Linux 2.6.34-rc3
[pohmelfs.git] / drivers / char / istallion.c
blob4cd6c527ee4141929c2257e9798a7c51cab45a6b
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/smp_lock.h>
25 #include <linux/interrupt.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial.h>
29 #include <linux/seq_file.h>
30 #include <linux/cdk.h>
31 #include <linux/comstats.h>
32 #include <linux/istallion.h>
33 #include <linux/ioport.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/device.h>
37 #include <linux/wait.h>
38 #include <linux/eisa.h>
39 #include <linux/ctype.h>
41 #include <asm/io.h>
42 #include <asm/uaccess.h>
44 #include <linux/pci.h>
46 /*****************************************************************************/
49 * Define different board types. Not all of the following board types
50 * are supported by this driver. But I will use the standard "assigned"
51 * board numbers. Currently supported boards are abbreviated as:
52 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
53 * STAL = Stallion.
55 #define BRD_UNKNOWN 0
56 #define BRD_STALLION 1
57 #define BRD_BRUMBY4 2
58 #define BRD_ONBOARD2 3
59 #define BRD_ONBOARD 4
60 #define BRD_ONBOARDE 7
61 #define BRD_ECP 23
62 #define BRD_ECPE 24
63 #define BRD_ECPMC 25
64 #define BRD_ECPPCI 29
66 #define BRD_BRUMBY BRD_BRUMBY4
69 * Define a configuration structure to hold the board configuration.
70 * Need to set this up in the code (for now) with the boards that are
71 * to be configured into the system. This is what needs to be modified
72 * when adding/removing/modifying boards. Each line entry in the
73 * stli_brdconf[] array is a board. Each line contains io/irq/memory
74 * ranges for that board (as well as what type of board it is).
75 * Some examples:
76 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
77 * This line will configure an EasyConnection 8/64 at io address 2a0,
78 * and shared memory address of cc000. Multiple EasyConnection 8/64
79 * boards can share the same shared memory address space. No interrupt
80 * is required for this board type.
81 * Another example:
82 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
83 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
84 * shared memory address of 0x80000000 (2 GByte). Multiple
85 * EasyConnection 8/64 EISA boards can share the same shared memory
86 * address space. No interrupt is required for this board type.
87 * Another example:
88 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
89 * This line will configure an ONboard (ISA type) at io address 240,
90 * and shared memory address of d0000. Multiple ONboards can share
91 * the same shared memory address space. No interrupt required.
92 * Another example:
93 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
94 * This line will configure a Brumby board (any number of ports!) at
95 * io address 360 and shared memory address of c8000. All Brumby boards
96 * configured into a system must have their own separate io and memory
97 * addresses. No interrupt is required.
98 * Another example:
99 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
100 * This line will configure an original Stallion board at io address 330
101 * and shared memory address d0000 (this would only be valid for a "V4.0"
102 * or Rev.O Stallion board). All Stallion boards configured into the
103 * system must have their own separate io and memory addresses. No
104 * interrupt is required.
107 struct stlconf {
108 int brdtype;
109 int ioaddr1;
110 int ioaddr2;
111 unsigned long memaddr;
112 int irq;
113 int irqtype;
116 static unsigned int stli_nrbrds;
118 /* stli_lock must NOT be taken holding brd_lock */
119 static spinlock_t stli_lock; /* TTY logic lock */
120 static spinlock_t brd_lock; /* Board logic lock */
123 * There is some experimental EISA board detection code in this driver.
124 * By default it is disabled, but for those that want to try it out,
125 * then set the define below to be 1.
127 #define STLI_EISAPROBE 0
129 /*****************************************************************************/
132 * Define some important driver characteristics. Device major numbers
133 * allocated as per Linux Device Registry.
135 #ifndef STL_SIOMEMMAJOR
136 #define STL_SIOMEMMAJOR 28
137 #endif
138 #ifndef STL_SERIALMAJOR
139 #define STL_SERIALMAJOR 24
140 #endif
141 #ifndef STL_CALLOUTMAJOR
142 #define STL_CALLOUTMAJOR 25
143 #endif
145 /*****************************************************************************/
148 * Define our local driver identity first. Set up stuff to deal with
149 * all the local structures required by a serial tty driver.
151 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
152 static char *stli_drvname = "istallion";
153 static char *stli_drvversion = "5.6.0";
154 static char *stli_serialname = "ttyE";
156 static struct tty_driver *stli_serial;
157 static const struct tty_port_operations stli_port_ops;
159 #define STLI_TXBUFSIZE 4096
162 * Use a fast local buffer for cooked characters. Typically a whole
163 * bunch of cooked characters come in for a port, 1 at a time. So we
164 * save those up into a local buffer, then write out the whole lot
165 * with a large memcpy. Just use 1 buffer for all ports, since its
166 * use it is only need for short periods of time by each port.
168 static char *stli_txcookbuf;
169 static int stli_txcooksize;
170 static int stli_txcookrealsize;
171 static struct tty_struct *stli_txcooktty;
174 * Define a local default termios struct. All ports will be created
175 * with this termios initially. Basically all it defines is a raw port
176 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
178 static struct ktermios stli_deftermios = {
179 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
180 .c_cc = INIT_C_CC,
181 .c_ispeed = 9600,
182 .c_ospeed = 9600,
186 * Define global stats structures. Not used often, and can be
187 * re-used for each stats call.
189 static comstats_t stli_comstats;
190 static combrd_t stli_brdstats;
191 static struct asystats stli_cdkstats;
193 /*****************************************************************************/
195 static DEFINE_MUTEX(stli_brdslock);
196 static struct stlibrd *stli_brds[STL_MAXBRDS];
198 static int stli_shared;
201 * Per board state flags. Used with the state field of the board struct.
202 * Not really much here... All we need to do is keep track of whether
203 * the board has been detected, and whether it is actually running a slave
204 * or not.
