 * \param adr Ptr to dcache entry.
1093 * \note Environment:
1094 * Must be called with afs_xdcache write-locked.
1098 afs_DiscardDCache(struct dcache
*adc
)
1102 AFS_STATCNT(afs_DiscardDCache
);
1104 osi_Assert(adc
->refCount
== 1);
1106 size
= ((adc
->f
.chunkBytes
+ afs_fsfragsize
) ^ afs_fsfragsize
) >> 10; /* round up */
1107 afs_blocksDiscarded
+= size
;
1108 afs_stats_cmperf
.cacheBlocksDiscarded
= afs_blocksDiscarded
;
1110 afs_dvnextTbl
[adc
->index
] = afs_discardDCList
;
1111 afs_discardDCList
= adc
->index
;
1112 afs_discardDCCount
++;
1114 adc
->f
.fid
.Fid
.Volume
= 0;
1115 adc
->dflags
|= DFEntryMod
;
1116 afs_indexFlags
[adc
->index
] |= IFDiscarded
;
1118 afs_WakeCacheWaitersIfDrained();
1119 } /*afs_DiscardDCache */
1122 * Get a dcache entry from the discard or free list
1124 * @param[in] indexp A pointer to the head of the dcache free list or discard
1125 * list (afs_freeDCList, or afs_discardDCList)
1127 * @return A dcache from that list, or NULL if none could be retrieved.
1129 * @pre afs_xdcache is write-locked
1131 static struct dcache
*
1132 afs_GetDSlotFromList(afs_int32
*indexp
)
1136 for ( ; *indexp
!= NULLIDX
; indexp
= &afs_dvnextTbl
[*indexp
]) {
1137 tdc
= afs_GetUnusedDSlot(*indexp
);
1139 osi_Assert(tdc
->refCount
== 1);
1140 ReleaseReadLock(&tdc
->tlock
);
1141 *indexp
= afs_dvnextTbl
[tdc
->index
];
1142 afs_dvnextTbl
[tdc
->index
] = NULLIDX
;
1150 * Free the next element on the list of discarded cache elements.
1152 * Returns -1 if we encountered an error preventing us from freeing a
1153 * discarded dcache, or 0 on success.
1156 afs_FreeDiscardedDCache(void)
1159 struct osi_file
*tfile
;
1162 AFS_STATCNT(afs_FreeDiscardedDCache
);
1164 ObtainWriteLock(&afs_xdcache
, 510);
1165 if (!afs_blocksDiscarded
) {
1166 ReleaseWriteLock(&afs_xdcache
);
1171 * Get an entry from the list of discarded cache elements
1173 tdc
= afs_GetDSlotFromList(&afs_discardDCList
);
1175 ReleaseWriteLock(&afs_xdcache
);
1179 afs_discardDCCount
--;
1180 size
= ((tdc
->f
.chunkBytes
+ afs_fsfragsize
) ^ afs_fsfragsize
) >> 10; /* round up */
1181 afs_blocksDiscarded
-= size
;
1182 afs_stats_cmperf
.cacheBlocksDiscarded
= afs_blocksDiscarded
;
1183 /* We can lock because we just took it off the free list */
1184 ObtainWriteLock(&tdc
->lock
, 626);
1185 ReleaseWriteLock(&afs_xdcache
);
1188 * Truncate the element to reclaim its space
1190 tfile
= afs_CFileOpen(&tdc
->f
.inode
);
1191 afs_CFileTruncate(tfile
, 0);
1192 afs_CFileClose(tfile
);
1193 afs_AdjustSize(tdc
, 0);
1194 afs_DCMoveBucket(tdc
, 0, 0);
1197 * Free the element we just truncated
1199 ObtainWriteLock(&afs_xdcache
, 511);
1200 afs_indexFlags
[tdc
->index
] &= ~IFDiscarded
;
1201 afs_FreeDCache(tdc
);
1202 tdc
->f
.states
&= ~(DRO
|DBackup
|DRW
);
1203 ReleaseWriteLock(&tdc
->lock
);
1205 ReleaseWriteLock(&afs_xdcache
);
1211 * Free as many entries from the list of discarded cache elements
1212 * as we need to get the free space down below CM_WAITFORDRAINPCT (98%).
1217 afs_MaybeFreeDiscardedDCache(void)
1220 AFS_STATCNT(afs_MaybeFreeDiscardedDCache
);
1222 while (afs_blocksDiscarded
1223 && (afs_blocksUsed
>
1224 PERCENT(CM_WAITFORDRAINPCT
, afs_cacheBlocks
))) {
1225 int code
= afs_FreeDiscardedDCache();
1227 /* Callers depend on us to get the afs_blocksDiscarded count down.
1228 * If we cannot do that, the callers can spin by calling us over
1229 * and over. Panic for now until we can figure out something
1231 osi_Panic("Error freeing discarded dcache");
1238 * Try to free up a certain number of disk slots.
1240 * \param anumber Targeted number of disk slots to free up.
1242 * \note Environment:
1243 * Must be called with afs_xdcache write-locked.
1247 afs_GetDownDSlot(int anumber
)
1249 struct afs_q
*tq
, *nq
;
1254 AFS_STATCNT(afs_GetDownDSlot
);
1255 if (cacheDiskType
== AFS_FCACHE_TYPE_MEM
)
1256 osi_Panic("diskless getdowndslot");
1258 if (CheckLock(&afs_xdcache
) != -1)
1259 osi_Panic("getdowndslot nolock");
1261 /* decrement anumber first for all dudes in free list */
1262 for (tdc
= afs_freeDSList
; tdc
; tdc
= (struct dcache
*)tdc
->lruq
.next
)
1265 return; /* enough already free */
1267 for (cnt
= 0, tq
= afs_DLRU
.prev
; tq
!= &afs_DLRU
&& anumber
> 0;
1269 tdc
= (struct dcache
*)tq
; /* q is first elt in dcache entry */
1270 nq
= QPrev(tq
); /* in case we remove it */
1271 if (tdc
->refCount
== 0) {
1272 if ((ix
= tdc
->index
) == NULLIDX
)
1273 osi_Panic("getdowndslot");
1274 /* pull the entry out of the lruq and put it on the free list */
1275 QRemove(&tdc
->lruq
);
1277 /* write-through if modified */
1278 if (tdc
->dflags
& DFEntryMod
) {
1279 #if defined(AFS_SGI_ENV) && defined(AFS_SGI_SHORTSTACK)
1281 * ask proxy to do this for us - we don't have the stack space
1283 while (tdc
->dflags
& DFEntryMod
) {
1286 s
= SPLOCK(afs_sgibklock
);
1287 if (afs_sgibklist
== NULL
) {
1288 /* if slot is free, grab it. */
1289 afs_sgibklist
= tdc
;
1290 SV_SIGNAL(&afs_sgibksync
);
1292 /* wait for daemon to (start, then) finish. */
1293 SP_WAIT(afs_sgibklock
, s
, &afs_sgibkwait
, PINOD
);
1297 tdc
->dflags
&= ~DFEntryMod
;
1298 osi_Assert(afs_WriteDCache(tdc
, 1) == 0);
1302 /* finally put the entry in the free list */
1303 afs_indexTable
[ix
] = NULL
;
1304 afs_indexFlags
[ix
] &= ~IFEverUsed
;
1305 tdc
->index
= NULLIDX
;
1306 tdc
->lruq
.next
= (struct afs_q
*)afs_freeDSList
;
1307 afs_freeDSList
= tdc
;
1311 } /*afs_GetDownDSlot */
1318 * Increment the reference count on a disk cache entry,
1319 * which already has a non-zero refcount. In order to
1320 * increment the refcount of a zero-reference entry, you
1321 * have to hold afs_xdcache.
1324 * adc : Pointer to the dcache entry to increment.
1327 * Nothing interesting.
1330 afs_RefDCache(struct dcache
*adc
)
1332 ObtainWriteLock(&adc
->tlock
, 627);
1333 if (adc
->refCount
< 0)
1334 osi_Panic("RefDCache: negative refcount");
1336 ReleaseWriteLock(&adc
->tlock
);
1345 * Decrement the reference count on a disk cache entry.
1348 * ad : Ptr to the dcache entry to decrement.
1351 * Nothing interesting.
1354 afs_PutDCache(struct dcache
*adc
)
1356 AFS_STATCNT(afs_PutDCache
);
1357 ObtainWriteLock(&adc
->tlock
, 276);
1358 if (adc
->refCount
<= 0)
1359 osi_Panic("putdcache");
1361 ReleaseWriteLock(&adc
->tlock
);
1370 * Try to discard all data associated with this file from the
1374 * avc : Pointer to the cache info for the file.
1377 * Both pvnLock and lock are write held.
1380 afs_TryToSmush(struct vcache
*avc
, afs_ucred_t
*acred
, int sync
)
1385 AFS_STATCNT(afs_TryToSmush
);
1386 afs_Trace2(afs_iclSetp
, CM_TRACE_TRYTOSMUSH
, ICL_TYPE_POINTER
, avc
,
1387 ICL_TYPE_OFFSET
, ICL_HANDLE_OFFSET(avc
->f
.m
.Length
));
1388 sync
= 1; /* XX Temp testing XX */
1390 #if defined(AFS_SUN5_ENV)
1391 ObtainWriteLock(&avc
->vlock
, 573);
1392 avc
->activeV
++; /* block new getpages */
1393 ReleaseWriteLock(&avc
->vlock
);
1396 /* Flush VM pages */
1397 osi_VM_TryToSmush(avc
, acred
, sync
);
1400 * Get the hash chain containing all dce's for this fid
1402 i
= DVHash(&avc
->f
.fid
);
1403 ObtainWriteLock(&afs_xdcache
, 277);
1404 for (index
= afs_dvhashTbl
[i
]; index
!= NULLIDX
; index
= i
) {
1405 i
= afs_dvnextTbl
[index
]; /* next pointer this hash table */
1406 if (afs_indexUnique
[index
] == avc
->f
.fid
.Fid
.Unique
) {
1407 int releaseTlock
= 1;
1408 tdc
= afs_GetValidDSlot(index
);
1410 /* afs_TryToSmush is best-effort; we may not actually discard
1411 * everything, so failure to discard a dcache due to an i/o
1415 if (!FidCmp(&tdc
->f
.fid
, &avc
->f
.fid
)) {
1417 if ((afs_indexFlags
[index
] & IFDataMod
) == 0
1418 && tdc
->refCount
== 1) {
1419 ReleaseReadLock(&tdc
->tlock
);
1421 afs_FlushDCache(tdc
);
1424 afs_indexTable
[index
] = 0;
1427 ReleaseReadLock(&tdc
->tlock
);
1431 #if defined(AFS_SUN5_ENV)
1432 ObtainWriteLock(&avc
->vlock
, 545);
1433 if (--avc
->activeV
== 0 && (avc
->vstates
& VRevokeWait
)) {
1434 avc
->vstates
&= ~VRevokeWait
;
1435 afs_osi_Wakeup((char *)&avc
->vstates
);
1437 ReleaseWriteLock(&avc
->vlock
);
1439 ReleaseWriteLock(&afs_xdcache
);
1441 * It's treated like a callback so that when we do lookups we'll
1442 * invalidate the unique bit if any
1443 * trytoSmush occured during the lookup call
1449 * afs_DCacheMissingChunks
1452 * Given the cached info for a file, return the number of chunks that
1453 * are not available from the dcache.
1456 * avc: Pointer to the (held) vcache entry to look in.
1459 * The number of chunks which are not currently cached.
1462 * The vcache entry is held upon entry.
