Merge 1.8.0~pre4 packaging into master
[pkg-k5-afs_openafs.git] / src / afs / afs_dcache.c
blob60d2a3106ea2b01d48e8c19bbd46815bce2800c3
1 /*
2 * Copyright 2000, International Business Machines Corporation and others.
3 * All Rights Reserved.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
8 */
11 * Implements:
13 #include <afsconfig.h>
14 #include "afs/param.h"
17 #include "afs/sysincludes.h" /*Standard vendor system headers */
18 #include "afsincludes.h" /*AFS-based standard headers */
19 #include "afs/afs_stats.h" /* statistics */
20 #include "afs/afs_cbqueue.h"
21 #include "afs/afs_osidnlc.h"
23 #include <opr/ffs.h>
25 /* Forward declarations. */
26 static void afs_GetDownD(int anumber, int *aneedSpace, afs_int32 buckethint);
27 static int afs_FreeDiscardedDCache(void);
28 static void afs_DiscardDCache(struct dcache *);
29 static void afs_FreeDCache(struct dcache *);
30 /* For split cache */
31 static afs_int32 afs_DCGetBucket(struct vcache *);
32 static void afs_DCAdjustSize(struct dcache *, afs_int32, afs_int32);
33 static void afs_DCMoveBucket(struct dcache *, afs_int32, afs_int32);
34 static void afs_DCSizeInit(void);
35 static afs_int32 afs_DCWhichBucket(afs_int32, afs_int32);
38 * --------------------- Exported definitions ---------------------
40 /* For split cache */
41 afs_int32 afs_blocksUsed_0; /*!< 1K blocks in cache - in theory is zero */
42 afs_int32 afs_blocksUsed_1; /*!< 1K blocks in cache */
43 afs_int32 afs_blocksUsed_2; /*!< 1K blocks in cache */
44 afs_int32 afs_pct1 = -1;
45 afs_int32 afs_pct2 = -1;
46 afs_uint32 afs_tpct1 = 0;
47 afs_uint32 afs_tpct2 = 0;
48 afs_uint32 splitdcache = 0;
50 afs_lock_t afs_xdcache; /*!< Lock: alloc new disk cache entries */
51 afs_int32 afs_freeDCList; /*!< Free list for disk cache entries */
52 afs_int32 afs_freeDCCount; /*!< Count of elts in freeDCList */
53 afs_int32 afs_discardDCList; /*!< Discarded disk cache entries */
54 afs_int32 afs_discardDCCount; /*!< Count of elts in discardDCList */
55 struct dcache *afs_freeDSList; /*!< Free list for disk slots */
56 struct dcache *afs_Initial_freeDSList; /*!< Initial list for above */
57 afs_dcache_id_t cacheInode; /*!< Inode for CacheItems file */
58 struct osi_file *afs_cacheInodep = 0; /*!< file for CacheItems inode */
59 struct afs_q afs_DLRU; /*!< dcache LRU */
60 afs_int32 afs_dhashsize = 1024;
61 afs_int32 *afs_dvhashTbl; /*!< Data cache hash table: hashed by FID + chunk number. */
62 afs_int32 *afs_dchashTbl; /*!< Data cache hash table: hashed by FID. */
63 afs_int32 *afs_dvnextTbl; /*!< Dcache hash table links */
64 afs_int32 *afs_dcnextTbl; /*!< Dcache hash table links */
65 struct dcache **afs_indexTable; /*!< Pointers to dcache entries */
66 afs_hyper_t *afs_indexTimes; /*!< Dcache entry Access times */
67 afs_int32 *afs_indexUnique; /*!< dcache entry Fid.Unique */
68 unsigned char *afs_indexFlags; /*!< (only one) Is there data there? */
69 afs_hyper_t afs_indexCounter; /*!< Fake time for marking index
70 * entries */
71 afs_int32 afs_cacheFiles = 0; /*!< Size of afs_indexTable */
72 afs_int32 afs_cacheBlocks; /*!< 1K blocks in cache */
73 afs_int32 afs_cacheStats; /*!< Stat entries in cache */
74 afs_int32 afs_blocksUsed; /*!< Number of blocks in use */
75 afs_int32 afs_blocksDiscarded; /*!<Blocks freed but not truncated */
76 afs_int32 afs_fsfragsize = AFS_MIN_FRAGSIZE; /*!< Underlying Filesystem minimum unit
77 *of disk allocation usually 1K
78 *this value is (truefrag -1 ) to
79 *save a bunch of subtracts... */
80 #ifdef AFS_64BIT_CLIENT
81 #ifdef AFS_VM_RDWR_ENV
82 afs_size_t afs_vmMappingEnd; /* !< For large files (>= 2GB) the VM
83 * mapping an 32bit addressing machines
84 * can only be used below the 2 GB
85 * line. From this point upwards we
86 * must do direct I/O into the cache
87 * files. The value should be on a
88 * chunk boundary. */
89 #endif /* AFS_VM_RDWR_ENV */
90 #endif /* AFS_64BIT_CLIENT */
92 /* The following is used to ensure that new dcache's aren't obtained when
93 * the cache is nearly full.
95 int afs_WaitForCacheDrain = 0;
96 int afs_TruncateDaemonRunning = 0;
97 int afs_CacheTooFull = 0;
99 afs_int32 afs_dcentries; /*!< In-memory dcache entries */
102 int dcacheDisabled = 0;
104 struct afs_cacheOps afs_UfsCacheOps = {
105 #ifndef HAVE_STRUCT_LABEL_SUPPORT
106 osi_UFSOpen,
107 osi_UFSTruncate,
108 afs_osi_Read,
109 afs_osi_Write,
110 osi_UFSClose,
111 afs_UFSReadUIO,
112 afs_UFSWriteUIO,
113 afs_UFSGetDSlot,
114 afs_UFSGetVolSlot,
115 afs_UFSHandleLink,
116 #else
117 .open = osi_UFSOpen,
118 .truncate = osi_UFSTruncate,
119 .fread = afs_osi_Read,
120 .fwrite = afs_osi_Write,
121 .close = osi_UFSClose,
122 .vreadUIO = afs_UFSReadUIO,
123 .vwriteUIO = afs_UFSWriteUIO,
124 .GetDSlot = afs_UFSGetDSlot,
125 .GetVolSlot = afs_UFSGetVolSlot,
126 .HandleLink = afs_UFSHandleLink,
127 #endif
130 struct afs_cacheOps afs_MemCacheOps = {
131 #ifndef HAVE_STRUCT_LABEL_SUPPORT
132 afs_MemCacheOpen,
133 afs_MemCacheTruncate,
134 afs_MemReadBlk,
135 afs_MemWriteBlk,
136 afs_MemCacheClose,
137 afs_MemReadUIO,
138 afs_MemWriteUIO,
139 afs_MemGetDSlot,
140 afs_MemGetVolSlot,
141 afs_MemHandleLink,
142 #else
143 .open = afs_MemCacheOpen,
144 .truncate = afs_MemCacheTruncate,
145 .fread = afs_MemReadBlk,
146 .fwrite = afs_MemWriteBlk,
147 .close = afs_MemCacheClose,
148 .vreadUIO = afs_MemReadUIO,
149 .vwriteUIO = afs_MemWriteUIO,
150 .GetDSlot = afs_MemGetDSlot,
151 .GetVolSlot = afs_MemGetVolSlot,
152 .HandleLink = afs_MemHandleLink,
153 #endif
156 int cacheDiskType; /*Type of backing disk for cache */
157 struct afs_cacheOps *afs_cacheType;
161 * The PFlush algorithm makes use of the fact that Fid.Unique is not used in
162 * below hash algorithms. Change it if need be so that flushing algorithm
163 * doesn't move things from one hash chain to another.
165 /*Vnode, Chunk -> Hash table index */
166 int DCHash(struct VenusFid *fid, afs_int32 chunk)
168 afs_uint32 buf[3];
170 buf[0] = fid->Fid.Volume;
171 buf[1] = fid->Fid.Vnode;
172 buf[2] = chunk;
173 return opr_jhash(buf, 3, 0) & (afs_dhashsize - 1);
175 /*Vnode -> Other hash table index */
176 int DVHash(struct VenusFid *fid)
178 return opr_jhash_int2(fid->Fid.Volume, fid->Fid.Vnode, 0) &
179 (afs_dhashsize - 1);
183 * Where is this vcache's entry associated dcache located/
184 * \param avc The vcache entry.
185 * \return Bucket index:
186 * 1 : main
187 * 2 : RO
189 static afs_int32
190 afs_DCGetBucket(struct vcache *avc)
192 if (!splitdcache)
193 return 1;
195 /* This should be replaced with some sort of user configurable function */
196 if (avc->f.states & CRO) {
197 return 2;
198 } else if (avc->f.states & CBackup) {
199 return 1;
200 } else {
201 /* RW */
203 /* main bucket */
204 return 1;
208 * Readjust a dcache's size.
210 * \param adc The dcache to be adjusted.
211 * \param oldSize Old size for the dcache.
212 * \param newSize The new size to be adjusted to.
215 static void
216 afs_DCAdjustSize(struct dcache *adc, afs_int32 oldSize, afs_int32 newSize)
218 afs_int32 adjustSize = newSize - oldSize;
220 if (!splitdcache)
221 return;
223 switch (adc->bucket)
225 case 0:
226 afs_blocksUsed_0 += adjustSize;
227 afs_stats_cmperf.cacheBucket0_Discarded += oldSize;
228 break;
229 case 1:
230 afs_blocksUsed_1 += adjustSize;
231 afs_stats_cmperf.cacheBucket1_Discarded += oldSize;
232 break;
233 case 2:
234 afs_blocksUsed_2 += adjustSize;
235 afs_stats_cmperf.cacheBucket2_Discarded += oldSize;
236 break;
239 return;
243 * Move a dcache from one bucket to another.
245 * \param adc Operate on this dcache.
246 * \param size Size in bucket (?).
247 * \param newBucket Destination bucket.
250 static void
251 afs_DCMoveBucket(struct dcache *adc, afs_int32 size, afs_int32 newBucket)
253 if (!splitdcache)
254 return;
256 /* Substract size from old bucket. */
257 switch (adc->bucket)
259 case 0:
260 afs_blocksUsed_0 -= size;
261 break;
262 case 1:
263 afs_blocksUsed_1 -= size;
264 break;
265 case 2:
266 afs_blocksUsed_2 -= size;
267 break;
270 /* Set new bucket and increase destination bucket size. */
271 adc->bucket = newBucket;
273 switch (adc->bucket)
275 case 0:
276 afs_blocksUsed_0 += size;
277 break;
278 case 1:
279 afs_blocksUsed_1 += size;
280 break;
281 case 2:
282 afs_blocksUsed_2 += size;
283 break;
286 return;
290 * Init split caches size.
292 static void
293 afs_DCSizeInit(void)
295 afs_blocksUsed_0 = afs_blocksUsed_1 = afs_blocksUsed_2 = 0;
300 * \param phase
301 * \param bucket
303 static afs_int32
304 afs_DCWhichBucket(afs_int32 phase, afs_int32 bucket)
306 if (!splitdcache)
307 return 0;
309 afs_pct1 = afs_blocksUsed_1 / (afs_cacheBlocks / 100);
310 afs_pct2 = afs_blocksUsed_2 / (afs_cacheBlocks / 100);
312 /* Short cut: if we don't know about it, try to kill it */
313 if (phase < 2 && afs_blocksUsed_0)
314 return 0;
316 if (afs_pct1 > afs_tpct1)
317 return 1;
318 if (afs_pct2 > afs_tpct2)
319 return 2;
320 return 0; /* unlikely */
325 * Warn about failing to store a file.
327 * \param acode Associated error code.
328 * \param avolume Volume involved.
329 * \param aflags How to handle the output:
330 * aflags & 1: Print out on console
331 * aflags & 2: Print out on controlling tty
333 * \note Environment: Call this from close call when vnodeops is RCS unlocked.
336 void
337 afs_StoreWarn(afs_int32 acode, afs_int32 avolume,
338 afs_int32 aflags)
340 static char problem_fmt[] =
341 "afs: failed to store file in volume %d (%s)\n";
342 static char problem_fmt_w_error[] =
343 "afs: failed to store file in volume %d (error %d)\n";
344 static char netproblems[] = "network problems";
345 static char partfull[] = "partition full";
346 static char overquota[] = "over quota";
348 AFS_STATCNT(afs_StoreWarn);
349 if (acode < 0) {
351 * Network problems
353 if (aflags & 1)
354 afs_warn(problem_fmt, avolume, netproblems);
355 if (aflags & 2)
356 afs_warnuser(problem_fmt, avolume, netproblems);
357 } else if (acode == ENOSPC) {
359 * Partition full
361 if (aflags & 1)
362 afs_warn(problem_fmt, avolume, partfull);
363 if (aflags & 2)
364 afs_warnuser(problem_fmt, avolume, partfull);
365 } else
366 #ifdef EDQUOT
367 /* EDQUOT doesn't exist on solaris and won't be sent by the server.
368 * Instead ENOSPC will be sent...
370 if (acode == EDQUOT) {
372 * Quota exceeded
374 if (aflags & 1)
375 afs_warn(problem_fmt, avolume, overquota);
376 if (aflags & 2)
377 afs_warnuser(problem_fmt, avolume, overquota);
378 } else
379 #endif
382 * Unknown error
384 if (aflags & 1)
385 afs_warn(problem_fmt_w_error, avolume, acode);
386 if (aflags & 2)
387 afs_warnuser(problem_fmt_w_error, avolume, acode);
389 } /*afs_StoreWarn */
392 * Try waking up truncation daemon, if it's worth it.
394 void
395 afs_MaybeWakeupTruncateDaemon(void)
397 if (!afs_CacheTooFull && afs_CacheIsTooFull()) {
398 afs_CacheTooFull = 1;
399 if (!afs_TruncateDaemonRunning)
400 afs_osi_Wakeup((int *)afs_CacheTruncateDaemon);
401 } else if (!afs_TruncateDaemonRunning
402 && afs_blocksDiscarded > CM_MAXDISCARDEDCHUNKS) {
403 afs_osi_Wakeup((int *)afs_CacheTruncateDaemon);
408 * /struct CTD_stats
410 * Keep statistics on run time for afs_CacheTruncateDaemon. This is a
411 * struct so we need only export one symbol for AIX.
413 static struct CTD_stats {
414 osi_timeval_t CTD_beforeSleep;
415 osi_timeval_t CTD_afterSleep;
416 osi_timeval_t CTD_sleepTime;
417 osi_timeval_t CTD_runTime;
418 int CTD_nSleeps;
419 } CTD_stats;
421 u_int afs_min_cache = 0;
424 * If there are waiters for the cache to drain, wake them if
425 * the number of free or discarded cache blocks reaches the
426 * CM_CACHESIZEDDRAINEDPCT limit.
428 * \note Environment:
429 * This routine must be called with the afs_xdcache lock held
430 * (in write mode).
432 static void
433 afs_WakeCacheWaitersIfDrained(void)
435 if (afs_WaitForCacheDrain) {
436 if ((afs_blocksUsed - afs_blocksDiscarded) <=
437 PERCENT(CM_CACHESIZEDRAINEDPCT, afs_cacheBlocks)) {
438 afs_WaitForCacheDrain = 0;
439 afs_osi_Wakeup(&afs_WaitForCacheDrain);
445 * Keeps the cache clean and free by truncating uneeded files, when used.
446 * \param
447 * \return
449 void
450 afs_CacheTruncateDaemon(void)
452 osi_timeval_t CTD_tmpTime;
453 u_int counter;
454 u_int cb_lowat;
455 u_int dc_hiwat =
456 PERCENT((100 - CM_DCACHECOUNTFREEPCT + CM_DCACHEEXTRAPCT), afs_cacheFiles);
457 afs_min_cache =
458 (((10 * AFS_CHUNKSIZE(0)) + afs_fsfragsize) & ~afs_fsfragsize) >> 10;
460 osi_GetuTime(&CTD_stats.CTD_afterSleep);
461 afs_TruncateDaemonRunning = 1;
462 while (1) {
463 cb_lowat = PERCENT((CM_DCACHESPACEFREEPCT - CM_DCACHEEXTRAPCT), afs_cacheBlocks);
464 ObtainWriteLock(&afs_xdcache, 266);
465 if (afs_CacheTooFull || afs_WaitForCacheDrain) {
466 int space_needed, slots_needed;
467 /* if we get woken up, we should try to clean something out */
468 for (counter = 0; counter < 10; counter++) {
469 space_needed =
470 afs_blocksUsed - afs_blocksDiscarded - cb_lowat;
471 if (space_needed < 0)
472 space_needed = 0;
473 slots_needed =
474 dc_hiwat - afs_freeDCCount - afs_discardDCCount;
475 if (slots_needed < 0)
476 slots_needed = 0;
477 if (slots_needed || space_needed)
478 afs_GetDownD(slots_needed, &space_needed, 0);
479 if ((space_needed <= 0) && (slots_needed <= 0)) {
480 break;
482 if (afs_termState == AFSOP_STOP_TRUNCDAEMON)
483 break;
485 if (!afs_CacheIsTooFull()) {
486 afs_CacheTooFull = 0;
487 afs_WakeCacheWaitersIfDrained();
489 } /* end of cache cleanup */
490 ReleaseWriteLock(&afs_xdcache);
493 * This is a defensive check to try to avoid starving threads
494 * that may need the global lock so thay can help free some
495 * cache space. If this thread won't be sleeping or truncating
496 * any cache files then give up the global lock so other
497 * threads get a chance to run.