206 #define BST_FOUND 0x1
207 #define BST_STARTED 0x2
208 #define BST_PROBED 0x4
211 * Define the set of port state flags. These are marked for internal
212 * state purposes only, usually to do with the state of communications
213 * with the slave. Most of them need to be updated atomically, so always
214 * use the bit setting operations (unless protected by cli/sti).
216 #define ST_OPENING 2
217 #define ST_CLOSING 3
218 #define ST_CMDING 4
219 #define ST_TXBUSY 5
220 #define ST_RXING 6
221 #define ST_DOFLUSHRX 7
222 #define ST_DOFLUSHTX 8
223 #define ST_DOSIGS 9
224 #define ST_RXSTOP 10
225 #define ST_GETSIGS 11
228 * Define an array of board names as printable strings. Handy for
229 * referencing boards when printing trace and stuff.
231 static char *stli_brdnames[] = {
232 "Unknown",
233 "Stallion",
234 "Brumby",
235 "ONboard-MC",
236 "ONboard",
237 "Brumby",
238 "Brumby",
239 "ONboard-EI",
240 NULL,
241 "ONboard",
242 "ONboard-MC",
243 "ONboard-MC",
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 NULL,
252 "EasyIO",
253 "EC8/32-AT",
254 "EC8/32-MC",
255 "EC8/64-AT",
256 "EC8/64-EI",
257 "EC8/64-MC",
258 "EC8/32-PCI",
259 "EC8/64-PCI",
260 "EasyIO-PCI",
261 "EC/RA-PCI",
264 /*****************************************************************************/
267 * Define some string labels for arguments passed from the module
268 * load line. These allow for easy board definitions, and easy
269 * modification of the io, memory and irq resoucres.
272 static char *board0[8];
273 static char *board1[8];
274 static char *board2[8];
275 static char *board3[8];
277 static char **stli_brdsp[] = {
278 (char **) &board0,
279 (char **) &board1,
280 (char **) &board2,
281 (char **) &board3
285 * Define a set of common board names, and types. This is used to
286 * parse any module arguments.
289 static struct stlibrdtype {
290 char *name;
291 int type;
292 } stli_brdstr[] = {
293 { "stallion", BRD_STALLION },
294 { "1", BRD_STALLION },
295 { "brumby", BRD_BRUMBY },
296 { "brumby4", BRD_BRUMBY },
297 { "brumby/4", BRD_BRUMBY },
298 { "brumby-4", BRD_BRUMBY },
299 { "brumby8", BRD_BRUMBY },
300 { "brumby/8", BRD_BRUMBY },
301 { "brumby-8", BRD_BRUMBY },
302 { "brumby16", BRD_BRUMBY },
303 { "brumby/16", BRD_BRUMBY },
304 { "brumby-16", BRD_BRUMBY },
305 { "2", BRD_BRUMBY },
306 { "onboard2", BRD_ONBOARD2 },
307 { "onboard-2", BRD_ONBOARD2 },
308 { "onboard/2", BRD_ONBOARD2 },
309 { "onboard-mc", BRD_ONBOARD2 },
310 { "onboard/mc", BRD_ONBOARD2 },
311 { "onboard-mca", BRD_ONBOARD2 },
312 { "onboard/mca", BRD_ONBOARD2 },
313 { "3", BRD_ONBOARD2 },
314 { "onboard", BRD_ONBOARD },
315 { "onboardat", BRD_ONBOARD },
316 { "4", BRD_ONBOARD },
317 { "onboarde", BRD_ONBOARDE },
318 { "onboard-e", BRD_ONBOARDE },
319 { "onboard/e", BRD_ONBOARDE },
320 { "onboard-ei", BRD_ONBOARDE },
321 { "onboard/ei", BRD_ONBOARDE },
322 { "7", BRD_ONBOARDE },
323 { "ecp", BRD_ECP },
324 { "ecpat", BRD_ECP },
325 { "ec8/64", BRD_ECP },
326 { "ec8/64-at", BRD_ECP },
327 { "ec8/64-isa", BRD_ECP },
328 { "23", BRD_ECP },
329 { "ecpe", BRD_ECPE },
330 { "ecpei", BRD_ECPE },
331 { "ec8/64-e", BRD_ECPE },
332 { "ec8/64-ei", BRD_ECPE },
333 { "24", BRD_ECPE },
334 { "ecpmc", BRD_ECPMC },
335 { "ec8/64-mc", BRD_ECPMC },
336 { "ec8/64-mca", BRD_ECPMC },
337 { "25", BRD_ECPMC },
338 { "ecppci", BRD_ECPPCI },
339 { "ec/ra", BRD_ECPPCI },
340 { "ec/ra-pc", BRD_ECPPCI },
341 { "ec/ra-pci", BRD_ECPPCI },
342 { "29", BRD_ECPPCI },
346 * Define the module agruments.
348 MODULE_AUTHOR("Greg Ungerer");
349 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
350 MODULE_LICENSE("GPL");
353 module_param_array(board0, charp, NULL, 0);
354 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board1, charp, NULL, 0);
356 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board2, charp, NULL, 0);
358 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
359 module_param_array(board3, charp, NULL, 0);
360 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
362 #if STLI_EISAPROBE != 0
364 * Set up a default memory address table for EISA board probing.
365 * The default addresses are all bellow 1Mbyte, which has to be the
366 * case anyway. They should be safe, since we only read values from
367 * them, and interrupts are disabled while we do it. If the higher
368 * memory support is compiled in then we also try probing around
369 * the 1Gb, 2Gb and 3Gb areas as well...
371 static unsigned long stli_eisamemprobeaddrs[] = {
372 0xc0000, 0xd0000, 0xe0000, 0xf0000,
373 0x80000000, 0x80010000, 0x80020000, 0x80030000,
374 0x40000000, 0x40010000, 0x40020000, 0x40030000,
375 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
376 0xff000000, 0xff010000, 0xff020000, 0xff030000,
379 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
380 #endif
383 * Define the Stallion PCI vendor and device IDs.
