4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
74 #define PFX "ipmi_si: "
76 /* Measure times between events in the driver. */
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
91 SI_CLEARING_FLAGS_THEN_SET_IRQ
,
93 SI_ENABLE_INTERRUPTS1
,
94 SI_ENABLE_INTERRUPTS2
,
95 SI_DISABLE_INTERRUPTS1
,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 SI_KCS
, SI_SMIC
, SI_BT
108 static char *si_to_str
[] = { "kcs", "smic", "bt" };
110 #define DEVICE_NAME "ipmi_si"
112 static struct platform_driver ipmi_driver
= {
115 .bus
= &platform_bus_type
121 * Indexes into stats[] in smi_info below.
123 enum si_stat_indexes
{
125 * Number of times the driver requested a timer while an operation
128 SI_STAT_short_timeouts
= 0,
131 * Number of times the driver requested a timer while nothing was in
134 SI_STAT_long_timeouts
,
136 /* Number of times the interface was idle while being polled. */
139 /* Number of interrupts the driver handled. */
142 /* Number of time the driver got an ATTN from the hardware. */
145 /* Number of times the driver requested flags from the hardware. */
146 SI_STAT_flag_fetches
,
148 /* Number of times the hardware didn't follow the state machine. */
151 /* Number of completed messages. */
152 SI_STAT_complete_transactions
,
154 /* Number of IPMI events received from the hardware. */
157 /* Number of watchdog pretimeouts. */
158 SI_STAT_watchdog_pretimeouts
,
160 /* Number of asyncronous messages received. */
161 SI_STAT_incoming_messages
,
164 /* This *must* remain last, add new values above this. */
171 struct si_sm_data
*si_sm
;
172 struct si_sm_handlers
*handlers
;
173 enum si_type si_type
;
176 struct list_head xmit_msgs
;
177 struct list_head hp_xmit_msgs
;
178 struct ipmi_smi_msg
*curr_msg
;
179 enum si_intf_state si_state
;
182 * Used to handle the various types of I/O that can occur with
186 int (*io_setup
)(struct smi_info
*info
);
187 void (*io_cleanup
)(struct smi_info
*info
);
188 int (*irq_setup
)(struct smi_info
*info
);
189 void (*irq_cleanup
)(struct smi_info
*info
);
190 unsigned int io_size
;
191 char *addr_source
; /* ACPI, PCI, SMBIOS, hardcode, default. */
192 void (*addr_source_cleanup
)(struct smi_info
*info
);
193 void *addr_source_data
;
196 * Per-OEM handler, called from handle_flags(). Returns 1
197 * when handle_flags() needs to be re-run or 0 indicating it
198 * set si_state itself.
200 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
203 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
204 * is set to hold the flags until we are done handling everything
207 #define RECEIVE_MSG_AVAIL 0x01
208 #define EVENT_MSG_BUFFER_FULL 0x02
209 #define WDT_PRE_TIMEOUT_INT 0x08
210 #define OEM0_DATA_AVAIL 0x20
211 #define OEM1_DATA_AVAIL 0x40
212 #define OEM2_DATA_AVAIL 0x80
213 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
216 unsigned char msg_flags
;
218 /* Does the BMC have an event buffer? */
219 char has_event_buffer
;
222 * If set to true, this will request events the next time the
223 * state machine is idle.
228 * If true, run the state machine to completion on every send
229 * call. Generally used after a panic to make sure stuff goes
232 int run_to_completion
;
234 /* The I/O port of an SI interface. */
238 * The space between start addresses of the two ports. For
239 * instance, if the first port is 0xca2 and the spacing is 4, then
240 * the second port is 0xca6.
242 unsigned int spacing
;
244 /* zero if no irq; */
247 /* The timer for this si. */
248 struct timer_list si_timer
;
250 /* The time (in jiffies) the last timeout occurred at. */
251 unsigned long last_timeout_jiffies
;
253 /* Used to gracefully stop the timer without race conditions. */
254 atomic_t stop_operation
;
257 * The driver will disable interrupts when it gets into a
258 * situation where it cannot handle messages due to lack of
259 * memory. Once that situation clears up, it will re-enable
262 int interrupt_disabled
;
264 /* From the get device id response... */
265 struct ipmi_device_id device_id
;
267 /* Driver model stuff. */
269 struct platform_device
*pdev
;
272 * True if we allocated the device, false if it came from
273 * someplace else (like PCI).
277 /* Slave address, could be reported from DMI. */
278 unsigned char slave_addr
;
280 /* Counters and things for the proc filesystem. */
281 atomic_t stats
[SI_NUM_STATS
];
283 struct task_struct
*thread
;
285 struct list_head link
;
288 #define smi_inc_stat(smi, stat) \
289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
293 #define SI_MAX_PARMS 4
295 static int force_kipmid
[SI_MAX_PARMS
];
296 static int num_force_kipmid
;
298 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
299 static int num_max_busy_us
;
301 static int unload_when_empty
= 1;
303 static int try_smi_init(struct smi_info
*smi
);
304 static void cleanup_one_si(struct smi_info
*to_clean
);
306 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
307 static int register_xaction_notifier(struct notifier_block
*nb
)
309 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
312 static void deliver_recv_msg(struct smi_info
*smi_info
,
313 struct ipmi_smi_msg
*msg
)
315 /* Deliver the message to the upper layer with the lock
317 spin_unlock(&(smi_info
->si_lock
));
318 ipmi_smi_msg_received(smi_info
->intf
, msg
);
319 spin_lock(&(smi_info
->si_lock
));
322 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
324 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
326 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
327 cCode
= IPMI_ERR_UNSPECIFIED
;
328 /* else use it as is */
330 /* Make it a reponse */
331 msg
->rsp
[0] = msg
->data
[0] | 4;
332 msg
->rsp
[1] = msg
->data
[1];
336 smi_info
->curr_msg
= NULL
;
337 deliver_recv_msg(smi_info
, msg
);
340 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
343 struct list_head
*entry
= NULL
;
349 * No need to save flags, we aleady have interrupts off and we
350 * already hold the SMI lock.
352 if (!smi_info
->run_to_completion
)
353 spin_lock(&(smi_info
->msg_lock
));
355 /* Pick the high priority queue first. */
356 if (!list_empty(&(smi_info
->hp_xmit_msgs
))) {
357 entry
= smi_info
->hp_xmit_msgs
.next
;
358 } else if (!list_empty(&(smi_info
->xmit_msgs
))) {
359 entry
= smi_info
->xmit_msgs
.next
;
363 smi_info
->curr_msg
= NULL
;
369 smi_info
->curr_msg
= list_entry(entry
,
374 printk(KERN_DEBUG
"**Start2: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
376 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
378 if (err
& NOTIFY_STOP_MASK
) {
379 rv
= SI_SM_CALL_WITHOUT_DELAY
;
382 err
= smi_info
->handlers
->start_transaction(
384 smi_info
->curr_msg
->data
,
385 smi_info
->curr_msg
->data_size
);
387 return_hosed_msg(smi_info
, err
);
389 rv
= SI_SM_CALL_WITHOUT_DELAY
;
392 if (!smi_info
->run_to_completion
)
393 spin_unlock(&(smi_info
->msg_lock
));
398 static void start_enable_irq(struct smi_info
*smi_info
)
400 unsigned char msg
[2];
403 * If we are enabling interrupts, we have to tell the
406 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
407 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
409 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
410 smi_info
->si_state
= SI_ENABLE_INTERRUPTS1
;
413 static void start_disable_irq(struct smi_info
*smi_info
)
415 unsigned char msg
[2];
417 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
418 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
420 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
421 smi_info
->si_state
= SI_DISABLE_INTERRUPTS1
;
424 static void start_clear_flags(struct smi_info
*smi_info
)
426 unsigned char msg
[3];
428 /* Make sure the watchdog pre-timeout flag is not set at startup. */
429 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
430 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
431 msg
[2] = WDT_PRE_TIMEOUT_INT
;
433 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
434 smi_info
->si_state
= SI_CLEARING_FLAGS
;
438 * When we have a situtaion where we run out of memory and cannot
439 * allocate messages, we just leave them in the BMC and run the system
440 * polled until we can allocate some memory. Once we have some
441 * memory, we will re-enable the interrupt.