1466 afs_DCacheMissingChunks(struct vcache
*avc
)
1469 afs_size_t totalLength
= 0;
1470 afs_uint32 totalChunks
= 0;
1473 totalLength
= avc
->f
.m
.Length
;
1474 if (avc
->f
.truncPos
< totalLength
)
1475 totalLength
= avc
->f
.truncPos
;
1477 /* Length is 0, no chunk missing. */
1478 if (totalLength
== 0)
1481 /* If totalLength is a multiple of chunksize, the last byte appears
1482 * as being part of the next chunk, which does not exist.
1483 * Decrementing totalLength by one fixes that.
1486 totalChunks
= (AFS_CHUNK(totalLength
) + 1);
1488 /* If we're a directory, we only ever have one chunk, regardless of
1489 * the size of the dir.
1491 if (avc
->f
.fid
.Fid
.Vnode
& 1 || vType(avc
) == VDIR
)
1495 printf("Should have %d chunks for %u bytes\n",
1496 totalChunks, (totalLength + 1));
1498 i
= DVHash(&avc
->f
.fid
);
1499 ObtainWriteLock(&afs_xdcache
, 1001);
1500 for (index
= afs_dvhashTbl
[i
]; index
!= NULLIDX
; index
= i
) {
1501 i
= afs_dvnextTbl
[index
];
1502 if (afs_indexUnique
[index
] == avc
->f
.fid
.Fid
.Unique
) {
1503 tdc
= afs_GetValidDSlot(index
);
1505 if (!FidCmp(&tdc
->f
.fid
, &avc
->f
.fid
)) {
1508 ReleaseReadLock(&tdc
->tlock
);
1513 ReleaseWriteLock(&afs_xdcache
);
1515 /*printf("Missing %d chunks\n", totalChunks);*/
1517 return (totalChunks
);
1524 * Given the cached info for a file and a byte offset into the
1525 * file, make sure the dcache entry for that file and containing
1526 * the given byte is available, returning it to our caller.
1529 * avc : Pointer to the (held) vcache entry to look in.
1530 * abyte : Which byte we want to get to.
1533 * Pointer to the dcache entry covering the file & desired byte,
1534 * or NULL if not found.
1537 * The vcache entry is held upon entry.
1541 afs_FindDCache(struct vcache
*avc
, afs_size_t abyte
)
1545 struct dcache
*tdc
= NULL
;
1547 AFS_STATCNT(afs_FindDCache
);
1548 chunk
= AFS_CHUNK(abyte
);
1551 * Hash on the [fid, chunk] and get the corresponding dcache index
1552 * after write-locking the dcache.
1554 i
= DCHash(&avc
->f
.fid
, chunk
);
1555 ObtainWriteLock(&afs_xdcache
, 278);
1556 for (index
= afs_dchashTbl
[i
]; index
!= NULLIDX
; index
= afs_dcnextTbl
[index
]) {
1557 if (afs_indexUnique
[index
] == avc
->f
.fid
.Fid
.Unique
) {
1558 tdc
= afs_GetValidDSlot(index
);
1560 /* afs_FindDCache is best-effort; we may not find the given
1561 * file/offset, so if we cannot find the given dcache due to
1562 * i/o errors, that is okay. */
1565 ReleaseReadLock(&tdc
->tlock
);
1566 if (!FidCmp(&tdc
->f
.fid
, &avc
->f
.fid
) && chunk
== tdc
->f
.chunk
) {
1567 break; /* leaving refCount high for caller */
1572 if (index
!= NULLIDX
) {
1573 hset(afs_indexTimes
[tdc
->index
], afs_indexCounter
);
1574 hadd32(afs_indexCounter
, 1);
1575 ReleaseWriteLock(&afs_xdcache
);
1578 ReleaseWriteLock(&afs_xdcache
);
1580 } /*afs_FindDCache */
1582 /* only call these from afs_AllocDCache() */
1583 static struct dcache
*
1584 afs_AllocFreeDSlot(void)
1588 tdc
= afs_GetDSlotFromList(&afs_freeDCList
);
1592 afs_indexFlags
[tdc
->index
] &= ~IFFree
;
1593 ObtainWriteLock(&tdc
->lock
, 604);
1598 static struct dcache
*
1599 afs_AllocDiscardDSlot(afs_int32 lock
)
1602 afs_uint32 size
= 0;
1603 struct osi_file
*file
;
1605 tdc
= afs_GetDSlotFromList(&afs_discardDCList
);
1609 afs_indexFlags
[tdc
->index
] &= ~IFDiscarded
;
1610 ObtainWriteLock(&tdc
->lock
, 605);
1611 afs_discardDCCount
--;
1613 ((tdc
->f
.chunkBytes
+
1614 afs_fsfragsize
) ^ afs_fsfragsize
) >> 10;
1615 tdc
->f
.states
&= ~(DRO
|DBackup
|DRW
);
1616 afs_DCMoveBucket(tdc
, size
, 0);
1617 afs_blocksDiscarded
-= size
;
1618 afs_stats_cmperf
.cacheBlocksDiscarded
= afs_blocksDiscarded
;
1620 /* Truncate the chunk so zeroes get filled properly */
1621 file
= afs_CFileOpen(&tdc
->f
.inode
);
1622 afs_CFileTruncate(file
, 0);
1623 afs_CFileClose(file
);
1624 afs_AdjustSize(tdc
, 0);
1631 * Get a fresh dcache from the free or discarded list.
1633 * \param avc Who's dcache is this going to be?
1634 * \param chunk The position where it will be placed in.
1635 * \param lock How are locks held.
1636 * \param ashFid If this dcache going to be used for a shadow dir,
1639 * \note Required locks:
1641 * - avc (R if (lock & 1) set and W otherwise)
1642 * \note It write locks the new dcache. The caller must unlock it.
1644 * \return The new dcache.
1647 afs_AllocDCache(struct vcache
*avc
, afs_int32 chunk
, afs_int32 lock
,
1648 struct VenusFid
*ashFid
)
1650 struct dcache
*tdc
= NULL
;
1652 /* if (lock & 2), prefer 'free' dcaches; otherwise, prefer 'discard'
1653 * dcaches. In either case, try both if our first choice doesn't work. */
1655 tdc
= afs_AllocFreeDSlot();
1657 tdc
= afs_AllocDiscardDSlot(lock
);
1660 tdc
= afs_AllocDiscardDSlot(lock
);
1662 tdc
= afs_AllocFreeDSlot();
1671 * avc->lock(R) if setLocks
1672 * avc->lock(W) if !setLocks
1678 * Fill in the newly-allocated dcache record.
1680 afs_indexFlags
[tdc
->index
] &= ~(IFDirtyPages
| IFAnyPages
);
1682 /* Use shadow fid if provided. */
1683 tdc
->f
.fid
= *ashFid
;
1685 /* Use normal vcache's fid otherwise. */
1686 tdc
->f
.fid
= avc
->f
.fid
;
1687 if (avc
->f
.states
& CRO
)
1688 tdc
->f
.states
= DRO
;
1689 else if (avc
->f
.states
& CBackup
)
1690 tdc
->f
.states
= DBackup
;
1692 tdc
->f
.states
= DRW
;
1693 afs_DCMoveBucket(tdc
, 0, afs_DCGetBucket(avc
));
1694 afs_indexUnique
[tdc
->index
] = tdc
->f
.fid
.Fid
.Unique
;
1696 hones(tdc
->f
.versionNo
); /* invalid value */
1697 tdc
->f
.chunk
= chunk
;
1698 tdc
->validPos
= AFS_CHUNKTOBASE(chunk
);
1700 if (tdc
->lruq
.prev
== &tdc
->lruq
)
1701 osi_Panic("lruq 1");
1710 * This function is called to obtain a reference to data stored in
1711 * the disk cache, locating a chunk of data containing the desired
1712 * byte and returning a reference to the disk cache entry, with its
1713 * reference count incremented.
1717 * avc : Ptr to a vcache entry (unlocked)
1718 * abyte : Byte position in the file desired
1719 * areq : Request structure identifying the requesting user.
1720 * aflags : Settings as follows:
1722 * 2 : Return after creating entry.
1723 * 4 : called from afs_vnop_write.c
1724 * *alen contains length of data to be written.
1726 * aoffset : Set to the offset within the chunk where the resident
1728 * alen : Set to the number of bytes of data after the desired
1729 * byte (including the byte itself) which can be read
1733 * The vcache entry pointed to by avc is unlocked upon entry.
1737 * Update the vnode-to-dcache hint if we can get the vnode lock
1738 * right away. Assumes dcache entry is at least read-locked.
1741 updateV2DC(int lockVc
, struct vcache
*v
, struct dcache
*d
, int src
)
1743 if (!lockVc
|| 0 == NBObtainWriteLock(&v
->lock
, src
)) {
1744 if (hsame(v
->f
.m
.DataVersion
, d
->f
.versionNo
) && v
->callback
)
1747 ReleaseWriteLock(&v
->lock
);
1751 /* avc - Write-locked unless aflags & 1 */
1753 afs_GetDCache(struct vcache
*avc
, afs_size_t abyte
,
1754 struct vrequest
*areq
, afs_size_t
* aoffset
,
1755 afs_size_t
* alen
, int aflags
)
1757 afs_int32 i
, code
, shortcut
;
1758 #if defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV)
1759 afs_int32 adjustsize
= 0;
1765 afs_size_t Position
= 0;
1766 afs_int32 size
, tlen
; /* size of segment to transfer */
1767 struct afs_FetchOutput
*tsmall
= 0;
1769 struct osi_file
*file
;
1770 struct afs_conn
*tc
;
1772 struct server
*newCallback
= NULL
;
1773 char setNewCallback
;
1774 char setVcacheStatus
;
1775 char doVcacheUpdate
;
1777 int doAdjustSize
= 0;
1778 int doReallyAdjustSize
= 0;
1779 int overWriteWholeChunk
= 0;
1780 struct rx_connection
*rxconn
;
1783 struct afs_stats_AccessInfo
*accP
; /*Ptr to access record in stats */
1784 int fromReplica
; /*Are we reading from a replica? */
1785 int numFetchLoops
; /*# times around the fetch/analyze loop */
1786 #endif /* AFS_NOSTATS */
1788 AFS_STATCNT(afs_GetDCache
);
1792 setLocks
= aflags
& 1;
1795 * Determine the chunk number and offset within the chunk corresponding
1796 * to the desired byte.
1798 if (avc
->f
.fid
.Fid
.Vnode
& 1) { /* if (vType(avc) == VDIR) */
1801 chunk
= AFS_CHUNK(abyte
);
1804 /* come back to here if we waited for the cache to drain. */
1807 setNewCallback
= setVcacheStatus
= 0;
1811 ObtainWriteLock(&avc
->lock
, 616);
1813 ObtainReadLock(&avc
->lock
);
1818 * avc->lock(R) if setLocks && !slowPass
1819 * avc->lock(W) if !setLocks || slowPass
1824 /* check hints first! (might could use bcmp or some such...) */
1825 if ((tdc
= avc
->dchint
)) {
1829 * The locking order between afs_xdcache and dcache lock matters.
1830 * The hint dcache entry could be anywhere, even on the free list.
1831 * Locking afs_xdcache ensures that noone is trying to pull dcache
1832 * entries from the free list, and thereby assuming them to be not
1833 * referenced and not locked.
1835 ObtainReadLock(&afs_xdcache
);
1836 dcLocked
= (0 == NBObtainSharedLock(&tdc
->lock
, 601));
1838 if (dcLocked
&& (tdc
->index
!= NULLIDX
)
1839 && !FidCmp(&tdc
->f
.fid
, &avc
->f
.fid
) && chunk
== tdc
->f
.chunk
1840 && !(afs_indexFlags
[tdc
->index
] & (IFFree
| IFDiscarded
))) {
1841 /* got the right one. It might not be the right version, and it
1842 * might be fetching, but it's the right dcache entry.
