Linux 2.6.34-rc3
[pohmelfs.git] / drivers / acpi / processor_idle.c
blob37dfce749398b35abc6ef3b00fac13ce678146b3
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
63 #define PREFIX "ACPI: "
65 #define ACPI_PROCESSOR_CLASS "processor"
66 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER "power"
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD 1 /* 1us */
71 #define C3_OVERHEAD 1 /* 1us */
72 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
82 static s64 us_to_pm_timer_ticks(s64 t)
84 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
87 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88 * For now disable this. Probably a bug somewhere else.
90 * To skip this limit, boot/load with a large max_cstate limit.
92 static int set_max_cstate(const struct dmi_system_id *id)
94 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 return 0;
97 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
101 max_cstate = (long)id->driver_data;
103 return 0;
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107 callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 { set_max_cstate, "Clevo 5600D", {
110 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 (void *)2},
113 { set_max_cstate, "Pavilion zv5000", {
114 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
115 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
116 (void *)1},
117 { set_max_cstate, "Asus L8400B", {
118 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
119 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
120 (void *)1},
126 * Callers should disable interrupts before the call and enable
127 * interrupts after return.
129 static void acpi_safe_halt(void)
131 current_thread_info()->status &= ~TS_POLLING;
133 * TS_POLLING-cleared state must be visible before we
134 * test NEED_RESCHED:
136 smp_mb();
137 if (!need_resched()) {
138 safe_halt();
139 local_irq_disable();
141 current_thread_info()->status |= TS_POLLING;
144 #ifdef ARCH_APICTIMER_STOPS_ON_C3
147 * Some BIOS implementations switch to C3 in the published C2 state.
148 * This seems to be a common problem on AMD boxen, but other vendors
149 * are affected too. We pick the most conservative approach: we assume
150 * that the local APIC stops in both C2 and C3.
152 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
153 struct acpi_processor_cx *cx)
155 struct acpi_processor_power *pwr = &pr->power;
156 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
158 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
159 return;
161 if (boot_cpu_has(X86_FEATURE_AMDC1E))
162 type = ACPI_STATE_C1;
165 * Check, if one of the previous states already marked the lapic
166 * unstable
168 if (pwr->timer_broadcast_on_state < state)
169 return;
171 if (cx->type >= type)
172 pr->power.timer_broadcast_on_state = state;
175 static void __lapic_timer_propagate_broadcast(void *arg)
177 struct acpi_processor *pr = (struct acpi_processor *) arg;
178 unsigned long reason;
180 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
181 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
183 clockevents_notify(reason, &pr->id);
186 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
188 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
189 (void *)pr, 1);
192 /* Power(C) State timer broadcast control */
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194 struct acpi_processor_cx *cx,
195 int broadcast)
197 int state = cx - pr->power.states;
199 if (state >= pr->power.timer_broadcast_on_state) {
200 unsigned long reason;
202 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
203 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
204 clockevents_notify(reason, &pr->id);
208 #else
210 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
211 struct acpi_processor_cx *cstate) { }
212 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
213 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
214 struct acpi_processor_cx *cx,
215 int broadcast)
219 #endif
222 * Suspend / resume control
224 static int acpi_idle_suspend;
225 static u32 saved_bm_rld;
227 static void acpi_idle_bm_rld_save(void)
229 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
231 static void acpi_idle_bm_rld_restore(void)
233 u32 resumed_bm_rld;
235 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
237 if (resumed_bm_rld != saved_bm_rld)
238 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
241 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
243 if (acpi_idle_suspend == 1)
244 return 0;
246 acpi_idle_bm_rld_save();
247 acpi_idle_suspend = 1;
248 return 0;
251 int acpi_processor_resume(struct acpi_device * device)
253 if (acpi_idle_suspend == 0)
254 return 0;
256 acpi_idle_bm_rld_restore();
257 acpi_idle_suspend = 0;
258 return 0;
261 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
262 static void tsc_check_state(int state)
264 switch (boot_cpu_data.x86_vendor) {
265 case X86_VENDOR_AMD:
266 case X86_VENDOR_INTEL:
268 * AMD Fam10h TSC will tick in all
269 * C/P/S0/S1 states when this bit is set.