385 #ifndef PCI_DEVICE_ID_ECRA
386 #define PCI_DEVICE_ID_ECRA 0x0004
387 #endif
389 static struct pci_device_id istallion_pci_tbl[] = {
390 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
391 { 0 }
393 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
395 static struct pci_driver stli_pcidriver;
397 /*****************************************************************************/
400 * Hardware configuration info for ECP boards. These defines apply
401 * to the directly accessible io ports of the ECP. There is a set of
402 * defines for each ECP board type, ISA, EISA, MCA and PCI.
404 #define ECP_IOSIZE 4
406 #define ECP_MEMSIZE (128 * 1024)
407 #define ECP_PCIMEMSIZE (256 * 1024)
409 #define ECP_ATPAGESIZE (4 * 1024)
410 #define ECP_MCPAGESIZE (4 * 1024)
411 #define ECP_EIPAGESIZE (64 * 1024)
412 #define ECP_PCIPAGESIZE (64 * 1024)
414 #define STL_EISAID 0x8c4e
417 * Important defines for the ISA class of ECP board.
419 #define ECP_ATIREG 0
420 #define ECP_ATCONFR 1
421 #define ECP_ATMEMAR 2
422 #define ECP_ATMEMPR 3
423 #define ECP_ATSTOP 0x1
424 #define ECP_ATINTENAB 0x10
425 #define ECP_ATENABLE 0x20
426 #define ECP_ATDISABLE 0x00
427 #define ECP_ATADDRMASK 0x3f000
428 #define ECP_ATADDRSHFT 12
431 * Important defines for the EISA class of ECP board.
433 #define ECP_EIIREG 0
434 #define ECP_EIMEMARL 1
435 #define ECP_EICONFR 2
436 #define ECP_EIMEMARH 3
437 #define ECP_EIENABLE 0x1
438 #define ECP_EIDISABLE 0x0
439 #define ECP_EISTOP 0x4
440 #define ECP_EIEDGE 0x00
441 #define ECP_EILEVEL 0x80
442 #define ECP_EIADDRMASKL 0x00ff0000
443 #define ECP_EIADDRSHFTL 16
444 #define ECP_EIADDRMASKH 0xff000000
445 #define ECP_EIADDRSHFTH 24
446 #define ECP_EIBRDENAB 0xc84
448 #define ECP_EISAID 0x4
451 * Important defines for the Micro-channel class of ECP board.
452 * (It has a lot in common with the ISA boards.)
454 #define ECP_MCIREG 0
455 #define ECP_MCCONFR 1
456 #define ECP_MCSTOP 0x20
457 #define ECP_MCENABLE 0x80
458 #define ECP_MCDISABLE 0x00
461 * Important defines for the PCI class of ECP board.
462 * (It has a lot in common with the other ECP boards.)
464 #define ECP_PCIIREG 0
465 #define ECP_PCICONFR 1
466 #define ECP_PCISTOP 0x01
469 * Hardware configuration info for ONboard and Brumby boards. These
470 * defines apply to the directly accessible io ports of these boards.
472 #define ONB_IOSIZE 16
473 #define ONB_MEMSIZE (64 * 1024)
474 #define ONB_ATPAGESIZE (64 * 1024)
475 #define ONB_MCPAGESIZE (64 * 1024)
476 #define ONB_EIMEMSIZE (128 * 1024)
477 #define ONB_EIPAGESIZE (64 * 1024)
480 * Important defines for the ISA class of ONboard board.
482 #define ONB_ATIREG 0
483 #define ONB_ATMEMAR 1
484 #define ONB_ATCONFR 2
485 #define ONB_ATSTOP 0x4
486 #define ONB_ATENABLE 0x01
487 #define ONB_ATDISABLE 0x00
488 #define ONB_ATADDRMASK 0xff0000
489 #define ONB_ATADDRSHFT 16
491 #define ONB_MEMENABLO 0
492 #define ONB_MEMENABHI 0x02
495 * Important defines for the EISA class of ONboard board.
497 #define ONB_EIIREG 0
498 #define ONB_EIMEMARL 1
499 #define ONB_EICONFR 2
500 #define ONB_EIMEMARH 3
501 #define ONB_EIENABLE 0x1
502 #define ONB_EIDISABLE 0x0
503 #define ONB_EISTOP 0x4
504 #define ONB_EIEDGE 0x00
505 #define ONB_EILEVEL 0x80
506 #define ONB_EIADDRMASKL 0x00ff0000
507 #define ONB_EIADDRSHFTL 16
508 #define ONB_EIADDRMASKH 0xff000000
509 #define ONB_EIADDRSHFTH 24
510 #define ONB_EIBRDENAB 0xc84
512 #define ONB_EISAID 0x1
515 * Important defines for the Brumby boards. They are pretty simple,
516 * there is not much that is programmably configurable.
518 #define BBY_IOSIZE 16
519 #define BBY_MEMSIZE (64 * 1024)
520 #define BBY_PAGESIZE (16 * 1024)
522 #define BBY_ATIREG 0
523 #define BBY_ATCONFR 1
524 #define BBY_ATSTOP 0x4
527 * Important defines for the Stallion boards. They are pretty simple,
528 * there is not much that is programmably configurable.
530 #define STAL_IOSIZE 16
531 #define STAL_MEMSIZE (64 * 1024)
532 #define STAL_PAGESIZE (64 * 1024)
535 * Define the set of status register values for EasyConnection panels.
536 * The signature will return with the status value for each panel. From
537 * this we can determine what is attached to the board - before we have
538 * actually down loaded any code to it.
540 #define ECH_PNLSTATUS 2
541 #define ECH_PNL16PORT 0x20
542 #define ECH_PNLIDMASK 0x07
543 #define ECH_PNLXPID 0x40
544 #define ECH_PNLINTRPEND 0x80
547 * Define some macros to do things to the board. Even those these boards
548 * are somewhat related there is often significantly different ways of
549 * doing some operation on it (like enable, paging, reset, etc). So each
550 * board class has a set of functions which do the commonly required
551 * operations. The macros below basically just call these functions,
552 * generally checking for a NULL function - which means that the board
553 * needs nothing done to it to achieve this operation!