1844 /* All this code should be integrated better with what follows:
1845 * I can save a good bit more time under a write lock if I do..
1847 ObtainWriteLock(&tdc
->tlock
, 603);
1849 ReleaseWriteLock(&tdc
->tlock
);
1851 ReleaseReadLock(&afs_xdcache
);
1854 if (hsame(tdc
->f
.versionNo
, avc
->f
.m
.DataVersion
)
1855 && !(tdc
->dflags
& DFFetching
)) {
1857 afs_stats_cmperf
.dcacheHits
++;
1858 ObtainWriteLock(&afs_xdcache
, 559);
1859 QRemove(&tdc
->lruq
);
1860 QAdd(&afs_DLRU
, &tdc
->lruq
);
1861 ReleaseWriteLock(&afs_xdcache
);
1864 * avc->lock(R) if setLocks && !slowPass
1865 * avc->lock(W) if !setLocks || slowPass
1872 ReleaseSharedLock(&tdc
->lock
);
1873 ReleaseReadLock(&afs_xdcache
);
1881 * avc->lock(R) if setLocks && !slowPass
1882 * avc->lock(W) if !setLocks || slowPass
1883 * tdc->lock(S) if tdc
1886 if (!tdc
) { /* If the hint wasn't the right dcache entry */
1887 int dslot_error
= 0;
1889 * Hash on the [fid, chunk] and get the corresponding dcache index
1890 * after write-locking the dcache.
1895 * avc->lock(R) if setLocks && !slowPass
1896 * avc->lock(W) if !setLocks || slowPass
1899 i
= DCHash(&avc
->f
.fid
, chunk
);
1900 /* check to make sure our space is fine */
1901 afs_MaybeWakeupTruncateDaemon();
1903 ObtainWriteLock(&afs_xdcache
, 280);
1905 for (index
= afs_dchashTbl
[i
]; index
!= NULLIDX
; us
= index
, index
= afs_dcnextTbl
[index
]) {
1906 if (afs_indexUnique
[index
] == avc
->f
.fid
.Fid
.Unique
) {
1907 tdc
= afs_GetValidDSlot(index
);
1909 /* we got an i/o error when trying to get the given dslot,
1910 * but do not bail out just yet; it is possible the dcache
1911 * we're looking for is elsewhere, so it doesn't matter if
1912 * we can't load this one. */
1916 ReleaseReadLock(&tdc
->tlock
);
1919 * avc->lock(R) if setLocks && !slowPass
1920 * avc->lock(W) if !setLocks || slowPass
1923 if (!FidCmp(&tdc
->f
.fid
, &avc
->f
.fid
) && chunk
== tdc
->f
.chunk
) {
1924 /* Move it up in the beginning of the list */
1925 if (afs_dchashTbl
[i
] != index
) {
1926 afs_dcnextTbl
[us
] = afs_dcnextTbl
[index
];
1927 afs_dcnextTbl
[index
] = afs_dchashTbl
[i
];
1928 afs_dchashTbl
[i
] = index
;
1930 ReleaseWriteLock(&afs_xdcache
);
1931 ObtainSharedLock(&tdc
->lock
, 606);
1932 break; /* leaving refCount high for caller */
1940 * If we didn't find the entry, we'll create one.
1942 if (index
== NULLIDX
) {
1945 * avc->lock(R) if setLocks
1946 * avc->lock(W) if !setLocks
1949 afs_Trace2(afs_iclSetp
, CM_TRACE_GETDCACHE1
, ICL_TYPE_POINTER
,
1950 avc
, ICL_TYPE_INT32
, chunk
);
1953 /* We couldn't find the dcache we want, but we hit some i/o
1954 * errors when trying to find it, so we're not sure if the
1955 * dcache we want is in the cache or not. Error out, so we
1956 * don't try to possibly create 2 separate dcaches for the
1957 * same exact data. */
1958 ReleaseWriteLock(&afs_xdcache
);
1962 if (afs_discardDCList
== NULLIDX
&& afs_freeDCList
== NULLIDX
) {
1964 avc
->f
.states
|= CDCLock
;
1965 /* just need slots */
1966 afs_GetDownD(5, (int *)0, afs_DCGetBucket(avc
));
1968 avc
->f
.states
&= ~CDCLock
;
1970 tdc
= afs_AllocDCache(avc
, chunk
, aflags
, NULL
);
1972 /* If we can't get space for 5 mins we give up and panic */
1973 if (++downDCount
> 300)
1974 osi_Panic("getdcache");
1975 ReleaseWriteLock(&afs_xdcache
);
1978 * avc->lock(R) if setLocks
1979 * avc->lock(W) if !setLocks
1981 afs_osi_Wait(1000, 0, 0);
1987 * avc->lock(R) if setLocks
1988 * avc->lock(W) if !setLocks
1994 * Now add to the two hash chains - note that i is still set
1995 * from the above DCHash call.
1997 afs_dcnextTbl
[tdc
->index
] = afs_dchashTbl
[i
];
1998 afs_dchashTbl
[i
] = tdc
->index
;
1999 i
= DVHash(&avc
->f
.fid
);
2000 afs_dvnextTbl
[tdc
->index
] = afs_dvhashTbl
[i
];
2001 afs_dvhashTbl
[i
] = tdc
->index
;
2002 tdc
->dflags
= DFEntryMod
;
2004 afs_MaybeWakeupTruncateDaemon();
2005 ReleaseWriteLock(&afs_xdcache
);
2006 ConvertWToSLock(&tdc
->lock
);
2011 /* vcache->dcache hint failed */
2014 * avc->lock(R) if setLocks && !slowPass
2015 * avc->lock(W) if !setLocks || slowPass
2018 afs_Trace4(afs_iclSetp
, CM_TRACE_GETDCACHE2
, ICL_TYPE_POINTER
, avc
,
2019 ICL_TYPE_POINTER
, tdc
, ICL_TYPE_INT32
,
2020 hgetlo(tdc
->f
.versionNo
), ICL_TYPE_INT32
,
2021 hgetlo(avc
->f
.m
.DataVersion
));
2023 * Here we have the entry in tdc, with its refCount incremented.
2024 * Note: we don't use the S-lock on avc; it costs concurrency when
2025 * storing a file back to the server.
2029 * Not a newly created file so we need to check the file's length and
2030 * compare data versions since someone could have changed the data or we're
2031 * reading a file written elsewhere. We only want to bypass doing no-op
2032 * read rpcs on newly created files (dv of 0) since only then we guarantee
2033 * that this chunk's data hasn't been filled by another client.
2035 size
= AFS_CHUNKSIZE(abyte
);
2036 if (aflags
& 4) /* called from write */
2038 else /* called from read */
2039 tlen
= tdc
->validPos
- abyte
;
2040 Position
= AFS_CHUNKTOBASE(chunk
);
2041 afs_Trace4(afs_iclSetp
, CM_TRACE_GETDCACHE3
, ICL_TYPE_INT32
, tlen
,
2042 ICL_TYPE_INT32
, aflags
, ICL_TYPE_OFFSET
,
2043 ICL_HANDLE_OFFSET(abyte
), ICL_TYPE_OFFSET
,
2044 ICL_HANDLE_OFFSET(Position
));
2045 if ((aflags
& 4) && (hiszero(avc
->f
.m
.DataVersion
)))
2047 if ((AFS_CHUNKTOBASE(chunk
) >= avc
->f
.m
.Length
) ||
2048 ((aflags
& 4) && (abyte
== Position
) && (tlen
>= size
)))
2049 overWriteWholeChunk
= 1;
2050 if (doAdjustSize
|| overWriteWholeChunk
) {
2051 #if defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV)
2053 #ifdef AFS_SGI64_ENV
2056 #else /* AFS_SGI64_ENV */
2059 #endif /* AFS_SGI64_ENV */
2060 #else /* AFS_SGI_ENV */
2063 #endif /* AFS_SGI_ENV */
2064 if (AFS_CHUNKTOBASE(chunk
) + adjustsize
>= avc
->f
.m
.Length
&&
2065 #else /* defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV) */
2066 #if defined(AFS_SUN5_ENV)
2067 if ((doAdjustSize
|| (AFS_CHUNKTOBASE(chunk
) >= avc
->f
.m
.Length
)) &&
2069 if (AFS_CHUNKTOBASE(chunk
) >= avc
->f
.m
.Length
&&
2071 #endif /* defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV) */
2072 !hsame(avc
->f
.m
.DataVersion
, tdc
->f
.versionNo
))
2073 doReallyAdjustSize
= 1;
2075 if (doReallyAdjustSize
|| overWriteWholeChunk
) {
2076 /* no data in file to read at this position */
2077 UpgradeSToWLock(&tdc
->lock
, 607);
2078 file
= afs_CFileOpen(&tdc
->f
.inode
);
2079 afs_CFileTruncate(file
, 0);
2080 afs_CFileClose(file
);
2081 afs_AdjustSize(tdc
, 0);
2082 hset(tdc
->f
.versionNo
, avc
->f
.m
.DataVersion
);
2083 tdc
->dflags
|= DFEntryMod
;
2085 ConvertWToSLock(&tdc
->lock
);
2090 * We must read in the whole chunk if the version number doesn't
2094 /* don't need data, just a unique dcache entry */
2095 ObtainWriteLock(&afs_xdcache
, 608);
2096 hset(afs_indexTimes
[tdc
->index
], afs_indexCounter
);
2097 hadd32(afs_indexCounter
, 1);
2098 ReleaseWriteLock(&afs_xdcache
);
2100 updateV2DC(setLocks
, avc
, tdc
, 553);
2101 if (vType(avc
) == VDIR
)
2104 *aoffset
= AFS_CHUNKOFFSET(abyte
);
2105 if (tdc
->validPos
< abyte
)
2106 *alen
= (afs_size_t
) 0;
2108 *alen
= tdc
->validPos
- abyte
;
2109 ReleaseSharedLock(&tdc
->lock
);
2112 ReleaseWriteLock(&avc
->lock
);
2114 ReleaseReadLock(&avc
->lock
);
2116 return tdc
; /* check if we're done */
2121 * avc->lock(R) if setLocks && !slowPass
2122 * avc->lock(W) if !setLocks || slowPass
2125 osi_Assert((setLocks
&& !slowPass
) || WriteLocked(&avc
->lock
));
2127 setNewCallback
= setVcacheStatus
= 0;
2131 * avc->lock(R) if setLocks && !slowPass
2132 * avc->lock(W) if !setLocks || slowPass
2135 if (!hsame(avc
->f
.m
.DataVersion
, tdc
->f
.versionNo
) && !overWriteWholeChunk
) {
2137 * Version number mismatch.
2140 * If we are disconnected, then we can't do much of anything
2141 * because the data doesn't match the file.
2143 if (AFS_IS_DISCONNECTED
) {
2144 ReleaseSharedLock(&tdc
->lock
);
2147 ReleaseWriteLock(&avc
->lock
);
2149 ReleaseReadLock(&avc
->lock
);
2151 /* Flush the Dcache */
2156 UpgradeSToWLock(&tdc
->lock
, 609);
2159 * If data ever existed for this vnode, and this is a text object,
2160 * do some clearing. Now, you'd think you need only do the flush
2161 * when VTEXT is on, but VTEXT is turned off when the text object
2162 * is freed, while pages are left lying around in memory marked
2163 * with this vnode. If we would reactivate (create a new text
2164 * object from) this vnode, we could easily stumble upon some of
2165 * these old pages in pagein. So, we always flush these guys.
2166 * Sun has a wonderful lack of useful invariants in this system.