499 if ((afs_termState != AFSOP_STOP_TRUNCDAEMON) && afs_CacheTooFull
500 && (!afs_blocksDiscarded || afs_WaitForCacheDrain)) {
501 afs_osi_Wait(100, 0, 0); /* 100 milliseconds */
505 * This is where we free the discarded cache elements.
507 while (afs_blocksDiscarded && !afs_WaitForCacheDrain
508 && (afs_termState != AFSOP_STOP_TRUNCDAEMON)) {
509 int code = afs_FreeDiscardedDCache();
510 if (code) {
511 /* If we can't free any discarded dcache entries, that's okay.
512 * We're just doing this in the background; if someone needs
513 * discarded entries freed, they will try it themselves and/or
514 * signal us that the cache is too full. In any case, we'll
515 * try doing this again the next time we run through the loop.
517 break;
521 /* See if we need to continue to run. Someone may have
522 * signalled us while we were executing.
524 if (!afs_WaitForCacheDrain && !afs_CacheTooFull
525 && (afs_termState != AFSOP_STOP_TRUNCDAEMON)) {
526 /* Collect statistics on truncate daemon. */
527 CTD_stats.CTD_nSleeps++;
528 osi_GetuTime(&CTD_stats.CTD_beforeSleep);
529 afs_stats_GetDiff(CTD_tmpTime, CTD_stats.CTD_afterSleep,
530 CTD_stats.CTD_beforeSleep);
531 afs_stats_AddTo(CTD_stats.CTD_runTime, CTD_tmpTime);
533 afs_TruncateDaemonRunning = 0;
534 afs_osi_Sleep((int *)afs_CacheTruncateDaemon);
535 afs_TruncateDaemonRunning = 1;
537 osi_GetuTime(&CTD_stats.CTD_afterSleep);
538 afs_stats_GetDiff(CTD_tmpTime, CTD_stats.CTD_beforeSleep,
539 CTD_stats.CTD_afterSleep);
540 afs_stats_AddTo(CTD_stats.CTD_sleepTime, CTD_tmpTime);
542 if (afs_termState == AFSOP_STOP_TRUNCDAEMON) {
543 afs_termState = AFSOP_STOP_AFSDB;
544 afs_osi_Wakeup(&afs_termState);
545 break;
552 * Make adjustment for the new size in the disk cache entry
554 * \note Major Assumptions Here:
555 * Assumes that frag size is an integral power of two, less one,
556 * and that this is a two's complement machine. I don't
557 * know of any filesystems which violate this assumption...
559 * \param adc Ptr to dcache entry.
560 * \param anewsize New size desired.
564 void
565 afs_AdjustSize(struct dcache *adc, afs_int32 newSize)
567 afs_int32 oldSize;
569 AFS_STATCNT(afs_AdjustSize);
571 if (newSize > afs_OtherCSize && !(adc->f.fid.Fid.Vnode & 1)) {
572 /* No non-dir cache files should be larger than the chunk size.
573 * (Directory blobs are fetched in a single chunk file, so directories
574 * can be larger.) If someone is requesting that a chunk is larger than
575 * the chunk size, something strange is happening. Log a message about
576 * it, to give a hint to subsequent strange behavior, if any occurs. */
577 static int warned;
578 if (!warned) {
579 warned = 1;
580 afs_warn("afs: Warning: dcache %d is very large (%d > %d). This "
581 "should not happen, but trying to continue regardless. If "
582 "AFS starts hanging or behaving strangely, this might be "
583 "why.\n",
584 adc->index, newSize, afs_OtherCSize);
588 adc->dflags |= DFEntryMod;
589 oldSize = ((adc->f.chunkBytes + afs_fsfragsize) ^ afs_fsfragsize) >> 10; /* round up */
590 adc->f.chunkBytes = newSize;
591 if (!newSize)
592 adc->validPos = 0;
593 newSize = ((newSize + afs_fsfragsize) ^ afs_fsfragsize) >> 10; /* round up */
594 afs_DCAdjustSize(adc, oldSize, newSize);
595 if ((newSize > oldSize) && !AFS_IS_DISCONNECTED) {
597 /* We're growing the file, wakeup the daemon */
598 afs_MaybeWakeupTruncateDaemon();
600 afs_blocksUsed += (newSize - oldSize);
601 afs_stats_cmperf.cacheBlocksInUse = afs_blocksUsed; /* XXX */
606 * This routine is responsible for moving at least one entry (but up
607 * to some number of them) from the LRU queue to the free queue.
609 * \param anumber Number of entries that should ideally be moved.
610 * \param aneedSpace How much space we need (1K blocks);
612 * \note Environment:
613 * The anumber parameter is just a hint; at least one entry MUST be
614 * moved, or we'll panic. We must be called with afs_xdcache
615 * write-locked. We should try to satisfy both anumber and aneedspace,
616 * whichever is more demanding - need to do several things:
617 * 1. only grab up to anumber victims if aneedSpace <= 0, not
618 * the whole set of MAXATONCE.
619 * 2. dynamically choose MAXATONCE to reflect severity of
620 * demand: something like (*aneedSpace >> (logChunk - 9))
622 * \note N.B. if we're called with aneedSpace <= 0 and anumber > 0, that
623 * indicates that the cache is not properly configured/tuned or
624 * something. We should be able to automatically correct that problem.
627 #define MAXATONCE 16 /* max we can obtain at once */
628 static void
629 afs_GetDownD(int anumber, int *aneedSpace, afs_int32 buckethint)
632 struct dcache *tdc;
633 struct VenusFid *afid;
634 afs_int32 i, j;
635 afs_hyper_t vtime;
636 int skip, phase;
637 struct vcache *tvc;
638 afs_uint32 victims[MAXATONCE];
639 struct dcache *victimDCs[MAXATONCE];
640 afs_hyper_t victimTimes[MAXATONCE]; /* youngest (largest LRU time) first */
641 afs_uint32 victimPtr; /* next free item in victim arrays */
642 afs_hyper_t maxVictimTime; /* youngest (largest LRU time) victim */
643 afs_uint32 maxVictimPtr; /* where it is */
644 int discard;
645 int curbucket;
647 AFS_STATCNT(afs_GetDownD);
649 if (CheckLock(&afs_xdcache) != -1)
650 osi_Panic("getdownd nolock");
651 /* decrement anumber first for all dudes in free list */
652 /* SHOULD always decrement anumber first, even if aneedSpace >0,
653 * because we should try to free space even if anumber <=0 */
654 if (!aneedSpace || *aneedSpace <= 0) {
655 anumber -= afs_freeDCCount;
656 if (anumber <= 0) {
657 return; /* enough already free */
661 /* bounds check parameter */
662 if (anumber > MAXATONCE)
663 anumber = MAXATONCE; /* all we can do */
665 /* rewrite so phases include a better eligiblity for gc test*/
667 * The phase variable manages reclaims. Set to 0, the first pass,
668 * we don't reclaim active entries, or other than target bucket.
669 * Set to 1, we reclaim even active ones in target bucket.
670 * Set to 2, we reclaim any inactive one.
671 * Set to 3, we reclaim even active ones. On Solaris, we also reclaim
672 * entries whose corresponding vcache has a nonempty multiPage list, when
673 * possible.
675 if (splitdcache) {
676 phase = 0;
677 } else {
678 phase = 4;
681 for (i = 0; i < afs_cacheFiles; i++)
682 /* turn off all flags */
683 afs_indexFlags[i] &= ~IFFlag;
685 while (anumber > 0 || (aneedSpace && *aneedSpace > 0)) {
686 /* find oldest entries for reclamation */
687 maxVictimPtr = victimPtr = 0;
688 hzero(maxVictimTime);
689 curbucket = afs_DCWhichBucket(phase, buckethint);
690 /* select victims from access time array */
691 for (i = 0; i < afs_cacheFiles; i++) {
692 if (afs_indexFlags[i] & (IFDataMod | IFFree | IFDiscarded)) {
693 /* skip if dirty or already free */
694 continue;
696 tdc = afs_indexTable[i];
697 if (tdc && (curbucket != tdc->bucket) && (phase < 4))
699 /* Wrong bucket; can't use it! */
700 continue;
702 if (tdc && (tdc->refCount != 0)) {
703 /* Referenced; can't use it! */
704 continue;
706 hset(vtime, afs_indexTimes[i]);
708 /* if we've already looked at this one, skip it */
709 if (afs_indexFlags[i] & IFFlag)
710 continue;
712 if (victimPtr < MAXATONCE) {
713 /* if there's at least one free victim slot left */
714 victims[victimPtr] = i;
715 hset(victimTimes[victimPtr], vtime);
716 if (hcmp(vtime, maxVictimTime) > 0) {
717 hset(maxVictimTime, vtime);
718 maxVictimPtr = victimPtr;
720 victimPtr++;
721 } else if (hcmp(vtime, maxVictimTime) < 0) {
723 * We're older than youngest victim, so we replace at
724 * least one victim
726 /* find youngest (largest LRU) victim */
727 j = maxVictimPtr;
728 if (j == victimPtr)
729 osi_Panic("getdownd local");
730 victims[j] = i;
731 hset(victimTimes[j], vtime);
732 /* recompute maxVictimTime */
733 hset(maxVictimTime, vtime);
734 for (j = 0; j < victimPtr; j++)
735 if (hcmp(maxVictimTime, victimTimes[j]) < 0) {
736 hset(maxVictimTime, victimTimes[j]);
737 maxVictimPtr = j;
740 } /* big for loop */
742 /* now really reclaim the victims */
743 j = 0; /* flag to track if we actually got any of the victims */
744 /* first, hold all the victims, since we're going to release the lock
745 * during the truncate operation.
747 for (i = 0; i < victimPtr; i++) {
748 tdc = afs_GetValidDSlot(victims[i]);
749 /* We got tdc->tlock(R) here */
750 if (tdc && tdc->refCount == 1)
751 victimDCs[i] = tdc;
752 else
753 victimDCs[i] = 0;
754 if (tdc) {
755 ReleaseReadLock(&tdc->tlock);
756 if (!victimDCs[i])
757 afs_PutDCache(tdc);
760 for (i = 0; i < victimPtr; i++) {
761 /* q is first elt in dcache entry */
762 tdc = victimDCs[i];
763 /* now, since we're dropping the afs_xdcache lock below, we
764 * have to verify, before proceeding, that there are no other
765 * references to this dcache entry, even now. Note that we
766 * compare with 1, since we bumped it above when we called
767 * afs_GetValidDSlot to preserve the entry's identity.
769 if (tdc && tdc->refCount == 1) {
770 unsigned char chunkFlags;
771 afs_size_t tchunkoffset = 0;
772 afid = &tdc->f.fid;
773 /* xdcache is lower than the xvcache lock */
774 ReleaseWriteLock(&afs_xdcache);
775 ObtainReadLock(&afs_xvcache);
776 tvc = afs_FindVCache(afid, 0, 0 /* no stats, no vlru */ );
777 ReleaseReadLock(&afs_xvcache);
778 ObtainWriteLock(&afs_xdcache, 527);
779 skip = 0;
780 if (tdc->refCount > 1)
781 skip = 1;
782 if (tvc) {
783 tchunkoffset = AFS_CHUNKTOBASE(tdc->f.chunk);
784 chunkFlags = afs_indexFlags[tdc->index];
785 if (((phase & 1) == 0) && osi_Active(tvc))
786 skip = 1;
787 if (((phase & 1) == 1) && osi_Active(tvc)
788 && (tvc->f.states & CDCLock)
789 && (chunkFlags & IFAnyPages))
790 skip = 1;
791 if (chunkFlags & IFDataMod)
792 skip = 1;
793 afs_Trace4(afs_iclSetp, CM_TRACE_GETDOWND,
794 ICL_TYPE_POINTER, tvc, ICL_TYPE_INT32, skip,
795 ICL_TYPE_INT32, tdc->index, ICL_TYPE_OFFSET,
796 ICL_HANDLE_OFFSET(tchunkoffset));
798 #if defined(AFS_SUN5_ENV)
800 * Now we try to invalidate pages. We do this only for
801 * Solaris. For other platforms, it's OK to recycle a
802 * dcache entry out from under a page, because the strategy
803 * function can call afs_GetDCache().
805 if (!skip && (chunkFlags & IFAnyPages)) {
806 int code;
808 ReleaseWriteLock(&afs_xdcache);
809 ObtainWriteLock(&tvc->vlock, 543);
810 if (!QEmpty(&tvc->multiPage)) {
811 if (phase < 3 || osi_VM_MultiPageConflict(tvc, tdc)) {
812 skip = 1;
813 goto endmultipage;
816 /* block locking pages */
817 tvc->vstates |= VPageCleaning;
818 /* block getting new pages */
819 tvc->activeV++;
820 ReleaseWriteLock(&tvc->vlock);
821 /* One last recheck */
822 ObtainWriteLock(&afs_xdcache, 333);
823 chunkFlags = afs_indexFlags[tdc->index];
824 if (tdc->refCount > 1 || (chunkFlags & IFDataMod)
825 || (osi_Active(tvc) && (tvc->f.states & CDCLock)
826 && (chunkFlags & IFAnyPages))) {
827 skip = 1;
828 ReleaseWriteLock(&afs_xdcache);
829 goto endputpage;
831 ReleaseWriteLock(&afs_xdcache);
833 code = osi_VM_GetDownD(tvc, tdc);
835 ObtainWriteLock(&afs_xdcache, 269);
836 /* we actually removed all pages, clean and dirty */
837 if (code == 0) {
838 afs_indexFlags[tdc->index] &=
839 ~(IFDirtyPages | IFAnyPages);
840 } else
841 skip = 1;
842 ReleaseWriteLock(&afs_xdcache);
843 endputpage:
844 ObtainWriteLock(&tvc->vlock, 544);
845 if (--tvc->activeV == 0
846 && (tvc->vstates & VRevokeWait)) {
847 tvc->vstates &= ~VRevokeWait;
848 afs_osi_Wakeup((char *)&tvc->vstates);
851 if (tvc->vstates & VPageCleaning) {
852 tvc->vstates &= ~VPageCleaning;
853 afs_osi_Wakeup((char *)&tvc->vstates);
855 endmultipage:
856 ReleaseWriteLock(&tvc->vlock);
857 } else
858 #endif /* AFS_SUN5_ENV */
860 ReleaseWriteLock(&afs_xdcache);
863 afs_PutVCache(tvc); /*XXX was AFS_FAST_RELE?*/
864 ObtainWriteLock(&afs_xdcache, 528);
865 if (afs_indexFlags[tdc->index] &
866 (IFDataMod | IFDirtyPages | IFAnyPages))
867 skip = 1;
868 if (tdc->refCount > 1)
869 skip = 1;
871 #if defined(AFS_SUN5_ENV)
872 else {
873 /* no vnode, so IFDirtyPages is spurious (we don't
874 * sweep dcaches on vnode recycling, so we can have
875 * DIRTYPAGES set even when all pages are gone). Just
876 * clear the flag.
877 * Hold vcache lock to prevent vnode from being
878 * created while we're clearing IFDirtyPages.
880 afs_indexFlags[tdc->index] &=
881 ~(IFDirtyPages | IFAnyPages);
883 #endif
884 if (skip) {
885 /* skip this guy and mark him as recently used */
886 afs_indexFlags[tdc->index] |= IFFlag;
887 afs_Trace4(afs_iclSetp, CM_TRACE_GETDOWND,
888 ICL_TYPE_POINTER, tvc, ICL_TYPE_INT32, 2,
889 ICL_TYPE_INT32, tdc->index, ICL_TYPE_OFFSET,
890 ICL_HANDLE_OFFSET(tchunkoffset));
891 } else {
892 /* flush this dude from the data cache and reclaim;
893 * first, make sure no one will care that we damage
894 * it, by removing it from all hash tables. Then,
895 * melt it down for parts. Note that any concurrent
896 * (new possibility!) calls to GetDownD won't touch
897 * this guy because his reference count is > 0. */
898 afs_Trace4(afs_iclSetp, CM_TRACE_GETDOWND,
899 ICL_TYPE_POINTER, tvc, ICL_TYPE_INT32, 3,
900 ICL_TYPE_INT32, tdc->index, ICL_TYPE_OFFSET,
901 ICL_HANDLE_OFFSET(tchunkoffset));
902 AFS_STATCNT(afs_gget);
903 afs_HashOutDCache(tdc, 1);
904 if (tdc->f.chunkBytes != 0) {
905 discard = 1;
906 if (aneedSpace)
907 *aneedSpace -=
908 (tdc->f.chunkBytes + afs_fsfragsize) >> 10;
909 } else {
910 discard = 0;
912 if (discard) {
913 afs_DiscardDCache(tdc);
914 } else {
915 afs_FreeDCache(tdc);
917 anumber--;
918 j = 1; /* we reclaimed at least one victim */
921 if (tdc)
922 afs_PutDCache(tdc);
923 } /* end of for victims loop */
925 if (phase < 5) {
926 /* Phase is 0 and no one was found, so try phase 1 (ignore
927 * osi_Active flag) */
928 if (j == 0) {
929 phase++;
930 for (i = 0; i < afs_cacheFiles; i++)
931 /* turn off all flags */
932 afs_indexFlags[i] &= ~IFFlag;
934 } else {
935 /* found no one in phases 0-5, we're hosed */
936 if (victimPtr == 0)
937 break;
939 } /* big while loop */
941 return;
943 } /*afs_GetDownD */
947 * Remove adc from any hash tables that would allow it to be located
948 * again by afs_FindDCache or afs_GetDCache.