443 static inline void disable_si_irq(struct smi_info
*smi_info
)
445 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
446 start_disable_irq(smi_info
);
447 smi_info
->interrupt_disabled
= 1;
451 static inline void enable_si_irq(struct smi_info
*smi_info
)
453 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
454 start_enable_irq(smi_info
);
455 smi_info
->interrupt_disabled
= 0;
459 static void handle_flags(struct smi_info
*smi_info
)
462 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
463 /* Watchdog pre-timeout */
464 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
466 start_clear_flags(smi_info
);
467 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
468 spin_unlock(&(smi_info
->si_lock
));
469 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
470 spin_lock(&(smi_info
->si_lock
));
471 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
472 /* Messages available. */
473 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
474 if (!smi_info
->curr_msg
) {
475 disable_si_irq(smi_info
);
476 smi_info
->si_state
= SI_NORMAL
;
479 enable_si_irq(smi_info
);
481 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
482 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
483 smi_info
->curr_msg
->data_size
= 2;
485 smi_info
->handlers
->start_transaction(
487 smi_info
->curr_msg
->data
,
488 smi_info
->curr_msg
->data_size
);
489 smi_info
->si_state
= SI_GETTING_MESSAGES
;
490 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
491 /* Events available. */
492 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
493 if (!smi_info
->curr_msg
) {
494 disable_si_irq(smi_info
);
495 smi_info
->si_state
= SI_NORMAL
;
498 enable_si_irq(smi_info
);
500 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
501 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
502 smi_info
->curr_msg
->data_size
= 2;
504 smi_info
->handlers
->start_transaction(
506 smi_info
->curr_msg
->data
,
507 smi_info
->curr_msg
->data_size
);
508 smi_info
->si_state
= SI_GETTING_EVENTS
;
509 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
510 smi_info
->oem_data_avail_handler
) {
511 if (smi_info
->oem_data_avail_handler(smi_info
))
514 smi_info
->si_state
= SI_NORMAL
;
517 static void handle_transaction_done(struct smi_info
*smi_info
)
519 struct ipmi_smi_msg
*msg
;
524 printk(KERN_DEBUG
"**Done: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
526 switch (smi_info
->si_state
) {
528 if (!smi_info
->curr_msg
)
531 smi_info
->curr_msg
->rsp_size
532 = smi_info
->handlers
->get_result(
534 smi_info
->curr_msg
->rsp
,
535 IPMI_MAX_MSG_LENGTH
);
538 * Do this here becase deliver_recv_msg() releases the
539 * lock, and a new message can be put in during the
540 * time the lock is released.
542 msg
= smi_info
->curr_msg
;
543 smi_info
->curr_msg
= NULL
;
544 deliver_recv_msg(smi_info
, msg
);
547 case SI_GETTING_FLAGS
:
549 unsigned char msg
[4];
552 /* We got the flags from the SMI, now handle them. */
553 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
555 /* Error fetching flags, just give up for now. */
556 smi_info
->si_state
= SI_NORMAL
;
557 } else if (len
< 4) {
559 * Hmm, no flags. That's technically illegal, but
560 * don't use uninitialized data.
562 smi_info
->si_state
= SI_NORMAL
;
564 smi_info
->msg_flags
= msg
[3];
565 handle_flags(smi_info
);
570 case SI_CLEARING_FLAGS
:
571 case SI_CLEARING_FLAGS_THEN_SET_IRQ
:
573 unsigned char msg
[3];
575 /* We cleared the flags. */
576 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
578 /* Error clearing flags */
580 "ipmi_si: Error clearing flags: %2.2x\n",
583 if (smi_info
->si_state
== SI_CLEARING_FLAGS_THEN_SET_IRQ
)
584 start_enable_irq(smi_info
);
586 smi_info
->si_state
= SI_NORMAL
;
590 case SI_GETTING_EVENTS
:
592 smi_info
->curr_msg
->rsp_size
593 = smi_info
->handlers
->get_result(
595 smi_info
->curr_msg
->rsp
,
596 IPMI_MAX_MSG_LENGTH
);
599 * Do this here becase deliver_recv_msg() releases the
600 * lock, and a new message can be put in during the
601 * time the lock is released.
603 msg
= smi_info
->curr_msg
;
604 smi_info
->curr_msg
= NULL
;
605 if (msg
->rsp
[2] != 0) {
606 /* Error getting event, probably done. */
609 /* Take off the event flag. */
610 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
611 handle_flags(smi_info
);
613 smi_inc_stat(smi_info
, events
);
616 * Do this before we deliver the message
617 * because delivering the message releases the
618 * lock and something else can mess with the
621 handle_flags(smi_info
);
623 deliver_recv_msg(smi_info
, msg
);
628 case SI_GETTING_MESSAGES
:
630 smi_info
->curr_msg
->rsp_size
631 = smi_info
->handlers
->get_result(
633 smi_info
->curr_msg
->rsp
,
634 IPMI_MAX_MSG_LENGTH
);
637 * Do this here becase deliver_recv_msg() releases the
638 * lock, and a new message can be put in during the
639 * time the lock is released.
641 msg
= smi_info
->curr_msg
;
642 smi_info
->curr_msg
= NULL
;
643 if (msg
->rsp
[2] != 0) {
644 /* Error getting event, probably done. */
647 /* Take off the msg flag. */
648 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
649 handle_flags(smi_info
);
651 smi_inc_stat(smi_info
, incoming_messages
);
654 * Do this before we deliver the message
655 * because delivering the message releases the
656 * lock and something else can mess with the
659 handle_flags(smi_info
);
661 deliver_recv_msg(smi_info
, msg
);
666 case SI_ENABLE_INTERRUPTS1
:
668 unsigned char msg
[4];
670 /* We got the flags from the SMI, now handle them. */
671 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
674 "ipmi_si: Could not enable interrupts"
675 ", failed get, using polled mode.\n");
676 smi_info
->si_state
= SI_NORMAL
;
678 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
679 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
681 IPMI_BMC_RCV_MSG_INTR
|
682 IPMI_BMC_EVT_MSG_INTR
);
683 smi_info
->handlers
->start_transaction(
684 smi_info
->si_sm
, msg
, 3);
685 smi_info
->si_state
= SI_ENABLE_INTERRUPTS2
;
690 case SI_ENABLE_INTERRUPTS2
:
692 unsigned char msg
[4];
694 /* We got the flags from the SMI, now handle them. */
695 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
698 "ipmi_si: Could not enable interrupts"
699 ", failed set, using polled mode.\n");
701 smi_info
->si_state
= SI_NORMAL
;
705 case SI_DISABLE_INTERRUPTS1
:
707 unsigned char msg
[4];
709 /* We got the flags from the SMI, now handle them. */
710 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
713 "ipmi_si: Could not disable interrupts"
715 smi_info
->si_state
= SI_NORMAL
;
717 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
718 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
720 ~(IPMI_BMC_RCV_MSG_INTR
|
721 IPMI_BMC_EVT_MSG_INTR
));
722 smi_info
->handlers
->start_transaction(
723 smi_info
->si_sm
, msg
, 3);
724 smi_info
->si_state
= SI_DISABLE_INTERRUPTS2
;
729 case SI_DISABLE_INTERRUPTS2
:
731 unsigned char msg
[4];
733 /* We got the flags from the SMI, now handle them. */
734 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
737 "ipmi_si: Could not disable interrupts"
740 smi_info
->si_state
= SI_NORMAL
;
747 * Called on timeouts and events. Timeouts should pass the elapsed
748 * time, interrupts should pass in zero. Must be called with
749 * si_lock held and interrupts disabled.
751 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
754 enum si_sm_result si_sm_result
;
758 * There used to be a loop here that waited a little while
759 * (around 25us) before giving up. That turned out to be
760 * pointless, the minimum delays I was seeing were in the 300us
761 * range, which is far too long to wait in an interrupt. So
762 * we just run until the state machine tells us something
763 * happened or it needs a delay.
765 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
767 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
768 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
770 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
771 smi_inc_stat(smi_info
, complete_transactions
);
773 handle_transaction_done(smi_info
);
774 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
775 } else if (si_sm_result
== SI_SM_HOSED
) {
776 smi_inc_stat(smi_info
, hosed_count
);
779 * Do the before return_hosed_msg, because that
782 smi_info
->si_state
= SI_NORMAL
;
783 if (smi_info
->curr_msg
!= NULL
) {
785 * If we were handling a user message, format
786 * a response to send to the upper layer to
787 * tell it about the error.
789 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
791 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
795 * We prefer handling attn over new messages. But don't do
796 * this if there is not yet an upper layer to handle anything.
798 if (likely(smi_info
->intf
) && si_sm_result
== SI_SM_ATTN
) {
799 unsigned char msg
[2];
801 smi_inc_stat(smi_info
, attentions
);
804 * Got a attn, send down a get message flags to see
805 * what's causing it. It would be better to handle
806 * this in the upper layer, but due to the way
807 * interrupts work with the SMI, that's not really
810 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
811 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
813 smi_info
->handlers
->start_transaction(
814 smi_info
->si_sm
, msg
, 2);
815 smi_info
->si_state
= SI_GETTING_FLAGS
;
819 /* If we are currently idle, try to start the next message. */
820 if (si_sm_result
== SI_SM_IDLE
) {
821 smi_inc_stat(smi_info
, idles
);
823 si_sm_result
= start_next_msg(smi_info
);
824 if (si_sm_result
!= SI_SM_IDLE
)
828 if ((si_sm_result
== SI_SM_IDLE
)
829 && (atomic_read(&smi_info
->req_events
))) {
831 * We are idle and the upper layer requested that I fetch
834 atomic_set(&smi_info
->req_events
, 0);
836 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
837 if (!smi_info
->curr_msg
)
840 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
841 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
842 smi_info
->curr_msg
->data_size
= 2;
844 smi_info
->handlers
->start_transaction(
846 smi_info
->curr_msg
->data
,
847 smi_info
->curr_msg
->data_size
);
848 smi_info
->si_state
= SI_GETTING_EVENTS
;
855 static void sender(void *send_info
,
856 struct ipmi_smi_msg
*msg
,
859 struct smi_info
*smi_info
= send_info
;
860 enum si_sm_result result
;
866 if (atomic_read(&smi_info
->stop_operation
)) {
867 msg
->rsp
[0] = msg
->data
[0] | 4;
868 msg
->rsp
[1] = msg
->data
[1];
869 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
871 deliver_recv_msg(smi_info
, msg
);
877 printk("**Enqueue: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
880 if (smi_info
->run_to_completion
) {
882 * If we are running to completion, then throw it in
883 * the list and run transactions until everything is
884 * clear. Priority doesn't matter here.