2168 * avc->flushDV is the data version # of the file at the last text
2169 * flush. Clearly, at least, we don't have to flush the file more
2170 * often than it changes
2172 if (hcmp(avc
->flushDV
, avc
->f
.m
.DataVersion
) < 0) {
2174 * By here, the cache entry is always write-locked. We can
2175 * deadlock if we call osi_Flush with the cache entry locked...
2176 * Unlock the dcache too.
2178 ReleaseWriteLock(&tdc
->lock
);
2179 if (setLocks
&& !slowPass
)
2180 ReleaseReadLock(&avc
->lock
);
2182 ReleaseWriteLock(&avc
->lock
);
2186 * Call osi_FlushPages in open, read/write, and map, since it
2187 * is too hard here to figure out if we should lock the
2190 if (setLocks
&& !slowPass
)
2191 ObtainReadLock(&avc
->lock
);
2193 ObtainWriteLock(&avc
->lock
, 66);
2194 ObtainWriteLock(&tdc
->lock
, 610);
2199 * avc->lock(R) if setLocks && !slowPass
2200 * avc->lock(W) if !setLocks || slowPass
2204 /* Watch for standard race condition around osi_FlushText */
2205 if (hsame(avc
->f
.m
.DataVersion
, tdc
->f
.versionNo
)) {
2206 updateV2DC(setLocks
, avc
, tdc
, 569); /* set hint */
2207 afs_stats_cmperf
.dcacheHits
++;
2208 ConvertWToSLock(&tdc
->lock
);
2212 /* Sleep here when cache needs to be drained. */
2213 if (setLocks
&& !slowPass
2214 && (afs_blocksUsed
>
2215 PERCENT(CM_WAITFORDRAINPCT
, afs_cacheBlocks
))) {
2216 /* Make sure truncate daemon is running */
2217 afs_MaybeWakeupTruncateDaemon();
2218 ObtainWriteLock(&tdc
->tlock
, 614);
2219 tdc
->refCount
--; /* we'll re-obtain the dcache when we re-try. */
2220 ReleaseWriteLock(&tdc
->tlock
);
2221 ReleaseWriteLock(&tdc
->lock
);
2222 ReleaseReadLock(&avc
->lock
);
2223 while ((afs_blocksUsed
- afs_blocksDiscarded
) >
2224 PERCENT(CM_WAITFORDRAINPCT
, afs_cacheBlocks
)) {
2225 afs_WaitForCacheDrain
= 1;
2226 afs_osi_Sleep(&afs_WaitForCacheDrain
);
2228 afs_MaybeFreeDiscardedDCache();
2229 /* need to check if someone else got the chunk first. */
2230 goto RetryGetDCache
;
2233 Position
= AFS_CHUNKBASE(abyte
);
2234 if (vType(avc
) == VDIR
) {
2235 size
= avc
->f
.m
.Length
;
2236 if (size
> tdc
->f
.chunkBytes
) {
2237 /* pre-reserve space for file */
2238 afs_AdjustSize(tdc
, size
);
2240 size
= 999999999; /* max size for transfer */
2242 afs_size_t maxGoodLength
;
2244 /* estimate how much data we're expecting back from the server,
2245 * and reserve space in the dcache entry for it */
2247 maxGoodLength
= avc
->f
.m
.Length
;
2248 if (avc
->f
.truncPos
< maxGoodLength
)
2249 maxGoodLength
= avc
->f
.truncPos
;
2251 size
= AFS_CHUNKSIZE(abyte
); /* expected max size */
2252 if (Position
> maxGoodLength
) { /* If we're beyond EOF */
2254 } else if (Position
+ size
> maxGoodLength
) {
2255 size
= maxGoodLength
- Position
;
2257 osi_Assert(size
>= 0);
2259 if (size
> tdc
->f
.chunkBytes
) {
2260 /* pre-reserve estimated space for file */
2261 afs_AdjustSize(tdc
, size
); /* changes chunkBytes */
2265 /* For the actual fetch, do not limit the request to the
2266 * length of the file. If this results in a read past EOF on
2267 * the server, the server will just reply with less data than
2268 * requested. If we limit ourselves to only requesting data up
2269 * to the avc file length, we open ourselves up to races if the
2270 * file is extended on the server at about the same time.
2272 * However, we must restrict ourselves to the avc->f.truncPos
2273 * length, since this represents an outstanding local
2274 * truncation of the file that will be committed to the
2275 * fileserver when we actually write the fileserver contents.
2276 * If we do not restrict the fetch length based on
2277 * avc->f.truncPos, a different truncate operation extending
2278 * the file length could cause the old data after
2279 * avc->f.truncPos to reappear, instead of extending the file
2280 * with NUL bytes. */
2281 size
= AFS_CHUNKSIZE(abyte
);
2282 if (Position
> avc
->f
.truncPos
) {
2284 } else if (Position
+ size
> avc
->f
.truncPos
) {
2285 size
= avc
->f
.truncPos
- Position
;
2287 osi_Assert(size
>= 0);
2290 if (afs_mariner
&& !tdc
->f
.chunk
)
2291 afs_MarinerLog("fetch$Fetching", avc
); /* , Position, size, afs_indexCounter ); */
2293 * Right now, we only have one tool, and it's a hammer. So, we
2294 * fetch the whole file.
2296 DZap(tdc
); /* pages in cache may be old */
2297 file
= afs_CFileOpen(&tdc
->f
.inode
);
2298 afs_RemoveVCB(&avc
->f
.fid
);
2299 tdc
->f
.states
|= DWriting
;
2300 tdc
->dflags
|= DFFetching
;
2301 tdc
->validPos
= Position
; /* which is AFS_CHUNKBASE(abyte) */
2302 if (tdc
->mflags
& DFFetchReq
) {
2303 tdc
->mflags
&= ~DFFetchReq
;
2304 if (afs_osi_Wakeup(&tdc
->validPos
) == 0)
2305 afs_Trace4(afs_iclSetp
, CM_TRACE_DCACHEWAKE
, ICL_TYPE_STRING
,
2306 __FILE__
, ICL_TYPE_INT32
, __LINE__
,
2307 ICL_TYPE_POINTER
, tdc
, ICL_TYPE_INT32
,
2310 tsmall
= osi_AllocLargeSpace(sizeof(struct afs_FetchOutput
));
2311 setVcacheStatus
= 0;
2314 * Remember if we are doing the reading from a replicated volume,
2315 * and how many times we've zipped around the fetch/analyze loop.
2317 fromReplica
= (avc
->f
.states
& CRO
) ? 1 : 0;
2319 accP
= &(afs_stats_cmfullperf
.accessinf
);
2321 (accP
->replicatedRefs
)++;
2323 (accP
->unreplicatedRefs
)++;
2324 #endif /* AFS_NOSTATS */
2325 /* this is a cache miss */
2326 afs_Trace4(afs_iclSetp
, CM_TRACE_FETCHPROC
, ICL_TYPE_POINTER
, avc
,
2327 ICL_TYPE_FID
, &(avc
->f
.fid
), ICL_TYPE_OFFSET
,
2328 ICL_HANDLE_OFFSET(Position
), ICL_TYPE_INT32
, size
);
2331 afs_stats_cmperf
.dcacheMisses
++;
2334 * Dynamic root support: fetch data from local memory.
2336 if (afs_IsDynroot(avc
)) {
2340 afs_GetDynroot(&dynrootDir
, &dynrootLen
, &tsmall
->OutStatus
);
2342 dynrootDir
+= Position
;
2343 dynrootLen
-= Position
;
2344 if (size
> dynrootLen
)
2348 code
= afs_CFileWrite(file
, 0, dynrootDir
, size
);
2356 tdc
->validPos
= Position
+ size
;
2357 afs_CFileTruncate(file
, size
); /* prune it */
2358 } else if (afs_IsDynrootMount(avc
)) {
2362 afs_GetDynrootMount(&dynrootDir
, &dynrootLen
, &tsmall
->OutStatus
);
2364 dynrootDir
+= Position
;
2365 dynrootLen
-= Position
;
2366 if (size
> dynrootLen
)
2370 code
= afs_CFileWrite(file
, 0, dynrootDir
, size
);
2378 tdc
->validPos
= Position
+ size
;
2379 afs_CFileTruncate(file
, size
); /* prune it */
2382 * Not a dynamic vnode: do the real fetch.
2387 * avc->lock(R) if setLocks && !slowPass
2388 * avc->lock(W) if !setLocks || slowPass
2392 tc
= afs_Conn(&avc
->f
.fid
, areq
, SHARED_LOCK
, &rxconn
);
2397 (accP
->numReplicasAccessed
)++;
2399 #endif /* AFS_NOSTATS */
2400 if (!setLocks
|| slowPass
) {
2401 avc
->callback
= tc
->parent
->srvr
->server
;
2403 newCallback
= tc
->parent
->srvr
->server
;
2407 code
= afs_CacheFetchProc(tc
, rxconn
, file
, Position
, tdc
,
2413 /* callback could have been broken (or expired) in a race here,
2414 * but we return the data anyway. It's as good as we knew about
2415 * when we started. */
2417 * validPos is updated by CacheFetchProc, and can only be
2418 * modifed under a dcache write lock, which we've blocked out
2420 size
= tdc
->validPos
- Position
; /* actual segment size */
2423 afs_CFileTruncate(file
, size
); /* prune it */
2425 if (!setLocks
|| slowPass
) {
2426 afs_StaleVCacheFlags(avc
, AFS_STALEVC_CLEARCB
, CUnique
);
2428 /* Something lost. Forget about performance, and go
2429 * back with a vcache write lock.
2431 afs_CFileTruncate(file
, 0);
2432 afs_AdjustSize(tdc
, 0);
2433 afs_CFileClose(file
);
2434 osi_FreeLargeSpace(tsmall
);
2436 ReleaseWriteLock(&tdc
->lock
);
2439 ReleaseReadLock(&avc
->lock
);
2442 /* If we have a connection, we must put it back,
2443 * since afs_Analyze will not be called here. */
2444 afs_PutConn(tc
, rxconn
, SHARED_LOCK
);
2448 goto RetryGetDCache
;
2452 } while (afs_Analyze
2453 (tc
, rxconn
, code
, &avc
->f
.fid
, areq
,
2454 AFS_STATS_FS_RPCIDX_FETCHDATA
, SHARED_LOCK
, NULL
));
2458 * avc->lock(R) if setLocks && !slowPass
2459 * avc->lock(W) if !setLocks || slowPass
2465 * In the case of replicated access, jot down info on the number of
2466 * attempts it took before we got through or gave up.
2469 if (numFetchLoops
<= 1)
2470 (accP
->refFirstReplicaOK
)++;
2471 if (numFetchLoops
> accP
->maxReplicasPerRef
)
2472 accP
->maxReplicasPerRef
= numFetchLoops
;
2474 #endif /* AFS_NOSTATS */
2476 tdc
->dflags
&= ~DFFetching
;
2477 if (afs_osi_Wakeup(&tdc
->validPos
) == 0)
2478 afs_Trace4(afs_iclSetp
, CM_TRACE_DCACHEWAKE
, ICL_TYPE_STRING
,
2479 __FILE__
, ICL_TYPE_INT32
, __LINE__
, ICL_TYPE_POINTER
,
2480 tdc
, ICL_TYPE_INT32
, tdc
->dflags
);
2481 if (avc
->execsOrWriters
== 0)
2482 tdc
->f
.states
&= ~DWriting
;
2484 /* now, if code != 0, we have an error and should punt.
2485 * note that we have the vcache write lock, either because
2486 * !setLocks or slowPass.