271 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
272 return;
274 /*FALL THROUGH*/
275 default:
276 /* TSC could halt in idle, so notify users */
277 if (state > ACPI_STATE_C1)
278 mark_tsc_unstable("TSC halts in idle");
281 #else
282 static void tsc_check_state(int state) { return; }
283 #endif
285 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
288 if (!pr)
289 return -EINVAL;
291 if (!pr->pblk)
292 return -ENODEV;
294 /* if info is obtained from pblk/fadt, type equals state */
295 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
296 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
298 #ifndef CONFIG_HOTPLUG_CPU
300 * Check for P_LVL2_UP flag before entering C2 and above on
301 * an SMP system.
303 if ((num_online_cpus() > 1) &&
304 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
305 return -ENODEV;
306 #endif
308 /* determine C2 and C3 address from pblk */
309 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
310 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
312 /* determine latencies from FADT */
313 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
314 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
317 * FADT specified C2 latency must be less than or equal to
318 * 100 microseconds.
320 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
321 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
322 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
323 /* invalidate C2 */
324 pr->power.states[ACPI_STATE_C2].address = 0;
328 * FADT supplied C3 latency must be less than or equal to
329 * 1000 microseconds.
331 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
332 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
333 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
334 /* invalidate C3 */
335 pr->power.states[ACPI_STATE_C3].address = 0;
338 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
339 "lvl2[0x%08x] lvl3[0x%08x]\n",
340 pr->power.states[ACPI_STATE_C2].address,
341 pr->power.states[ACPI_STATE_C3].address));
343 return 0;
346 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
348 if (!pr->power.states[ACPI_STATE_C1].valid) {
349 /* set the first C-State to C1 */
350 /* all processors need to support C1 */
351 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
352 pr->power.states[ACPI_STATE_C1].valid = 1;
353 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
355 /* the C0 state only exists as a filler in our array */
356 pr->power.states[ACPI_STATE_C0].valid = 1;
357 return 0;
360 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
362 acpi_status status = 0;
363 u64 count;
364 int current_count;
365 int i;
366 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
367 union acpi_object *cst;
370 if (nocst)
371 return -ENODEV;
373 current_count = 0;
375 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
376 if (ACPI_FAILURE(status)) {
377 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
378 return -ENODEV;
381 cst = buffer.pointer;
383 /* There must be at least 2 elements */
384 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
385 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
386 status = -EFAULT;
387 goto end;
390 count = cst->package.elements[0].integer.value;
392 /* Validate number of power states. */
393 if (count < 1 || count != cst->package.count - 1) {
394 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
395 status = -EFAULT;
396 goto end;
399 /* Tell driver that at least _CST is supported. */
400 pr->flags.has_cst = 1;
402 for (i = 1; i <= count; i++) {
403 union acpi_object *element;
404 union acpi_object *obj;
405 struct acpi_power_register *reg;
406 struct acpi_processor_cx cx;
408 memset(&cx, 0, sizeof(cx));
410 element = &(cst->package.elements[i]);
411 if (element->type != ACPI_TYPE_PACKAGE)
412 continue;
414 if (element->package.count != 4)
415 continue;
417 obj = &(element->package.elements[0]);
419 if (obj->type != ACPI_TYPE_BUFFER)
420 continue;
422 reg = (struct acpi_power_register *)obj->buffer.pointer;
424 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
425 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
426 continue;
428 /* There should be an easy way to extract an integer... */
429 obj = &(element->package.elements[1]);
430 if (obj->type != ACPI_TYPE_INTEGER)
431 continue;
433 cx.type = obj->integer.value;
435 * Some buggy BIOSes won't list C1 in _CST -
436 * Let acpi_processor_get_power_info_default() handle them later
438 if (i == 1 && cx.type != ACPI_STATE_C1)
439 current_count++;
441 cx.address = reg->address;
442 cx.index = current_count + 1;
444 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
445 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
446 if (acpi_processor_ffh_cstate_probe
447 (pr->id, &cx, reg) == 0) {
448 cx.entry_method = ACPI_CSTATE_FFH;
449 } else if (cx.type == ACPI_STATE_C1) {
451 * C1 is a special case where FIXED_HARDWARE
452 * can be handled in non-MWAIT way as well.