950 * \param adc Pointer to dcache entry to remove from hash tables.
952 * \note Locks: Must have the afs_xdcache lock write-locked to call this function.
956 afs_HashOutDCache(struct dcache *adc, int zap)
958 int i, us;
960 AFS_STATCNT(afs_glink);
961 if (zap)
962 /* we know this guy's in the LRUQ. We'll move dude into DCQ below */
963 DZap(adc);
964 /* if this guy is in the hash table, pull him out */
965 if (adc->f.fid.Fid.Volume != 0) {
966 /* remove entry from first hash chains */
967 i = DCHash(&adc->f.fid, adc->f.chunk);
968 us = afs_dchashTbl[i];
969 if (us == adc->index) {
970 /* first dude in the list */
971 afs_dchashTbl[i] = afs_dcnextTbl[adc->index];
972 } else {
973 /* somewhere on the chain */
974 while (us != NULLIDX) {
975 if (afs_dcnextTbl[us] == adc->index) {
976 /* found item pointing at the one to delete */
977 afs_dcnextTbl[us] = afs_dcnextTbl[adc->index];
978 break;
980 us = afs_dcnextTbl[us];
982 if (us == NULLIDX)
983 osi_Panic("dcache hc");
985 /* remove entry from *other* hash chain */
986 i = DVHash(&adc->f.fid);
987 us = afs_dvhashTbl[i];
988 if (us == adc->index) {
989 /* first dude in the list */
990 afs_dvhashTbl[i] = afs_dvnextTbl[adc->index];
991 } else {
992 /* somewhere on the chain */
993 while (us != NULLIDX) {
994 if (afs_dvnextTbl[us] == adc->index) {
995 /* found item pointing at the one to delete */
996 afs_dvnextTbl[us] = afs_dvnextTbl[adc->index];
997 break;
999 us = afs_dvnextTbl[us];
1001 if (us == NULLIDX)
1002 osi_Panic("dcache hv");
1006 if (zap) {
1007 /* prevent entry from being found on a reboot (it is already out of
1008 * the hash table, but after a crash, we just look at fid fields of
1009 * stable (old) entries).
1011 adc->f.fid.Fid.Volume = 0; /* invalid */
1013 /* mark entry as modified */
1014 adc->dflags |= DFEntryMod;
1017 /* all done */
1018 return 0;
1019 } /*afs_HashOutDCache */
1022 * Flush the given dcache entry, pulling it from hash chains
1023 * and truncating the associated cache file.
1025 * \param adc Ptr to dcache entry to flush.
1027 * \note Environment:
1028 * This routine must be called with the afs_xdcache lock held
1029 * (in write mode).
1031 void
1032 afs_FlushDCache(struct dcache *adc)
1034 AFS_STATCNT(afs_FlushDCache);
1036 * Bump the number of cache files flushed.
1038 afs_stats_cmperf.cacheFlushes++;
1040 /* remove from all hash tables */
1041 afs_HashOutDCache(adc, 1);
1043 /* Free its space; special case null operation, since truncate operation
1044 * in UFS is slow even in this case, and this allows us to pre-truncate
1045 * these files at more convenient times with fewer locks set
1046 * (see afs_GetDownD).
1048 if (adc->f.chunkBytes != 0) {
1049 afs_DiscardDCache(adc);
1050 afs_MaybeWakeupTruncateDaemon();
1051 } else {
1052 afs_FreeDCache(adc);
1054 } /*afs_FlushDCache */
1058 * Put a dcache entry on the free dcache entry list.
1060 * \param adc dcache entry to free.
1062 * \note Environment: called with afs_xdcache lock write-locked.
1064 static void
1065 afs_FreeDCache(struct dcache *adc)
1067 /* Thread on free list, update free list count and mark entry as
1068 * freed in its indexFlags element. Also, ensure DCache entry gets
1069 * written out (set DFEntryMod).
1072 afs_dvnextTbl[adc->index] = afs_freeDCList;
1073 afs_freeDCList = adc->index;
1074 afs_freeDCCount++;
1075 afs_indexFlags[adc->index] |= IFFree;
1076 adc->dflags |= DFEntryMod;
1078 afs_WakeCacheWaitersIfDrained();
1079 } /* afs_FreeDCache */
1082 * Discard the cache element by moving it to the discardDCList.
1083 * This puts the cache element into a quasi-freed state, where
1084 * the space may be reused, but the file has not been truncated.
1086 * \note Major Assumptions Here:
1087 * Assumes that frag size is an integral power of two, less one,
1088 * and that this is a two's complement machine. I don't
1089 * know of any filesystems which violate this assumption...
1091 * \param adr Ptr to dcache entry.
1093 * \note Environment:
1094 * Must be called with afs_xdcache write-locked.
1097 static void
1098 afs_DiscardDCache(struct dcache *adc)
1100 afs_int32 size;
1102 AFS_STATCNT(afs_DiscardDCache);
1104 osi_Assert(adc->refCount == 1);
1106 size = ((adc->f.chunkBytes + afs_fsfragsize) ^ afs_fsfragsize) >> 10; /* round up */
1107 afs_blocksDiscarded += size;
1108 afs_stats_cmperf.cacheBlocksDiscarded = afs_blocksDiscarded;
1110 afs_dvnextTbl[adc->index] = afs_discardDCList;
1111 afs_discardDCList = adc->index;
1112 afs_discardDCCount++;
1114 adc->f.fid.Fid.Volume = 0;
1115 adc->dflags |= DFEntryMod;
1116 afs_indexFlags[adc->index] |= IFDiscarded;
1118 afs_WakeCacheWaitersIfDrained();
1119 } /*afs_DiscardDCache */
1122 * Get a dcache entry from the discard or free list
1124 * @param[in] indexp A pointer to the head of the dcache free list or discard
1125 * list (afs_freeDCList, or afs_discardDCList)
1127 * @return A dcache from that list, or NULL if none could be retrieved.
1129 * @pre afs_xdcache is write-locked
1131 static struct dcache *
1132 afs_GetDSlotFromList(afs_int32 *indexp)
1134 struct dcache *tdc;
1136 for ( ; *indexp != NULLIDX; indexp = &afs_dvnextTbl[*indexp]) {
1137 tdc = afs_GetUnusedDSlot(*indexp);
1138 if (tdc) {
1139 osi_Assert(tdc->refCount == 1);
1140 ReleaseReadLock(&tdc->tlock);
1141 *indexp = afs_dvnextTbl[tdc->index];
1142 afs_dvnextTbl[tdc->index] = NULLIDX;
1143 return tdc;
1146 return NULL;
1150 * Free the next element on the list of discarded cache elements.
1152 * Returns -1 if we encountered an error preventing us from freeing a
1153 * discarded dcache, or 0 on success.
1155 static int
1156 afs_FreeDiscardedDCache(void)
1158 struct dcache *tdc;
1159 struct osi_file *tfile;
1160 afs_int32 size;
1162 AFS_STATCNT(afs_FreeDiscardedDCache);
1164 ObtainWriteLock(&afs_xdcache, 510);
1165 if (!afs_blocksDiscarded) {
1166 ReleaseWriteLock(&afs_xdcache);
1167 return 0;
1171 * Get an entry from the list of discarded cache elements
1173 tdc = afs_GetDSlotFromList(&afs_discardDCList);
1174 if (!tdc) {
1175 ReleaseWriteLock(&afs_xdcache);
1176 return -1;
1179 afs_discardDCCount--;
1180 size = ((tdc->f.chunkBytes + afs_fsfragsize) ^ afs_fsfragsize) >> 10; /* round up */
1181 afs_blocksDiscarded -= size;
1182 afs_stats_cmperf.cacheBlocksDiscarded = afs_blocksDiscarded;
1183 /* We can lock because we just took it off the free list */
1184 ObtainWriteLock(&tdc->lock, 626);
1185 ReleaseWriteLock(&afs_xdcache);
1188 * Truncate the element to reclaim its space
1190 tfile = afs_CFileOpen(&tdc->f.inode);
1191 afs_CFileTruncate(tfile, 0);
1192 afs_CFileClose(tfile);
1193 afs_AdjustSize(tdc, 0);
1194 afs_DCMoveBucket(tdc, 0, 0);
1197 * Free the element we just truncated
1199 ObtainWriteLock(&afs_xdcache, 511);
1200 afs_indexFlags[tdc->index] &= ~IFDiscarded;
1201 afs_FreeDCache(tdc);
1202 tdc->f.states &= ~(DRO|DBackup|DRW);
1203 ReleaseWriteLock(&tdc->lock);
1204 afs_PutDCache(tdc);
1205 ReleaseWriteLock(&afs_xdcache);
1207 return 0;
1211 * Free as many entries from the list of discarded cache elements
1212 * as we need to get the free space down below CM_WAITFORDRAINPCT (98%).
1214 * \return 0
1217 afs_MaybeFreeDiscardedDCache(void)
1220 AFS_STATCNT(afs_MaybeFreeDiscardedDCache);
1222 while (afs_blocksDiscarded
1223 && (afs_blocksUsed >
1224 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks))) {
1225 int code = afs_FreeDiscardedDCache();
1226 if (code) {
1227 /* Callers depend on us to get the afs_blocksDiscarded count down.
1228 * If we cannot do that, the callers can spin by calling us over
1229 * and over. Panic for now until we can figure out something
1230 * better. */
1231 osi_Panic("Error freeing discarded dcache");
1234 return 0;
1238 * Try to free up a certain number of disk slots.
1240 * \param anumber Targeted number of disk slots to free up.
1242 * \note Environment:
1243 * Must be called with afs_xdcache write-locked.
1246 static void
1247 afs_GetDownDSlot(int anumber)
1249 struct afs_q *tq, *nq;
1250 struct dcache *tdc;
1251 int ix;
1252 unsigned int cnt;
1254 AFS_STATCNT(afs_GetDownDSlot);
1255 if (cacheDiskType == AFS_FCACHE_TYPE_MEM)
1256 osi_Panic("diskless getdowndslot");
1258 if (CheckLock(&afs_xdcache) != -1)
1259 osi_Panic("getdowndslot nolock");
1261 /* decrement anumber first for all dudes in free list */
1262 for (tdc = afs_freeDSList; tdc; tdc = (struct dcache *)tdc->lruq.next)
1263 anumber--;
1264 if (anumber <= 0)
1265 return; /* enough already free */
1267 for (cnt = 0, tq = afs_DLRU.prev; tq != &afs_DLRU && anumber > 0;
1268 tq = nq, cnt++) {
1269 tdc = (struct dcache *)tq; /* q is first elt in dcache entry */
1270 nq = QPrev(tq); /* in case we remove it */
1271 if (tdc->refCount == 0) {
1272 if ((ix = tdc->index) == NULLIDX)
1273 osi_Panic("getdowndslot");
1274 /* pull the entry out of the lruq and put it on the free list */
1275 QRemove(&tdc->lruq);
1277 /* write-through if modified */
1278 if (tdc->dflags & DFEntryMod) {
1279 #if defined(AFS_SGI_ENV) && defined(AFS_SGI_SHORTSTACK)
1281 * ask proxy to do this for us - we don't have the stack space
1283 while (tdc->dflags & DFEntryMod) {
1284 int s;
1285 AFS_GUNLOCK();
1286 s = SPLOCK(afs_sgibklock);
1287 if (afs_sgibklist == NULL) {
1288 /* if slot is free, grab it. */
1289 afs_sgibklist = tdc;
1290 SV_SIGNAL(&afs_sgibksync);
1292 /* wait for daemon to (start, then) finish. */
1293 SP_WAIT(afs_sgibklock, s, &afs_sgibkwait, PINOD);
1294 AFS_GLOCK();
1296 #else
1297 tdc->dflags &= ~DFEntryMod;
1298 osi_Assert(afs_WriteDCache(tdc, 1) == 0);
1299 #endif
1302 /* finally put the entry in the free list */
1303 afs_indexTable[ix] = NULL;
1304 afs_indexFlags[ix] &= ~IFEverUsed;
1305 tdc->index = NULLIDX;
1306 tdc->lruq.next = (struct afs_q *)afs_freeDSList;
1307 afs_freeDSList = tdc;
1308 anumber--;
1311 } /*afs_GetDownDSlot */
1315 * afs_RefDCache
1317 * Description:
1318 * Increment the reference count on a disk cache entry,
1319 * which already has a non-zero refcount. In order to
1320 * increment the refcount of a zero-reference entry, you
1321 * have to hold afs_xdcache.
1323 * Parameters:
1324 * adc : Pointer to the dcache entry to increment.
1326 * Environment:
1327 * Nothing interesting.
1330 afs_RefDCache(struct dcache *adc)
1332 ObtainWriteLock(&adc->tlock, 627);
1333 if (adc->refCount < 0)
1334 osi_Panic("RefDCache: negative refcount");
1335 adc->refCount++;
1336 ReleaseWriteLock(&adc->tlock);
1337 return 0;
1342 * afs_PutDCache
1344 * Description:
1345 * Decrement the reference count on a disk cache entry.
1347 * Parameters:
1348 * ad : Ptr to the dcache entry to decrement.
1350 * Environment:
1351 * Nothing interesting.
1354 afs_PutDCache(struct dcache *adc)
1356 AFS_STATCNT(afs_PutDCache);
1357 ObtainWriteLock(&adc->tlock, 276);
1358 if (adc->refCount <= 0)
1359 osi_Panic("putdcache");
1360 --adc->refCount;
1361 ReleaseWriteLock(&adc->tlock);
1362 return 0;
1367 * afs_TryToSmush
1369 * Description:
1370 * Try to discard all data associated with this file from the
1371 * cache.
1373 * Parameters:
1374 * avc : Pointer to the cache info for the file.
1376 * Environment:
1377 * Both pvnLock and lock are write held.
1379 void
1380 afs_TryToSmush(struct vcache *avc, afs_ucred_t *acred, int sync)
1382 struct dcache *tdc;
1383 int index;
1384 int i;
1385 AFS_STATCNT(afs_TryToSmush);
1386 afs_Trace2(afs_iclSetp, CM_TRACE_TRYTOSMUSH, ICL_TYPE_POINTER, avc,
1387 ICL_TYPE_OFFSET, ICL_HANDLE_OFFSET(avc->f.m.Length));
1388 sync = 1; /* XX Temp testing XX */
1390 #if defined(AFS_SUN5_ENV)
1391 ObtainWriteLock(&avc->vlock, 573);
1392 avc->activeV++; /* block new getpages */
1393 ReleaseWriteLock(&avc->vlock);
1394 #endif
1396 /* Flush VM pages */
1397 osi_VM_TryToSmush(avc, acred, sync);
1400 * Get the hash chain containing all dce's for this fid
1402 i = DVHash(&avc->f.fid);
1403 ObtainWriteLock(&afs_xdcache, 277);
1404 for (index = afs_dvhashTbl[i]; index != NULLIDX; index = i) {
1405 i = afs_dvnextTbl[index]; /* next pointer this hash table */
1406 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
1407 int releaseTlock = 1;
1408 tdc = afs_GetValidDSlot(index);
1409 if (!tdc) {
1410 /* afs_TryToSmush is best-effort; we may not actually discard
1411 * everything, so failure to discard a dcache due to an i/o
1412 * error is okay. */
1413 continue;
1415 if (!FidCmp(&tdc->f.fid, &avc->f.fid)) {
1416 if (sync) {
1417 if ((afs_indexFlags[index] & IFDataMod) == 0
1418 && tdc->refCount == 1) {
1419 ReleaseReadLock(&tdc->tlock);
1420 releaseTlock = 0;
1421 afs_FlushDCache(tdc);
1423 } else
1424 afs_indexTable[index] = 0;
1426 if (releaseTlock)
1427 ReleaseReadLock(&tdc->tlock);
1428 afs_PutDCache(tdc);
1431 #if defined(AFS_SUN5_ENV)
1432 ObtainWriteLock(&avc->vlock, 545);
1433 if (--avc->activeV == 0 && (avc->vstates & VRevokeWait)) {
1434 avc->vstates &= ~VRevokeWait;
1435 afs_osi_Wakeup((char *)&avc->vstates);
1437 ReleaseWriteLock(&avc->vlock);
1438 #endif
1439 ReleaseWriteLock(&afs_xdcache);
1441 * It's treated like a callback so that when we do lookups we'll
1442 * invalidate the unique bit if any
1443 * trytoSmush occured during the lookup call
1445 afs_allCBs++;
1449 * afs_DCacheMissingChunks
1451 * Description
1452 * Given the cached info for a file, return the number of chunks that
1453 * are not available from the dcache.
1455 * Parameters:
1456 * avc: Pointer to the (held) vcache entry to look in.
1458 * Returns:
1459 * The number of chunks which are not currently cached.
1461 * Environment:
1462 * The vcache entry is held upon entry.