2489 afs_CFileTruncate(file
, 0);
2490 afs_AdjustSize(tdc
, 0);
2491 afs_CFileClose(file
);
2492 ZapDCE(tdc
); /* sets DFEntryMod */
2493 if (vType(avc
) == VDIR
) {
2496 tdc
->f
.states
&= ~(DRO
|DBackup
|DRW
);
2497 afs_DCMoveBucket(tdc
, 0, 0);
2498 ReleaseWriteLock(&tdc
->lock
);
2500 if (!afs_IsDynroot(avc
)) {
2501 afs_StaleVCacheFlags(avc
, 0, CUnique
);
2504 * avc->lock(W); assert(!setLocks || slowPass)
2506 osi_Assert(!setLocks
|| slowPass
);
2512 /* otherwise we copy in the just-fetched info */
2513 afs_CFileClose(file
);
2514 afs_AdjustSize(tdc
, size
); /* new size */
2516 * Copy appropriate fields into vcache. Status is
2517 * copied later where we selectively acquire the
2518 * vcache write lock.
2521 afs_ProcessFS(avc
, &tsmall
->OutStatus
, areq
);
2523 setVcacheStatus
= 1;
2524 hset64(tdc
->f
.versionNo
, tsmall
->OutStatus
.dataVersionHigh
,
2525 tsmall
->OutStatus
.DataVersion
);
2526 tdc
->dflags
|= DFEntryMod
;
2527 afs_indexFlags
[tdc
->index
] |= IFEverUsed
;
2528 ConvertWToSLock(&tdc
->lock
);
2529 } /*Data version numbers don't match */
2532 * Data version numbers match.
2534 afs_stats_cmperf
.dcacheHits
++;
2535 } /*Data version numbers match */
2537 updateV2DC(setLocks
, avc
, tdc
, 335); /* set hint */
2541 * avc->lock(R) if setLocks && !slowPass
2542 * avc->lock(W) if !setLocks || slowPass
2543 * tdc->lock(S) if tdc
2547 * See if this was a reference to a file in the local cell.
2549 if (afs_IsPrimaryCellNum(avc
->f
.fid
.Cell
))
2550 afs_stats_cmperf
.dlocalAccesses
++;
2552 afs_stats_cmperf
.dremoteAccesses
++;
2554 /* Fix up LRU info */
2557 ObtainWriteLock(&afs_xdcache
, 602);
2558 hset(afs_indexTimes
[tdc
->index
], afs_indexCounter
);
2559 hadd32(afs_indexCounter
, 1);
2560 ReleaseWriteLock(&afs_xdcache
);
2562 /* return the data */
2563 if (vType(avc
) == VDIR
)
2566 *aoffset
= AFS_CHUNKOFFSET(abyte
);
2567 *alen
= (tdc
->f
.chunkBytes
- *aoffset
);
2568 ReleaseSharedLock(&tdc
->lock
);
2573 * avc->lock(R) if setLocks && !slowPass
2574 * avc->lock(W) if !setLocks || slowPass
2577 /* Fix up the callback and status values in the vcache */
2579 if (setLocks
&& !slowPass
) {
2582 * This is our dirty little secret to parallel fetches.
2583 * We don't write-lock the vcache while doing the fetch,
2584 * but potentially we'll need to update the vcache after
2585 * the fetch is done.
2587 * Drop the read lock and try to re-obtain the write
2588 * lock. If the vcache still has the same DV, it's
2589 * ok to go ahead and install the new data.
2591 afs_hyper_t currentDV
, statusDV
;
2593 hset(currentDV
, avc
->f
.m
.DataVersion
);
2595 if (setNewCallback
&& avc
->callback
!= newCallback
)
2599 hset64(statusDV
, tsmall
->OutStatus
.dataVersionHigh
,
2600 tsmall
->OutStatus
.DataVersion
);
2602 if (setVcacheStatus
&& avc
->f
.m
.Length
!= tsmall
->OutStatus
.Length
)
2604 if (setVcacheStatus
&& !hsame(currentDV
, statusDV
))
2608 ReleaseReadLock(&avc
->lock
);
2610 if (doVcacheUpdate
) {
2611 ObtainWriteLock(&avc
->lock
, 615);
2612 if (!hsame(avc
->f
.m
.DataVersion
, currentDV
)) {
2613 /* We lose. Someone will beat us to it. */
2615 ReleaseWriteLock(&avc
->lock
);
2620 /* With slow pass, we've already done all the updates */
2622 ReleaseWriteLock(&avc
->lock
);
2625 /* Check if we need to perform any last-minute fixes with a write-lock */
2626 if (!setLocks
|| doVcacheUpdate
) {
2628 avc
->callback
= newCallback
;
2629 if (tsmall
&& setVcacheStatus
)
2630 afs_ProcessFS(avc
, &tsmall
->OutStatus
, areq
);
2632 ReleaseWriteLock(&avc
->lock
);
2636 osi_FreeLargeSpace(tsmall
);
2639 } /*afs_GetDCache */
2643 * afs_WriteThroughDSlots
2646 * Sweep through the dcache slots and write out any modified
2647 * in-memory data back on to our caching store.
2653 * The afs_xdcache is write-locked through this whole affair.
2656 afs_WriteThroughDSlots(void)
2659 afs_int32 i
, touchedit
= 0;
2661 struct afs_q DirtyQ
, *tq
;
2663 AFS_STATCNT(afs_WriteThroughDSlots
);
2666 * Because of lock ordering, we can't grab dcache locks while
2667 * holding afs_xdcache. So we enter xdcache, get a reference
2668 * for every dcache entry, and exit xdcache.
2670 ObtainWriteLock(&afs_xdcache
, 283);
2672 for (i
= 0; i
< afs_cacheFiles
; i
++) {
2673 tdc
= afs_indexTable
[i
];
2675 /* Grab tlock in case the existing refcount isn't zero */
2676 if (tdc
&& !(afs_indexFlags
[i
] & (IFFree
| IFDiscarded
))) {
2677 ObtainWriteLock(&tdc
->tlock
, 623);
2679 ReleaseWriteLock(&tdc
->tlock
);
2681 QAdd(&DirtyQ
, &tdc
->dirty
);
2684 ReleaseWriteLock(&afs_xdcache
);
2687 * Now, for each dcache entry we found, check if it's dirty.
2688 * If so, get write-lock, get afs_xdcache, which protects
2689 * afs_cacheInodep, and flush it. Don't forget to put back
2693 #define DQTODC(q) ((struct dcache *)(((char *) (q)) - sizeof(struct afs_q)))
2695 for (tq
= DirtyQ
.prev
; tq
!= &DirtyQ
; tq
= QPrev(tq
)) {
2697 if (tdc
->dflags
& DFEntryMod
) {
2700 wrLock
= (0 == NBObtainWriteLock(&tdc
->lock
, 619));
2702 /* Now that we have the write lock, double-check */
2703 if (wrLock
&& (tdc
->dflags
& DFEntryMod
)) {
2704 tdc
->dflags
&= ~DFEntryMod
;
2705 ObtainWriteLock(&afs_xdcache
, 620);
2706 osi_Assert(afs_WriteDCache(tdc
, 1) == 0);
2707 ReleaseWriteLock(&afs_xdcache
);
2711 ReleaseWriteLock(&tdc
->lock
);
2717 ObtainWriteLock(&afs_xdcache
, 617);
2718 if (!touchedit
&& (cacheDiskType
!= AFS_FCACHE_TYPE_MEM
)) {
2719 /* Touch the file to make sure that the mtime on the file is kept
2720 * up-to-date to avoid losing cached files on cold starts because
2721 * their mtime seems old...
2723 struct afs_fheader theader
;
2725 afs_InitFHeader(&theader
);
2726 afs_osi_Write(afs_cacheInodep
, 0, &theader
, sizeof(theader
));
2728 ReleaseWriteLock(&afs_xdcache
);
2735 * Return a pointer to an freshly initialized dcache entry using
2736 * a memory-based cache. The tlock will be read-locked.
2739 * aslot : Dcache slot to look at.
2740 * type : What 'type' of dslot to get; see the dslot_state enum
2743 * Must be called with afs_xdcache write-locked.
2747 afs_MemGetDSlot(afs_int32 aslot
, dslot_state type
)
2752 AFS_STATCNT(afs_MemGetDSlot
);
2753 if (CheckLock(&afs_xdcache
) != -1)
2754 osi_Panic("getdslot nolock");
2755 if (aslot
< 0 || aslot
>= afs_cacheFiles
)
2756 osi_Panic("getdslot slot %d (of %d)", aslot
, afs_cacheFiles
);
2757 tdc
= afs_indexTable
[aslot
];
2759 QRemove(&tdc
->lruq
); /* move to queue head */
2760 QAdd(&afs_DLRU
, &tdc
->lruq
);
2761 /* We're holding afs_xdcache, but get tlock in case refCount != 0 */
2762 ObtainWriteLock(&tdc
->tlock
, 624);
2764 ConvertWToRLock(&tdc
->tlock
);
2768 /* if we got here, the given slot is not in memory in our list of known
2769 * slots. for memcache, the only place a dslot can exist is in memory, so
2770 * if the caller is expecting to get back a known dslot, and we've reached
2771 * here, something is very wrong. DSLOT_NEW is the only type of dslot that
2772 * may not exist; for all others, the caller assumes the given dslot
2773 * already exists. so, 'type' had better be DSLOT_NEW here, or something is
2775 osi_Assert(type
== DSLOT_NEW
);
2777 if (!afs_freeDSList
)
2778 afs_GetDownDSlot(4);
2779 if (!afs_freeDSList
) {
2780 /* none free, making one is better than a panic */
2781 afs_stats_cmperf
.dcacheXAllocs
++; /* count in case we have a leak */
2782 tdc
= afs_osi_Alloc(sizeof(struct dcache
));
2783 osi_Assert(tdc
!= NULL
);
2784 #ifdef KERNEL_HAVE_PIN
2785 pin((char *)tdc
, sizeof(struct dcache
)); /* XXX */
2788 tdc
= afs_freeDSList
;
2789 afs_freeDSList
= (struct dcache
*)tdc
->lruq
.next
;
2792 tdc
->dflags
= 0; /* up-to-date, not in free q */
2794 QAdd(&afs_DLRU
, &tdc
->lruq
);
2795 if (tdc
->lruq
.prev
== &tdc
->lruq
)
2796 osi_Panic("lruq 3");
2798 /* initialize entry */
2799 tdc
->f
.fid
.Cell
= 0;
2800 tdc
->f
.fid
.Fid
.Volume
= 0;
2802 hones(tdc
->f
.versionNo
);
2803 tdc
->f
.inode
.mem
= aslot
;
2804 tdc
->dflags
|= DFEntryMod
;
2807 afs_indexUnique
[aslot
] = tdc
->f
.fid
.Fid
.Unique
;
2810 osi_Assert(0 == NBObtainWriteLock(&tdc
->lock
, 674));
2811 osi_Assert(0 == NBObtainWriteLock(&tdc
->mflock
, 675));
2812 osi_Assert(0 == NBObtainWriteLock(&tdc
->tlock
, 676));
2815 AFS_RWLOCK_INIT(&tdc
->lock
, "dcache lock");
2816 AFS_RWLOCK_INIT(&tdc
->tlock
, "dcache tlock");
2817 AFS_RWLOCK_INIT(&tdc
->mflock
, "dcache flock");
2818 ObtainReadLock(&tdc
->tlock
);
2820 afs_indexTable
[aslot
] = tdc
;
2823 } /*afs_MemGetDSlot */
2825 unsigned int last_error
= 0, lasterrtime
= 0;
2831 * Return a pointer to an freshly initialized dcache entry using
2832 * a UFS-based disk cache. The dcache tlock will be read-locked.
2835 * aslot : Dcache slot to look at.
2836 * type : What 'type' of dslot to get; see the dslot_state enum
2839 * afs_xdcache lock write-locked.