888 * Run to completion means we are single-threaded, no
891 list_add_tail(&(msg
->link
), &(smi_info
->xmit_msgs
));
893 result
= smi_event_handler(smi_info
, 0);
894 while (result
!= SI_SM_IDLE
) {
895 udelay(SI_SHORT_TIMEOUT_USEC
);
896 result
= smi_event_handler(smi_info
,
897 SI_SHORT_TIMEOUT_USEC
);
902 spin_lock_irqsave(&smi_info
->msg_lock
, flags
);
904 list_add_tail(&msg
->link
, &smi_info
->hp_xmit_msgs
);
906 list_add_tail(&msg
->link
, &smi_info
->xmit_msgs
);
907 spin_unlock_irqrestore(&smi_info
->msg_lock
, flags
);
909 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
910 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
)
911 start_next_msg(smi_info
);
912 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
915 static void set_run_to_completion(void *send_info
, int i_run_to_completion
)
917 struct smi_info
*smi_info
= send_info
;
918 enum si_sm_result result
;
920 smi_info
->run_to_completion
= i_run_to_completion
;
921 if (i_run_to_completion
) {
922 result
= smi_event_handler(smi_info
, 0);
923 while (result
!= SI_SM_IDLE
) {
924 udelay(SI_SHORT_TIMEOUT_USEC
);
925 result
= smi_event_handler(smi_info
,
926 SI_SHORT_TIMEOUT_USEC
);
932 * Use -1 in the nsec value of the busy waiting timespec to tell that
933 * we are spinning in kipmid looking for something and not delaying
936 static inline void ipmi_si_set_not_busy(struct timespec
*ts
)
940 static inline int ipmi_si_is_busy(struct timespec
*ts
)
942 return ts
->tv_nsec
!= -1;
945 static int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
946 const struct smi_info
*smi_info
,
947 struct timespec
*busy_until
)
949 unsigned int max_busy_us
= 0;
951 if (smi_info
->intf_num
< num_max_busy_us
)
952 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
953 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
954 ipmi_si_set_not_busy(busy_until
);
955 else if (!ipmi_si_is_busy(busy_until
)) {
956 getnstimeofday(busy_until
);
957 timespec_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
960 getnstimeofday(&now
);
961 if (unlikely(timespec_compare(&now
, busy_until
) > 0)) {
962 ipmi_si_set_not_busy(busy_until
);
971 * A busy-waiting loop for speeding up IPMI operation.
973 * Lousy hardware makes this hard. This is only enabled for systems
974 * that are not BT and do not have interrupts. It starts spinning
975 * when an operation is complete or until max_busy tells it to stop
976 * (if that is enabled). See the paragraph on kimid_max_busy_us in
977 * Documentation/IPMI.txt for details.
979 static int ipmi_thread(void *data
)
981 struct smi_info
*smi_info
= data
;
983 enum si_sm_result smi_result
;
984 struct timespec busy_until
;
986 ipmi_si_set_not_busy(&busy_until
);
987 set_user_nice(current
, 19);
988 while (!kthread_should_stop()) {
991 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
992 smi_result
= smi_event_handler(smi_info
, 0);
993 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
994 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
996 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
998 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1001 schedule_timeout_interruptible(0);
1007 static void poll(void *send_info
)
1009 struct smi_info
*smi_info
= send_info
;
1010 unsigned long flags
;
1013 * Make sure there is some delay in the poll loop so we can
1014 * drive time forward and timeout things.
1017 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1018 smi_event_handler(smi_info
, 10);
1019 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1022 static void request_events(void *send_info
)
1024 struct smi_info
*smi_info
= send_info
;
1026 if (atomic_read(&smi_info
->stop_operation
) ||
1027 !smi_info
->has_event_buffer
)
1030 atomic_set(&smi_info
->req_events
, 1);
1033 static int initialized
;
1035 static void smi_timeout(unsigned long data
)
1037 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1038 enum si_sm_result smi_result
;
1039 unsigned long flags
;
1040 unsigned long jiffies_now
;
1046 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1048 do_gettimeofday(&t
);
1049 printk(KERN_DEBUG
"**Timer: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1051 jiffies_now
= jiffies
;
1052 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1053 * SI_USEC_PER_JIFFY
);
1054 smi_result
= smi_event_handler(smi_info
, time_diff
);
1056 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1058 smi_info
->last_timeout_jiffies
= jiffies_now
;
1060 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1061 /* Running with interrupts, only do long timeouts. */
1062 smi_info
->si_timer
.expires
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1063 smi_inc_stat(smi_info
, long_timeouts
);
1068 * If the state machine asks for a short delay, then shorten
1069 * the timer timeout.
1071 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1072 smi_inc_stat(smi_info
, short_timeouts
);
1073 smi_info
->si_timer
.expires
= jiffies
+ 1;
1075 smi_inc_stat(smi_info
, long_timeouts
);
1076 smi_info
->si_timer
.expires
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1080 add_timer(&(smi_info
->si_timer
));
1083 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1085 struct smi_info
*smi_info
= data
;
1086 unsigned long flags
;
1091 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1093 smi_inc_stat(smi_info
, interrupts
);
1096 do_gettimeofday(&t
);
1097 printk(KERN_DEBUG
"**Interrupt: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1099 smi_event_handler(smi_info
, 0);
1100 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1104 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1106 struct smi_info
*smi_info
= data
;
1107 /* We need to clear the IRQ flag for the BT interface. */
1108 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1109 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1110 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1111 return si_irq_handler(irq
, data
);
1114 static int smi_start_processing(void *send_info
,
1117 struct smi_info
*new_smi
= send_info
;
1120 new_smi
->intf
= intf
;
1122 /* Try to claim any interrupts. */
1123 if (new_smi
->irq_setup
)
1124 new_smi
->irq_setup(new_smi
);
1126 /* Set up the timer that drives the interface. */
1127 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1128 new_smi
->last_timeout_jiffies
= jiffies
;
1129 mod_timer(&new_smi
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1132 * Check if the user forcefully enabled the daemon.
1134 if (new_smi
->intf_num
< num_force_kipmid
)
1135 enable
= force_kipmid
[new_smi
->intf_num
];
1137 * The BT interface is efficient enough to not need a thread,
1138 * and there is no need for a thread if we have interrupts.
1140 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1144 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1145 "kipmi%d", new_smi
->intf_num
);
1146 if (IS_ERR(new_smi
->thread
)) {
1147 printk(KERN_NOTICE
"ipmi_si_intf: Could not start"
1148 " kernel thread due to error %ld, only using"
1149 " timers to drive the interface\n",
1150 PTR_ERR(new_smi
->thread
));
1151 new_smi
->thread
= NULL
;
1158 static void set_maintenance_mode(void *send_info
, int enable
)
1160 struct smi_info
*smi_info
= send_info
;
1163 atomic_set(&smi_info
->req_events
, 0);
1166 static struct ipmi_smi_handlers handlers
= {
1167 .owner
= THIS_MODULE
,
1168 .start_processing
= smi_start_processing
,
1170 .request_events
= request_events
,
1171 .set_maintenance_mode
= set_maintenance_mode
,
1172 .set_run_to_completion
= set_run_to_completion
,
1177 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1178 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1181 static LIST_HEAD(smi_infos
);
1182 static DEFINE_MUTEX(smi_infos_lock
);
1183 static int smi_num
; /* Used to sequence the SMIs */
1185 #define DEFAULT_REGSPACING 1
1186 #define DEFAULT_REGSIZE 1
1188 static int si_trydefaults
= 1;
1189 static char *si_type
[SI_MAX_PARMS
];
1190 #define MAX_SI_TYPE_STR 30
1191 static char si_type_str
[MAX_SI_TYPE_STR
];
1192 static unsigned long addrs
[SI_MAX_PARMS
];
1193 static unsigned int num_addrs
;
1194 static unsigned int ports
[SI_MAX_PARMS
];
1195 static unsigned int num_ports
;
1196 static int irqs
[SI_MAX_PARMS
];
1197 static unsigned int num_irqs
;
1198 static int regspacings
[SI_MAX_PARMS
];
1199 static unsigned int num_regspacings
;
1200 static int regsizes
[SI_MAX_PARMS
];
1201 static unsigned int num_regsizes
;
1202 static int regshifts
[SI_MAX_PARMS
];
1203 static unsigned int num_regshifts
;
1204 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1205 static unsigned int num_slave_addrs
;
1207 #define IPMI_IO_ADDR_SPACE 0
1208 #define IPMI_MEM_ADDR_SPACE 1
1209 static char *addr_space_to_str
[] = { "i/o", "mem" };
1211 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1213 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1214 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1215 " Documentation/IPMI.txt in the kernel sources for the"
1218 module_param_named(trydefaults
, si_trydefaults
, bool, 0);
1219 MODULE_PARM_DESC(trydefaults
, "Setting this to 'false' will disable the"
1220 " default scan of the KCS and SMIC interface at the standard"
1222 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1223 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1224 " interface separated by commas. The types are 'kcs',"
1225 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1226 " the first interface to kcs and the second to bt");
1227 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1228 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1229 " addresses separated by commas. Only use if an interface"
1230 " is in memory. Otherwise, set it to zero or leave"
1232 module_param_array(ports
, uint
, &num_ports
, 0);
1233 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1234 " addresses separated by commas. Only use if an interface"
1235 " is a port. Otherwise, set it to zero or leave"
1237 module_param_array(irqs
, int, &num_irqs
, 0);