453 * In that case, save this _CST entry info.
454 * Otherwise, ignore this info and continue.
456 cx.entry_method = ACPI_CSTATE_HALT;
457 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
458 } else {
459 continue;
461 if (cx.type == ACPI_STATE_C1 &&
462 (idle_halt || idle_nomwait)) {
464 * In most cases the C1 space_id obtained from
465 * _CST object is FIXED_HARDWARE access mode.
466 * But when the option of idle=halt is added,
467 * the entry_method type should be changed from
468 * CSTATE_FFH to CSTATE_HALT.
469 * When the option of idle=nomwait is added,
470 * the C1 entry_method type should be
471 * CSTATE_HALT.
473 cx.entry_method = ACPI_CSTATE_HALT;
474 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
476 } else {
477 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
478 cx.address);
481 if (cx.type == ACPI_STATE_C1) {
482 cx.valid = 1;
485 obj = &(element->package.elements[2]);
486 if (obj->type != ACPI_TYPE_INTEGER)
487 continue;
489 cx.latency = obj->integer.value;
491 obj = &(element->package.elements[3]);
492 if (obj->type != ACPI_TYPE_INTEGER)
493 continue;
495 cx.power = obj->integer.value;
497 current_count++;
498 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
501 * We support total ACPI_PROCESSOR_MAX_POWER - 1
502 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
504 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
505 printk(KERN_WARNING
506 "Limiting number of power states to max (%d)\n",
507 ACPI_PROCESSOR_MAX_POWER);
508 printk(KERN_WARNING
509 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
510 break;
514 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
515 current_count));
517 /* Validate number of power states discovered */
518 if (current_count < 2)
519 status = -EFAULT;
521 end:
522 kfree(buffer.pointer);
524 return status;
527 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
528 struct acpi_processor_cx *cx)
530 static int bm_check_flag = -1;
531 static int bm_control_flag = -1;
534 if (!cx->address)
535 return;
538 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
539 * DMA transfers are used by any ISA device to avoid livelock.
540 * Note that we could disable Type-F DMA (as recommended by
541 * the erratum), but this is known to disrupt certain ISA
542 * devices thus we take the conservative approach.
544 else if (errata.piix4.fdma) {
545 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
546 "C3 not supported on PIIX4 with Type-F DMA\n"));
547 return;
550 /* All the logic here assumes flags.bm_check is same across all CPUs */
551 if (bm_check_flag == -1) {
552 /* Determine whether bm_check is needed based on CPU */
553 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
554 bm_check_flag = pr->flags.bm_check;
555 bm_control_flag = pr->flags.bm_control;
556 } else {
557 pr->flags.bm_check = bm_check_flag;
558 pr->flags.bm_control = bm_control_flag;
561 if (pr->flags.bm_check) {
562 if (!pr->flags.bm_control) {
563 if (pr->flags.has_cst != 1) {
564 /* bus mastering control is necessary */
565 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
566 "C3 support requires BM control\n"));
567 return;
568 } else {
569 /* Here we enter C3 without bus mastering */
570 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
571 "C3 support without BM control\n"));
574 } else {
576 * WBINVD should be set in fadt, for C3 state to be
577 * supported on when bm_check is not required.
579 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
580 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
581 "Cache invalidation should work properly"
582 " for C3 to be enabled on SMP systems\n"));
583 return;
588 * Otherwise we've met all of our C3 requirements.
589 * Normalize the C3 latency to expidite policy. Enable
590 * checking of bus mastering status (bm_check) so we can
591 * use this in our C3 policy
593 cx->valid = 1;
595 cx->latency_ticks = cx->latency;
597 * On older chipsets, BM_RLD needs to be set
598 * in order for Bus Master activity to wake the
599 * system from C3. Newer chipsets handle DMA
600 * during C3 automatically and BM_RLD is a NOP.
601 * In either case, the proper way to
602 * handle BM_RLD is to set it and leave it set.