2842 afs_UFSGetDSlot(afs_int32 aslot
, dslot_state type
)
2850 AFS_STATCNT(afs_UFSGetDSlot
);
2851 if (CheckLock(&afs_xdcache
) != -1)
2852 osi_Panic("getdslot nolock");
2853 if (aslot
< 0 || aslot
>= afs_cacheFiles
)
2854 osi_Panic("getdslot slot %d (of %d)", aslot
, afs_cacheFiles
);
2855 tdc
= afs_indexTable
[aslot
];
2857 QRemove(&tdc
->lruq
); /* move to queue head */
2858 QAdd(&afs_DLRU
, &tdc
->lruq
);
2859 /* Grab tlock in case refCount != 0 */
2860 ObtainWriteLock(&tdc
->tlock
, 625);
2862 ConvertWToRLock(&tdc
->tlock
);
2866 /* otherwise we should read it in from the cache file */
2867 if (!afs_freeDSList
)
2868 afs_GetDownDSlot(4);
2869 if (!afs_freeDSList
) {
2870 /* none free, making one is better than a panic */
2871 afs_stats_cmperf
.dcacheXAllocs
++; /* count in case we have a leak */
2872 tdc
= afs_osi_Alloc(sizeof(struct dcache
));
2873 osi_Assert(tdc
!= NULL
);
2874 #ifdef KERNEL_HAVE_PIN
2875 pin((char *)tdc
, sizeof(struct dcache
)); /* XXX */
2878 tdc
= afs_freeDSList
;
2879 afs_freeDSList
= (struct dcache
*)tdc
->lruq
.next
;
2882 tdc
->dflags
= 0; /* up-to-date, not in free q */
2884 QAdd(&afs_DLRU
, &tdc
->lruq
);
2885 if (tdc
->lruq
.prev
== &tdc
->lruq
)
2886 osi_Panic("lruq 3");
2889 * Seek to the aslot'th entry and read it in.
2891 off
= sizeof(struct fcache
)*aslot
+ sizeof(struct afs_fheader
);
2893 afs_osi_Read(afs_cacheInodep
,
2894 off
, (char *)(&tdc
->f
),
2895 sizeof(struct fcache
));
2897 if (code
!= sizeof(struct fcache
)) {
2899 #if defined(KERNEL_HAVE_UERROR)
2900 last_error
= getuerror();
2904 lasterrtime
= osi_Time();
2905 if (type
!= DSLOT_NEW
) {
2906 /* If we are requesting a non-DSLOT_NEW slot, this is an error.
2907 * non-DSLOT_NEW slots are supposed to already exist, so if we
2908 * failed to read in the slot, something is wrong. */
2909 struct osi_stat tstat
;
2910 if (afs_osi_Stat(afs_cacheInodep
, &tstat
)) {
2913 afs_warn("afs: disk cache read error in CacheItems slot %d "
2914 "off %d/%d code %d/%d\n",
2916 off
, (int)tstat
.size
,
2917 (int)code
, (int)sizeof(struct fcache
));
2918 /* put tdc back on the free dslot list */
2919 QRemove(&tdc
->lruq
);
2920 tdc
->index
= NULLIDX
;
2921 tdc
->lruq
.next
= (struct afs_q
*)afs_freeDSList
;
2922 afs_freeDSList
= tdc
;
2926 if (!afs_CellNumValid(tdc
->f
.fid
.Cell
)) {
2928 if (type
== DSLOT_VALID
) {
2929 osi_Panic("afs: needed valid dcache but index %d off %d has "
2930 "invalid cell num %d\n",
2931 (int)aslot
, off
, (int)tdc
->f
.fid
.Cell
);
2935 if (type
== DSLOT_VALID
&& tdc
->f
.fid
.Fid
.Volume
== 0) {
2936 osi_Panic("afs: invalid zero-volume dcache entry at slot %d off %d",
2940 if (type
== DSLOT_UNUSED
) {
2941 /* the requested dslot is known to exist, but contain invalid data
2942 * (this happens when we're using a dslot from the free or discard
2943 * list). be sure not to re-use the data in it, so force invalidation.
2949 tdc
->f
.fid
.Cell
= 0;
2950 tdc
->f
.fid
.Fid
.Volume
= 0;
2952 hones(tdc
->f
.versionNo
);
2953 tdc
->dflags
|= DFEntryMod
;
2954 afs_indexUnique
[aslot
] = tdc
->f
.fid
.Fid
.Unique
;
2955 tdc
->f
.states
&= ~(DRO
|DBackup
|DRW
);
2956 afs_DCMoveBucket(tdc
, 0, 0);
2958 if (tdc
->f
.states
& DRO
) {
2959 afs_DCMoveBucket(tdc
, 0, 2);
2960 } else if (tdc
->f
.states
& DBackup
) {
2961 afs_DCMoveBucket(tdc
, 0, 1);
2963 afs_DCMoveBucket(tdc
, 0, 1);
2968 if (tdc
->f
.chunk
>= 0)
2969 tdc
->validPos
= AFS_CHUNKTOBASE(tdc
->f
.chunk
) + tdc
->f
.chunkBytes
;
2974 osi_Assert(0 == NBObtainWriteLock(&tdc
->lock
, 674));
2975 osi_Assert(0 == NBObtainWriteLock(&tdc
->mflock
, 675));
2976 osi_Assert(0 == NBObtainWriteLock(&tdc
->tlock
, 676));
2979 AFS_RWLOCK_INIT(&tdc
->lock
, "dcache lock");
2980 AFS_RWLOCK_INIT(&tdc
->tlock
, "dcache tlock");
2981 AFS_RWLOCK_INIT(&tdc
->mflock
, "dcache flock");
2982 ObtainReadLock(&tdc
->tlock
);
2985 * If we didn't read into a temporary dcache region, update the
2986 * slot pointer table.
2988 afs_indexTable
[aslot
] = tdc
;
2991 } /*afs_UFSGetDSlot */
2996 * Write a particular dcache entry back to its home in the
2999 * \param adc Pointer to the dcache entry to write.
3000 * \param atime If true, set the modtime on the file to the current time.
3002 * \note Environment:
3003 * Must be called with the afs_xdcache lock at least read-locked,
3004 * and dcache entry at least read-locked.
3005 * The reference count is not changed.
3009 afs_WriteDCache(struct dcache
*adc
, int atime
)
3013 if (cacheDiskType
== AFS_FCACHE_TYPE_MEM
)
3015 AFS_STATCNT(afs_WriteDCache
);
3016 osi_Assert(WriteLocked(&afs_xdcache
));
3018 adc
->f
.modTime
= osi_Time();
3020 if ((afs_indexFlags
[adc
->index
] & (IFFree
| IFDiscarded
)) == 0 &&
3021 adc
->f
.fid
.Fid
.Volume
== 0) {
3022 /* If a dcache slot is not on the free or discard list, it must be
3023 * in the hash table. Thus, the volume must be non-zero, since that
3024 * is how we determine whether or not to unhash the entry when kicking
3025 * it out of the cache. Do this check now, since otherwise this can
3026 * cause hash table corruption and a panic later on after we read the
3028 osi_Panic("afs_WriteDCache zero volume index %d flags 0x%x\n",
3029 adc
->index
, (unsigned)afs_indexFlags
[adc
->index
]);
3033 * Seek to the right dcache slot and write the in-memory image out to disk.
3035 afs_cellname_write();
3037 afs_osi_Write(afs_cacheInodep
,
3038 sizeof(struct fcache
) * adc
->index
+
3039 sizeof(struct afs_fheader
), (char *)(&adc
->f
),
3040 sizeof(struct fcache
));
3041 if (code
!= sizeof(struct fcache
)) {
3042 afs_warn("afs: failed to write to CacheItems off %ld code %d/%d\n",
3043 (long)(sizeof(struct fcache
) * adc
->index
+ sizeof(struct afs_fheader
)),
3044 (int)code
, (int)sizeof(struct fcache
));
3053 * Wake up users of a particular file waiting for stores to take
3056 * \param avc Ptr to related vcache entry.
3058 * \note Environment:
3059 * Nothing interesting.
3062 afs_wakeup(struct vcache
*avc
)
3065 struct brequest
*tb
;
3067 AFS_STATCNT(afs_wakeup
);
3068 for (i
= 0; i
< NBRS
; i
++, tb
++) {
3069 /* if request is valid and for this file, we've found it */
3070 if (tb
->refCount
> 0 && avc
== tb
->vc
) {
3073 * If CSafeStore is on, then we don't awaken the guy
3074 * waiting for the store until the whole store has finished.
3075 * Otherwise, we do it now. Note that if CSafeStore is on,
3076 * the BStore routine actually wakes up the user, instead
3078 * I think this is redundant now because this sort of thing
3079 * is already being handled by the higher-level code.
3081 if ((avc
->f
.states
& CSafeStore
) == 0) {
3082 tb
->code_raw
= tb
->code_checkcode
= 0;
3083 tb
->flags
|= BUVALID
;
3084 if (tb
->flags
& BUWAIT
) {
3085 tb
->flags
&= ~BUWAIT
;
3096 * Given a file name and inode, set up that file to be an
3097 * active member in the AFS cache. This also involves checking
3098 * the usability of its data.
3100 * \param afile Name of the cache file to initialize.
3101 * \param ainode Inode of the file.
3103 * \note Environment:
3104 * This function is called only during initialization.
3107 afs_InitCacheFile(char *afile
, ino_t ainode
)
3112 struct osi_file
*tfile
;
3113 struct osi_stat tstat
;
3116 AFS_STATCNT(afs_InitCacheFile
);
3117 index
= afs_stats_cmperf
.cacheNumEntries
;
3118 if (index
>= afs_cacheFiles
)
3121 ObtainWriteLock(&afs_xdcache
, 282);
3122 tdc
= afs_GetNewDSlot(index
);
3123 ReleaseReadLock(&tdc
->tlock
);
3124 ReleaseWriteLock(&afs_xdcache
);
3126 ObtainWriteLock(&tdc
->lock
, 621);
3127 ObtainWriteLock(&afs_xdcache
, 622);
3128 if (!afile
&& !ainode
) {
3133 code
= afs_LookupInodeByPath(afile
, &tdc
->f
.inode
.ufs
, NULL
);
3135 ReleaseWriteLock(&afs_xdcache
);
3136 ReleaseWriteLock(&tdc
->lock
);
3141 /* Add any other 'complex' inode types here ... */
3142 #if !defined(AFS_LINUX26_ENV) && !defined(AFS_CACHE_VNODE_PATH)
3143 tdc
->f
.inode
.ufs
= ainode
;
3145 osi_Panic("Can't init cache with inode numbers when complex inodes are "
3150 if ((tdc
->f
.states
& DWriting
) || tdc
->f
.fid
.Fid
.Volume
== 0)
3152 tfile
= osi_UFSOpen(&tdc
->f
.inode
);
3154 ReleaseWriteLock(&afs_xdcache
);
3155 ReleaseWriteLock(&tdc
->lock
);
3160 code
= afs_osi_Stat(tfile
, &tstat
);
3162 osi_Panic("initcachefile stat");
3165 * If file size doesn't match the cache info file, it's probably bad.
3167 if (tdc
->f
.chunkBytes
!= tstat
.size
)
3170 * If file changed within T (120?) seconds of cache info file, it's
3171 * probably bad. In addition, if slot changed within last T seconds,
3172 * the cache info file may be incorrectly identified, and so slot
3175 if (cacheInfoModTime
< tstat
.mtime
+ 120)
3177 if (cacheInfoModTime
< tdc
->f
.modTime
+ 120)
3179 /* In case write through is behind, make sure cache items entry is
3180 * at least as new as the chunk.