1238 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1239 " addresses separated by commas. Only use if an interface"
1240 " has an interrupt. Otherwise, set it to zero or leave"
1242 module_param_array(regspacings
, int, &num_regspacings
, 0);
1243 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1244 " and each successive register used by the interface. For"
1245 " instance, if the start address is 0xca2 and the spacing"
1246 " is 2, then the second address is at 0xca4. Defaults"
1248 module_param_array(regsizes
, int, &num_regsizes
, 0);
1249 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1250 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1251 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1252 " the 8-bit IPMI register has to be read from a larger"
1254 module_param_array(regshifts
, int, &num_regshifts
, 0);
1255 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1256 " IPMI register, in bits. For instance, if the data"
1257 " is read from a 32-bit word and the IPMI data is in"
1258 " bit 8-15, then the shift would be 8");
1259 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1260 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1261 " the controller. Normally this is 0x20, but can be"
1262 " overridden by this parm. This is an array indexed"
1263 " by interface number.");
1264 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1265 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1266 " disabled(0). Normally the IPMI driver auto-detects"
1267 " this, but the value may be overridden by this parm.");
1268 module_param(unload_when_empty
, int, 0);
1269 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1270 " specified or found, default is 1. Setting to 0"
1271 " is useful for hot add of devices using hotmod.");
1272 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1273 MODULE_PARM_DESC(kipmid_max_busy_us
,
1274 "Max time (in microseconds) to busy-wait for IPMI data before"
1275 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1276 " if kipmid is using up a lot of CPU time.");
1279 static void std_irq_cleanup(struct smi_info
*info
)
1281 if (info
->si_type
== SI_BT
)
1282 /* Disable the interrupt in the BT interface. */
1283 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1284 free_irq(info
->irq
, info
);
1287 static int std_irq_setup(struct smi_info
*info
)
1294 if (info
->si_type
== SI_BT
) {
1295 rv
= request_irq(info
->irq
,
1297 IRQF_SHARED
| IRQF_DISABLED
,
1301 /* Enable the interrupt in the BT interface. */
1302 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1303 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1305 rv
= request_irq(info
->irq
,
1307 IRQF_SHARED
| IRQF_DISABLED
,
1312 "ipmi_si: %s unable to claim interrupt %d,"
1313 " running polled\n",
1314 DEVICE_NAME
, info
->irq
);
1317 info
->irq_cleanup
= std_irq_cleanup
;
1318 printk(" Using irq %d\n", info
->irq
);
1324 static unsigned char port_inb(struct si_sm_io
*io
, unsigned int offset
)
1326 unsigned int addr
= io
->addr_data
;
1328 return inb(addr
+ (offset
* io
->regspacing
));
1331 static void port_outb(struct si_sm_io
*io
, unsigned int offset
,
1334 unsigned int addr
= io
->addr_data
;
1336 outb(b
, addr
+ (offset
* io
->regspacing
));
1339 static unsigned char port_inw(struct si_sm_io
*io
, unsigned int offset
)
1341 unsigned int addr
= io
->addr_data
;
1343 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1346 static void port_outw(struct si_sm_io
*io
, unsigned int offset
,
1349 unsigned int addr
= io
->addr_data
;
1351 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1354 static unsigned char port_inl(struct si_sm_io
*io
, unsigned int offset
)
1356 unsigned int addr
= io
->addr_data
;
1358 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1361 static void port_outl(struct si_sm_io
*io
, unsigned int offset
,
1364 unsigned int addr
= io
->addr_data
;
1366 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1369 static void port_cleanup(struct smi_info
*info
)
1371 unsigned int addr
= info
->io
.addr_data
;
1375 for (idx
= 0; idx
< info
->io_size
; idx
++)
1376 release_region(addr
+ idx
* info
->io
.regspacing
,
1381 static int port_setup(struct smi_info
*info
)
1383 unsigned int addr
= info
->io
.addr_data
;
1389 info
->io_cleanup
= port_cleanup
;
1392 * Figure out the actual inb/inw/inl/etc routine to use based
1393 * upon the register size.
1395 switch (info
->io
.regsize
) {
1397 info
->io
.inputb
= port_inb
;
1398 info
->io
.outputb
= port_outb
;
1401 info
->io
.inputb
= port_inw
;
1402 info
->io
.outputb
= port_outw
;
1405 info
->io
.inputb
= port_inl
;
1406 info
->io
.outputb
= port_outl
;
1409 printk(KERN_WARNING
"ipmi_si: Invalid register size: %d\n",
1415 * Some BIOSes reserve disjoint I/O regions in their ACPI
1416 * tables. This causes problems when trying to register the
1417 * entire I/O region. Therefore we must register each I/O
1420 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1421 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1422 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1423 /* Undo allocations */
1425 release_region(addr
+ idx
* info
->io
.regspacing
,
1434 static unsigned char intf_mem_inb(struct si_sm_io
*io
, unsigned int offset
)
1436 return readb((io
->addr
)+(offset
* io
->regspacing
));
1439 static void intf_mem_outb(struct si_sm_io
*io
, unsigned int offset
,
1442 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1445 static unsigned char intf_mem_inw(struct si_sm_io
*io
, unsigned int offset
)
1447 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1451 static void intf_mem_outw(struct si_sm_io
*io
, unsigned int offset
,
1454 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1457 static unsigned char intf_mem_inl(struct si_sm_io
*io
, unsigned int offset
)
1459 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1463 static void intf_mem_outl(struct si_sm_io
*io
, unsigned int offset
,
1466 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1470 static unsigned char mem_inq(struct si_sm_io
*io
, unsigned int offset
)
1472 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1476 static void mem_outq(struct si_sm_io
*io
, unsigned int offset
,
1479 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1483 static void mem_cleanup(struct smi_info
*info
)
1485 unsigned long addr
= info
->io
.addr_data
;
1488 if (info
->io
.addr
) {
1489 iounmap(info
->io
.addr
);
1491 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1492 - (info
->io
.regspacing
- info
->io
.regsize
));
1494 release_mem_region(addr
, mapsize
);
1498 static int mem_setup(struct smi_info
*info
)
1500 unsigned long addr
= info
->io
.addr_data
;
1506 info
->io_cleanup
= mem_cleanup
;
1509 * Figure out the actual readb/readw/readl/etc routine to use based
1510 * upon the register size.
1512 switch (info
->io
.regsize
) {
1514 info
->io
.inputb
= intf_mem_inb
;
1515 info
->io
.outputb
= intf_mem_outb
;
1518 info
->io
.inputb
= intf_mem_inw
;
1519 info
->io
.outputb
= intf_mem_outw
;
1522 info
->io
.inputb
= intf_mem_inl
;
1523 info
->io
.outputb
= intf_mem_outl
;
1527 info
->io
.inputb
= mem_inq
;
1528 info
->io
.outputb
= mem_outq
;
1532 printk(KERN_WARNING
"ipmi_si: Invalid register size: %d\n",
1538 * Calculate the total amount of memory to claim. This is an
1539 * unusual looking calculation, but it avoids claiming any
1540 * more memory than it has to. It will claim everything
1541 * between the first address to the end of the last full
1544 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1545 - (info
->io
.regspacing
- info
->io
.regsize
));
1547 if (request_mem_region(addr
, mapsize
, DEVICE_NAME
) == NULL
)
1550 info
->io
.addr
= ioremap(addr
, mapsize
);
1551 if (info
->io
.addr
== NULL
) {
1552 release_mem_region(addr
, mapsize
);
1559 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1560 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1568 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1569 struct hotmod_vals
{
1573 static struct hotmod_vals hotmod_ops
[] = {
1575 { "remove", HM_REMOVE
},
1578 static struct hotmod_vals hotmod_si
[] = {
1580 { "smic", SI_SMIC
},
1584 static struct hotmod_vals hotmod_as
[] = {
1585 { "mem", IPMI_MEM_ADDR_SPACE
},
1586 { "i/o", IPMI_IO_ADDR_SPACE
},
1590 static int parse_str(struct hotmod_vals
*v
, int *val
, char *name
, char **curr
)
1595 s
= strchr(*curr
, ',');
1597 printk(KERN_WARNING PFX
"No hotmod %s given.\n", name
);
1602 for (i
= 0; hotmod_ops
[i
].name
; i
++) {
1603 if (strcmp(*curr
, v
[i
].name
) == 0) {
1610 printk(KERN_WARNING PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1614 static int check_hotmod_int_op(const char *curr
, const char *option
,
1615 const char *name
, int *val
)
1619 if (strcmp(curr
, name
) == 0) {
1621 printk(KERN_WARNING PFX
1622 "No option given for '%s'\n",
1626 *val
= simple_strtoul(option
, &n
, 0);
1627 if ((*n
!= '\0') || (*option
== '\0')) {
1628 printk(KERN_WARNING PFX
1629 "Bad option given for '%s'\n",
1638 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1640 char *str
= kstrdup(val
, GFP_KERNEL
);
1642 char *next
, *curr
, *s
, *n
, *o
;
1644 enum si_type si_type
;
1654 struct smi_info
*info
;
1659 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1662 while ((ival
>= 0) && isspace(str
[ival
])) {
1667 for (curr
= str
; curr
; curr
= next
) {
1672 ipmb
= 0; /* Choose the default if not specified */
1674 next
= strchr(curr
, ':');
1680 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1685 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1690 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1694 s
= strchr(curr
, ',');
1699 addr
= simple_strtoul(curr
, &n
, 0);
1700 if ((*n
!= '\0') || (*curr
== '\0')) {
1701 printk(KERN_WARNING PFX
"Invalid hotmod address"
1708 s
= strchr(curr
, ',');
1713 o
= strchr(curr
, '=');
1718 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1723 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1728 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1733 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1738 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1745 printk(KERN_WARNING PFX