604 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
606 return;
609 static int acpi_processor_power_verify(struct acpi_processor *pr)
611 unsigned int i;
612 unsigned int working = 0;
614 pr->power.timer_broadcast_on_state = INT_MAX;
616 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
617 struct acpi_processor_cx *cx = &pr->power.states[i];
619 switch (cx->type) {
620 case ACPI_STATE_C1:
621 cx->valid = 1;
622 break;
624 case ACPI_STATE_C2:
625 if (!cx->address)
626 break;
627 cx->valid = 1;
628 cx->latency_ticks = cx->latency; /* Normalize latency */
629 break;
631 case ACPI_STATE_C3:
632 acpi_processor_power_verify_c3(pr, cx);
633 break;
635 if (!cx->valid)
636 continue;
638 lapic_timer_check_state(i, pr, cx);
639 tsc_check_state(cx->type);
640 working++;
643 lapic_timer_propagate_broadcast(pr);
645 return (working);
648 static int acpi_processor_get_power_info(struct acpi_processor *pr)
650 unsigned int i;
651 int result;
654 /* NOTE: the idle thread may not be running while calling
655 * this function */
657 /* Zero initialize all the C-states info. */
658 memset(pr->power.states, 0, sizeof(pr->power.states));
660 result = acpi_processor_get_power_info_cst(pr);
661 if (result == -ENODEV)
662 result = acpi_processor_get_power_info_fadt(pr);
664 if (result)
665 return result;
667 acpi_processor_get_power_info_default(pr);
669 pr->power.count = acpi_processor_power_verify(pr);
672 * if one state of type C2 or C3 is available, mark this
673 * CPU as being "idle manageable"
675 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
676 if (pr->power.states[i].valid) {
677 pr->power.count = i;
678 if (pr->power.states[i].type >= ACPI_STATE_C2)
679 pr->flags.power = 1;
683 return 0;
686 #ifdef CONFIG_ACPI_PROCFS
687 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
689 struct acpi_processor *pr = seq->private;
690 unsigned int i;
693 if (!pr)
694 goto end;
696 seq_printf(seq, "active state: C%zd\n"
697 "max_cstate: C%d\n"
698 "maximum allowed latency: %d usec\n",
699 pr->power.state ? pr->power.state - pr->power.states : 0,
700 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
702 seq_puts(seq, "states:\n");
704 for (i = 1; i <= pr->power.count; i++) {
705 seq_printf(seq, " %cC%d: ",
706 (&pr->power.states[i] ==
707 pr->power.state ? '*' : ' '), i);
709 if (!pr->power.states[i].valid) {
710 seq_puts(seq, "<not supported>\n");
711 continue;
714 switch (pr->power.states[i].type) {
715 case ACPI_STATE_C1:
716 seq_printf(seq, "type[C1] ");
717 break;
718 case ACPI_STATE_C2:
719 seq_printf(seq, "type[C2] ");
720 break;
721 case ACPI_STATE_C3:
722 seq_printf(seq, "type[C3] ");
723 break;
724 default:
725 seq_printf(seq, "type[--] ");
726 break;
729 if (pr->power.states[i].promotion.state)
730 seq_printf(seq, "promotion[C%zd] ",
731 (pr->power.states[i].promotion.state -
732 pr->power.states));
733 else
734 seq_puts(seq, "promotion[--] ");
736 if (pr->power.states[i].demotion.state)
737 seq_printf(seq, "demotion[C%zd] ",
738 (pr->power.states[i].demotion.state -
739 pr->power.states));
740 else
741 seq_puts(seq, "demotion[--] ");
743 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
744 pr->power.states[i].latency,
745 pr->power.states[i].usage,
746 (unsigned long long)pr->power.states[i].time);
749 end:
750 return 0;
753 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
755 return single_open(file, acpi_processor_power_seq_show,
756 PDE(inode)->data);
759 static const struct file_operations acpi_processor_power_fops = {
760 .owner = THIS_MODULE,
761 .open = acpi_processor_power_open_fs,
762 .read = seq_read,
763 .llseek = seq_lseek,
764 .release = single_release,
766 #endif
769 * acpi_idle_bm_check - checks if bus master activity was detected
771 static int acpi_idle_bm_check(void)
773 u32 bm_status = 0;
775 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
776 if (bm_status)
777 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
779 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
780 * the true state of bus mastering activity; forcing us to
781 * manually check the BMIDEA bit of each IDE channel.