3182 if (tdc
->f
.modTime
< tstat
.mtime
)
3185 tdc
->f
.chunkBytes
= 0;
3188 tdc
->f
.fid
.Fid
.Volume
= 0; /* not in the hash table */
3189 if (tfile
&& tstat
.size
!= 0)
3190 osi_UFSTruncate(tfile
, 0);
3191 tdc
->f
.states
&= ~(DRO
|DBackup
|DRW
);
3192 afs_DCMoveBucket(tdc
, 0, 0);
3193 /* put entry in free cache slot list */
3194 afs_dvnextTbl
[tdc
->index
] = afs_freeDCList
;
3195 afs_freeDCList
= index
;
3197 afs_indexFlags
[index
] |= IFFree
;
3198 afs_indexUnique
[index
] = 0;
3201 * We must put this entry in the appropriate hash tables.
3202 * Note that i is still set from the above DCHash call
3204 code
= DCHash(&tdc
->f
.fid
, tdc
->f
.chunk
);
3205 afs_dcnextTbl
[tdc
->index
] = afs_dchashTbl
[code
];
3206 afs_dchashTbl
[code
] = tdc
->index
;
3207 code
= DVHash(&tdc
->f
.fid
);
3208 afs_dvnextTbl
[tdc
->index
] = afs_dvhashTbl
[code
];
3209 afs_dvhashTbl
[code
] = tdc
->index
;
3210 afs_AdjustSize(tdc
, tstat
.size
); /* adjust to new size */
3212 /* has nontrivial amt of data */
3213 afs_indexFlags
[index
] |= IFEverUsed
;
3214 afs_stats_cmperf
.cacheFilesReused
++;
3216 * Initialize index times to file's mod times; init indexCounter
3219 hset32(afs_indexTimes
[index
], tstat
.atime
);
3220 if (hgetlo(afs_indexCounter
) < tstat
.atime
) {
3221 hset32(afs_indexCounter
, tstat
.atime
);
3223 afs_indexUnique
[index
] = tdc
->f
.fid
.Fid
.Unique
;
3224 } /*File is not bad */
3227 osi_UFSClose(tfile
);
3228 tdc
->f
.states
&= ~DWriting
;
3229 tdc
->dflags
&= ~DFEntryMod
;
3230 /* don't set f.modTime; we're just cleaning up */
3231 osi_Assert(afs_WriteDCache(tdc
, 0) == 0);
3232 ReleaseWriteLock(&afs_xdcache
);
3233 ReleaseWriteLock(&tdc
->lock
);
3235 afs_stats_cmperf
.cacheNumEntries
++;
3240 /*Max # of struct dcache's resident at any time*/
3242 * If 'dchint' is enabled then in-memory dcache min is increased because of
3248 * Initialize dcache related variables.
3258 afs_dcacheInit(int afiles
, int ablocks
, int aDentries
, int achunk
, int aflags
)
3265 afs_freeDCList
= NULLIDX
;
3266 afs_discardDCList
= NULLIDX
;
3267 afs_freeDCCount
= 0;
3268 afs_freeDSList
= NULL
;
3269 hzero(afs_indexCounter
);
3271 LOCK_INIT(&afs_xdcache
, "afs_xdcache");
3277 if (achunk
< 0 || achunk
> 30)
3278 achunk
= 13; /* Use default */
3279 AFS_SETCHUNKSIZE(achunk
);
3285 /* afs_dhashsize defaults to 1024 */
3286 if (aDentries
> 512)
3287 afs_dhashsize
= 2048;
3288 /* Try to keep the average chain length around two unless the table
3289 * would be ridiculously big. */
3290 if (aDentries
> 4096) {
3291 afs_dhashbits
= opr_fls(aDentries
) - 3;
3292 /* Cap the hash tables to 32k entries. */
3293 if (afs_dhashbits
> 15)
3295 afs_dhashsize
= opr_jhash_size(afs_dhashbits
);
3297 /* initialize hash tables */
3298 afs_dvhashTbl
= afs_osi_Alloc(afs_dhashsize
* sizeof(afs_int32
));
3299 osi_Assert(afs_dvhashTbl
!= NULL
);
3300 afs_dchashTbl
= afs_osi_Alloc(afs_dhashsize
* sizeof(afs_int32
));
3301 osi_Assert(afs_dchashTbl
!= NULL
);
3302 for (i
= 0; i
< afs_dhashsize
; i
++) {
3303 afs_dvhashTbl
[i
] = NULLIDX
;
3304 afs_dchashTbl
[i
] = NULLIDX
;
3306 afs_dvnextTbl
= afs_osi_Alloc(afiles
* sizeof(afs_int32
));
3307 osi_Assert(afs_dvnextTbl
!= NULL
);
3308 afs_dcnextTbl
= afs_osi_Alloc(afiles
* sizeof(afs_int32
));
3309 osi_Assert(afs_dcnextTbl
!= NULL
);
3310 for (i
= 0; i
< afiles
; i
++) {
3311 afs_dvnextTbl
[i
] = NULLIDX
;
3312 afs_dcnextTbl
[i
] = NULLIDX
;
3315 /* Allocate and zero the pointer array to the dcache entries */
3316 afs_indexTable
= afs_osi_Alloc(sizeof(struct dcache
*) * afiles
);
3317 osi_Assert(afs_indexTable
!= NULL
);
3318 memset(afs_indexTable
, 0, sizeof(struct dcache
*) * afiles
);
3319 afs_indexTimes
= afs_osi_Alloc(afiles
* sizeof(afs_hyper_t
));
3320 osi_Assert(afs_indexTimes
!= NULL
);
3321 memset(afs_indexTimes
, 0, afiles
* sizeof(afs_hyper_t
));
3322 afs_indexUnique
= afs_osi_Alloc(afiles
* sizeof(afs_uint32
));
3323 osi_Assert(afs_indexUnique
!= NULL
);
3324 memset(afs_indexUnique
, 0, afiles
* sizeof(afs_uint32
));
3325 afs_indexFlags
= afs_osi_Alloc(afiles
* sizeof(u_char
));
3326 osi_Assert(afs_indexFlags
!= NULL
);
3327 memset(afs_indexFlags
, 0, afiles
* sizeof(char));
3329 /* Allocate and thread the struct dcache entries themselves */
3330 tdp
= afs_Initial_freeDSList
=
3331 afs_osi_Alloc(aDentries
* sizeof(struct dcache
));
3332 osi_Assert(tdp
!= NULL
);
3333 memset(tdp
, 0, aDentries
* sizeof(struct dcache
));
3334 #ifdef KERNEL_HAVE_PIN
3335 pin((char *)afs_indexTable
, sizeof(struct dcache
*) * afiles
); /* XXX */
3336 pin((char *)afs_indexTimes
, sizeof(afs_hyper_t
) * afiles
); /* XXX */
3337 pin((char *)afs_indexFlags
, sizeof(char) * afiles
); /* XXX */
3338 pin((char *)afs_indexUnique
, sizeof(afs_int32
) * afiles
); /* XXX */
3339 pin((char *)tdp
, aDentries
* sizeof(struct dcache
)); /* XXX */
3340 pin((char *)afs_dvhashTbl
, sizeof(afs_int32
) * afs_dhashsize
); /* XXX */
3341 pin((char *)afs_dchashTbl
, sizeof(afs_int32
) * afs_dhashsize
); /* XXX */
3342 pin((char *)afs_dcnextTbl
, sizeof(afs_int32
) * afiles
); /* XXX */
3343 pin((char *)afs_dvnextTbl
, sizeof(afs_int32
) * afiles
); /* XXX */
3346 afs_freeDSList
= &tdp
[0];
3347 for (i
= 0; i
< aDentries
- 1; i
++) {
3348 tdp
[i
].lruq
.next
= (struct afs_q
*)(&tdp
[i
+ 1]);
3349 AFS_RWLOCK_INIT(&tdp
[i
].lock
, "dcache lock");
3350 AFS_RWLOCK_INIT(&tdp
[i
].tlock
, "dcache tlock");
3351 AFS_RWLOCK_INIT(&tdp
[i
].mflock
, "dcache flock");
3353 tdp
[aDentries
- 1].lruq
.next
= (struct afs_q
*)0;
3354 AFS_RWLOCK_INIT(&tdp
[aDentries
- 1].lock
, "dcache lock");
3355 AFS_RWLOCK_INIT(&tdp
[aDentries
- 1].tlock
, "dcache tlock");
3356 AFS_RWLOCK_INIT(&tdp
[aDentries
- 1].mflock
, "dcache flock");
3358 afs_stats_cmperf
.cacheBlocksOrig
= afs_stats_cmperf
.cacheBlocksTotal
=
3359 afs_cacheBlocks
= ablocks
;
3360 afs_ComputeCacheParms(); /* compute parms based on cache size */
3362 afs_dcentries
= aDentries
;
3364 afs_stats_cmperf
.cacheBucket0_Discarded
=
3365 afs_stats_cmperf
.cacheBucket1_Discarded
=
3366 afs_stats_cmperf
.cacheBucket2_Discarded
= 0;
3370 if (aflags
& AFSCALL_INIT_MEMCACHE
) {
3372 * Use a memory cache instead of a disk cache
3374 cacheDiskType
= AFS_FCACHE_TYPE_MEM
;
3375 afs_cacheType
= &afs_MemCacheOps
;
3376 afiles
= (afiles
< aDentries
) ? afiles
: aDentries
; /* min */
3377 ablocks
= afiles
* (AFS_FIRSTCSIZE
/ 1024);
3378 /* ablocks is reported in 1K blocks */
3379 code
= afs_InitMemCache(afiles
, AFS_FIRSTCSIZE
, aflags
);
3381 afs_warn("afsd: memory cache too large for available memory.\n");
3382 afs_warn("afsd: AFS files cannot be accessed.\n\n");
3385 afs_warn("Memory cache: Allocating %d dcache entries...",
3388 cacheDiskType
= AFS_FCACHE_TYPE_UFS
;
3389 afs_cacheType
= &afs_UfsCacheOps
;
3394 * Shuts down the cache.