555 #define EBRDINIT(brdp) \
556 if (brdp->init != NULL) \
557 (* brdp->init)(brdp)
559 #define EBRDENABLE(brdp) \
560 if (brdp->enable != NULL) \
561 (* brdp->enable)(brdp);
563 #define EBRDDISABLE(brdp) \
564 if (brdp->disable != NULL) \
565 (* brdp->disable)(brdp);
567 #define EBRDINTR(brdp) \
568 if (brdp->intr != NULL) \
569 (* brdp->intr)(brdp);
571 #define EBRDRESET(brdp) \
572 if (brdp->reset != NULL) \
573 (* brdp->reset)(brdp);
575 #define EBRDGETMEMPTR(brdp,offset) \
576 (* brdp->getmemptr)(brdp, offset, __LINE__)
579 * Define the maximal baud rate, and the default baud base for ports.
581 #define STL_MAXBAUD 460800
582 #define STL_BAUDBASE 115200
583 #define STL_CLOSEDELAY (5 * HZ / 10)
585 /*****************************************************************************/
588 * Define macros to extract a brd or port number from a minor number.
590 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
591 #define MINOR2PORT(min) ((min) & 0x3f)
593 /*****************************************************************************/
596 * Prototype all functions in this driver!
599 static int stli_parsebrd(struct stlconf *confp, char **argp);
600 static int stli_open(struct tty_struct *tty, struct file *filp);
601 static void stli_close(struct tty_struct *tty, struct file *filp);
602 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
603 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
604 static void stli_flushchars(struct tty_struct *tty);
605 static int stli_writeroom(struct tty_struct *tty);
606 static int stli_charsinbuffer(struct tty_struct *tty);
607 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
608 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
609 static void stli_throttle(struct tty_struct *tty);
610 static void stli_unthrottle(struct tty_struct *tty);
611 static void stli_stop(struct tty_struct *tty);
612 static void stli_start(struct tty_struct *tty);
613 static void stli_flushbuffer(struct tty_struct *tty);
614 static int stli_breakctl(struct tty_struct *tty, int state);
615 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
616 static void stli_sendxchar(struct tty_struct *tty, char ch);
617 static void stli_hangup(struct tty_struct *tty);
619 static int stli_brdinit(struct stlibrd *brdp);
620 static int stli_startbrd(struct stlibrd *brdp);
621 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
622 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
623 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg);
624 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
625 static void stli_poll(unsigned long arg);
626 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
627 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
628 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
630 static int stli_setport(struct tty_struct *tty);
631 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
635 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
636 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
637 static long stli_mktiocm(unsigned long sigvalue);
638 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
639 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
640 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
641 static int stli_getbrdstats(combrd_t __user *bp);
642 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
643 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
644 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
645 static int stli_getportstruct(struct stliport __user *arg);
646 static int stli_getbrdstruct(struct stlibrd __user *arg);
647 static struct stlibrd *stli_allocbrd(void);
649 static void stli_ecpinit(struct stlibrd *brdp);
650 static void stli_ecpenable(struct stlibrd *brdp);
651 static void stli_ecpdisable(struct stlibrd *brdp);
652 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
653 static void stli_ecpreset(struct stlibrd *brdp);
654 static void stli_ecpintr(struct stlibrd *brdp);
655 static void stli_ecpeiinit(struct stlibrd *brdp);
656 static void stli_ecpeienable(struct stlibrd *brdp);
657 static void stli_ecpeidisable(struct stlibrd *brdp);
658 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
659 static void stli_ecpeireset(struct stlibrd *brdp);
660 static void stli_ecpmcenable(struct stlibrd *brdp);
661 static void stli_ecpmcdisable(struct stlibrd *brdp);
662 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
663 static void stli_ecpmcreset(struct stlibrd *brdp);
664 static void stli_ecppciinit(struct stlibrd *brdp);
665 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
666 static void stli_ecppcireset(struct stlibrd *brdp);
668 static void stli_onbinit(struct stlibrd *brdp);
669 static void stli_onbenable(struct stlibrd *brdp);
670 static void stli_onbdisable(struct stlibrd *brdp);
671 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
672 static void stli_onbreset(struct stlibrd *brdp);
673 static void stli_onbeinit(struct stlibrd *brdp);
674 static void stli_onbeenable(struct stlibrd *brdp);
675 static void stli_onbedisable(struct stlibrd *brdp);
676 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
677 static void stli_onbereset(struct stlibrd *brdp);
678 static void stli_bbyinit(struct stlibrd *brdp);
679 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
680 static void stli_bbyreset(struct stlibrd *brdp);
681 static void stli_stalinit(struct stlibrd *brdp);
682 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
683 static void stli_stalreset(struct stlibrd *brdp);
685 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
687 static int stli_initecp(struct stlibrd *brdp);
688 static int stli_initonb(struct stlibrd *brdp);
689 #if STLI_EISAPROBE != 0
690 static int stli_eisamemprobe(struct stlibrd *brdp);
691 #endif
692 static int stli_initports(struct stlibrd *brdp);
694 /*****************************************************************************/
697 * Define the driver info for a user level shared memory device. This
698 * device will work sort of like the /dev/kmem device - except that it
699 * will give access to the shared memory on the Stallion intelligent
700 * board. This is also a very useful debugging tool.
702 static const struct file_operations stli_fsiomem = {
703 .owner = THIS_MODULE,
704 .read = stli_memread,
705 .write = stli_memwrite,
706 .unlocked_ioctl = stli_memioctl,
709 /*****************************************************************************/
712 * Define a timer_list entry for our poll routine. The slave board
713 * is polled every so often to see if anything needs doing. This is
714 * much cheaper on host cpu than using interrupts. It turns out to
715 * not increase character latency by much either...
717 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
719 static int stli_timeron;
722 * Define the calculation for the timeout routine.