1746 "Invalid hotmod option '%s'\n",
1752 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1758 info
->addr_source
= "hotmod";
1759 info
->si_type
= si_type
;
1760 info
->io
.addr_data
= addr
;
1761 info
->io
.addr_type
= addr_space
;
1762 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1763 info
->io_setup
= mem_setup
;
1765 info
->io_setup
= port_setup
;
1767 info
->io
.addr
= NULL
;
1768 info
->io
.regspacing
= regspacing
;
1769 if (!info
->io
.regspacing
)
1770 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1771 info
->io
.regsize
= regsize
;
1772 if (!info
->io
.regsize
)
1773 info
->io
.regsize
= DEFAULT_REGSPACING
;
1774 info
->io
.regshift
= regshift
;
1777 info
->irq_setup
= std_irq_setup
;
1778 info
->slave_addr
= ipmb
;
1783 struct smi_info
*e
, *tmp_e
;
1785 mutex_lock(&smi_infos_lock
);
1786 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1787 if (e
->io
.addr_type
!= addr_space
)
1789 if (e
->si_type
!= si_type
)
1791 if (e
->io
.addr_data
== addr
)
1794 mutex_unlock(&smi_infos_lock
);
1803 static __devinit
void hardcode_find_bmc(void)
1806 struct smi_info
*info
;
1808 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1809 if (!ports
[i
] && !addrs
[i
])
1812 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1816 info
->addr_source
= "hardcoded";
1818 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
1819 info
->si_type
= SI_KCS
;
1820 } else if (strcmp(si_type
[i
], "smic") == 0) {
1821 info
->si_type
= SI_SMIC
;
1822 } else if (strcmp(si_type
[i
], "bt") == 0) {
1823 info
->si_type
= SI_BT
;
1826 "ipmi_si: Interface type specified "
1827 "for interface %d, was invalid: %s\n",
1835 info
->io_setup
= port_setup
;
1836 info
->io
.addr_data
= ports
[i
];
1837 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
1838 } else if (addrs
[i
]) {
1840 info
->io_setup
= mem_setup
;
1841 info
->io
.addr_data
= addrs
[i
];
1842 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
1845 "ipmi_si: Interface type specified "
1846 "for interface %d, "
1847 "but port and address were not set or "
1848 "set to zero.\n", i
);
1853 info
->io
.addr
= NULL
;
1854 info
->io
.regspacing
= regspacings
[i
];
1855 if (!info
->io
.regspacing
)
1856 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1857 info
->io
.regsize
= regsizes
[i
];
1858 if (!info
->io
.regsize
)
1859 info
->io
.regsize
= DEFAULT_REGSPACING
;
1860 info
->io
.regshift
= regshifts
[i
];
1861 info
->irq
= irqs
[i
];
1863 info
->irq_setup
= std_irq_setup
;
1864 info
->slave_addr
= slave_addrs
[i
];
1872 #include <linux/acpi.h>
1875 * Once we get an ACPI failure, we don't try any more, because we go
1876 * through the tables sequentially. Once we don't find a table, there
1879 static int acpi_failure
;
1881 /* For GPE-type interrupts. */
1882 static u32
ipmi_acpi_gpe(void *context
)
1884 struct smi_info
*smi_info
= context
;
1885 unsigned long flags
;
1890 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1892 smi_inc_stat(smi_info
, interrupts
);
1895 do_gettimeofday(&t
);
1896 printk("**ACPI_GPE: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1898 smi_event_handler(smi_info
, 0);
1899 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1901 return ACPI_INTERRUPT_HANDLED
;
1904 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
1909 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
1912 static int acpi_gpe_irq_setup(struct smi_info
*info
)
1919 /* FIXME - is level triggered right? */
1920 status
= acpi_install_gpe_handler(NULL
,
1922 ACPI_GPE_LEVEL_TRIGGERED
,
1925 if (status
!= AE_OK
) {
1927 "ipmi_si: %s unable to claim ACPI GPE %d,"
1928 " running polled\n",
1929 DEVICE_NAME
, info
->irq
);
1933 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
1934 printk(" Using ACPI GPE %d\n", info
->irq
);
1941 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1942 * Docs/TechPapers/IA64/hpspmi.pdf
1953 s8 CreatorRevision
[4];
1956 s16 SpecificationRevision
;
1959 * Bit 0 - SCI interrupt supported
1960 * Bit 1 - I/O APIC/SAPIC
1965 * If bit 0 of InterruptType is set, then this is the SCI
1966 * interrupt in the GPEx_STS register.
1973 * If bit 1 of InterruptType is set, then this is the I/O
1974 * APIC/SAPIC interrupt.
1976 u32 GlobalSystemInterrupt
;
1978 /* The actual register address. */
1979 struct acpi_generic_address addr
;
1983 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
1986 static __devinit
int try_init_spmi(struct SPMITable
*spmi
)
1988 struct smi_info
*info
;
1991 if (spmi
->IPMIlegacy
!= 1) {
1992 printk(KERN_INFO
"IPMI: Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
1996 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1997 addr_space
= IPMI_MEM_ADDR_SPACE
;
1999 addr_space
= IPMI_IO_ADDR_SPACE
;
2001 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2003 printk(KERN_ERR
"ipmi_si: Could not allocate SI data (3)\n");
2007 info
->addr_source
= "SPMI";
2009 /* Figure out the interface type. */
2010 switch (spmi
->InterfaceType
) {
2012 info
->si_type
= SI_KCS
;
2015 info
->si_type
= SI_SMIC
;
2018 info
->si_type
= SI_BT
;
2021 printk(KERN_INFO
"ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2022 spmi
->InterfaceType
);
2027 if (spmi
->InterruptType
& 1) {
2028 /* We've got a GPE interrupt. */
2029 info
->irq
= spmi
->GPE
;
2030 info
->irq_setup
= acpi_gpe_irq_setup
;
2031 } else if (spmi
->InterruptType
& 2) {
2032 /* We've got an APIC/SAPIC interrupt. */
2033 info
->irq
= spmi
->GlobalSystemInterrupt
;
2034 info
->irq_setup
= std_irq_setup
;
2036 /* Use the default interrupt setting. */
2038 info
->irq_setup
= NULL
;
2041 if (spmi
->addr
.bit_width
) {
2042 /* A (hopefully) properly formed register bit width. */
2043 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2045 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2047 info
->io
.regsize
= info
->io
.regspacing
;
2048 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2050 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2051 info
->io_setup
= mem_setup
;
2052 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2053 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2054 info
->io_setup
= port_setup
;
2055 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2059 "ipmi_si: Unknown ACPI I/O Address type\n");
2062 info
->io
.addr_data
= spmi
->addr
.address
;
2069 static __devinit
void spmi_find_bmc(void)
2072 struct SPMITable
*spmi
;
2081 for (i
= 0; ; i
++) {
2082 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2083 (struct acpi_table_header
**)&spmi
);
2084 if (status
!= AE_OK
)
2087 try_init_spmi(spmi
);
2091 static int __devinit
ipmi_pnp_probe(struct pnp_dev
*dev
,
2092 const struct pnp_device_id
*dev_id
)
2094 struct acpi_device
*acpi_dev
;
2095 struct smi_info
*info
;
2098 unsigned long long tmp
;
2100 acpi_dev
= pnp_acpi_device(dev
);
2104 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2108 info
->addr_source
= "ACPI";
2110 handle
= acpi_dev
->handle
;
2112 /* _IFT tells us the interface type: KCS, BT, etc */
2113 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2114 if (ACPI_FAILURE(status
))
2119 info
->si_type
= SI_KCS
;
2122 info
->si_type
= SI_SMIC
;
2125 info
->si_type
= SI_BT
;
2128 dev_info(&dev
->dev
, "unknown interface type %lld\n", tmp
);
2132 if (pnp_port_valid(dev
, 0)) {
2133 info
->io_setup
= port_setup
;
2134 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2135 info
->io
.addr_data
= pnp_port_start(dev
, 0);
2136 } else if (pnp_mem_valid(dev
, 0)) {
2137 info
->io_setup
= mem_setup
;
2138 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2139 info
->io
.addr_data
= pnp_mem_start(dev
, 0);
2141 dev_err(&dev
->dev
, "no I/O or memory address\n");
2145 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2146 info
->io
.regsize
= DEFAULT_REGSPACING
;
2147 info
->io
.regshift
= 0;
2149 /* If _GPE exists, use it; otherwise use standard interrupts */
2150 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2151 if (ACPI_SUCCESS(status
)) {
2153 info
->irq_setup
= acpi_gpe_irq_setup
;
2154 } else if (pnp_irq_valid(dev
, 0)) {
2155 info
->irq
= pnp_irq(dev
, 0);
2156 info
->irq_setup
= std_irq_setup
;
2159 info
->dev
= &acpi_dev
->dev
;
2160 pnp_set_drvdata(dev
, info
);
2162 return try_smi_init(info
);
2169 static void __devexit
ipmi_pnp_remove(struct pnp_dev
*dev
)
2171 struct smi_info
*info
= pnp_get_drvdata(dev
);
2173 cleanup_one_si(info
);
2176 static const struct pnp_device_id pnp_dev_table
[] = {
2181 static struct pnp_driver ipmi_pnp_driver
= {
2182 .name
= DEVICE_NAME
,
2183 .probe
= ipmi_pnp_probe
,
2184 .remove
= __devexit_p(ipmi_pnp_remove
),
2185 .id_table
= pnp_dev_table
,
2190 struct dmi_ipmi_data
{
2193 unsigned long base_addr
;
2199 static int __devinit
decode_dmi(const struct dmi_header
*dm
,
2200 struct dmi_ipmi_data
*dmi
)
2202 const u8
*data
= (const u8
*)dm
;
2203 unsigned long base_addr
;
2205 u8 len
= dm
->length
;
2207 dmi
->type
= data
[4];
2209 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2211 if (base_addr
& 1) {
2213 base_addr
&= 0xFFFE;
2214 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2217 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2219 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2221 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2223 dmi
->irq
= data
[0x11];
2225 /* The top two bits of byte 0x10 hold the register spacing. */
2226 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2227 switch (reg_spacing
) {
2228 case 0x00: /* Byte boundaries */
2231 case 0x01: /* 32-bit boundaries */
2234 case 0x02: /* 16-byte boundaries */
2238 /* Some other interface, just ignore it. */
2244 * Note that technically, the lower bit of the base
2245 * address should be 1 if the address is I/O and 0 if
2246 * the address is in memory. So many systems get that
2247 * wrong (and all that I have seen are I/O) so we just
2248 * ignore that bit and assume I/O. Systems that use
2249 * memory should use the newer spec, anyway.