1466 afs_DCacheMissingChunks(struct vcache *avc)
1468 int i, index;
1469 afs_size_t totalLength = 0;
1470 afs_uint32 totalChunks = 0;
1471 struct dcache *tdc;
1473 totalLength = avc->f.m.Length;
1474 if (avc->f.truncPos < totalLength)
1475 totalLength = avc->f.truncPos;
1477 /* Length is 0, no chunk missing. */
1478 if (totalLength == 0)
1479 return 0;
1481 /* If totalLength is a multiple of chunksize, the last byte appears
1482 * as being part of the next chunk, which does not exist.
1483 * Decrementing totalLength by one fixes that.
1485 totalLength--;
1486 totalChunks = (AFS_CHUNK(totalLength) + 1);
1488 /* If we're a directory, we only ever have one chunk, regardless of
1489 * the size of the dir.
1491 if (avc->f.fid.Fid.Vnode & 1 || vType(avc) == VDIR)
1492 totalChunks = 1;
1495 printf("Should have %d chunks for %u bytes\n",
1496 totalChunks, (totalLength + 1));
1498 i = DVHash(&avc->f.fid);
1499 ObtainWriteLock(&afs_xdcache, 1001);
1500 for (index = afs_dvhashTbl[i]; index != NULLIDX; index = i) {
1501 i = afs_dvnextTbl[index];
1502 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
1503 tdc = afs_GetValidDSlot(index);
1504 if (tdc) {
1505 if (!FidCmp(&tdc->f.fid, &avc->f.fid)) {
1506 totalChunks--;
1508 ReleaseReadLock(&tdc->tlock);
1509 afs_PutDCache(tdc);
1513 ReleaseWriteLock(&afs_xdcache);
1515 /*printf("Missing %d chunks\n", totalChunks);*/
1517 return (totalChunks);
1521 * afs_FindDCache
1523 * Description:
1524 * Given the cached info for a file and a byte offset into the
1525 * file, make sure the dcache entry for that file and containing
1526 * the given byte is available, returning it to our caller.
1528 * Parameters:
1529 * avc : Pointer to the (held) vcache entry to look in.
1530 * abyte : Which byte we want to get to.
1532 * Returns:
1533 * Pointer to the dcache entry covering the file & desired byte,
1534 * or NULL if not found.
1536 * Environment:
1537 * The vcache entry is held upon entry.
1540 struct dcache *
1541 afs_FindDCache(struct vcache *avc, afs_size_t abyte)
1543 afs_int32 chunk;
1544 afs_int32 i, index;
1545 struct dcache *tdc = NULL;
1547 AFS_STATCNT(afs_FindDCache);
1548 chunk = AFS_CHUNK(abyte);
1551 * Hash on the [fid, chunk] and get the corresponding dcache index
1552 * after write-locking the dcache.
1554 i = DCHash(&avc->f.fid, chunk);
1555 ObtainWriteLock(&afs_xdcache, 278);
1556 for (index = afs_dchashTbl[i]; index != NULLIDX; index = afs_dcnextTbl[index]) {
1557 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
1558 tdc = afs_GetValidDSlot(index);
1559 if (!tdc) {
1560 /* afs_FindDCache is best-effort; we may not find the given
1561 * file/offset, so if we cannot find the given dcache due to
1562 * i/o errors, that is okay. */
1563 continue;
1565 ReleaseReadLock(&tdc->tlock);
1566 if (!FidCmp(&tdc->f.fid, &avc->f.fid) && chunk == tdc->f.chunk) {
1567 break; /* leaving refCount high for caller */
1569 afs_PutDCache(tdc);
1572 if (index != NULLIDX) {
1573 hset(afs_indexTimes[tdc->index], afs_indexCounter);
1574 hadd32(afs_indexCounter, 1);
1575 ReleaseWriteLock(&afs_xdcache);
1576 return tdc;
1578 ReleaseWriteLock(&afs_xdcache);
1579 return NULL;
1580 } /*afs_FindDCache */
1582 /* only call these from afs_AllocDCache() */
1583 static struct dcache *
1584 afs_AllocFreeDSlot(void)
1586 struct dcache *tdc;
1588 tdc = afs_GetDSlotFromList(&afs_freeDCList);
1589 if (!tdc) {
1590 return NULL;
1592 afs_indexFlags[tdc->index] &= ~IFFree;
1593 ObtainWriteLock(&tdc->lock, 604);
1594 afs_freeDCCount--;
1596 return tdc;
1598 static struct dcache *
1599 afs_AllocDiscardDSlot(afs_int32 lock)
1601 struct dcache *tdc;
1602 afs_uint32 size = 0;
1603 struct osi_file *file;
1605 tdc = afs_GetDSlotFromList(&afs_discardDCList);
1606 if (!tdc) {
1607 return NULL;
1609 afs_indexFlags[tdc->index] &= ~IFDiscarded;
1610 ObtainWriteLock(&tdc->lock, 605);
1611 afs_discardDCCount--;
1612 size =
1613 ((tdc->f.chunkBytes +
1614 afs_fsfragsize) ^ afs_fsfragsize) >> 10;
1615 tdc->f.states &= ~(DRO|DBackup|DRW);
1616 afs_DCMoveBucket(tdc, size, 0);
1617 afs_blocksDiscarded -= size;
1618 afs_stats_cmperf.cacheBlocksDiscarded = afs_blocksDiscarded;
1619 if ((lock & 2)) {
1620 /* Truncate the chunk so zeroes get filled properly */
1621 file = afs_CFileOpen(&tdc->f.inode);
1622 afs_CFileTruncate(file, 0);
1623 afs_CFileClose(file);
1624 afs_AdjustSize(tdc, 0);
1627 return tdc;
1631 * Get a fresh dcache from the free or discarded list.
1633 * \param avc Who's dcache is this going to be?
1634 * \param chunk The position where it will be placed in.
1635 * \param lock How are locks held.
1636 * \param ashFid If this dcache going to be used for a shadow dir,
1637 * this is it's fid.
1639 * \note Required locks:
1640 * - afs_xdcache (W)
1641 * - avc (R if (lock & 1) set and W otherwise)
1642 * \note It write locks the new dcache. The caller must unlock it.
1644 * \return The new dcache.
1646 struct dcache *
1647 afs_AllocDCache(struct vcache *avc, afs_int32 chunk, afs_int32 lock,
1648 struct VenusFid *ashFid)
1650 struct dcache *tdc = NULL;
1652 /* if (lock & 2), prefer 'free' dcaches; otherwise, prefer 'discard'
1653 * dcaches. In either case, try both if our first choice doesn't work. */
1654 if ((lock & 2)) {
1655 tdc = afs_AllocFreeDSlot();
1656 if (!tdc) {
1657 tdc = afs_AllocDiscardDSlot(lock);
1659 } else {
1660 tdc = afs_AllocDiscardDSlot(lock);
1661 if (!tdc) {
1662 tdc = afs_AllocFreeDSlot();
1665 if (!tdc) {
1666 return NULL;
1670 * Locks held:
1671 * avc->lock(R) if setLocks
1672 * avc->lock(W) if !setLocks
1673 * tdc->lock(W)
1674 * afs_xdcache(W)
1678 * Fill in the newly-allocated dcache record.
1680 afs_indexFlags[tdc->index] &= ~(IFDirtyPages | IFAnyPages);
1681 if (ashFid)
1682 /* Use shadow fid if provided. */
1683 tdc->f.fid = *ashFid;
1684 else
1685 /* Use normal vcache's fid otherwise. */
1686 tdc->f.fid = avc->f.fid;
1687 if (avc->f.states & CRO)
1688 tdc->f.states = DRO;
1689 else if (avc->f.states & CBackup)
1690 tdc->f.states = DBackup;
1691 else
1692 tdc->f.states = DRW;
1693 afs_DCMoveBucket(tdc, 0, afs_DCGetBucket(avc));
1694 afs_indexUnique[tdc->index] = tdc->f.fid.Fid.Unique;
1695 if (!ashFid)
1696 hones(tdc->f.versionNo); /* invalid value */
1697 tdc->f.chunk = chunk;
1698 tdc->validPos = AFS_CHUNKTOBASE(chunk);
1699 /* XXX */
1700 if (tdc->lruq.prev == &tdc->lruq)
1701 osi_Panic("lruq 1");
1703 return tdc;
1707 * afs_GetDCache
1709 * Description:
1710 * This function is called to obtain a reference to data stored in
1711 * the disk cache, locating a chunk of data containing the desired
1712 * byte and returning a reference to the disk cache entry, with its
1713 * reference count incremented.
1715 * Parameters:
1716 * IN:
1717 * avc : Ptr to a vcache entry (unlocked)
1718 * abyte : Byte position in the file desired
1719 * areq : Request structure identifying the requesting user.
1720 * aflags : Settings as follows:
1721 * 1 : Set locks
1722 * 2 : Return after creating entry.
1723 * 4 : called from afs_vnop_write.c
1724 * *alen contains length of data to be written.
1725 * OUT:
1726 * aoffset : Set to the offset within the chunk where the resident
1727 * byte is located.
1728 * alen : Set to the number of bytes of data after the desired
1729 * byte (including the byte itself) which can be read
1730 * from this chunk.
1732 * Environment:
1733 * The vcache entry pointed to by avc is unlocked upon entry.
1737 * Update the vnode-to-dcache hint if we can get the vnode lock
1738 * right away. Assumes dcache entry is at least read-locked.
1740 void
1741 updateV2DC(int lockVc, struct vcache *v, struct dcache *d, int src)
1743 if (!lockVc || 0 == NBObtainWriteLock(&v->lock, src)) {
1744 if (hsame(v->f.m.DataVersion, d->f.versionNo) && v->callback)
1745 v->dchint = d;
1746 if (lockVc)
1747 ReleaseWriteLock(&v->lock);
1751 /* avc - Write-locked unless aflags & 1 */
1752 struct dcache *
1753 afs_GetDCache(struct vcache *avc, afs_size_t abyte,
1754 struct vrequest *areq, afs_size_t * aoffset,
1755 afs_size_t * alen, int aflags)
1757 afs_int32 i, code, shortcut;
1758 #if defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV)
1759 afs_int32 adjustsize = 0;
1760 #endif
1761 int setLocks;
1762 afs_int32 index;
1763 afs_int32 us;
1764 afs_int32 chunk;
1765 afs_size_t Position = 0;
1766 afs_int32 size, tlen; /* size of segment to transfer */
1767 struct afs_FetchOutput *tsmall = 0;
1768 struct dcache *tdc;
1769 struct osi_file *file;
1770 struct afs_conn *tc;
1771 int downDCount = 0;
1772 struct server *newCallback = NULL;
1773 char setNewCallback;
1774 char setVcacheStatus;
1775 char doVcacheUpdate;
1776 char slowPass = 0;
1777 int doAdjustSize = 0;
1778 int doReallyAdjustSize = 0;
1779 int overWriteWholeChunk = 0;
1780 struct rx_connection *rxconn;
1782 #ifndef AFS_NOSTATS
1783 struct afs_stats_AccessInfo *accP; /*Ptr to access record in stats */
1784 int fromReplica; /*Are we reading from a replica? */
1785 int numFetchLoops; /*# times around the fetch/analyze loop */
1786 #endif /* AFS_NOSTATS */
1788 AFS_STATCNT(afs_GetDCache);
1789 if (dcacheDisabled)
1790 return NULL;
1792 setLocks = aflags & 1;
1795 * Determine the chunk number and offset within the chunk corresponding
1796 * to the desired byte.
1798 if (avc->f.fid.Fid.Vnode & 1) { /* if (vType(avc) == VDIR) */
1799 chunk = 0;
1800 } else {
1801 chunk = AFS_CHUNK(abyte);
1804 /* come back to here if we waited for the cache to drain. */
1805 RetryGetDCache:
1807 setNewCallback = setVcacheStatus = 0;
1809 if (setLocks) {
1810 if (slowPass)
1811 ObtainWriteLock(&avc->lock, 616);
1812 else
1813 ObtainReadLock(&avc->lock);
1817 * Locks held:
1818 * avc->lock(R) if setLocks && !slowPass
1819 * avc->lock(W) if !setLocks || slowPass
1822 shortcut = 0;
1824 /* check hints first! (might could use bcmp or some such...) */
1825 if ((tdc = avc->dchint)) {
1826 int dcLocked;
1829 * The locking order between afs_xdcache and dcache lock matters.
1830 * The hint dcache entry could be anywhere, even on the free list.
1831 * Locking afs_xdcache ensures that noone is trying to pull dcache
1832 * entries from the free list, and thereby assuming them to be not
1833 * referenced and not locked.
1835 ObtainReadLock(&afs_xdcache);
1836 dcLocked = (0 == NBObtainSharedLock(&tdc->lock, 601));
1838 if (dcLocked && (tdc->index != NULLIDX)
1839 && !FidCmp(&tdc->f.fid, &avc->f.fid) && chunk == tdc->f.chunk
1840 && !(afs_indexFlags[tdc->index] & (IFFree | IFDiscarded))) {
1841 /* got the right one. It might not be the right version, and it
1842 * might be fetching, but it's the right dcache entry.
1844 /* All this code should be integrated better with what follows:
1845 * I can save a good bit more time under a write lock if I do..
1847 ObtainWriteLock(&tdc->tlock, 603);
1848 tdc->refCount++;
1849 ReleaseWriteLock(&tdc->tlock);
1851 ReleaseReadLock(&afs_xdcache);
1852 shortcut = 1;
1854 if (hsame(tdc->f.versionNo, avc->f.m.DataVersion)
1855 && !(tdc->dflags & DFFetching)) {
1857 afs_stats_cmperf.dcacheHits++;
1858 ObtainWriteLock(&afs_xdcache, 559);
1859 QRemove(&tdc->lruq);
1860 QAdd(&afs_DLRU, &tdc->lruq);
1861 ReleaseWriteLock(&afs_xdcache);
1863 /* Locks held:
1864 * avc->lock(R) if setLocks && !slowPass
1865 * avc->lock(W) if !setLocks || slowPass
1866 * tdc->lock(S)
1868 goto done;
1870 } else {
1871 if (dcLocked)
1872 ReleaseSharedLock(&tdc->lock);
1873 ReleaseReadLock(&afs_xdcache);
1876 if (!shortcut)
1877 tdc = 0;
1880 /* Locks held:
1881 * avc->lock(R) if setLocks && !slowPass
1882 * avc->lock(W) if !setLocks || slowPass
1883 * tdc->lock(S) if tdc
1886 if (!tdc) { /* If the hint wasn't the right dcache entry */
1887 int dslot_error = 0;
1889 * Hash on the [fid, chunk] and get the corresponding dcache index
1890 * after write-locking the dcache.
1892 RetryLookup:
1894 /* Locks held:
1895 * avc->lock(R) if setLocks && !slowPass
1896 * avc->lock(W) if !setLocks || slowPass
1899 i = DCHash(&avc->f.fid, chunk);
1900 /* check to make sure our space is fine */
1901 afs_MaybeWakeupTruncateDaemon();
1903 ObtainWriteLock(&afs_xdcache, 280);
1904 us = NULLIDX;
1905 for (index = afs_dchashTbl[i]; index != NULLIDX; us = index, index = afs_dcnextTbl[index]) {
1906 if (afs_indexUnique[index] == avc->f.fid.Fid.Unique) {
1907 tdc = afs_GetValidDSlot(index);
1908 if (!tdc) {
1909 /* we got an i/o error when trying to get the given dslot,
1910 * but do not bail out just yet; it is possible the dcache
1911 * we're looking for is elsewhere, so it doesn't matter if
1912 * we can't load this one. */
1913 dslot_error = 1;
1914 continue;
1916 ReleaseReadLock(&tdc->tlock);
1918 * Locks held:
1919 * avc->lock(R) if setLocks && !slowPass
1920 * avc->lock(W) if !setLocks || slowPass
1921 * afs_xdcache(W)
1923 if (!FidCmp(&tdc->f.fid, &avc->f.fid) && chunk == tdc->f.chunk) {
1924 /* Move it up in the beginning of the list */
1925 if (afs_dchashTbl[i] != index) {
1926 afs_dcnextTbl[us] = afs_dcnextTbl[index];
1927 afs_dcnextTbl[index] = afs_dchashTbl[i];
1928 afs_dchashTbl[i] = index;
1930 ReleaseWriteLock(&afs_xdcache);
1931 ObtainSharedLock(&tdc->lock, 606);
1932 break; /* leaving refCount high for caller */
1934 afs_PutDCache(tdc);
1935 tdc = 0;
1940 * If we didn't find the entry, we'll create one.
1942 if (index == NULLIDX) {
1944 * Locks held:
1945 * avc->lock(R) if setLocks
1946 * avc->lock(W) if !setLocks
1947 * afs_xdcache(W)
1949 afs_Trace2(afs_iclSetp, CM_TRACE_GETDCACHE1, ICL_TYPE_POINTER,
1950 avc, ICL_TYPE_INT32, chunk);
1952 if (dslot_error) {
1953 /* We couldn't find the dcache we want, but we hit some i/o
1954 * errors when trying to find it, so we're not sure if the
1955 * dcache we want is in the cache or not. Error out, so we
1956 * don't try to possibly create 2 separate dcaches for the
1957 * same exact data. */
1958 ReleaseWriteLock(&afs_xdcache);
1959 goto done;
1962 if (afs_discardDCList == NULLIDX && afs_freeDCList == NULLIDX) {
1963 if (!setLocks)
1964 avc->f.states |= CDCLock;
1965 /* just need slots */
1966 afs_GetDownD(5, (int *)0, afs_DCGetBucket(avc));
1967 if (!setLocks)
1968 avc->f.states &= ~CDCLock;
1970 tdc = afs_AllocDCache(avc, chunk, aflags, NULL);
1971 if (!tdc) {
1972 /* If we can't get space for 5 mins we give up and panic */
1973 if (++downDCount > 300)
1974 osi_Panic("getdcache");
1975 ReleaseWriteLock(&afs_xdcache);
1977 * Locks held:
1978 * avc->lock(R) if setLocks
1979 * avc->lock(W) if !setLocks
1981 afs_osi_Wait(1000, 0, 0);
1982 goto RetryLookup;
1986 * Locks held:
1987 * avc->lock(R) if setLocks
1988 * avc->lock(W) if !setLocks
1989 * tdc->lock(W)
1990 * afs_xdcache(W)
1994 * Now add to the two hash chains - note that i is still set
1995 * from the above DCHash call.