724 #define STLI_TIMEOUT (jiffies + 1)
726 /*****************************************************************************/
728 static struct class *istallion_class;
730 static void stli_cleanup_ports(struct stlibrd *brdp)
732 struct stliport *portp;
733 unsigned int j;
734 struct tty_struct *tty;
736 for (j = 0; j < STL_MAXPORTS; j++) {
737 portp = brdp->ports[j];
738 if (portp != NULL) {
739 tty = tty_port_tty_get(&portp->port);
740 if (tty != NULL) {
741 tty_hangup(tty);
742 tty_kref_put(tty);
744 kfree(portp);
749 /*****************************************************************************/
752 * Parse the supplied argument string, into the board conf struct.
755 static int stli_parsebrd(struct stlconf *confp, char **argp)
757 unsigned int i;
758 char *sp;
760 if (argp[0] == NULL || *argp[0] == 0)
761 return 0;
763 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
764 *sp = tolower(*sp);
766 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
767 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
768 break;
770 if (i == ARRAY_SIZE(stli_brdstr)) {
771 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
772 return 0;
775 confp->brdtype = stli_brdstr[i].type;
776 if (argp[1] != NULL && *argp[1] != 0)
777 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
778 if (argp[2] != NULL && *argp[2] != 0)
779 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
780 return(1);
783 /*****************************************************************************/
786 * On the first open of the device setup the port hardware, and
787 * initialize the per port data structure. Since initializing the port
788 * requires several commands to the board we will need to wait for any
789 * other open that is already initializing the port.
791 * Locking: protected by the port mutex.
794 static int stli_activate(struct tty_port *port, struct tty_struct *tty)
796 struct stliport *portp = container_of(port, struct stliport, port);
797 struct stlibrd *brdp = stli_brds[portp->brdnr];
798 int rc;
800 if ((rc = stli_initopen(tty, brdp, portp)) >= 0)
801 clear_bit(TTY_IO_ERROR, &tty->flags);
802 wake_up_interruptible(&portp->raw_wait);
803 return rc;
806 static int stli_open(struct tty_struct *tty, struct file *filp)
808 struct stlibrd *brdp;
809 struct stliport *portp;
810 unsigned int minordev, brdnr, portnr;
812 minordev = tty->index;
813 brdnr = MINOR2BRD(minordev);
814 if (brdnr >= stli_nrbrds)
815 return -ENODEV;
816 brdp = stli_brds[brdnr];
817 if (brdp == NULL)
818 return -ENODEV;
819 if ((brdp->state & BST_STARTED) == 0)
820 return -ENODEV;
821 portnr = MINOR2PORT(minordev);
822 if (portnr > brdp->nrports)
823 return -ENODEV;
825 portp = brdp->ports[portnr];
826 if (portp == NULL)
827 return -ENODEV;
828 if (portp->devnr < 1)
829 return -ENODEV;
830 return tty_port_open(&portp->port, tty, filp);
834 /*****************************************************************************/
836 static void stli_shutdown(struct tty_port *port)
838 struct stlibrd *brdp;
839 unsigned long ftype;
840 unsigned long flags;
841 struct stliport *portp = container_of(port, struct stliport, port);
843 if (portp->brdnr >= stli_nrbrds)
844 return;
845 brdp = stli_brds[portp->brdnr];
846 if (brdp == NULL)
847 return;
850 * May want to wait for data to drain before closing. The BUSY
851 * flag keeps track of whether we are still transmitting or not.
852 * It is updated by messages from the slave - indicating when all
853 * chars really have drained.
856 if (!test_bit(ST_CLOSING, &portp->state))
857 stli_rawclose(brdp, portp, 0, 0);
859 spin_lock_irqsave(&stli_lock, flags);
860 clear_bit(ST_TXBUSY, &portp->state);
861 clear_bit(ST_RXSTOP, &portp->state);
862 spin_unlock_irqrestore(&stli_lock, flags);
864 ftype = FLUSHTX | FLUSHRX;
865 stli_cmdwait(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
868 static void stli_close(struct tty_struct *tty, struct file *filp)
870 struct stliport *portp = tty->driver_data;
871 unsigned long flags;
872 if (portp == NULL)
873 return;
874 spin_lock_irqsave(&stli_lock, flags);
875 /* Flush any internal buffering out first */
876 if (tty == stli_txcooktty)
877 stli_flushchars(tty);
878 spin_unlock_irqrestore(&stli_lock, flags);
879 tty_port_close(&portp->port, tty, filp);
882 /*****************************************************************************/
885 * Carry out first open operations on a port. This involves a number of
886 * commands to be sent to the slave. We need to open the port, set the
887 * notification events, set the initial port settings, get and set the
888 * initial signal values. We sleep and wait in between each one. But
889 * this still all happens pretty quickly.
892 static int stli_initopen(struct tty_struct *tty,
893 struct stlibrd *brdp, struct stliport *portp)
895 asynotify_t nt;
896 asyport_t aport;
897 int rc;
899 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
900 return rc;
902 memset(&nt, 0, sizeof(asynotify_t));
903 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
904 nt.signal = SG_DCD;
905 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
906 sizeof(asynotify_t), 0)) < 0)
907 return rc;
909 stli_mkasyport(tty, portp, &aport, tty->termios);
910 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
911 sizeof(asyport_t), 0)) < 0)
912 return rc;
914 set_bit(ST_GETSIGS, &portp->state);
915 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
916 sizeof(asysigs_t), 1)) < 0)
917 return rc;
918 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
919 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
920 stli_mkasysigs(&portp->asig, 1, 1);
921 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
922 sizeof(asysigs_t), 0)) < 0)
923 return rc;
925 return 0;
928 /*****************************************************************************/
931 * Send an open message to the slave. This will sleep waiting for the
932 * acknowledgement, so must have user context. We need to co-ordinate
933 * with close events here, since we don't want open and close events
934 * to overlap.
937 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
939 cdkhdr_t __iomem *hdrp;
940 cdkctrl_t __iomem *cp;
941 unsigned char __iomem *bits;
942 unsigned long flags;
943 int rc;
946 * Send a message to the slave to open this port.