2251 dmi
->base_addr
= base_addr
& 0xfffe;
2252 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2256 dmi
->slave_addr
= data
[6];
2261 static __devinit
void try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2263 struct smi_info
*info
;
2265 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2268 "ipmi_si: Could not allocate SI data\n");
2272 info
->addr_source
= "SMBIOS";
2274 switch (ipmi_data
->type
) {
2275 case 0x01: /* KCS */
2276 info
->si_type
= SI_KCS
;
2278 case 0x02: /* SMIC */
2279 info
->si_type
= SI_SMIC
;
2282 info
->si_type
= SI_BT
;
2289 switch (ipmi_data
->addr_space
) {
2290 case IPMI_MEM_ADDR_SPACE
:
2291 info
->io_setup
= mem_setup
;
2292 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2295 case IPMI_IO_ADDR_SPACE
:
2296 info
->io_setup
= port_setup
;
2297 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2303 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2304 ipmi_data
->addr_space
);
2307 info
->io
.addr_data
= ipmi_data
->base_addr
;
2309 info
->io
.regspacing
= ipmi_data
->offset
;
2310 if (!info
->io
.regspacing
)
2311 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2312 info
->io
.regsize
= DEFAULT_REGSPACING
;
2313 info
->io
.regshift
= 0;
2315 info
->slave_addr
= ipmi_data
->slave_addr
;
2317 info
->irq
= ipmi_data
->irq
;
2319 info
->irq_setup
= std_irq_setup
;
2324 static void __devinit
dmi_find_bmc(void)
2326 const struct dmi_device
*dev
= NULL
;
2327 struct dmi_ipmi_data data
;
2330 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2331 memset(&data
, 0, sizeof(data
));
2332 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2335 try_init_dmi(&data
);
2338 #endif /* CONFIG_DMI */
2342 #define PCI_ERMC_CLASSCODE 0x0C0700
2343 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2344 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2345 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2346 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2347 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2349 #define PCI_HP_VENDOR_ID 0x103C
2350 #define PCI_MMC_DEVICE_ID 0x121A
2351 #define PCI_MMC_ADDR_CW 0x10
2353 static void ipmi_pci_cleanup(struct smi_info
*info
)
2355 struct pci_dev
*pdev
= info
->addr_source_data
;
2357 pci_disable_device(pdev
);
2360 static int __devinit
ipmi_pci_probe(struct pci_dev
*pdev
,
2361 const struct pci_device_id
*ent
)
2364 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2365 struct smi_info
*info
;
2367 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2371 info
->addr_source
= "PCI";
2373 switch (class_type
) {
2374 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2375 info
->si_type
= SI_SMIC
;
2378 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2379 info
->si_type
= SI_KCS
;
2382 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2383 info
->si_type
= SI_BT
;
2388 printk(KERN_INFO
"ipmi_si: %s: Unknown IPMI type: %d\n",
2389 pci_name(pdev
), class_type
);
2393 rv
= pci_enable_device(pdev
);
2395 printk(KERN_ERR
"ipmi_si: %s: couldn't enable PCI device\n",
2401 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2402 info
->addr_source_data
= pdev
;
2404 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2405 info
->io_setup
= port_setup
;
2406 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2408 info
->io_setup
= mem_setup
;
2409 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2411 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2413 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2414 info
->io
.regsize
= DEFAULT_REGSPACING
;
2415 info
->io
.regshift
= 0;
2417 info
->irq
= pdev
->irq
;
2419 info
->irq_setup
= std_irq_setup
;
2421 info
->dev
= &pdev
->dev
;
2422 pci_set_drvdata(pdev
, info
);
2424 return try_smi_init(info
);
2427 static void __devexit
ipmi_pci_remove(struct pci_dev
*pdev
)
2429 struct smi_info
*info
= pci_get_drvdata(pdev
);
2430 cleanup_one_si(info
);
2434 static int ipmi_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2439 static int ipmi_pci_resume(struct pci_dev
*pdev
)
2445 static struct pci_device_id ipmi_pci_devices
[] = {
2446 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2447 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2450 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2452 static struct pci_driver ipmi_pci_driver
= {
2453 .name
= DEVICE_NAME
,
2454 .id_table
= ipmi_pci_devices
,
2455 .probe
= ipmi_pci_probe
,
2456 .remove
= __devexit_p(ipmi_pci_remove
),
2458 .suspend
= ipmi_pci_suspend
,
2459 .resume
= ipmi_pci_resume
,
2462 #endif /* CONFIG_PCI */
2465 #ifdef CONFIG_PPC_OF
2466 static int __devinit
ipmi_of_probe(struct of_device
*dev
,
2467 const struct of_device_id
*match
)
2469 struct smi_info
*info
;
2470 struct resource resource
;
2471 const int *regsize
, *regspacing
, *regshift
;
2472 struct device_node
*np
= dev
->node
;
2476 dev_info(&dev
->dev
, PFX
"probing via device tree\n");
2478 ret
= of_address_to_resource(np
, 0, &resource
);
2480 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2484 regsize
= of_get_property(np
, "reg-size", &proplen
);
2485 if (regsize
&& proplen
!= 4) {
2486 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2490 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2491 if (regspacing
&& proplen
!= 4) {
2492 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2496 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2497 if (regshift
&& proplen
!= 4) {
2498 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2502 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2506 PFX
"could not allocate memory for OF probe\n");
2510 info
->si_type
= (enum si_type
) match
->data
;
2511 info
->addr_source
= "device-tree";
2512 info
->irq_setup
= std_irq_setup
;
2514 if (resource
.flags
& IORESOURCE_IO
) {
2515 info
->io_setup
= port_setup
;
2516 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2518 info
->io_setup
= mem_setup
;
2519 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2522 info
->io
.addr_data
= resource
.start
;
2524 info
->io
.regsize
= regsize
? *regsize
: DEFAULT_REGSIZE
;
2525 info
->io
.regspacing
= regspacing
? *regspacing
: DEFAULT_REGSPACING
;
2526 info
->io
.regshift
= regshift
? *regshift
: 0;
2528 info
->irq
= irq_of_parse_and_map(dev
->node
, 0);
2529 info
->dev
= &dev
->dev
;
2531 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %x\n",
2532 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2535 dev_set_drvdata(&dev
->dev
, info
);
2537 return try_smi_init(info
);
2540 static int __devexit
ipmi_of_remove(struct of_device
*dev
)
2542 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2546 static struct of_device_id ipmi_match
[] =
2548 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2549 .data
= (void *)(unsigned long) SI_KCS
},
2550 { .type
= "ipmi", .compatible
= "ipmi-smic",
2551 .data
= (void *)(unsigned long) SI_SMIC
},
2552 { .type
= "ipmi", .compatible
= "ipmi-bt",
2553 .data
= (void *)(unsigned long) SI_BT
},
2557 static struct of_platform_driver ipmi_of_platform_driver
= {
2559 .match_table
= ipmi_match
,
2560 .probe
= ipmi_of_probe
,
2561 .remove
= __devexit_p(ipmi_of_remove
),
2563 #endif /* CONFIG_PPC_OF */
2565 static int wait_for_msg_done(struct smi_info
*smi_info
)
2567 enum si_sm_result smi_result
;
2569 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2571 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2572 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2573 schedule_timeout_uninterruptible(1);
2574 smi_result
= smi_info
->handlers
->event(
2575 smi_info
->si_sm
, 100);
2576 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2577 smi_result
= smi_info
->handlers
->event(
2578 smi_info
->si_sm
, 0);
2582 if (smi_result
== SI_SM_HOSED
)
2584 * We couldn't get the state machine to run, so whatever's at
2585 * the port is probably not an IPMI SMI interface.