783 else if (errata.piix4.bmisx) {
784 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
785 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
786 bm_status = 1;
788 return bm_status;
792 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
793 * @cx: cstate data
795 * Caller disables interrupt before call and enables interrupt after return.
797 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
799 /* Don't trace irqs off for idle */
800 stop_critical_timings();
801 if (cx->entry_method == ACPI_CSTATE_FFH) {
802 /* Call into architectural FFH based C-state */
803 acpi_processor_ffh_cstate_enter(cx);
804 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
805 acpi_safe_halt();
806 } else {
807 int unused;
808 /* IO port based C-state */
809 inb(cx->address);
810 /* Dummy wait op - must do something useless after P_LVL2 read
811 because chipsets cannot guarantee that STPCLK# signal
812 gets asserted in time to freeze execution properly. */
813 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
815 start_critical_timings();
819 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
820 * @dev: the target CPU
821 * @state: the state data
823 * This is equivalent to the HALT instruction.
825 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
826 struct cpuidle_state *state)
828 ktime_t kt1, kt2;
829 s64 idle_time;
830 struct acpi_processor *pr;
831 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
833 pr = __get_cpu_var(processors);
835 if (unlikely(!pr))
836 return 0;
838 local_irq_disable();
840 /* Do not access any ACPI IO ports in suspend path */
841 if (acpi_idle_suspend) {
842 local_irq_enable();
843 cpu_relax();
844 return 0;
847 lapic_timer_state_broadcast(pr, cx, 1);
848 kt1 = ktime_get_real();
849 acpi_idle_do_entry(cx);
850 kt2 = ktime_get_real();
851 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
853 local_irq_enable();
854 cx->usage++;
855 lapic_timer_state_broadcast(pr, cx, 0);
857 return idle_time;
861 * acpi_idle_enter_simple - enters an ACPI state without BM handling
862 * @dev: the target CPU
863 * @state: the state data
865 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
866 struct cpuidle_state *state)
868 struct acpi_processor *pr;
869 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
870 ktime_t kt1, kt2;
871 s64 idle_time;
872 s64 sleep_ticks = 0;
874 pr = __get_cpu_var(processors);
876 if (unlikely(!pr))
877 return 0;
879 if (acpi_idle_suspend)
880 return(acpi_idle_enter_c1(dev, state));
882 local_irq_disable();
883 if (cx->entry_method != ACPI_CSTATE_FFH) {
884 current_thread_info()->status &= ~TS_POLLING;
886 * TS_POLLING-cleared state must be visible before we test
887 * NEED_RESCHED:
889 smp_mb();
892 if (unlikely(need_resched())) {
893 current_thread_info()->status |= TS_POLLING;
894 local_irq_enable();
895 return 0;
899 * Must be done before busmaster disable as we might need to
900 * access HPET !
902 lapic_timer_state_broadcast(pr, cx, 1);
904 if (cx->type == ACPI_STATE_C3)
905 ACPI_FLUSH_CPU_CACHE();
907 kt1 = ktime_get_real();
908 /* Tell the scheduler that we are going deep-idle: */
909 sched_clock_idle_sleep_event();
910 acpi_idle_do_entry(cx);
911 kt2 = ktime_get_real();
912 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
914 sleep_ticks = us_to_pm_timer_ticks(idle_time);
916 /* Tell the scheduler how much we idled: */
917 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
919 local_irq_enable();
920 current_thread_info()->status |= TS_POLLING;
922 cx->usage++;
924 lapic_timer_state_broadcast(pr, cx, 0);
925 cx->time += sleep_ticks;
926 return idle_time;
929 static int c3_cpu_count;
930 static DEFINE_SPINLOCK(c3_lock);
933 * acpi_idle_enter_bm - enters C3 with proper BM handling
934 * @dev: the target CPU
935 * @state: the state data
937 * If BM is detected, the deepest non-C3 idle state is entered instead.