1997 afs_dcnextTbl[tdc->index] = afs_dchashTbl[i];
1998 afs_dchashTbl[i] = tdc->index;
1999 i = DVHash(&avc->f.fid);
2000 afs_dvnextTbl[tdc->index] = afs_dvhashTbl[i];
2001 afs_dvhashTbl[i] = tdc->index;
2002 tdc->dflags = DFEntryMod;
2003 tdc->mflags = 0;
2004 afs_MaybeWakeupTruncateDaemon();
2005 ReleaseWriteLock(&afs_xdcache);
2006 ConvertWToSLock(&tdc->lock);
2011 /* vcache->dcache hint failed */
2013 * Locks held:
2014 * avc->lock(R) if setLocks && !slowPass
2015 * avc->lock(W) if !setLocks || slowPass
2016 * tdc->lock(S)
2018 afs_Trace4(afs_iclSetp, CM_TRACE_GETDCACHE2, ICL_TYPE_POINTER, avc,
2019 ICL_TYPE_POINTER, tdc, ICL_TYPE_INT32,
2020 hgetlo(tdc->f.versionNo), ICL_TYPE_INT32,
2021 hgetlo(avc->f.m.DataVersion));
2023 * Here we have the entry in tdc, with its refCount incremented.
2024 * Note: we don't use the S-lock on avc; it costs concurrency when
2025 * storing a file back to the server.
2029 * Not a newly created file so we need to check the file's length and
2030 * compare data versions since someone could have changed the data or we're
2031 * reading a file written elsewhere. We only want to bypass doing no-op
2032 * read rpcs on newly created files (dv of 0) since only then we guarantee
2033 * that this chunk's data hasn't been filled by another client.
2035 size = AFS_CHUNKSIZE(abyte);
2036 if (aflags & 4) /* called from write */
2037 tlen = *alen;
2038 else /* called from read */
2039 tlen = tdc->validPos - abyte;
2040 Position = AFS_CHUNKTOBASE(chunk);
2041 afs_Trace4(afs_iclSetp, CM_TRACE_GETDCACHE3, ICL_TYPE_INT32, tlen,
2042 ICL_TYPE_INT32, aflags, ICL_TYPE_OFFSET,
2043 ICL_HANDLE_OFFSET(abyte), ICL_TYPE_OFFSET,
2044 ICL_HANDLE_OFFSET(Position));
2045 if ((aflags & 4) && (hiszero(avc->f.m.DataVersion)))
2046 doAdjustSize = 1;
2047 if ((AFS_CHUNKTOBASE(chunk) >= avc->f.m.Length) ||
2048 ((aflags & 4) && (abyte == Position) && (tlen >= size)))
2049 overWriteWholeChunk = 1;
2050 if (doAdjustSize || overWriteWholeChunk) {
2051 #if defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV)
2052 #ifdef AFS_SGI_ENV
2053 #ifdef AFS_SGI64_ENV
2054 if (doAdjustSize)
2055 adjustsize = NBPP;
2056 #else /* AFS_SGI64_ENV */
2057 if (doAdjustSize)
2058 adjustsize = 8192;
2059 #endif /* AFS_SGI64_ENV */
2060 #else /* AFS_SGI_ENV */
2061 if (doAdjustSize)
2062 adjustsize = 4096;
2063 #endif /* AFS_SGI_ENV */
2064 if (AFS_CHUNKTOBASE(chunk) + adjustsize >= avc->f.m.Length &&
2065 #else /* defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV) */
2066 #if defined(AFS_SUN5_ENV)
2067 if ((doAdjustSize || (AFS_CHUNKTOBASE(chunk) >= avc->f.m.Length)) &&
2068 #else
2069 if (AFS_CHUNKTOBASE(chunk) >= avc->f.m.Length &&
2070 #endif
2071 #endif /* defined(AFS_AIX32_ENV) || defined(AFS_SGI_ENV) */
2072 !hsame(avc->f.m.DataVersion, tdc->f.versionNo))
2073 doReallyAdjustSize = 1;
2075 if (doReallyAdjustSize || overWriteWholeChunk) {
2076 /* no data in file to read at this position */
2077 UpgradeSToWLock(&tdc->lock, 607);
2078 file = afs_CFileOpen(&tdc->f.inode);
2079 afs_CFileTruncate(file, 0);
2080 afs_CFileClose(file);
2081 afs_AdjustSize(tdc, 0);
2082 hset(tdc->f.versionNo, avc->f.m.DataVersion);
2083 tdc->dflags |= DFEntryMod;
2085 ConvertWToSLock(&tdc->lock);
2090 * We must read in the whole chunk if the version number doesn't
2091 * match.
2093 if (aflags & 2) {
2094 /* don't need data, just a unique dcache entry */
2095 ObtainWriteLock(&afs_xdcache, 608);
2096 hset(afs_indexTimes[tdc->index], afs_indexCounter);
2097 hadd32(afs_indexCounter, 1);
2098 ReleaseWriteLock(&afs_xdcache);
2100 updateV2DC(setLocks, avc, tdc, 553);
2101 if (vType(avc) == VDIR)
2102 *aoffset = abyte;
2103 else
2104 *aoffset = AFS_CHUNKOFFSET(abyte);
2105 if (tdc->validPos < abyte)
2106 *alen = (afs_size_t) 0;
2107 else
2108 *alen = tdc->validPos - abyte;
2109 ReleaseSharedLock(&tdc->lock);
2110 if (setLocks) {
2111 if (slowPass)
2112 ReleaseWriteLock(&avc->lock);
2113 else
2114 ReleaseReadLock(&avc->lock);
2116 return tdc; /* check if we're done */
2120 * Locks held:
2121 * avc->lock(R) if setLocks && !slowPass
2122 * avc->lock(W) if !setLocks || slowPass
2123 * tdc->lock(S)
2125 osi_Assert((setLocks && !slowPass) || WriteLocked(&avc->lock));
2127 setNewCallback = setVcacheStatus = 0;
2130 * Locks held:
2131 * avc->lock(R) if setLocks && !slowPass
2132 * avc->lock(W) if !setLocks || slowPass
2133 * tdc->lock(S)
2135 if (!hsame(avc->f.m.DataVersion, tdc->f.versionNo) && !overWriteWholeChunk) {
2137 * Version number mismatch.
2140 * If we are disconnected, then we can't do much of anything
2141 * because the data doesn't match the file.
2143 if (AFS_IS_DISCONNECTED) {
2144 ReleaseSharedLock(&tdc->lock);
2145 if (setLocks) {
2146 if (slowPass)
2147 ReleaseWriteLock(&avc->lock);
2148 else
2149 ReleaseReadLock(&avc->lock);
2151 /* Flush the Dcache */
2152 afs_PutDCache(tdc);
2154 return NULL;
2156 UpgradeSToWLock(&tdc->lock, 609);
2159 * If data ever existed for this vnode, and this is a text object,
2160 * do some clearing. Now, you'd think you need only do the flush
2161 * when VTEXT is on, but VTEXT is turned off when the text object
2162 * is freed, while pages are left lying around in memory marked
2163 * with this vnode. If we would reactivate (create a new text
2164 * object from) this vnode, we could easily stumble upon some of
2165 * these old pages in pagein. So, we always flush these guys.
2166 * Sun has a wonderful lack of useful invariants in this system.
2168 * avc->flushDV is the data version # of the file at the last text
2169 * flush. Clearly, at least, we don't have to flush the file more
2170 * often than it changes
2172 if (hcmp(avc->flushDV, avc->f.m.DataVersion) < 0) {
2174 * By here, the cache entry is always write-locked. We can
2175 * deadlock if we call osi_Flush with the cache entry locked...
2176 * Unlock the dcache too.
2178 ReleaseWriteLock(&tdc->lock);
2179 if (setLocks && !slowPass)
2180 ReleaseReadLock(&avc->lock);
2181 else
2182 ReleaseWriteLock(&avc->lock);
2184 osi_FlushText(avc);
2186 * Call osi_FlushPages in open, read/write, and map, since it
2187 * is too hard here to figure out if we should lock the
2188 * pvnLock.
2190 if (setLocks && !slowPass)
2191 ObtainReadLock(&avc->lock);
2192 else
2193 ObtainWriteLock(&avc->lock, 66);
2194 ObtainWriteLock(&tdc->lock, 610);
2198 * Locks held:
2199 * avc->lock(R) if setLocks && !slowPass
2200 * avc->lock(W) if !setLocks || slowPass
2201 * tdc->lock(W)
2204 /* Watch for standard race condition around osi_FlushText */
2205 if (hsame(avc->f.m.DataVersion, tdc->f.versionNo)) {
2206 updateV2DC(setLocks, avc, tdc, 569); /* set hint */
2207 afs_stats_cmperf.dcacheHits++;
2208 ConvertWToSLock(&tdc->lock);
2209 goto done;
2212 /* Sleep here when cache needs to be drained. */
2213 if (setLocks && !slowPass
2214 && (afs_blocksUsed >
2215 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks))) {
2216 /* Make sure truncate daemon is running */
2217 afs_MaybeWakeupTruncateDaemon();
2218 ObtainWriteLock(&tdc->tlock, 614);
2219 tdc->refCount--; /* we'll re-obtain the dcache when we re-try. */
2220 ReleaseWriteLock(&tdc->tlock);
2221 ReleaseWriteLock(&tdc->lock);
2222 ReleaseReadLock(&avc->lock);
2223 while ((afs_blocksUsed - afs_blocksDiscarded) >
2224 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
2225 afs_WaitForCacheDrain = 1;
2226 afs_osi_Sleep(&afs_WaitForCacheDrain);
2228 afs_MaybeFreeDiscardedDCache();
2229 /* need to check if someone else got the chunk first. */
2230 goto RetryGetDCache;
2233 Position = AFS_CHUNKBASE(abyte);
2234 if (vType(avc) == VDIR) {
2235 size = avc->f.m.Length;
2236 if (size > tdc->f.chunkBytes) {
2237 /* pre-reserve space for file */
2238 afs_AdjustSize(tdc, size);
2240 size = 999999999; /* max size for transfer */
2241 } else {
2242 afs_size_t maxGoodLength;
2244 /* estimate how much data we're expecting back from the server,
2245 * and reserve space in the dcache entry for it */
2247 maxGoodLength = avc->f.m.Length;
2248 if (avc->f.truncPos < maxGoodLength)
2249 maxGoodLength = avc->f.truncPos;
2251 size = AFS_CHUNKSIZE(abyte); /* expected max size */
2252 if (Position > maxGoodLength) { /* If we're beyond EOF */
2253 size = 0;
2254 } else if (Position + size > maxGoodLength) {
2255 size = maxGoodLength - Position;
2257 osi_Assert(size >= 0);
2259 if (size > tdc->f.chunkBytes) {
2260 /* pre-reserve estimated space for file */
2261 afs_AdjustSize(tdc, size); /* changes chunkBytes */
2264 if (size) {
2265 /* For the actual fetch, do not limit the request to the
2266 * length of the file. If this results in a read past EOF on
2267 * the server, the server will just reply with less data than
2268 * requested. If we limit ourselves to only requesting data up
2269 * to the avc file length, we open ourselves up to races if the
2270 * file is extended on the server at about the same time.
2272 * However, we must restrict ourselves to the avc->f.truncPos
2273 * length, since this represents an outstanding local
2274 * truncation of the file that will be committed to the
2275 * fileserver when we actually write the fileserver contents.
2276 * If we do not restrict the fetch length based on
2277 * avc->f.truncPos, a different truncate operation extending
2278 * the file length could cause the old data after
2279 * avc->f.truncPos to reappear, instead of extending the file
2280 * with NUL bytes. */
2281 size = AFS_CHUNKSIZE(abyte);
2282 if (Position > avc->f.truncPos) {
2283 size = 0;
2284 } else if (Position + size > avc->f.truncPos) {
2285 size = avc->f.truncPos - Position;
2287 osi_Assert(size >= 0);
2290 if (afs_mariner && !tdc->f.chunk)
2291 afs_MarinerLog("fetch$Fetching", avc); /* , Position, size, afs_indexCounter ); */
2293 * Right now, we only have one tool, and it's a hammer. So, we
2294 * fetch the whole file.
2296 DZap(tdc); /* pages in cache may be old */
2297 file = afs_CFileOpen(&tdc->f.inode);
2298 afs_RemoveVCB(&avc->f.fid);
2299 tdc->f.states |= DWriting;
2300 tdc->dflags |= DFFetching;
2301 tdc->validPos = Position; /* which is AFS_CHUNKBASE(abyte) */
2302 if (tdc->mflags & DFFetchReq) {
2303 tdc->mflags &= ~DFFetchReq;
2304 if (afs_osi_Wakeup(&tdc->validPos) == 0)
2305 afs_Trace4(afs_iclSetp, CM_TRACE_DCACHEWAKE, ICL_TYPE_STRING,
2306 __FILE__, ICL_TYPE_INT32, __LINE__,
2307 ICL_TYPE_POINTER, tdc, ICL_TYPE_INT32,
2308 tdc->dflags);
2310 tsmall = osi_AllocLargeSpace(sizeof(struct afs_FetchOutput));
2311 setVcacheStatus = 0;
2312 #ifndef AFS_NOSTATS
2314 * Remember if we are doing the reading from a replicated volume,
2315 * and how many times we've zipped around the fetch/analyze loop.
2317 fromReplica = (avc->f.states & CRO) ? 1 : 0;
2318 numFetchLoops = 0;
2319 accP = &(afs_stats_cmfullperf.accessinf);
2320 if (fromReplica)
2321 (accP->replicatedRefs)++;
2322 else
2323 (accP->unreplicatedRefs)++;
2324 #endif /* AFS_NOSTATS */
2325 /* this is a cache miss */
2326 afs_Trace4(afs_iclSetp, CM_TRACE_FETCHPROC, ICL_TYPE_POINTER, avc,
2327 ICL_TYPE_FID, &(avc->f.fid), ICL_TYPE_OFFSET,
2328 ICL_HANDLE_OFFSET(Position), ICL_TYPE_INT32, size);
2330 if (size)
2331 afs_stats_cmperf.dcacheMisses++;
2332 code = 0;
2334 * Dynamic root support: fetch data from local memory.
2336 if (afs_IsDynroot(avc)) {
2337 char *dynrootDir;
2338 int dynrootLen;
2340 afs_GetDynroot(&dynrootDir, &dynrootLen, &tsmall->OutStatus);
2342 dynrootDir += Position;
2343 dynrootLen -= Position;
2344 if (size > dynrootLen)
2345 size = dynrootLen;
2346 if (size < 0)
2347 size = 0;
2348 code = afs_CFileWrite(file, 0, dynrootDir, size);
2349 afs_PutDynroot();
2351 if (code == size)
2352 code = 0;
2353 else
2354 code = -1;
2356 tdc->validPos = Position + size;
2357 afs_CFileTruncate(file, size); /* prune it */
2358 } else if (afs_IsDynrootMount(avc)) {
2359 char *dynrootDir;
2360 int dynrootLen;
2362 afs_GetDynrootMount(&dynrootDir, &dynrootLen, &tsmall->OutStatus);
2364 dynrootDir += Position;
2365 dynrootLen -= Position;
2366 if (size > dynrootLen)
2367 size = dynrootLen;
2368 if (size < 0)
2369 size = 0;
2370 code = afs_CFileWrite(file, 0, dynrootDir, size);
2371 afs_PutDynroot();
2373 if (code == size)
2374 code = 0;
2375 else
2376 code = -1;
2378 tdc->validPos = Position + size;
2379 afs_CFileTruncate(file, size); /* prune it */
2380 } else
2382 * Not a dynamic vnode: do the real fetch.
2384 do {
2386 * Locks held:
2387 * avc->lock(R) if setLocks && !slowPass
2388 * avc->lock(W) if !setLocks || slowPass
2389 * tdc->lock(W)
2392 tc = afs_Conn(&avc->f.fid, areq, SHARED_LOCK, &rxconn);
2393 if (tc) {
2394 #ifndef AFS_NOSTATS
2395 numFetchLoops++;
2396 if (fromReplica)
2397 (accP->numReplicasAccessed)++;
2399 #endif /* AFS_NOSTATS */
2400 if (!setLocks || slowPass) {
2401 avc->callback = tc->parent->srvr->server;
2402 } else {
2403 newCallback = tc->parent->srvr->server;
2404 setNewCallback = 1;
2406 i = osi_Time();
2407 code = afs_CacheFetchProc(tc, rxconn, file, Position, tdc,
2408 avc, size, tsmall);
2409 } else
2410 code = -1;
2412 if (code == 0) {
2413 /* callback could have been broken (or expired) in a race here,
2414 * but we return the data anyway. It's as good as we knew about
2415 * when we started. */
2417 * validPos is updated by CacheFetchProc, and can only be
2418 * modifed under a dcache write lock, which we've blocked out
2420 size = tdc->validPos - Position; /* actual segment size */
2421 if (size < 0)
2422 size = 0;
2423 afs_CFileTruncate(file, size); /* prune it */
2424 } else {
2425 if (!setLocks || slowPass) {
2426 afs_StaleVCacheFlags(avc, AFS_STALEVC_CLEARCB, CUnique);
2427 } else {
2428 /* Something lost. Forget about performance, and go
2429 * back with a vcache write lock.