2592 static int try_get_dev_id(struct smi_info
*smi_info
)
2594 unsigned char msg
[2];
2595 unsigned char *resp
;
2596 unsigned long resp_len
;
2599 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2604 * Do a Get Device ID command, since it comes back with some
2607 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2608 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2609 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2611 rv
= wait_for_msg_done(smi_info
);
2615 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2616 resp
, IPMI_MAX_MSG_LENGTH
);
2618 /* Check and record info from the get device id, in case we need it. */
2619 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2626 static int try_enable_event_buffer(struct smi_info
*smi_info
)
2628 unsigned char msg
[3];
2629 unsigned char *resp
;
2630 unsigned long resp_len
;
2633 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2637 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2638 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2639 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2641 rv
= wait_for_msg_done(smi_info
);
2644 "ipmi_si: Error getting response from get global,"
2645 " enables command, the event buffer is not"
2650 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2651 resp
, IPMI_MAX_MSG_LENGTH
);
2654 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2655 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2658 "ipmi_si: Invalid return from get global"
2659 " enables command, cannot enable the event"
2665 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
)
2666 /* buffer is already enabled, nothing to do. */
2669 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2670 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
2671 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
2672 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
2674 rv
= wait_for_msg_done(smi_info
);
2677 "ipmi_si: Error getting response from set global,"
2678 " enables command, the event buffer is not"
2683 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2684 resp
, IPMI_MAX_MSG_LENGTH
);
2687 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2688 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
2690 "ipmi_si: Invalid return from get global,"
2691 "enables command, not enable the event"
2699 * An error when setting the event buffer bit means
2700 * that the event buffer is not supported.
2708 static int type_file_read_proc(char *page
, char **start
, off_t off
,
2709 int count
, int *eof
, void *data
)
2711 struct smi_info
*smi
= data
;
2713 return sprintf(page
, "%s\n", si_to_str
[smi
->si_type
]);
2716 static int stat_file_read_proc(char *page
, char **start
, off_t off
,
2717 int count
, int *eof
, void *data
)
2719 char *out
= (char *) page
;
2720 struct smi_info
*smi
= data
;
2722 out
+= sprintf(out
, "interrupts_enabled: %d\n",
2723 smi
->irq
&& !smi
->interrupt_disabled
);
2724 out
+= sprintf(out
, "short_timeouts: %u\n",
2725 smi_get_stat(smi
, short_timeouts
));
2726 out
+= sprintf(out
, "long_timeouts: %u\n",
2727 smi_get_stat(smi
, long_timeouts
));
2728 out
+= sprintf(out
, "idles: %u\n",
2729 smi_get_stat(smi
, idles
));
2730 out
+= sprintf(out
, "interrupts: %u\n",
2731 smi_get_stat(smi
, interrupts
));
2732 out
+= sprintf(out
, "attentions: %u\n",
2733 smi_get_stat(smi
, attentions
));
2734 out
+= sprintf(out
, "flag_fetches: %u\n",
2735 smi_get_stat(smi
, flag_fetches
));
2736 out
+= sprintf(out
, "hosed_count: %u\n",
2737 smi_get_stat(smi
, hosed_count
));
2738 out
+= sprintf(out
, "complete_transactions: %u\n",
2739 smi_get_stat(smi
, complete_transactions
));
2740 out
+= sprintf(out
, "events: %u\n",
2741 smi_get_stat(smi
, events
));
2742 out
+= sprintf(out
, "watchdog_pretimeouts: %u\n",
2743 smi_get_stat(smi
, watchdog_pretimeouts
));
2744 out
+= sprintf(out
, "incoming_messages: %u\n",
2745 smi_get_stat(smi
, incoming_messages
));
2750 static int param_read_proc(char *page
, char **start
, off_t off
,
2751 int count
, int *eof
, void *data
)
2753 struct smi_info
*smi
= data
;
2755 return sprintf(page
,
2756 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2757 si_to_str
[smi
->si_type
],
2758 addr_space_to_str
[smi
->io
.addr_type
],
2768 * oem_data_avail_to_receive_msg_avail
2769 * @info - smi_info structure with msg_flags set
2771 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2772 * Returns 1 indicating need to re-run handle_flags().
2774 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
2776 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
2782 * setup_dell_poweredge_oem_data_handler
2783 * @info - smi_info.device_id must be populated
2785 * Systems that match, but have firmware version < 1.40 may assert
2786 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2787 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2788 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2789 * as RECEIVE_MSG_AVAIL instead.
2791 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2792 * assert the OEM[012] bits, and if it did, the driver would have to
2793 * change to handle that properly, we don't actually check for the
2795 * Device ID = 0x20 BMC on PowerEdge 8G servers
2796 * Device Revision = 0x80
2797 * Firmware Revision1 = 0x01 BMC version 1.40
2798 * Firmware Revision2 = 0x40 BCD encoded
2799 * IPMI Version = 0x51 IPMI 1.5
2800 * Manufacturer ID = A2 02 00 Dell IANA
2802 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2803 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2806 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2807 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2808 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2809 #define DELL_IANA_MFR_ID 0x0002a2
2810 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
2812 struct ipmi_device_id
*id
= &smi_info
->device_id
;
2813 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
2814 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
2815 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
2816 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
2817 smi_info
->oem_data_avail_handler
=
2818 oem_data_avail_to_receive_msg_avail
;
2819 } else if (ipmi_version_major(id
) < 1 ||
2820 (ipmi_version_major(id
) == 1 &&
2821 ipmi_version_minor(id
) < 5)) {
2822 smi_info
->oem_data_avail_handler
=
2823 oem_data_avail_to_receive_msg_avail
;
2828 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2829 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
2831 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
2833 /* Make it a reponse */
2834 msg
->rsp
[0] = msg
->data
[0] | 4;
2835 msg
->rsp
[1] = msg
->data
[1];
2836 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
2838 smi_info
->curr_msg
= NULL
;
2839 deliver_recv_msg(smi_info
, msg
);
2843 * dell_poweredge_bt_xaction_handler
2844 * @info - smi_info.device_id must be populated
2846 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2847 * not respond to a Get SDR command if the length of the data
2848 * requested is exactly 0x3A, which leads to command timeouts and no
2849 * data returned. This intercepts such commands, and causes userspace
2850 * callers to try again with a different-sized buffer, which succeeds.
2853 #define STORAGE_NETFN 0x0A
2854 #define STORAGE_CMD_GET_SDR 0x23
2855 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
2856 unsigned long unused
,
2859 struct smi_info
*smi_info
= in
;
2860 unsigned char *data
= smi_info
->curr_msg
->data
;
2861 unsigned int size
= smi_info
->curr_msg
->data_size
;
2863 (data
[0]>>2) == STORAGE_NETFN
&&
2864 data
[1] == STORAGE_CMD_GET_SDR
&&
2866 return_hosed_msg_badsize(smi_info
);
2872 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
2873 .notifier_call
= dell_poweredge_bt_xaction_handler
,
2877 * setup_dell_poweredge_bt_xaction_handler
2878 * @info - smi_info.device_id must be filled in already
2880 * Fills in smi_info.device_id.start_transaction_pre_hook
2881 * when we know what function to use there.
2884 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
2886 struct ipmi_device_id
*id
= &smi_info
->device_id
;
2887 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
2888 smi_info
->si_type
== SI_BT
)
2889 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
2893 * setup_oem_data_handler
2894 * @info - smi_info.device_id must be filled in already
2896 * Fills in smi_info.device_id.oem_data_available_handler
2897 * when we know what function to use there.
2900 static void setup_oem_data_handler(struct smi_info
*smi_info
)
2902 setup_dell_poweredge_oem_data_handler(smi_info
);
2905 static void setup_xaction_handlers(struct smi_info
*smi_info
)
2907 setup_dell_poweredge_bt_xaction_handler(smi_info
);
2910 static inline void wait_for_timer_and_thread(struct smi_info
*smi_info
)
2912 if (smi_info
->intf
) {
2914 * The timer and thread are only running if the
2915 * interface has been started up and registered.