939 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
940 struct cpuidle_state *state)
942 struct acpi_processor *pr;
943 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
944 ktime_t kt1, kt2;
945 s64 idle_time;
946 s64 sleep_ticks = 0;
949 pr = __get_cpu_var(processors);
951 if (unlikely(!pr))
952 return 0;
954 if (acpi_idle_suspend)
955 return(acpi_idle_enter_c1(dev, state));
957 if (acpi_idle_bm_check()) {
958 if (dev->safe_state) {
959 dev->last_state = dev->safe_state;
960 return dev->safe_state->enter(dev, dev->safe_state);
961 } else {
962 local_irq_disable();
963 acpi_safe_halt();
964 local_irq_enable();
965 return 0;
969 local_irq_disable();
970 if (cx->entry_method != ACPI_CSTATE_FFH) {
971 current_thread_info()->status &= ~TS_POLLING;
973 * TS_POLLING-cleared state must be visible before we test
974 * NEED_RESCHED:
976 smp_mb();
979 if (unlikely(need_resched())) {
980 current_thread_info()->status |= TS_POLLING;
981 local_irq_enable();
982 return 0;
985 acpi_unlazy_tlb(smp_processor_id());
987 /* Tell the scheduler that we are going deep-idle: */
988 sched_clock_idle_sleep_event();
990 * Must be done before busmaster disable as we might need to
991 * access HPET !
993 lapic_timer_state_broadcast(pr, cx, 1);
995 kt1 = ktime_get_real();
997 * disable bus master
998 * bm_check implies we need ARB_DIS
999 * !bm_check implies we need cache flush
1000 * bm_control implies whether we can do ARB_DIS
1002 * That leaves a case where bm_check is set and bm_control is
1003 * not set. In that case we cannot do much, we enter C3
1004 * without doing anything.
1006 if (pr->flags.bm_check && pr->flags.bm_control) {
1007 spin_lock(&c3_lock);
1008 c3_cpu_count++;
1009 /* Disable bus master arbitration when all CPUs are in C3 */
1010 if (c3_cpu_count == num_online_cpus())
1011 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1012 spin_unlock(&c3_lock);
1013 } else if (!pr->flags.bm_check) {
1014 ACPI_FLUSH_CPU_CACHE();
1017 acpi_idle_do_entry(cx);
1019 /* Re-enable bus master arbitration */
1020 if (pr->flags.bm_check && pr->flags.bm_control) {
1021 spin_lock(&c3_lock);
1022 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1023 c3_cpu_count--;
1024 spin_unlock(&c3_lock);
1026 kt2 = ktime_get_real();
1027 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1029 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1030 /* Tell the scheduler how much we idled: */
1031 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1033 local_irq_enable();
1034 current_thread_info()->status |= TS_POLLING;
1036 cx->usage++;
1038 lapic_timer_state_broadcast(pr, cx, 0);
1039 cx->time += sleep_ticks;
1040 return idle_time;
1043 struct cpuidle_driver acpi_idle_driver = {
1044 .name = "acpi_idle",
1045 .owner = THIS_MODULE,
1049 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1050 * @pr: the ACPI processor
1052 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1054 int i, count = CPUIDLE_DRIVER_STATE_START;
1055 struct acpi_processor_cx *cx;
1056 struct cpuidle_state *state;
1057 struct cpuidle_device *dev = &pr->power.dev;
1059 if (!pr->flags.power_setup_done)
1060 return -EINVAL;
1062 if (pr->flags.power == 0) {
1063 return -EINVAL;
1066 dev->cpu = pr->id;
1067 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1068 dev->states[i].name[0] = '\0';
1069 dev->states[i].desc[0] = '\0';
1072 if (max_cstate == 0)
1073 max_cstate = 1;
1075 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1076 cx = &pr->power.states[i];
1077 state = &dev->states[count];
1079 if (!cx->valid)
1080 continue;
1082 #ifdef CONFIG_HOTPLUG_CPU
1083 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1084 !pr->flags.has_cst &&
1085 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1086 continue;
1087 #endif
1088 cpuidle_set_statedata(state, cx);
1090 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1091 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1092 state->exit_latency = cx->latency;
1093 state->target_residency = cx->latency * latency_factor;
1094 state->power_usage = cx->power;
1096 state->flags = 0;
1097 switch (cx->type) {
1098 case ACPI_STATE_C1:
1099 state->flags |= CPUIDLE_FLAG_SHALLOW;
1100 if (cx->entry_method == ACPI_CSTATE_FFH)
1101 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1103 state->enter = acpi_idle_enter_c1;
1104 dev->safe_state = state;
1105 break;
1107 case ACPI_STATE_C2:
1108 state->flags |= CPUIDLE_FLAG_BALANCED;
1109 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1110 state->enter = acpi_idle_enter_simple;
1111 dev->safe_state = state;
1112 break;
1114 case ACPI_STATE_C3:
1115 state->flags |= CPUIDLE_FLAG_DEEP;
1116 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1117 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1118 state->enter = pr->flags.bm_check ?