2431 afs_CFileTruncate(file, 0);
2432 afs_AdjustSize(tdc, 0);
2433 afs_CFileClose(file);
2434 osi_FreeLargeSpace(tsmall);
2435 tsmall = 0;
2436 ReleaseWriteLock(&tdc->lock);
2437 afs_PutDCache(tdc);
2438 tdc = 0;
2439 ReleaseReadLock(&avc->lock);
2441 if (tc) {
2442 /* If we have a connection, we must put it back,
2443 * since afs_Analyze will not be called here. */
2444 afs_PutConn(tc, rxconn, SHARED_LOCK);
2447 slowPass = 1;
2448 goto RetryGetDCache;
2452 } while (afs_Analyze
2453 (tc, rxconn, code, &avc->f.fid, areq,
2454 AFS_STATS_FS_RPCIDX_FETCHDATA, SHARED_LOCK, NULL));
2457 * Locks held:
2458 * avc->lock(R) if setLocks && !slowPass
2459 * avc->lock(W) if !setLocks || slowPass
2460 * tdc->lock(W)
2463 #ifndef AFS_NOSTATS
2465 * In the case of replicated access, jot down info on the number of
2466 * attempts it took before we got through or gave up.
2468 if (fromReplica) {
2469 if (numFetchLoops <= 1)
2470 (accP->refFirstReplicaOK)++;
2471 if (numFetchLoops > accP->maxReplicasPerRef)
2472 accP->maxReplicasPerRef = numFetchLoops;
2474 #endif /* AFS_NOSTATS */
2476 tdc->dflags &= ~DFFetching;
2477 if (afs_osi_Wakeup(&tdc->validPos) == 0)
2478 afs_Trace4(afs_iclSetp, CM_TRACE_DCACHEWAKE, ICL_TYPE_STRING,
2479 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2480 tdc, ICL_TYPE_INT32, tdc->dflags);
2481 if (avc->execsOrWriters == 0)
2482 tdc->f.states &= ~DWriting;
2484 /* now, if code != 0, we have an error and should punt.
2485 * note that we have the vcache write lock, either because
2486 * !setLocks or slowPass.
2488 if (code) {
2489 afs_CFileTruncate(file, 0);
2490 afs_AdjustSize(tdc, 0);
2491 afs_CFileClose(file);
2492 ZapDCE(tdc); /* sets DFEntryMod */
2493 if (vType(avc) == VDIR) {
2494 DZap(tdc);
2496 tdc->f.states &= ~(DRO|DBackup|DRW);
2497 afs_DCMoveBucket(tdc, 0, 0);
2498 ReleaseWriteLock(&tdc->lock);
2499 afs_PutDCache(tdc);
2500 if (!afs_IsDynroot(avc)) {
2501 afs_StaleVCacheFlags(avc, 0, CUnique);
2503 * Locks held:
2504 * avc->lock(W); assert(!setLocks || slowPass)
2506 osi_Assert(!setLocks || slowPass);
2508 tdc = NULL;
2509 goto done;
2512 /* otherwise we copy in the just-fetched info */
2513 afs_CFileClose(file);
2514 afs_AdjustSize(tdc, size); /* new size */
2516 * Copy appropriate fields into vcache. Status is
2517 * copied later where we selectively acquire the
2518 * vcache write lock.
2520 if (slowPass)
2521 afs_ProcessFS(avc, &tsmall->OutStatus, areq);
2522 else
2523 setVcacheStatus = 1;
2524 hset64(tdc->f.versionNo, tsmall->OutStatus.dataVersionHigh,
2525 tsmall->OutStatus.DataVersion);
2526 tdc->dflags |= DFEntryMod;
2527 afs_indexFlags[tdc->index] |= IFEverUsed;
2528 ConvertWToSLock(&tdc->lock);
2529 } /*Data version numbers don't match */
2530 else {
2532 * Data version numbers match.
2534 afs_stats_cmperf.dcacheHits++;
2535 } /*Data version numbers match */
2537 updateV2DC(setLocks, avc, tdc, 335); /* set hint */
2538 done:
2540 * Locks held:
2541 * avc->lock(R) if setLocks && !slowPass
2542 * avc->lock(W) if !setLocks || slowPass
2543 * tdc->lock(S) if tdc
2547 * See if this was a reference to a file in the local cell.
2549 if (afs_IsPrimaryCellNum(avc->f.fid.Cell))
2550 afs_stats_cmperf.dlocalAccesses++;
2551 else
2552 afs_stats_cmperf.dremoteAccesses++;
2554 /* Fix up LRU info */
2556 if (tdc) {
2557 ObtainWriteLock(&afs_xdcache, 602);
2558 hset(afs_indexTimes[tdc->index], afs_indexCounter);
2559 hadd32(afs_indexCounter, 1);
2560 ReleaseWriteLock(&afs_xdcache);
2562 /* return the data */
2563 if (vType(avc) == VDIR)
2564 *aoffset = abyte;
2565 else
2566 *aoffset = AFS_CHUNKOFFSET(abyte);
2567 *alen = (tdc->f.chunkBytes - *aoffset);
2568 ReleaseSharedLock(&tdc->lock);
2572 * Locks held:
2573 * avc->lock(R) if setLocks && !slowPass
2574 * avc->lock(W) if !setLocks || slowPass
2577 /* Fix up the callback and status values in the vcache */
2578 doVcacheUpdate = 0;
2579 if (setLocks && !slowPass) {
2580 /* DCLOCKXXX
2582 * This is our dirty little secret to parallel fetches.
2583 * We don't write-lock the vcache while doing the fetch,
2584 * but potentially we'll need to update the vcache after
2585 * the fetch is done.
2587 * Drop the read lock and try to re-obtain the write
2588 * lock. If the vcache still has the same DV, it's
2589 * ok to go ahead and install the new data.
2591 afs_hyper_t currentDV, statusDV;
2593 hset(currentDV, avc->f.m.DataVersion);
2595 if (setNewCallback && avc->callback != newCallback)
2596 doVcacheUpdate = 1;
2598 if (tsmall) {
2599 hset64(statusDV, tsmall->OutStatus.dataVersionHigh,
2600 tsmall->OutStatus.DataVersion);
2602 if (setVcacheStatus && avc->f.m.Length != tsmall->OutStatus.Length)
2603 doVcacheUpdate = 1;
2604 if (setVcacheStatus && !hsame(currentDV, statusDV))
2605 doVcacheUpdate = 1;
2608 ReleaseReadLock(&avc->lock);
2610 if (doVcacheUpdate) {
2611 ObtainWriteLock(&avc->lock, 615);
2612 if (!hsame(avc->f.m.DataVersion, currentDV)) {
2613 /* We lose. Someone will beat us to it. */
2614 doVcacheUpdate = 0;
2615 ReleaseWriteLock(&avc->lock);
2620 /* With slow pass, we've already done all the updates */
2621 if (slowPass) {
2622 ReleaseWriteLock(&avc->lock);
2625 /* Check if we need to perform any last-minute fixes with a write-lock */
2626 if (!setLocks || doVcacheUpdate) {
2627 if (setNewCallback)
2628 avc->callback = newCallback;
2629 if (tsmall && setVcacheStatus)
2630 afs_ProcessFS(avc, &tsmall->OutStatus, areq);
2631 if (setLocks)
2632 ReleaseWriteLock(&avc->lock);
2635 if (tsmall)
2636 osi_FreeLargeSpace(tsmall);
2638 return tdc;
2639 } /*afs_GetDCache */
2643 * afs_WriteThroughDSlots
2645 * Description:
2646 * Sweep through the dcache slots and write out any modified
2647 * in-memory data back on to our caching store.
2649 * Parameters:
2650 * None.
2652 * Environment:
2653 * The afs_xdcache is write-locked through this whole affair.
2655 void
2656 afs_WriteThroughDSlots(void)
2658 struct dcache *tdc;
2659 afs_int32 i, touchedit = 0;
2661 struct afs_q DirtyQ, *tq;
2663 AFS_STATCNT(afs_WriteThroughDSlots);
2666 * Because of lock ordering, we can't grab dcache locks while
2667 * holding afs_xdcache. So we enter xdcache, get a reference
2668 * for every dcache entry, and exit xdcache.
2670 ObtainWriteLock(&afs_xdcache, 283);
2671 QInit(&DirtyQ);
2672 for (i = 0; i < afs_cacheFiles; i++) {
2673 tdc = afs_indexTable[i];
2675 /* Grab tlock in case the existing refcount isn't zero */
2676 if (tdc && !(afs_indexFlags[i] & (IFFree | IFDiscarded))) {
2677 ObtainWriteLock(&tdc->tlock, 623);
2678 tdc->refCount++;
2679 ReleaseWriteLock(&tdc->tlock);
2681 QAdd(&DirtyQ, &tdc->dirty);
2684 ReleaseWriteLock(&afs_xdcache);
2687 * Now, for each dcache entry we found, check if it's dirty.
2688 * If so, get write-lock, get afs_xdcache, which protects
2689 * afs_cacheInodep, and flush it. Don't forget to put back
2690 * the refcounts.
2693 #define DQTODC(q) ((struct dcache *)(((char *) (q)) - sizeof(struct afs_q)))
2695 for (tq = DirtyQ.prev; tq != &DirtyQ; tq = QPrev(tq)) {
2696 tdc = DQTODC(tq);
2697 if (tdc->dflags & DFEntryMod) {
2698 int wrLock;
2700 wrLock = (0 == NBObtainWriteLock(&tdc->lock, 619));
2702 /* Now that we have the write lock, double-check */
2703 if (wrLock && (tdc->dflags & DFEntryMod)) {
2704 tdc->dflags &= ~DFEntryMod;
2705 ObtainWriteLock(&afs_xdcache, 620);
2706 osi_Assert(afs_WriteDCache(tdc, 1) == 0);
2707 ReleaseWriteLock(&afs_xdcache);
2708 touchedit = 1;
2710 if (wrLock)
2711 ReleaseWriteLock(&tdc->lock);
2714 afs_PutDCache(tdc);
2717 ObtainWriteLock(&afs_xdcache, 617);
2718 if (!touchedit && (cacheDiskType != AFS_FCACHE_TYPE_MEM)) {
2719 /* Touch the file to make sure that the mtime on the file is kept
2720 * up-to-date to avoid losing cached files on cold starts because
2721 * their mtime seems old...
2723 struct afs_fheader theader;
2725 afs_InitFHeader(&theader);
2726 afs_osi_Write(afs_cacheInodep, 0, &theader, sizeof(theader));
2728 ReleaseWriteLock(&afs_xdcache);
2732 * afs_MemGetDSlot
2734 * Description:
2735 * Return a pointer to an freshly initialized dcache entry using
2736 * a memory-based cache. The tlock will be read-locked.
2738 * Parameters:
2739 * aslot : Dcache slot to look at.
2740 * type : What 'type' of dslot to get; see the dslot_state enum
2742 * Environment:
2743 * Must be called with afs_xdcache write-locked.
2746 struct dcache *
2747 afs_MemGetDSlot(afs_int32 aslot, dslot_state type)
2749 struct dcache *tdc;
2750 int existing = 0;
2752 AFS_STATCNT(afs_MemGetDSlot);
2753 if (CheckLock(&afs_xdcache) != -1)
2754 osi_Panic("getdslot nolock");
2755 if (aslot < 0 || aslot >= afs_cacheFiles)
2756 osi_Panic("getdslot slot %d (of %d)", aslot, afs_cacheFiles);
2757 tdc = afs_indexTable[aslot];
2758 if (tdc) {
2759 QRemove(&tdc->lruq); /* move to queue head */
2760 QAdd(&afs_DLRU, &tdc->lruq);
2761 /* We're holding afs_xdcache, but get tlock in case refCount != 0 */
2762 ObtainWriteLock(&tdc->tlock, 624);
2763 tdc->refCount++;
2764 ConvertWToRLock(&tdc->tlock);
2765 return tdc;
2768 /* if we got here, the given slot is not in memory in our list of known
2769 * slots. for memcache, the only place a dslot can exist is in memory, so
2770 * if the caller is expecting to get back a known dslot, and we've reached
2771 * here, something is very wrong. DSLOT_NEW is the only type of dslot that
2772 * may not exist; for all others, the caller assumes the given dslot
2773 * already exists. so, 'type' had better be DSLOT_NEW here, or something is
2774 * very wrong. */
2775 osi_Assert(type == DSLOT_NEW);
2777 if (!afs_freeDSList)
2778 afs_GetDownDSlot(4);
2779 if (!afs_freeDSList) {
2780 /* none free, making one is better than a panic */
2781 afs_stats_cmperf.dcacheXAllocs++; /* count in case we have a leak */
2782 tdc = afs_osi_Alloc(sizeof(struct dcache));
2783 osi_Assert(tdc != NULL);
2784 #ifdef KERNEL_HAVE_PIN
2785 pin((char *)tdc, sizeof(struct dcache)); /* XXX */
2786 #endif
2787 } else {
2788 tdc = afs_freeDSList;
2789 afs_freeDSList = (struct dcache *)tdc->lruq.next;
2790 existing = 1;
2792 tdc->dflags = 0; /* up-to-date, not in free q */
2793 tdc->mflags = 0;
2794 QAdd(&afs_DLRU, &tdc->lruq);
2795 if (tdc->lruq.prev == &tdc->lruq)
2796 osi_Panic("lruq 3");
2798 /* initialize entry */
2799 tdc->f.fid.Cell = 0;
2800 tdc->f.fid.Fid.Volume = 0;
2801 tdc->f.chunk = -1;
2802 hones(tdc->f.versionNo);
2803 tdc->f.inode.mem = aslot;
2804 tdc->dflags |= DFEntryMod;
2805 tdc->refCount = 1;
2806 tdc->index = aslot;
2807 afs_indexUnique[aslot] = tdc->f.fid.Fid.Unique;
2809 if (existing) {
2810 osi_Assert(0 == NBObtainWriteLock(&tdc->lock, 674));
2811 osi_Assert(0 == NBObtainWriteLock(&tdc->mflock, 675));
2812 osi_Assert(0 == NBObtainWriteLock(&tdc->tlock, 676));
2815 AFS_RWLOCK_INIT(&tdc->lock, "dcache lock");
2816 AFS_RWLOCK_INIT(&tdc->tlock, "dcache tlock");
2817 AFS_RWLOCK_INIT(&tdc->mflock, "dcache flock");
2818 ObtainReadLock(&tdc->tlock);
2820 afs_indexTable[aslot] = tdc;
2821 return tdc;
2823 } /*afs_MemGetDSlot */
2825 unsigned int last_error = 0, lasterrtime = 0;
2828 * afs_UFSGetDSlot
2830 * Description:
2831 * Return a pointer to an freshly initialized dcache entry using
2832 * a UFS-based disk cache. The dcache tlock will be read-locked.
2834 * Parameters:
2835 * aslot : Dcache slot to look at.
2836 * type : What 'type' of dslot to get; see the dslot_state enum
2838 * Environment:
2839 * afs_xdcache lock write-locked.
2841 struct dcache *
2842 afs_UFSGetDSlot(afs_int32 aslot, dslot_state type)
2844 afs_int32 code;
2845 struct dcache *tdc;
2846 int existing = 0;
2847 int entryok;
2848 int off;
2850 AFS_STATCNT(afs_UFSGetDSlot);
2851 if (CheckLock(&afs_xdcache) != -1)
2852 osi_Panic("getdslot nolock");
2853 if (aslot < 0 || aslot >= afs_cacheFiles)
2854 osi_Panic("getdslot slot %d (of %d)", aslot, afs_cacheFiles);
2855 tdc = afs_indexTable[aslot];
2856 if (tdc) {
2857 QRemove(&tdc->lruq); /* move to queue head */
2858 QAdd(&afs_DLRU, &tdc->lruq);
2859 /* Grab tlock in case refCount != 0 */
2860 ObtainWriteLock(&tdc->tlock, 625);
2861 tdc->refCount++;
2862 ConvertWToRLock(&tdc->tlock);
2863 return tdc;
2866 /* otherwise we should read it in from the cache file */
2867 if (!afs_freeDSList)
2868 afs_GetDownDSlot(4);
2869 if (!afs_freeDSList) {
2870 /* none free, making one is better than a panic */
2871 afs_stats_cmperf.dcacheXAllocs++; /* count in case we have a leak */
2872 tdc = afs_osi_Alloc(sizeof(struct dcache));
2873 osi_Assert(tdc != NULL);
2874 #ifdef KERNEL_HAVE_PIN
2875 pin((char *)tdc, sizeof(struct dcache)); /* XXX */
2876 #endif
2877 } else {
2878 tdc = afs_freeDSList;
2879 afs_freeDSList = (struct dcache *)tdc->lruq.next;
2880 existing = 1;
2882 tdc->dflags = 0; /* up-to-date, not in free q */
2883 tdc->mflags = 0;
2884 QAdd(&afs_DLRU, &tdc->lruq);
2885 if (tdc->lruq.prev == &tdc->lruq)
2886 osi_Panic("lruq 3");
2889 * Seek to the aslot'th entry and read it in.