2917 if (smi_info
->thread
!= NULL
)
2918 kthread_stop(smi_info
->thread
);
2919 del_timer_sync(&smi_info
->si_timer
);
2923 static __devinitdata
struct ipmi_default_vals
2929 { .type
= SI_KCS
, .port
= 0xca2 },
2930 { .type
= SI_SMIC
, .port
= 0xca9 },
2931 { .type
= SI_BT
, .port
= 0xe4 },
2935 static __devinit
void default_find_bmc(void)
2937 struct smi_info
*info
;
2940 for (i
= 0; ; i
++) {
2941 if (!ipmi_defaults
[i
].port
)
2944 if (check_legacy_ioport(ipmi_defaults
[i
].port
))
2947 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2951 info
->addr_source
= NULL
;
2953 info
->si_type
= ipmi_defaults
[i
].type
;
2954 info
->io_setup
= port_setup
;
2955 info
->io
.addr_data
= ipmi_defaults
[i
].port
;
2956 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2958 info
->io
.addr
= NULL
;
2959 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2960 info
->io
.regsize
= DEFAULT_REGSPACING
;
2961 info
->io
.regshift
= 0;
2963 if (try_smi_init(info
) == 0) {
2965 printk(KERN_INFO
"ipmi_si: Found default %s state"
2966 " machine at %s address 0x%lx\n",
2967 si_to_str
[info
->si_type
],
2968 addr_space_to_str
[info
->io
.addr_type
],
2969 info
->io
.addr_data
);
2975 static int is_new_interface(struct smi_info
*info
)
2979 list_for_each_entry(e
, &smi_infos
, link
) {
2980 if (e
->io
.addr_type
!= info
->io
.addr_type
)
2982 if (e
->io
.addr_data
== info
->io
.addr_data
)
2989 static int try_smi_init(struct smi_info
*new_smi
)
2994 if (new_smi
->addr_source
) {
2995 printk(KERN_INFO
"ipmi_si: Trying %s-specified %s state"
2996 " machine at %s address 0x%lx, slave address 0x%x,"
2998 new_smi
->addr_source
,
2999 si_to_str
[new_smi
->si_type
],
3000 addr_space_to_str
[new_smi
->io
.addr_type
],
3001 new_smi
->io
.addr_data
,
3002 new_smi
->slave_addr
, new_smi
->irq
);
3005 mutex_lock(&smi_infos_lock
);
3006 if (!is_new_interface(new_smi
)) {
3007 printk(KERN_WARNING
"ipmi_si: duplicate interface\n");
3012 /* So we know not to free it unless we have allocated one. */
3013 new_smi
->intf
= NULL
;
3014 new_smi
->si_sm
= NULL
;
3015 new_smi
->handlers
= NULL
;
3017 switch (new_smi
->si_type
) {
3019 new_smi
->handlers
= &kcs_smi_handlers
;
3023 new_smi
->handlers
= &smic_smi_handlers
;
3027 new_smi
->handlers
= &bt_smi_handlers
;
3031 /* No support for anything else yet. */
3036 /* Allocate the state machine's data and initialize it. */
3037 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3038 if (!new_smi
->si_sm
) {
3039 printk(KERN_ERR
"Could not allocate state machine memory\n");
3043 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3046 /* Now that we know the I/O size, we can set up the I/O. */
3047 rv
= new_smi
->io_setup(new_smi
);
3049 printk(KERN_ERR
"Could not set up I/O space\n");
3053 spin_lock_init(&(new_smi
->si_lock
));
3054 spin_lock_init(&(new_smi
->msg_lock
));
3056 /* Do low-level detection first. */
3057 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3058 if (new_smi
->addr_source
)
3059 printk(KERN_INFO
"ipmi_si: Interface detection"
3066 * Attempt a get device id command. If it fails, we probably
3067 * don't have a BMC here.
3069 rv
= try_get_dev_id(new_smi
);
3071 if (new_smi
->addr_source
)
3072 printk(KERN_INFO
"ipmi_si: There appears to be no BMC"
3073 " at this location\n");
3077 setup_oem_data_handler(new_smi
);
3078 setup_xaction_handlers(new_smi
);
3080 INIT_LIST_HEAD(&(new_smi
->xmit_msgs
));
3081 INIT_LIST_HEAD(&(new_smi
->hp_xmit_msgs
));
3082 new_smi
->curr_msg
= NULL
;
3083 atomic_set(&new_smi
->req_events
, 0);
3084 new_smi
->run_to_completion
= 0;
3085 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3086 atomic_set(&new_smi
->stats
[i
], 0);
3088 new_smi
->interrupt_disabled
= 0;
3089 atomic_set(&new_smi
->stop_operation
, 0);
3090 new_smi
->intf_num
= smi_num
;
3093 rv
= try_enable_event_buffer(new_smi
);
3095 new_smi
->has_event_buffer
= 1;
3098 * Start clearing the flags before we enable interrupts or the
3099 * timer to avoid racing with the timer.
3101 start_clear_flags(new_smi
);
3102 /* IRQ is defined to be set when non-zero. */
3104 new_smi
->si_state
= SI_CLEARING_FLAGS_THEN_SET_IRQ
;
3106 if (!new_smi
->dev
) {
3108 * If we don't already have a device from something
3109 * else (like PCI), then register a new one.
3111 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3113 if (!new_smi
->pdev
) {
3116 " Unable to allocate platform device\n");
3119 new_smi
->dev
= &new_smi
->pdev
->dev
;
3120 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3122 rv
= platform_device_add(new_smi
->pdev
);
3126 " Unable to register system interface device:"
3131 new_smi
->dev_registered
= 1;
3134 rv
= ipmi_register_smi(&handlers
,
3136 &new_smi
->device_id
,
3139 new_smi
->slave_addr
);
3142 "ipmi_si: Unable to register device: error %d\n",
3144 goto out_err_stop_timer
;
3147 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3148 type_file_read_proc
,
3152 "ipmi_si: Unable to create proc entry: %d\n",
3154 goto out_err_stop_timer
;
3157 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3158 stat_file_read_proc
,
3162 "ipmi_si: Unable to create proc entry: %d\n",
3164 goto out_err_stop_timer
;
3167 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3172 "ipmi_si: Unable to create proc entry: %d\n",
3174 goto out_err_stop_timer
;
3177 list_add_tail(&new_smi
->link
, &smi_infos
);
3179 mutex_unlock(&smi_infos_lock
);
3181 printk(KERN_INFO
"IPMI %s interface initialized\n",
3182 si_to_str
[new_smi
->si_type
]);
3187 atomic_inc(&new_smi
->stop_operation
);
3188 wait_for_timer_and_thread(new_smi
);
3192 ipmi_unregister_smi(new_smi
->intf
);
3194 if (new_smi
->irq_cleanup
)
3195 new_smi
->irq_cleanup(new_smi
);
3198 * Wait until we know that we are out of any interrupt
3199 * handlers might have been running before we freed the
3202 synchronize_sched();
3204 if (new_smi
->si_sm
) {
3205 if (new_smi
->handlers
)
3206 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3207 kfree(new_smi
->si_sm
);
3209 if (new_smi
->addr_source_cleanup
)
3210 new_smi
->addr_source_cleanup(new_smi
);
3211 if (new_smi
->io_cleanup
)
3212 new_smi
->io_cleanup(new_smi
);
3214 if (new_smi
->dev_registered
)
3215 platform_device_unregister(new_smi
->pdev
);
3219 mutex_unlock(&smi_infos_lock
);
3224 static __devinit
int init_ipmi_si(void)
3234 /* Register the device drivers. */
3235 rv
= driver_register(&ipmi_driver
.driver
);
3238 "init_ipmi_si: Unable to register driver: %d\n",
3244 /* Parse out the si_type string into its components. */
3247 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3249 str
= strchr(str
, ',');
3259 printk(KERN_INFO
"IPMI System Interface driver.\n");
3261 hardcode_find_bmc();
3271 pnp_register_driver(&ipmi_pnp_driver
);
3275 rv
= pci_register_driver(&ipmi_pci_driver
);
3278 "init_ipmi_si: Unable to register PCI driver: %d\n",
3282 #ifdef CONFIG_PPC_OF
3283 of_register_platform_driver(&ipmi_of_platform_driver
);
3286 if (si_trydefaults
) {
3287 mutex_lock(&smi_infos_lock
);
3288 if (list_empty(&smi_infos
)) {
3289 /* No BMC was found, try defaults. */
3290 mutex_unlock(&smi_infos_lock
);
3293 mutex_unlock(&smi_infos_lock
);
3297 mutex_lock(&smi_infos_lock
);
3298 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3299 mutex_unlock(&smi_infos_lock
);
3301 pci_unregister_driver(&ipmi_pci_driver
);
3304 #ifdef CONFIG_PPC_OF
3305 of_unregister_platform_driver(&ipmi_of_platform_driver
);
3307 driver_unregister(&ipmi_driver
.driver
);
3309 "ipmi_si: Unable to find any System Interface(s)\n");
3312 mutex_unlock(&smi_infos_lock
);
3316 module_init(init_ipmi_si
);
3318 static void cleanup_one_si(struct smi_info
*to_clean
)
3321 unsigned long flags
;
3326 list_del(&to_clean
->link
);
3328 /* Tell the driver that we are shutting down. */
3329 atomic_inc(&to_clean
->stop_operation
);
3332 * Make sure the timer and thread are stopped and will not run
3335 wait_for_timer_and_thread(to_clean
);
3338 * Timeouts are stopped, now make sure the interrupts are off
3339 * for the device. A little tricky with locks to make sure
3340 * there are no races.
3342 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3343 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3344 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3346 schedule_timeout_uninterruptible(1);
3347 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3349 disable_si_irq(to_clean
);
3350 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3351 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3353 schedule_timeout_uninterruptible(1);
3356 /* Clean up interrupts and make sure that everything is done. */
3357 if (to_clean
->irq_cleanup
)
3358 to_clean
->irq_cleanup(to_clean
);
3359 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3361 schedule_timeout_uninterruptible(1);
3364 rv
= ipmi_unregister_smi(to_clean
->intf
);
3367 "ipmi_si: Unable to unregister device: errno=%d\n",
3371 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3373 kfree(to_clean
->si_sm
);
3375 if (to_clean
->addr_source_cleanup
)
3376 to_clean
->addr_source_cleanup(to_clean
);
3377 if (to_clean
->io_cleanup
)
3378 to_clean
->io_cleanup(to_clean
);
3380 if (to_clean
->dev_registered
)
3381 platform_device_unregister(to_clean
->pdev
);
3386 static __exit
void cleanup_ipmi_si(void)
3388 struct smi_info
*e
, *tmp_e
;
3394 pci_unregister_driver(&ipmi_pci_driver
);
3397 pnp_unregister_driver(&ipmi_pnp_driver
);
3400 #ifdef CONFIG_PPC_OF
3401 of_unregister_platform_driver(&ipmi_of_platform_driver
);
3404 mutex_lock(&smi_infos_lock
);
3405 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3407 mutex_unlock(&smi_infos_lock
);
3409 driver_unregister(&ipmi_driver
.driver
);
3411 module_exit(cleanup_ipmi_si
);
3413 MODULE_LICENSE("GPL");
3414 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3415 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3416 " system interfaces.");