950 * Slave is already closing this port. This can happen if a hangup
951 * occurs on this port. So we must wait until it is complete. The
952 * order of opens and closes may not be preserved across shared
953 * memory, so we must wait until it is complete.
955 wait_event_interruptible(portp->raw_wait,
956 !test_bit(ST_CLOSING, &portp->state));
957 if (signal_pending(current)) {
958 return -ERESTARTSYS;
962 * Everything is ready now, so write the open message into shared
963 * memory. Once the message is in set the service bits to say that
964 * this port wants service.
966 spin_lock_irqsave(&brd_lock, flags);
967 EBRDENABLE(brdp);
968 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
969 writel(arg, &cp->openarg);
970 writeb(1, &cp->open);
971 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
972 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
973 portp->portidx;
974 writeb(readb(bits) | portp->portbit, bits);
975 EBRDDISABLE(brdp);
977 if (wait == 0) {
978 spin_unlock_irqrestore(&brd_lock, flags);
979 return 0;
983 * Slave is in action, so now we must wait for the open acknowledgment
984 * to come back.
986 rc = 0;
987 set_bit(ST_OPENING, &portp->state);
988 spin_unlock_irqrestore(&brd_lock, flags);
990 wait_event_interruptible(portp->raw_wait,
991 !test_bit(ST_OPENING, &portp->state));
992 if (signal_pending(current))
993 rc = -ERESTARTSYS;
995 if ((rc == 0) && (portp->rc != 0))
996 rc = -EIO;
997 return rc;
1000 /*****************************************************************************/
1003 * Send a close message to the slave. Normally this will sleep waiting
1004 * for the acknowledgement, but if wait parameter is 0 it will not. If
1005 * wait is true then must have user context (to sleep).
1008 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1010 cdkhdr_t __iomem *hdrp;
1011 cdkctrl_t __iomem *cp;
1012 unsigned char __iomem *bits;
1013 unsigned long flags;
1014 int rc;
1017 * Slave is already closing this port. This can happen if a hangup
1018 * occurs on this port.
1020 if (wait) {
1021 wait_event_interruptible(portp->raw_wait,
1022 !test_bit(ST_CLOSING, &portp->state));
1023 if (signal_pending(current)) {
1024 return -ERESTARTSYS;
1029 * Write the close command into shared memory.
1031 spin_lock_irqsave(&brd_lock, flags);
1032 EBRDENABLE(brdp);
1033 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1034 writel(arg, &cp->closearg);
1035 writeb(1, &cp->close);
1036 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1037 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1038 portp->portidx;
1039 writeb(readb(bits) |portp->portbit, bits);
1040 EBRDDISABLE(brdp);
1042 set_bit(ST_CLOSING, &portp->state);
1043 spin_unlock_irqrestore(&brd_lock, flags);
1045 if (wait == 0)
1046 return 0;
1049 * Slave is in action, so now we must wait for the open acknowledgment
1050 * to come back.
1052 rc = 0;
1053 wait_event_interruptible(portp->raw_wait,
1054 !test_bit(ST_CLOSING, &portp->state));
1055 if (signal_pending(current))
1056 rc = -ERESTARTSYS;
1058 if ((rc == 0) && (portp->rc != 0))
1059 rc = -EIO;
1060 return rc;
1063 /*****************************************************************************/
1066 * Send a command to the slave and wait for the response. This must
1067 * have user context (it sleeps). This routine is generic in that it
1068 * can send any type of command. Its purpose is to wait for that command
1069 * to complete (as opposed to initiating the command then returning).
1072 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1074 wait_event_interruptible(portp->raw_wait,
1075 !test_bit(ST_CMDING, &portp->state));
1076 if (signal_pending(current))
1077 return -ERESTARTSYS;
1079 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1081 wait_event_interruptible(portp->raw_wait,
1082 !test_bit(ST_CMDING, &portp->state));
1083 if (signal_pending(current))
1084 return -ERESTARTSYS;
1086 if (portp->rc != 0)
1087 return -EIO;
1088 return 0;
1091 /*****************************************************************************/
1094 * Send the termios settings for this port to the slave. This sleeps
1095 * waiting for the command to complete - so must have user context.
1098 static int stli_setport(struct tty_struct *tty)
1100 struct stliport *portp = tty->driver_data;
1101 struct stlibrd *brdp;
1102 asyport_t aport;
1104 if (portp == NULL)
1105 return -ENODEV;
1106 if (portp->brdnr >= stli_nrbrds)
1107 return -ENODEV;
1108 brdp = stli_brds[portp->brdnr];
1109 if (brdp == NULL)
1110 return -ENODEV;
1112 stli_mkasyport(tty, portp, &aport, tty->termios);
1113 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1116 /*****************************************************************************/
1118 static int stli_carrier_raised(struct tty_port *port)
1120 struct stliport *portp = container_of(port, struct stliport, port);
1121 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1124 static void stli_dtr_rts(struct tty_port *port, int on)
1126 struct stliport *portp = container_of(port, struct stliport, port);
1127 struct stlibrd *brdp = stli_brds[portp->brdnr];
1128 stli_mkasysigs(&portp->asig, on, on);
1129 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1130 sizeof(asysigs_t), 0) < 0)
1131 printk(KERN_WARNING "istallion: dtr set failed.\n");
1135 /*****************************************************************************/
1138 * Write routine. Take the data and put it in the shared memory ring
1139 * queue. If port is not already sending chars then need to mark the
1140 * service bits for this port.
1143 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1145 cdkasy_t __iomem *ap;
1146 cdkhdr_t __iomem *hdrp;
1147 unsigned char __iomem *bits;
1148 unsigned char __iomem *shbuf;
1149 unsigned char *chbuf;
1150 struct stliport *portp;
1151 struct stlibrd *brdp;
1152 unsigned int len, stlen, head, tail, size;
1153 unsigned long flags;
1155 if (tty == stli_txcooktty)
1156 stli_flushchars(tty);
1157 portp = tty->driver_data;
1158 if (portp == NULL)
1159 return 0;
1160 if (portp->brdnr >= stli_nrbrds)
1161 return 0;
1162 brdp = stli_brds[portp->brdnr];
1163 if (brdp == NULL)
1164 return 0;
1165 chbuf = (unsigned char *) buf;
1168 * All data is now local, shove as much as possible into shared memory.