1119 acpi_idle_enter_bm :
1120 acpi_idle_enter_simple;
1121 break;
1124 count++;
1125 if (count == CPUIDLE_STATE_MAX)
1126 break;
1129 dev->state_count = count;
1131 if (!count)
1132 return -EINVAL;
1134 return 0;
1137 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1139 int ret = 0;
1141 if (boot_option_idle_override)
1142 return 0;
1144 if (!pr)
1145 return -EINVAL;
1147 if (nocst) {
1148 return -ENODEV;
1151 if (!pr->flags.power_setup_done)
1152 return -ENODEV;
1154 cpuidle_pause_and_lock();
1155 cpuidle_disable_device(&pr->power.dev);
1156 acpi_processor_get_power_info(pr);
1157 if (pr->flags.power) {
1158 acpi_processor_setup_cpuidle(pr);
1159 ret = cpuidle_enable_device(&pr->power.dev);
1161 cpuidle_resume_and_unlock();
1163 return ret;
1166 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1167 struct acpi_device *device)
1169 acpi_status status = 0;
1170 static int first_run;
1171 #ifdef CONFIG_ACPI_PROCFS
1172 struct proc_dir_entry *entry = NULL;
1173 #endif
1175 if (boot_option_idle_override)
1176 return 0;
1178 if (!first_run) {
1179 if (idle_halt) {
1181 * When the boot option of "idle=halt" is added, halt
1182 * is used for CPU IDLE.
1183 * In such case C2/C3 is meaningless. So the max_cstate
1184 * is set to one.
1186 max_cstate = 1;
1188 dmi_check_system(processor_power_dmi_table);
1189 max_cstate = acpi_processor_cstate_check(max_cstate);
1190 if (max_cstate < ACPI_C_STATES_MAX)
1191 printk(KERN_NOTICE
1192 "ACPI: processor limited to max C-state %d\n",
1193 max_cstate);
1194 first_run++;
1197 if (!pr)
1198 return -EINVAL;
1200 if (acpi_gbl_FADT.cst_control && !nocst) {
1201 status =
1202 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1203 if (ACPI_FAILURE(status)) {
1204 ACPI_EXCEPTION((AE_INFO, status,
1205 "Notifying BIOS of _CST ability failed"));
1209 acpi_processor_get_power_info(pr);
1210 pr->flags.power_setup_done = 1;
1213 * Install the idle handler if processor power management is supported.
1214 * Note that we use previously set idle handler will be used on
1215 * platforms that only support C1.
1217 if (pr->flags.power) {
1218 acpi_processor_setup_cpuidle(pr);
1219 if (cpuidle_register_device(&pr->power.dev))
1220 return -EIO;
1222 #ifdef CONFIG_ACPI_PROCFS
1223 /* 'power' [R] */
1224 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1225 S_IRUGO, acpi_device_dir(device),
1226 &acpi_processor_power_fops,
1227 acpi_driver_data(device));
1228 if (!entry)
1229 return -EIO;
1230 #endif
1231 return 0;
1234 int acpi_processor_power_exit(struct acpi_processor *pr,
1235 struct acpi_device *device)
1237 if (boot_option_idle_override)
1238 return 0;
1240 cpuidle_unregister_device(&pr->power.dev);
1241 pr->flags.power_setup_done = 0;
1243 #ifdef CONFIG_ACPI_PROCFS
1244 if (acpi_device_dir(device))
1245 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1246 acpi_device_dir(device));
1247 #endif
1249 return 0;