2891 off = sizeof(struct fcache)*aslot + sizeof(struct afs_fheader);
2892 code =
2893 afs_osi_Read(afs_cacheInodep,
2894 off, (char *)(&tdc->f),
2895 sizeof(struct fcache));
2896 entryok = 1;
2897 if (code != sizeof(struct fcache)) {
2898 entryok = 0;
2899 #if defined(KERNEL_HAVE_UERROR)
2900 last_error = getuerror();
2901 #else
2902 last_error = code;
2903 #endif
2904 lasterrtime = osi_Time();
2905 if (type != DSLOT_NEW) {
2906 /* If we are requesting a non-DSLOT_NEW slot, this is an error.
2907 * non-DSLOT_NEW slots are supposed to already exist, so if we
2908 * failed to read in the slot, something is wrong. */
2909 struct osi_stat tstat;
2910 if (afs_osi_Stat(afs_cacheInodep, &tstat)) {
2911 tstat.size = -1;
2913 afs_warn("afs: disk cache read error in CacheItems slot %d "
2914 "off %d/%d code %d/%d\n",
2915 (int)aslot,
2916 off, (int)tstat.size,
2917 (int)code, (int)sizeof(struct fcache));
2918 /* put tdc back on the free dslot list */
2919 QRemove(&tdc->lruq);
2920 tdc->index = NULLIDX;
2921 tdc->lruq.next = (struct afs_q *)afs_freeDSList;
2922 afs_freeDSList = tdc;
2923 return NULL;
2926 if (!afs_CellNumValid(tdc->f.fid.Cell)) {
2927 entryok = 0;
2928 if (type == DSLOT_VALID) {
2929 osi_Panic("afs: needed valid dcache but index %d off %d has "
2930 "invalid cell num %d\n",
2931 (int)aslot, off, (int)tdc->f.fid.Cell);
2935 if (type == DSLOT_VALID && tdc->f.fid.Fid.Volume == 0) {
2936 osi_Panic("afs: invalid zero-volume dcache entry at slot %d off %d",
2937 (int)aslot, off);
2940 if (type == DSLOT_UNUSED) {
2941 /* the requested dslot is known to exist, but contain invalid data
2942 * (this happens when we're using a dslot from the free or discard
2943 * list). be sure not to re-use the data in it, so force invalidation.
2945 entryok = 0;
2948 if (!entryok) {
2949 tdc->f.fid.Cell = 0;
2950 tdc->f.fid.Fid.Volume = 0;
2951 tdc->f.chunk = -1;
2952 hones(tdc->f.versionNo);
2953 tdc->dflags |= DFEntryMod;
2954 afs_indexUnique[aslot] = tdc->f.fid.Fid.Unique;
2955 tdc->f.states &= ~(DRO|DBackup|DRW);
2956 afs_DCMoveBucket(tdc, 0, 0);
2957 } else {
2958 if (tdc->f.states & DRO) {
2959 afs_DCMoveBucket(tdc, 0, 2);
2960 } else if (tdc->f.states & DBackup) {
2961 afs_DCMoveBucket(tdc, 0, 1);
2962 } else {
2963 afs_DCMoveBucket(tdc, 0, 1);
2966 tdc->refCount = 1;
2967 tdc->index = aslot;
2968 if (tdc->f.chunk >= 0)
2969 tdc->validPos = AFS_CHUNKTOBASE(tdc->f.chunk) + tdc->f.chunkBytes;
2970 else
2971 tdc->validPos = 0;
2973 if (existing) {
2974 osi_Assert(0 == NBObtainWriteLock(&tdc->lock, 674));
2975 osi_Assert(0 == NBObtainWriteLock(&tdc->mflock, 675));
2976 osi_Assert(0 == NBObtainWriteLock(&tdc->tlock, 676));
2979 AFS_RWLOCK_INIT(&tdc->lock, "dcache lock");
2980 AFS_RWLOCK_INIT(&tdc->tlock, "dcache tlock");
2981 AFS_RWLOCK_INIT(&tdc->mflock, "dcache flock");
2982 ObtainReadLock(&tdc->tlock);
2985 * If we didn't read into a temporary dcache region, update the
2986 * slot pointer table.
2988 afs_indexTable[aslot] = tdc;
2989 return tdc;
2991 } /*afs_UFSGetDSlot */
2996 * Write a particular dcache entry back to its home in the
2997 * CacheInfo file.
2999 * \param adc Pointer to the dcache entry to write.
3000 * \param atime If true, set the modtime on the file to the current time.
3002 * \note Environment:
3003 * Must be called with the afs_xdcache lock at least read-locked,
3004 * and dcache entry at least read-locked.
3005 * The reference count is not changed.
3009 afs_WriteDCache(struct dcache *adc, int atime)
3011 afs_int32 code;
3013 if (cacheDiskType == AFS_FCACHE_TYPE_MEM)
3014 return 0;
3015 AFS_STATCNT(afs_WriteDCache);
3016 osi_Assert(WriteLocked(&afs_xdcache));
3017 if (atime)
3018 adc->f.modTime = osi_Time();
3020 if ((afs_indexFlags[adc->index] & (IFFree | IFDiscarded)) == 0 &&
3021 adc->f.fid.Fid.Volume == 0) {
3022 /* If a dcache slot is not on the free or discard list, it must be
3023 * in the hash table. Thus, the volume must be non-zero, since that
3024 * is how we determine whether or not to unhash the entry when kicking
3025 * it out of the cache. Do this check now, since otherwise this can
3026 * cause hash table corruption and a panic later on after we read the
3027 * entry back in. */
3028 osi_Panic("afs_WriteDCache zero volume index %d flags 0x%x\n",
3029 adc->index, (unsigned)afs_indexFlags[adc->index]);
3033 * Seek to the right dcache slot and write the in-memory image out to disk.
3035 afs_cellname_write();
3036 code =
3037 afs_osi_Write(afs_cacheInodep,
3038 sizeof(struct fcache) * adc->index +
3039 sizeof(struct afs_fheader), (char *)(&adc->f),
3040 sizeof(struct fcache));
3041 if (code != sizeof(struct fcache)) {
3042 afs_warn("afs: failed to write to CacheItems off %ld code %d/%d\n",
3043 (long)(sizeof(struct fcache) * adc->index + sizeof(struct afs_fheader)),
3044 (int)code, (int)sizeof(struct fcache));
3045 return EIO;
3047 return 0;
3053 * Wake up users of a particular file waiting for stores to take
3054 * place.
3056 * \param avc Ptr to related vcache entry.
3058 * \note Environment:
3059 * Nothing interesting.
3062 afs_wakeup(struct vcache *avc)
3064 int i;
3065 struct brequest *tb;
3066 tb = afs_brs;
3067 AFS_STATCNT(afs_wakeup);
3068 for (i = 0; i < NBRS; i++, tb++) {
3069 /* if request is valid and for this file, we've found it */
3070 if (tb->refCount > 0 && avc == tb->vc) {
3073 * If CSafeStore is on, then we don't awaken the guy
3074 * waiting for the store until the whole store has finished.
3075 * Otherwise, we do it now. Note that if CSafeStore is on,
3076 * the BStore routine actually wakes up the user, instead
3077 * of us.
3078 * I think this is redundant now because this sort of thing
3079 * is already being handled by the higher-level code.
3081 if ((avc->f.states & CSafeStore) == 0) {
3082 tb->code_raw = tb->code_checkcode = 0;
3083 tb->flags |= BUVALID;
3084 if (tb->flags & BUWAIT) {
3085 tb->flags &= ~BUWAIT;
3086 afs_osi_Wakeup(tb);
3089 break;
3092 return 0;
3096 * Given a file name and inode, set up that file to be an
3097 * active member in the AFS cache. This also involves checking
3098 * the usability of its data.
3100 * \param afile Name of the cache file to initialize.
3101 * \param ainode Inode of the file.
3103 * \note Environment:
3104 * This function is called only during initialization.
3107 afs_InitCacheFile(char *afile, ino_t ainode)
3109 afs_int32 code;
3110 afs_int32 index;
3111 int fileIsBad;
3112 struct osi_file *tfile;
3113 struct osi_stat tstat;
3114 struct dcache *tdc;
3116 AFS_STATCNT(afs_InitCacheFile);
3117 index = afs_stats_cmperf.cacheNumEntries;
3118 if (index >= afs_cacheFiles)
3119 return EINVAL;
3121 ObtainWriteLock(&afs_xdcache, 282);
3122 tdc = afs_GetNewDSlot(index);
3123 ReleaseReadLock(&tdc->tlock);
3124 ReleaseWriteLock(&afs_xdcache);
3126 ObtainWriteLock(&tdc->lock, 621);
3127 ObtainWriteLock(&afs_xdcache, 622);
3128 if (!afile && !ainode) {
3129 tfile = NULL;
3130 fileIsBad = 1;
3131 } else {
3132 if (afile) {
3133 code = afs_LookupInodeByPath(afile, &tdc->f.inode.ufs, NULL);
3134 if (code) {
3135 ReleaseWriteLock(&afs_xdcache);
3136 ReleaseWriteLock(&tdc->lock);
3137 afs_PutDCache(tdc);
3138 return code;
3140 } else {
3141 /* Add any other 'complex' inode types here ... */
3142 #if !defined(AFS_LINUX26_ENV) && !defined(AFS_CACHE_VNODE_PATH)
3143 tdc->f.inode.ufs = ainode;
3144 #else
3145 osi_Panic("Can't init cache with inode numbers when complex inodes are "
3146 "in use\n");
3147 #endif
3149 fileIsBad = 0;
3150 if ((tdc->f.states & DWriting) || tdc->f.fid.Fid.Volume == 0)
3151 fileIsBad = 1;
3152 tfile = osi_UFSOpen(&tdc->f.inode);
3153 if (!tfile) {
3154 ReleaseWriteLock(&afs_xdcache);
3155 ReleaseWriteLock(&tdc->lock);
3156 afs_PutDCache(tdc);
3157 return ENOENT;
3160 code = afs_osi_Stat(tfile, &tstat);
3161 if (code)
3162 osi_Panic("initcachefile stat");
3165 * If file size doesn't match the cache info file, it's probably bad.
3167 if (tdc->f.chunkBytes != tstat.size)
3168 fileIsBad = 1;
3170 * If file changed within T (120?) seconds of cache info file, it's
3171 * probably bad. In addition, if slot changed within last T seconds,
3172 * the cache info file may be incorrectly identified, and so slot
3173 * may be bad.
3175 if (cacheInfoModTime < tstat.mtime + 120)
3176 fileIsBad = 1;
3177 if (cacheInfoModTime < tdc->f.modTime + 120)
3178 fileIsBad = 1;
3179 /* In case write through is behind, make sure cache items entry is
3180 * at least as new as the chunk.
3182 if (tdc->f.modTime < tstat.mtime)
3183 fileIsBad = 1;
3185 tdc->f.chunkBytes = 0;
3187 if (fileIsBad) {
3188 tdc->f.fid.Fid.Volume = 0; /* not in the hash table */
3189 if (tfile && tstat.size != 0)
3190 osi_UFSTruncate(tfile, 0);
3191 tdc->f.states &= ~(DRO|DBackup|DRW);
3192 afs_DCMoveBucket(tdc, 0, 0);
3193 /* put entry in free cache slot list */
3194 afs_dvnextTbl[tdc->index] = afs_freeDCList;
3195 afs_freeDCList = index;
3196 afs_freeDCCount++;
3197 afs_indexFlags[index] |= IFFree;
3198 afs_indexUnique[index] = 0;
3199 } else {
3201 * We must put this entry in the appropriate hash tables.
3202 * Note that i is still set from the above DCHash call
3204 code = DCHash(&tdc->f.fid, tdc->f.chunk);
3205 afs_dcnextTbl[tdc->index] = afs_dchashTbl[code];
3206 afs_dchashTbl[code] = tdc->index;
3207 code = DVHash(&tdc->f.fid);
3208 afs_dvnextTbl[tdc->index] = afs_dvhashTbl[code];
3209 afs_dvhashTbl[code] = tdc->index;
3210 afs_AdjustSize(tdc, tstat.size); /* adjust to new size */
3211 if (tstat.size > 0)
3212 /* has nontrivial amt of data */
3213 afs_indexFlags[index] |= IFEverUsed;
3214 afs_stats_cmperf.cacheFilesReused++;
3216 * Initialize index times to file's mod times; init indexCounter
3217 * to max thereof
3219 hset32(afs_indexTimes[index], tstat.atime);
3220 if (hgetlo(afs_indexCounter) < tstat.atime) {
3221 hset32(afs_indexCounter, tstat.atime);
3223 afs_indexUnique[index] = tdc->f.fid.Fid.Unique;
3224 } /*File is not bad */
3226 if (tfile)
3227 osi_UFSClose(tfile);
3228 tdc->f.states &= ~DWriting;
3229 tdc->dflags &= ~DFEntryMod;
3230 /* don't set f.modTime; we're just cleaning up */
3231 osi_Assert(afs_WriteDCache(tdc, 0) == 0);
3232 ReleaseWriteLock(&afs_xdcache);
3233 ReleaseWriteLock(&tdc->lock);
3234 afs_PutDCache(tdc);
3235 afs_stats_cmperf.cacheNumEntries++;
3236 return 0;
3240 /*Max # of struct dcache's resident at any time*/
3242 * If 'dchint' is enabled then in-memory dcache min is increased because of
3243 * crashes...
3245 #define DDSIZE 200
3248 * Initialize dcache related variables.