1170 spin_lock_irqsave(&brd_lock, flags);
1171 EBRDENABLE(brdp);
1172 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1173 head = (unsigned int) readw(&ap->txq.head);
1174 tail = (unsigned int) readw(&ap->txq.tail);
1175 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1176 tail = (unsigned int) readw(&ap->txq.tail);
1177 size = portp->txsize;
1178 if (head >= tail) {
1179 len = size - (head - tail) - 1;
1180 stlen = size - head;
1181 } else {
1182 len = tail - head - 1;
1183 stlen = len;
1186 len = min(len, (unsigned int)count);
1187 count = 0;
1188 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1190 while (len > 0) {
1191 stlen = min(len, stlen);
1192 memcpy_toio(shbuf + head, chbuf, stlen);
1193 chbuf += stlen;
1194 len -= stlen;
1195 count += stlen;
1196 head += stlen;
1197 if (head >= size) {
1198 head = 0;
1199 stlen = tail;
1203 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1204 writew(head, &ap->txq.head);
1205 if (test_bit(ST_TXBUSY, &portp->state)) {
1206 if (readl(&ap->changed.data) & DT_TXEMPTY)
1207 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1209 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1210 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1211 portp->portidx;
1212 writeb(readb(bits) | portp->portbit, bits);
1213 set_bit(ST_TXBUSY, &portp->state);
1214 EBRDDISABLE(brdp);
1215 spin_unlock_irqrestore(&brd_lock, flags);
1217 return(count);
1220 /*****************************************************************************/
1223 * Output a single character. We put it into a temporary local buffer
1224 * (for speed) then write out that buffer when the flushchars routine
1225 * is called. There is a safety catch here so that if some other port
1226 * writes chars before the current buffer has been, then we write them
1227 * first them do the new ports.
1230 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1232 if (tty != stli_txcooktty) {
1233 if (stli_txcooktty != NULL)
1234 stli_flushchars(stli_txcooktty);
1235 stli_txcooktty = tty;
1238 stli_txcookbuf[stli_txcooksize++] = ch;
1239 return 0;
1242 /*****************************************************************************/
1245 * Transfer characters from the local TX cooking buffer to the board.
1246 * We sort of ignore the tty that gets passed in here. We rely on the
1247 * info stored with the TX cook buffer to tell us which port to flush
1248 * the data on. In any case we clean out the TX cook buffer, for re-use
1249 * by someone else.
1252 static void stli_flushchars(struct tty_struct *tty)
1254 cdkhdr_t __iomem *hdrp;
1255 unsigned char __iomem *bits;
1256 cdkasy_t __iomem *ap;
1257 struct tty_struct *cooktty;
1258 struct stliport *portp;
1259 struct stlibrd *brdp;
1260 unsigned int len, stlen, head, tail, size, count, cooksize;
1261 unsigned char *buf;
1262 unsigned char __iomem *shbuf;
1263 unsigned long flags;
1265 cooksize = stli_txcooksize;
1266 cooktty = stli_txcooktty;
1267 stli_txcooksize = 0;
1268 stli_txcookrealsize = 0;
1269 stli_txcooktty = NULL;
1271 if (cooktty == NULL)
1272 return;
1273 if (tty != cooktty)
1274 tty = cooktty;
1275 if (cooksize == 0)
1276 return;
1278 portp = tty->driver_data;
1279 if (portp == NULL)
1280 return;
1281 if (portp->brdnr >= stli_nrbrds)
1282 return;
1283 brdp = stli_brds[portp->brdnr];
1284 if (brdp == NULL)
1285 return;
1287 spin_lock_irqsave(&brd_lock, flags);
1288 EBRDENABLE(brdp);
1290 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1291 head = (unsigned int) readw(&ap->txq.head);
1292 tail = (unsigned int) readw(&ap->txq.tail);
1293 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1294 tail = (unsigned int) readw(&ap->txq.tail);
1295 size = portp->txsize;
1296 if (head >= tail) {
1297 len = size - (head - tail) - 1;
1298 stlen = size - head;
1299 } else {
1300 len = tail - head - 1;
1301 stlen = len;
1304 len = min(len, cooksize);
1305 count = 0;
1306 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1307 buf = stli_txcookbuf;
1309 while (len > 0) {
1310 stlen = min(len, stlen);
1311 memcpy_toio(shbuf + head, buf, stlen);
1312 buf += stlen;
1313 len -= stlen;
1314 count += stlen;
1315 head += stlen;
1316 if (head >= size) {
1317 head = 0;
1318 stlen = tail;
1322 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1323 writew(head, &ap->txq.head);
1325 if (test_bit(ST_TXBUSY, &portp->state)) {
1326 if (readl(&ap->changed.data) & DT_TXEMPTY)
1327 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1329 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1330 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1331 portp->portidx;
1332 writeb(readb(bits) | portp->portbit, bits);
1333 set_bit(ST_TXBUSY, &portp->state);
1335 EBRDDISABLE(brdp);
1336 spin_unlock_irqrestore(&brd_lock, flags);
1339 /*****************************************************************************/
1341 static int stli_writeroom(struct tty_struct *tty)
1343 cdkasyrq_t __iomem *rp;
1344 struct stliport *portp;
1345 struct stlibrd *brdp;
1346 unsigned int head, tail, len;
1347 unsigned long flags;
1349 if (tty == stli_txcooktty) {
1350 if (stli_txcookrealsize != 0) {
1351 len = stli_txcookrealsize - stli_txcooksize;
1352 return len;
1356 portp = tty->driver_data;
1357 if (portp == NULL)
1358 return 0;
1359 if (portp->brdnr >= stli_nrbrds)
1360 return 0;
1361 brdp = stli_brds[portp->brdnr];
1362 if (brdp == NULL)
1363 return 0;
1365 spin_lock_irqsave(&brd_lock, flags);
1366 EBRDENABLE(brdp);
1367 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1368 head = (unsigned int) readw(&rp->head);
1369 tail = (unsigned int) readw(&rp->tail);
1370 if (tail != ((unsigned int) readw(&rp->tail)))
1371 tail = (unsigned int) readw(&rp->tail);
1372 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1373 len--;
1374 EBRDDISABLE(brdp);
1375 spin_unlock_irqrestore(&brd_lock, flags);
1377 if (tty == stli_txcooktty) {
1378 stli_txcookrealsize = len;
1379 len -= stli_txcooksize;
1381 return len;
1384 /*****************************************************************************/
1387 * Return the number of characters in the transmit buffer. Normally we
1388 * will return the number of chars in the shared memory ring queue.