3398 shutdown_dcache(void)
3402 #ifdef AFS_CACHE_VNODE_PATH
3403 if (cacheDiskType
!= AFS_FCACHE_TYPE_MEM
) {
3405 for (i
= 0; i
< afs_cacheFiles
; i
++) {
3406 tdc
= afs_indexTable
[i
];
3408 afs_osi_FreeStr(tdc
->f
.inode
.ufs
);
3414 afs_osi_Free(afs_dvnextTbl
, afs_cacheFiles
* sizeof(afs_int32
));
3415 afs_osi_Free(afs_dcnextTbl
, afs_cacheFiles
* sizeof(afs_int32
));
3416 afs_osi_Free(afs_indexTable
, afs_cacheFiles
* sizeof(struct dcache
*));
3417 afs_osi_Free(afs_indexTimes
, afs_cacheFiles
* sizeof(afs_hyper_t
));
3418 afs_osi_Free(afs_indexUnique
, afs_cacheFiles
* sizeof(afs_uint32
));
3419 afs_osi_Free(afs_indexFlags
, afs_cacheFiles
* sizeof(u_char
));
3420 afs_osi_Free(afs_Initial_freeDSList
,
3421 afs_dcentries
* sizeof(struct dcache
));
3422 #ifdef KERNEL_HAVE_PIN
3423 unpin((char *)afs_dcnextTbl
, afs_cacheFiles
* sizeof(afs_int32
));
3424 unpin((char *)afs_dvnextTbl
, afs_cacheFiles
* sizeof(afs_int32
));
3425 unpin((char *)afs_indexTable
, afs_cacheFiles
* sizeof(struct dcache
*));
3426 unpin((char *)afs_indexTimes
, afs_cacheFiles
* sizeof(afs_hyper_t
));
3427 unpin((char *)afs_indexUnique
, afs_cacheFiles
* sizeof(afs_uint32
));
3428 unpin((u_char
*) afs_indexFlags
, afs_cacheFiles
* sizeof(u_char
));
3429 unpin(afs_Initial_freeDSList
, afs_dcentries
* sizeof(struct dcache
));
3433 for (i
= 0; i
< afs_dhashsize
; i
++) {
3434 afs_dvhashTbl
[i
] = NULLIDX
;
3435 afs_dchashTbl
[i
] = NULLIDX
;
3438 afs_osi_Free(afs_dvhashTbl
, afs_dhashsize
* sizeof(afs_int32
));
3439 afs_osi_Free(afs_dchashTbl
, afs_dhashsize
* sizeof(afs_int32
));
3441 afs_blocksUsed
= afs_dcentries
= 0;
3442 afs_stats_cmperf
.cacheBucket0_Discarded
=
3443 afs_stats_cmperf
.cacheBucket1_Discarded
=
3444 afs_stats_cmperf
.cacheBucket2_Discarded
= 0;
3445 hzero(afs_indexCounter
);
3447 afs_freeDCCount
= 0;
3448 afs_freeDCList
= NULLIDX
;
3449 afs_discardDCList
= NULLIDX
;
3450 afs_freeDSList
= afs_Initial_freeDSList
= 0;
3452 LOCK_INIT(&afs_xdcache
, "afs_xdcache");
3458 * Get a dcache ready for writing, respecting the current cache size limits
3460 * len is required because afs_GetDCache with flag == 4 expects the length
3461 * field to be filled. It decides from this whether it's necessary to fetch
3462 * data into the chunk before writing or not (when the whole chunk is
3465 * \param avc The vcache to fetch a dcache for
3466 * \param filePos The start of the section to be written
3467 * \param len The length of the section to be written
3471 * \return If successful, a reference counted dcache with tdc->lock held. Lock
3472 * must be released and afs_PutDCache() called to free dcache.
3475 * \note avc->lock must be held on entry. Function may release and reobtain
3476 * avc->lock and GLOCK.
3480 afs_ObtainDCacheForWriting(struct vcache
*avc
, afs_size_t filePos
,
3481 afs_size_t len
, struct vrequest
*areq
,
3484 struct dcache
*tdc
= NULL
;
3487 /* read the cached info */
3489 tdc
= afs_FindDCache(avc
, filePos
);
3491 ObtainWriteLock(&tdc
->lock
, 657);
3492 } else if (afs_blocksUsed
>
3493 PERCENT(CM_WAITFORDRAINPCT
, afs_cacheBlocks
)) {
3494 tdc
= afs_FindDCache(avc
, filePos
);
3496 ObtainWriteLock(&tdc
->lock
, 658);
3497 if (!hsame(tdc
->f
.versionNo
, avc
->f
.m
.DataVersion
)
3498 || (tdc
->dflags
& DFFetching
)) {
3499 ReleaseWriteLock(&tdc
->lock
);
3505 afs_MaybeWakeupTruncateDaemon();
3506 while (afs_blocksUsed
>
3507 PERCENT(CM_WAITFORDRAINPCT
, afs_cacheBlocks
)) {
3508 ReleaseWriteLock(&avc
->lock
);
3509 if (afs_blocksUsed
- afs_blocksDiscarded
>
3510 PERCENT(CM_WAITFORDRAINPCT
, afs_cacheBlocks
)) {
3511 afs_WaitForCacheDrain
= 1;
3512 afs_osi_Sleep(&afs_WaitForCacheDrain
);
3514 afs_MaybeFreeDiscardedDCache();
3515 afs_MaybeWakeupTruncateDaemon();
3516 ObtainWriteLock(&avc
->lock
, 509);
3518 avc
->f
.states
|= CDirty
;
3519 tdc
= afs_GetDCache(avc
, filePos
, areq
, &offset
, &len
, 4);
3521 ObtainWriteLock(&tdc
->lock
, 659);
3524 tdc
= afs_GetDCache(avc
, filePos
, areq
, &offset
, &len
, 4);
3526 ObtainWriteLock(&tdc
->lock
, 660);
3529 if (!(afs_indexFlags
[tdc
->index
] & IFDataMod
)) {
3530 afs_stats_cmperf
.cacheCurrDirtyChunks
++;
3531 afs_indexFlags
[tdc
->index
] |= IFDataMod
; /* so it doesn't disappear */
3533 if (!(tdc
->f
.states
& DWriting
)) {
3534 /* don't mark entry as mod if we don't have to */
3535 tdc
->f
.states
|= DWriting
;
3536 tdc
->dflags
|= DFEntryMod
;
3543 * Make a shadow copy of a dir's dcache. It's used for disconnected
3544 * operations like remove/create/rename to keep the original directory data.
3545 * On reconnection, we can diff the original data with the server and get the
3546 * server changes and with the local data to get the local changes.
3548 * \param avc The dir vnode.
3549 * \param adc The dir dcache.
3551 * \return 0 for success.
3553 * \note The vcache entry must be write locked.
3554 * \note The dcache entry must be read locked.
3557 afs_MakeShadowDir(struct vcache
*avc
, struct dcache
*adc
)
3559 int i
, code
, ret_code
= 0, written
, trans_size
;
3560 struct dcache
*new_dc
= NULL
;
3561 struct osi_file
*tfile_src
, *tfile_dst
;
3562 struct VenusFid shadow_fid
;
3565 /* Is this a dir? */
3566 if (vType(avc
) != VDIR
)
3569 if (avc
->f
.shadow
.vnode
|| avc
->f
.shadow
.unique
)
3572 /* Generate a fid for the shadow dir. */
3573 shadow_fid
.Cell
= avc
->f
.fid
.Cell
;
3574 shadow_fid
.Fid
.Volume
= avc
->f
.fid
.Fid
.Volume
;
3575 afs_GenShadowFid(&shadow_fid
);
3577 ObtainWriteLock(&afs_xdcache
, 716);
3579 /* Get a fresh dcache. */
3580 new_dc
= afs_AllocDCache(avc
, 0, 0, &shadow_fid
);
3583 ObtainReadLock(&adc
->mflock
);
3585 /* Set up the new fid. */
3586 /* Copy interesting data from original dir dcache. */
3587 new_dc
->mflags
= adc
->mflags
;
3588 new_dc
->dflags
= adc
->dflags
;
3589 new_dc
->f
.modTime
= adc
->f
.modTime
;
3590 new_dc
->f
.versionNo
= adc
->f
.versionNo
;
3591 new_dc
->f
.states
= adc
->f
.states
;
3592 new_dc
->f
.chunk
= adc
->f
.chunk
;
3593 new_dc
->f
.chunkBytes
= adc
->f
.chunkBytes
;
3595 ReleaseReadLock(&adc
->mflock
);
3597 /* Now add to the two hash chains */
3598 i
= DCHash(&shadow_fid
, 0);
3599 afs_dcnextTbl
[new_dc
->index
] = afs_dchashTbl
[i
];
3600 afs_dchashTbl
[i
] = new_dc
->index
;
3602 i
= DVHash(&shadow_fid
);
3603 afs_dvnextTbl
[new_dc
->index
] = afs_dvhashTbl
[i
];
3604 afs_dvhashTbl
[i
] = new_dc
->index
;
3606 ReleaseWriteLock(&afs_xdcache
);
3608 /* Alloc a 4k block. */
3609 data
= afs_osi_Alloc(4096);
3611 afs_warn("afs_MakeShadowDir: could not alloc data\n");
3616 /* Open the files. */
3617 tfile_src
= afs_CFileOpen(&adc
->f
.inode
);
3618 tfile_dst
= afs_CFileOpen(&new_dc
->f
.inode
);
3620 /* And now copy dir dcache data into this dcache,
3624 while (written
< adc
->f
.chunkBytes
) {
3625 trans_size
= adc
->f
.chunkBytes
- written
;
3626 if (trans_size
> 4096)
3629 /* Read a chunk from the dcache. */
3630 code
= afs_CFileRead(tfile_src
, written
, data
, trans_size
);
3631 if (code
< trans_size
) {
3636 /* Write it to the new dcache. */
3637 code
= afs_CFileWrite(tfile_dst
, written
, data
, trans_size
);
3638 if (code
< trans_size
) {
3643 written
+=trans_size
;
3646 afs_CFileClose(tfile_dst
);
3647 afs_CFileClose(tfile_src
);
3649 afs_osi_Free(data
, 4096);
3651 ReleaseWriteLock(&new_dc
->lock
);
3652 afs_PutDCache(new_dc
);
3655 ObtainWriteLock(&afs_xvcache
, 763);
3656 ObtainWriteLock(&afs_disconDirtyLock
, 765);
3657 QAdd(&afs_disconShadow
, &avc
->shadowq
);
3658 osi_Assert((afs_RefVCache(avc
) == 0));
3659 ReleaseWriteLock(&afs_disconDirtyLock
);
3660 ReleaseWriteLock(&afs_xvcache
);
3662 avc
->f
.shadow
.vnode
= shadow_fid
.Fid
.Vnode
;
3663 avc
->f
.shadow
.unique
= shadow_fid
.Fid
.Unique
;
3671 * Delete the dcaches of a shadow dir.
3673 * \param avc The vcache containing the shadow fid.
3675 * \note avc must be write locked.
3678 afs_DeleteShadowDir(struct vcache
*avc
)
3681 struct VenusFid shadow_fid
;
3683 shadow_fid
.Cell
= avc
->f
.fid
.Cell
;
3684 shadow_fid
.Fid
.Volume
= avc
->f
.fid
.Fid
.Volume
;
3685 shadow_fid
.Fid
.Vnode
= avc
->f
.shadow
.vnode
;
3686 shadow_fid
.Fid
.Unique
= avc
->f
.shadow
.unique
;
3688 tdc
= afs_FindDCacheByFid(&shadow_fid
);
3690 afs_HashOutDCache(tdc
, 1);
3691 afs_DiscardDCache(tdc
);
3694 avc
->f
.shadow
.vnode
= avc
->f
.shadow
.unique
= 0;
3695 ObtainWriteLock(&afs_disconDirtyLock
, 708);
3696 QRemove(&avc
->shadowq
);
3697 ReleaseWriteLock(&afs_disconDirtyLock
);
3698 afs_PutVCache(avc
); /* Because we held it when we added to the queue */
3702 * Populate a dcache with empty chunks up to a given file size,
3703 * used before extending a file in order to avoid 'holes' which
3704 * we can't access in disconnected mode.
3706 * \param avc The vcache which is being extended (locked)
3707 * \param alen The new length of the file
3711 afs_PopulateDCache(struct vcache
*avc
, afs_size_t apos
, struct vrequest
*areq
)
3714 afs_size_t len
, offset
;
3715 afs_int32 start
, end
;
3717 /* We're doing this to deal with the situation where we extend
3718 * by writing after lseek()ing past the end of the file . If that
3719 * extension skips chunks, then those chunks won't be created, and
3720 * GetDCache will assume that they have to be fetched from the server.
3721 * So, for each chunk between the current file position, and the new
3722 * length we GetDCache for that chunk.
3725 if (AFS_CHUNK(apos
) == 0 || apos
<= avc
->f
.m
.Length
)
3728 if (avc
->f
.m
.Length
== 0)
3731 start
= AFS_CHUNK(avc
->f
.m
.Length
)+1;
3733 end
= AFS_CHUNK(apos
);
3736 len
= AFS_CHUNKTOSIZE(start
);
3737 tdc
= afs_GetDCache(avc
, AFS_CHUNKTOBASE(start
), areq
, &offset
, &len
, 4);