3250 * \param afiles
3251 * \param ablocks
3252 * \param aDentries
3253 * \param achunk
3254 * \param aflags
3257 void
3258 afs_dcacheInit(int afiles, int ablocks, int aDentries, int achunk, int aflags)
3260 struct dcache *tdp;
3261 int i;
3262 int code;
3263 int afs_dhashbits;
3265 afs_freeDCList = NULLIDX;
3266 afs_discardDCList = NULLIDX;
3267 afs_freeDCCount = 0;
3268 afs_freeDSList = NULL;
3269 hzero(afs_indexCounter);
3271 LOCK_INIT(&afs_xdcache, "afs_xdcache");
3274 * Set chunk size
3276 if (achunk) {
3277 if (achunk < 0 || achunk > 30)
3278 achunk = 13; /* Use default */
3279 AFS_SETCHUNKSIZE(achunk);
3282 if (!aDentries)
3283 aDentries = DDSIZE;
3285 /* afs_dhashsize defaults to 1024 */
3286 if (aDentries > 512)
3287 afs_dhashsize = 2048;
3288 /* Try to keep the average chain length around two unless the table
3289 * would be ridiculously big. */
3290 if (aDentries > 4096) {
3291 afs_dhashbits = opr_fls(aDentries) - 3;
3292 /* Cap the hash tables to 32k entries. */
3293 if (afs_dhashbits > 15)
3294 afs_dhashbits = 15;
3295 afs_dhashsize = opr_jhash_size(afs_dhashbits);
3297 /* initialize hash tables */
3298 afs_dvhashTbl = afs_osi_Alloc(afs_dhashsize * sizeof(afs_int32));
3299 osi_Assert(afs_dvhashTbl != NULL);
3300 afs_dchashTbl = afs_osi_Alloc(afs_dhashsize * sizeof(afs_int32));
3301 osi_Assert(afs_dchashTbl != NULL);
3302 for (i = 0; i < afs_dhashsize; i++) {
3303 afs_dvhashTbl[i] = NULLIDX;
3304 afs_dchashTbl[i] = NULLIDX;
3306 afs_dvnextTbl = afs_osi_Alloc(afiles * sizeof(afs_int32));
3307 osi_Assert(afs_dvnextTbl != NULL);
3308 afs_dcnextTbl = afs_osi_Alloc(afiles * sizeof(afs_int32));
3309 osi_Assert(afs_dcnextTbl != NULL);
3310 for (i = 0; i < afiles; i++) {
3311 afs_dvnextTbl[i] = NULLIDX;
3312 afs_dcnextTbl[i] = NULLIDX;
3315 /* Allocate and zero the pointer array to the dcache entries */
3316 afs_indexTable = afs_osi_Alloc(sizeof(struct dcache *) * afiles);
3317 osi_Assert(afs_indexTable != NULL);
3318 memset(afs_indexTable, 0, sizeof(struct dcache *) * afiles);
3319 afs_indexTimes = afs_osi_Alloc(afiles * sizeof(afs_hyper_t));
3320 osi_Assert(afs_indexTimes != NULL);
3321 memset(afs_indexTimes, 0, afiles * sizeof(afs_hyper_t));
3322 afs_indexUnique = afs_osi_Alloc(afiles * sizeof(afs_uint32));
3323 osi_Assert(afs_indexUnique != NULL);
3324 memset(afs_indexUnique, 0, afiles * sizeof(afs_uint32));
3325 afs_indexFlags = afs_osi_Alloc(afiles * sizeof(u_char));
3326 osi_Assert(afs_indexFlags != NULL);
3327 memset(afs_indexFlags, 0, afiles * sizeof(char));
3329 /* Allocate and thread the struct dcache entries themselves */
3330 tdp = afs_Initial_freeDSList =
3331 afs_osi_Alloc(aDentries * sizeof(struct dcache));
3332 osi_Assert(tdp != NULL);
3333 memset(tdp, 0, aDentries * sizeof(struct dcache));
3334 #ifdef KERNEL_HAVE_PIN
3335 pin((char *)afs_indexTable, sizeof(struct dcache *) * afiles); /* XXX */
3336 pin((char *)afs_indexTimes, sizeof(afs_hyper_t) * afiles); /* XXX */
3337 pin((char *)afs_indexFlags, sizeof(char) * afiles); /* XXX */
3338 pin((char *)afs_indexUnique, sizeof(afs_int32) * afiles); /* XXX */
3339 pin((char *)tdp, aDentries * sizeof(struct dcache)); /* XXX */
3340 pin((char *)afs_dvhashTbl, sizeof(afs_int32) * afs_dhashsize); /* XXX */
3341 pin((char *)afs_dchashTbl, sizeof(afs_int32) * afs_dhashsize); /* XXX */
3342 pin((char *)afs_dcnextTbl, sizeof(afs_int32) * afiles); /* XXX */
3343 pin((char *)afs_dvnextTbl, sizeof(afs_int32) * afiles); /* XXX */
3344 #endif
3346 afs_freeDSList = &tdp[0];
3347 for (i = 0; i < aDentries - 1; i++) {
3348 tdp[i].lruq.next = (struct afs_q *)(&tdp[i + 1]);
3349 AFS_RWLOCK_INIT(&tdp[i].lock, "dcache lock");
3350 AFS_RWLOCK_INIT(&tdp[i].tlock, "dcache tlock");
3351 AFS_RWLOCK_INIT(&tdp[i].mflock, "dcache flock");
3353 tdp[aDentries - 1].lruq.next = (struct afs_q *)0;
3354 AFS_RWLOCK_INIT(&tdp[aDentries - 1].lock, "dcache lock");
3355 AFS_RWLOCK_INIT(&tdp[aDentries - 1].tlock, "dcache tlock");
3356 AFS_RWLOCK_INIT(&tdp[aDentries - 1].mflock, "dcache flock");
3358 afs_stats_cmperf.cacheBlocksOrig = afs_stats_cmperf.cacheBlocksTotal =
3359 afs_cacheBlocks = ablocks;
3360 afs_ComputeCacheParms(); /* compute parms based on cache size */
3362 afs_dcentries = aDentries;
3363 afs_blocksUsed = 0;
3364 afs_stats_cmperf.cacheBucket0_Discarded =
3365 afs_stats_cmperf.cacheBucket1_Discarded =
3366 afs_stats_cmperf.cacheBucket2_Discarded = 0;
3367 afs_DCSizeInit();
3368 QInit(&afs_DLRU);
3370 if (aflags & AFSCALL_INIT_MEMCACHE) {
3372 * Use a memory cache instead of a disk cache
3374 cacheDiskType = AFS_FCACHE_TYPE_MEM;
3375 afs_cacheType = &afs_MemCacheOps;
3376 afiles = (afiles < aDentries) ? afiles : aDentries; /* min */
3377 ablocks = afiles * (AFS_FIRSTCSIZE / 1024);
3378 /* ablocks is reported in 1K blocks */
3379 code = afs_InitMemCache(afiles, AFS_FIRSTCSIZE, aflags);
3380 if (code != 0) {
3381 afs_warn("afsd: memory cache too large for available memory.\n");
3382 afs_warn("afsd: AFS files cannot be accessed.\n\n");
3383 dcacheDisabled = 1;
3384 } else
3385 afs_warn("Memory cache: Allocating %d dcache entries...",
3386 aDentries);
3387 } else {
3388 cacheDiskType = AFS_FCACHE_TYPE_UFS;
3389 afs_cacheType = &afs_UfsCacheOps;
3394 * Shuts down the cache.
3397 void
3398 shutdown_dcache(void)
3400 int i;
3402 #ifdef AFS_CACHE_VNODE_PATH
3403 if (cacheDiskType != AFS_FCACHE_TYPE_MEM) {
3404 struct dcache *tdc;
3405 for (i = 0; i < afs_cacheFiles; i++) {
3406 tdc = afs_indexTable[i];
3407 if (tdc) {
3408 afs_osi_FreeStr(tdc->f.inode.ufs);
3412 #endif
3414 afs_osi_Free(afs_dvnextTbl, afs_cacheFiles * sizeof(afs_int32));
3415 afs_osi_Free(afs_dcnextTbl, afs_cacheFiles * sizeof(afs_int32));
3416 afs_osi_Free(afs_indexTable, afs_cacheFiles * sizeof(struct dcache *));
3417 afs_osi_Free(afs_indexTimes, afs_cacheFiles * sizeof(afs_hyper_t));
3418 afs_osi_Free(afs_indexUnique, afs_cacheFiles * sizeof(afs_uint32));
3419 afs_osi_Free(afs_indexFlags, afs_cacheFiles * sizeof(u_char));
3420 afs_osi_Free(afs_Initial_freeDSList,
3421 afs_dcentries * sizeof(struct dcache));
3422 #ifdef KERNEL_HAVE_PIN
3423 unpin((char *)afs_dcnextTbl, afs_cacheFiles * sizeof(afs_int32));
3424 unpin((char *)afs_dvnextTbl, afs_cacheFiles * sizeof(afs_int32));
3425 unpin((char *)afs_indexTable, afs_cacheFiles * sizeof(struct dcache *));
3426 unpin((char *)afs_indexTimes, afs_cacheFiles * sizeof(afs_hyper_t));
3427 unpin((char *)afs_indexUnique, afs_cacheFiles * sizeof(afs_uint32));
3428 unpin((u_char *) afs_indexFlags, afs_cacheFiles * sizeof(u_char));
3429 unpin(afs_Initial_freeDSList, afs_dcentries * sizeof(struct dcache));
3430 #endif
3433 for (i = 0; i < afs_dhashsize; i++) {
3434 afs_dvhashTbl[i] = NULLIDX;
3435 afs_dchashTbl[i] = NULLIDX;
3438 afs_osi_Free(afs_dvhashTbl, afs_dhashsize * sizeof(afs_int32));
3439 afs_osi_Free(afs_dchashTbl, afs_dhashsize * sizeof(afs_int32));
3441 afs_blocksUsed = afs_dcentries = 0;
3442 afs_stats_cmperf.cacheBucket0_Discarded =
3443 afs_stats_cmperf.cacheBucket1_Discarded =
3444 afs_stats_cmperf.cacheBucket2_Discarded = 0;
3445 hzero(afs_indexCounter);
3447 afs_freeDCCount = 0;
3448 afs_freeDCList = NULLIDX;
3449 afs_discardDCList = NULLIDX;
3450 afs_freeDSList = afs_Initial_freeDSList = 0;
3452 LOCK_INIT(&afs_xdcache, "afs_xdcache");
3453 QInit(&afs_DLRU);
3458 * Get a dcache ready for writing, respecting the current cache size limits
3460 * len is required because afs_GetDCache with flag == 4 expects the length
3461 * field to be filled. It decides from this whether it's necessary to fetch
3462 * data into the chunk before writing or not (when the whole chunk is
3463 * overwritten!).
3465 * \param avc The vcache to fetch a dcache for
3466 * \param filePos The start of the section to be written
3467 * \param len The length of the section to be written
3468 * \param areq
3469 * \param noLock
3471 * \return If successful, a reference counted dcache with tdc->lock held. Lock
3472 * must be released and afs_PutDCache() called to free dcache.
3473 * NULL on failure
3475 * \note avc->lock must be held on entry. Function may release and reobtain
3476 * avc->lock and GLOCK.
3479 struct dcache *
3480 afs_ObtainDCacheForWriting(struct vcache *avc, afs_size_t filePos,
3481 afs_size_t len, struct vrequest *areq,
3482 int noLock)
3484 struct dcache *tdc = NULL;
3485 afs_size_t offset;
3487 /* read the cached info */
3488 if (noLock) {
3489 tdc = afs_FindDCache(avc, filePos);
3490 if (tdc)
3491 ObtainWriteLock(&tdc->lock, 657);
3492 } else if (afs_blocksUsed >
3493 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
3494 tdc = afs_FindDCache(avc, filePos);
3495 if (tdc) {
3496 ObtainWriteLock(&tdc->lock, 658);
3497 if (!hsame(tdc->f.versionNo, avc->f.m.DataVersion)
3498 || (tdc->dflags & DFFetching)) {
3499 ReleaseWriteLock(&tdc->lock);
3500 afs_PutDCache(tdc);
3501 tdc = NULL;
3504 if (!tdc) {
3505 afs_MaybeWakeupTruncateDaemon();
3506 while (afs_blocksUsed >
3507 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
3508 ReleaseWriteLock(&avc->lock);
3509 if (afs_blocksUsed - afs_blocksDiscarded >
3510 PERCENT(CM_WAITFORDRAINPCT, afs_cacheBlocks)) {
3511 afs_WaitForCacheDrain = 1;
3512 afs_osi_Sleep(&afs_WaitForCacheDrain);
3514 afs_MaybeFreeDiscardedDCache();
3515 afs_MaybeWakeupTruncateDaemon();
3516 ObtainWriteLock(&avc->lock, 509);
3518 avc->f.states |= CDirty;
3519 tdc = afs_GetDCache(avc, filePos, areq, &offset, &len, 4);
3520 if (tdc)
3521 ObtainWriteLock(&tdc->lock, 659);
3523 } else {
3524 tdc = afs_GetDCache(avc, filePos, areq, &offset, &len, 4);
3525 if (tdc)
3526 ObtainWriteLock(&tdc->lock, 660);
3528 if (tdc) {
3529 if (!(afs_indexFlags[tdc->index] & IFDataMod)) {
3530 afs_stats_cmperf.cacheCurrDirtyChunks++;
3531 afs_indexFlags[tdc->index] |= IFDataMod; /* so it doesn't disappear */
3533 if (!(tdc->f.states & DWriting)) {
3534 /* don't mark entry as mod if we don't have to */
3535 tdc->f.states |= DWriting;
3536 tdc->dflags |= DFEntryMod;
3539 return tdc;
3543 * Make a shadow copy of a dir's dcache. It's used for disconnected
3544 * operations like remove/create/rename to keep the original directory data.
3545 * On reconnection, we can diff the original data with the server and get the
3546 * server changes and with the local data to get the local changes.
3548 * \param avc The dir vnode.
3549 * \param adc The dir dcache.
3551 * \return 0 for success.
3553 * \note The vcache entry must be write locked.
3554 * \note The dcache entry must be read locked.
3557 afs_MakeShadowDir(struct vcache *avc, struct dcache *adc)
3559 int i, code, ret_code = 0, written, trans_size;
3560 struct dcache *new_dc = NULL;
3561 struct osi_file *tfile_src, *tfile_dst;
3562 struct VenusFid shadow_fid;
3563 char *data;
3565 /* Is this a dir? */
3566 if (vType(avc) != VDIR)
3567 return ENOTDIR;
3569 if (avc->f.shadow.vnode || avc->f.shadow.unique)
3570 return EEXIST;
3572 /* Generate a fid for the shadow dir. */
3573 shadow_fid.Cell = avc->f.fid.Cell;
3574 shadow_fid.Fid.Volume = avc->f.fid.Fid.Volume;
3575 afs_GenShadowFid(&shadow_fid);
3577 ObtainWriteLock(&afs_xdcache, 716);
3579 /* Get a fresh dcache. */
3580 new_dc = afs_AllocDCache(avc, 0, 0, &shadow_fid);
3581 osi_Assert(new_dc);
3583 ObtainReadLock(&adc->mflock);
3585 /* Set up the new fid. */
3586 /* Copy interesting data from original dir dcache. */
3587 new_dc->mflags = adc->mflags;
3588 new_dc->dflags = adc->dflags;
3589 new_dc->f.modTime = adc->f.modTime;
3590 new_dc->f.versionNo = adc->f.versionNo;
3591 new_dc->f.states = adc->f.states;
3592 new_dc->f.chunk= adc->f.chunk;
3593 new_dc->f.chunkBytes = adc->f.chunkBytes;
3595 ReleaseReadLock(&adc->mflock);
3597 /* Now add to the two hash chains */
3598 i = DCHash(&shadow_fid, 0);
3599 afs_dcnextTbl[new_dc->index] = afs_dchashTbl[i];
3600 afs_dchashTbl[i] = new_dc->index;
3602 i = DVHash(&shadow_fid);
3603 afs_dvnextTbl[new_dc->index] = afs_dvhashTbl[i];
3604 afs_dvhashTbl[i] = new_dc->index;
3606 ReleaseWriteLock(&afs_xdcache);
3608 /* Alloc a 4k block. */
3609 data = afs_osi_Alloc(4096);
3610 if (!data) {
3611 afs_warn("afs_MakeShadowDir: could not alloc data\n");
3612 ret_code = ENOMEM;
3613 goto done;
3616 /* Open the files. */
3617 tfile_src = afs_CFileOpen(&adc->f.inode);
3618 tfile_dst = afs_CFileOpen(&new_dc->f.inode);
3620 /* And now copy dir dcache data into this dcache,
3621 * 4k at a time.
3623 written = 0;
3624 while (written < adc->f.chunkBytes) {
3625 trans_size = adc->f.chunkBytes - written;
3626 if (trans_size > 4096)
3627 trans_size = 4096;
3629 /* Read a chunk from the dcache. */
3630 code = afs_CFileRead(tfile_src, written, data, trans_size);
3631 if (code < trans_size) {
3632 ret_code = EIO;
3633 break;
3636 /* Write it to the new dcache. */
3637 code = afs_CFileWrite(tfile_dst, written, data, trans_size);
3638 if (code < trans_size) {
3639 ret_code = EIO;
3640 break;
3643 written+=trans_size;
3646 afs_CFileClose(tfile_dst);
3647 afs_CFileClose(tfile_src);
3649 afs_osi_Free(data, 4096);
3651 ReleaseWriteLock(&new_dc->lock);
3652 afs_PutDCache(new_dc);
3654 if (!ret_code) {
3655 ObtainWriteLock(&afs_xvcache, 763);
3656 ObtainWriteLock(&afs_disconDirtyLock, 765);
3657 QAdd(&afs_disconShadow, &avc->shadowq);
3658 osi_Assert((afs_RefVCache(avc) == 0));
3659 ReleaseWriteLock(&afs_disconDirtyLock);
3660 ReleaseWriteLock(&afs_xvcache);
3662 avc->f.shadow.vnode = shadow_fid.Fid.Vnode;
3663 avc->f.shadow.unique = shadow_fid.Fid.Unique;
3666 done:
3667 return ret_code;
3671 * Delete the dcaches of a shadow dir.
3673 * \param avc The vcache containing the shadow fid.
3675 * \note avc must be write locked.
3677 void
3678 afs_DeleteShadowDir(struct vcache *avc)
3680 struct dcache *tdc;
3681 struct VenusFid shadow_fid;
3683 shadow_fid.Cell = avc->f.fid.Cell;
3684 shadow_fid.Fid.Volume = avc->f.fid.Fid.Volume;
3685 shadow_fid.Fid.Vnode = avc->f.shadow.vnode;
3686 shadow_fid.Fid.Unique = avc->f.shadow.unique;
3688 tdc = afs_FindDCacheByFid(&shadow_fid);
3689 if (tdc) {
3690 afs_HashOutDCache(tdc, 1);
3691 afs_DiscardDCache(tdc);
3692 afs_PutDCache(tdc);
3694 avc->f.shadow.vnode = avc->f.shadow.unique = 0;
3695 ObtainWriteLock(&afs_disconDirtyLock, 708);
3696 QRemove(&avc->shadowq);
3697 ReleaseWriteLock(&afs_disconDirtyLock);
3698 afs_PutVCache(avc); /* Because we held it when we added to the queue */
3702 * Populate a dcache with empty chunks up to a given file size,
3703 * used before extending a file in order to avoid 'holes' which
3704 * we can't access in disconnected mode.
3706 * \param avc The vcache which is being extended (locked)
3707 * \param alen The new length of the file
3710 void
3711 afs_PopulateDCache(struct vcache *avc, afs_size_t apos, struct vrequest *areq)
3713 struct dcache *tdc;
3714 afs_size_t len, offset;
3715 afs_int32 start, end;
3717 /* We're doing this to deal with the situation where we extend
3718 * by writing after lseek()ing past the end of the file . If that
3719 * extension skips chunks, then those chunks won't be created, and
3720 * GetDCache will assume that they have to be fetched from the server.
3721 * So, for each chunk between the current file position, and the new
3722 * length we GetDCache for that chunk.
3725 if (AFS_CHUNK(apos) == 0 || apos <= avc->f.m.Length)
3726 return;
3728 if (avc->f.m.Length == 0)
3729 start = 0;
3730 else
3731 start = AFS_CHUNK(avc->f.m.Length)+1;
3733 end = AFS_CHUNK(apos);
3735 while (start<end) {
3736 len = AFS_CHUNKTOSIZE(start);
3737 tdc = afs_GetDCache(avc, AFS_CHUNKTOBASE(start), areq, &offset, &len, 4);
3738 if (tdc)
3739 afs_PutDCache(tdc);
3740 start++;