1389 * We need to kludge around the case where the shared memory buffer is
1390 * empty but not all characters have drained yet, for this case just
1391 * return that there is 1 character in the buffer!
1394 static int stli_charsinbuffer(struct tty_struct *tty)
1396 cdkasyrq_t __iomem *rp;
1397 struct stliport *portp;
1398 struct stlibrd *brdp;
1399 unsigned int head, tail, len;
1400 unsigned long flags;
1402 if (tty == stli_txcooktty)
1403 stli_flushchars(tty);
1404 portp = tty->driver_data;
1405 if (portp == NULL)
1406 return 0;
1407 if (portp->brdnr >= stli_nrbrds)
1408 return 0;
1409 brdp = stli_brds[portp->brdnr];
1410 if (brdp == NULL)
1411 return 0;
1413 spin_lock_irqsave(&brd_lock, flags);
1414 EBRDENABLE(brdp);
1415 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1416 head = (unsigned int) readw(&rp->head);
1417 tail = (unsigned int) readw(&rp->tail);
1418 if (tail != ((unsigned int) readw(&rp->tail)))
1419 tail = (unsigned int) readw(&rp->tail);
1420 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1421 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1422 len = 1;
1423 EBRDDISABLE(brdp);
1424 spin_unlock_irqrestore(&brd_lock, flags);
1426 return len;
1429 /*****************************************************************************/
1432 * Generate the serial struct info.
1435 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1437 struct serial_struct sio;
1438 struct stlibrd *brdp;
1440 memset(&sio, 0, sizeof(struct serial_struct));
1441 sio.type = PORT_UNKNOWN;
1442 sio.line = portp->portnr;
1443 sio.irq = 0;
1444 sio.flags = portp->port.flags;
1445 sio.baud_base = portp->baud_base;
1446 sio.close_delay = portp->port.close_delay;
1447 sio.closing_wait = portp->closing_wait;
1448 sio.custom_divisor = portp->custom_divisor;
1449 sio.xmit_fifo_size = 0;
1450 sio.hub6 = 0;
1452 brdp = stli_brds[portp->brdnr];
1453 if (brdp != NULL)
1454 sio.port = brdp->iobase;
1456 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1457 -EFAULT : 0;
1460 /*****************************************************************************/
1463 * Set port according to the serial struct info.
1464 * At this point we do not do any auto-configure stuff, so we will
1465 * just quietly ignore any requests to change irq, etc.
1468 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1470 struct serial_struct sio;
1471 int rc;
1472 struct stliport *portp = tty->driver_data;
1474 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1475 return -EFAULT;
1476 if (!capable(CAP_SYS_ADMIN)) {
1477 if ((sio.baud_base != portp->baud_base) ||
1478 (sio.close_delay != portp->port.close_delay) ||
1479 ((sio.flags & ~ASYNC_USR_MASK) !=
1480 (portp->port.flags & ~ASYNC_USR_MASK)))
1481 return -EPERM;
1484 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1485 (sio.flags & ASYNC_USR_MASK);
1486 portp->baud_base = sio.baud_base;
1487 portp->port.close_delay = sio.close_delay;
1488 portp->closing_wait = sio.closing_wait;
1489 portp->custom_divisor = sio.custom_divisor;
1491 if ((rc = stli_setport(tty)) < 0)
1492 return rc;
1493 return 0;
1496 /*****************************************************************************/
1498 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1500 struct stliport *portp = tty->driver_data;
1501 struct stlibrd *brdp;
1502 int rc;
1504 if (portp == NULL)
1505 return -ENODEV;
1506 if (portp->brdnr >= stli_nrbrds)
1507 return 0;
1508 brdp = stli_brds[portp->brdnr];
1509 if (brdp == NULL)
1510 return 0;
1511 if (tty->flags & (1 << TTY_IO_ERROR))
1512 return -EIO;
1514 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1515 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1516 return rc;
1518 return stli_mktiocm(portp->asig.sigvalue);
1521 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1522 unsigned int set, unsigned int clear)
1524 struct stliport *portp = tty->driver_data;
1525 struct stlibrd *brdp;
1526 int rts = -1, dtr = -1;
1528 if (portp == NULL)
1529 return -ENODEV;
1530 if (portp->brdnr >= stli_nrbrds)
1531 return 0;
1532 brdp = stli_brds[portp->brdnr];
1533 if (brdp == NULL)
1534 return 0;
1535 if (tty->flags & (1 << TTY_IO_ERROR))
1536 return -EIO;
1538 if (set & TIOCM_RTS)
1539 rts = 1;
1540 if (set & TIOCM_DTR)
1541 dtr = 1;
1542 if (clear & TIOCM_RTS)
1543 rts = 0;
1544 if (clear & TIOCM_DTR)
1545 dtr = 0;
1547 stli_mkasysigs(&portp->asig, dtr, rts);
1549 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1550 sizeof(asysigs_t), 0);
1553 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1555 struct stliport *portp;
1556 struct stlibrd *brdp;
1557 int rc;
1558 void __user *argp = (void __user *)arg;
1560 portp = tty->driver_data;
1561 if (portp == NULL)
1562 return -ENODEV;
1563 if (portp->brdnr >= stli_nrbrds)
1564 return 0;
1565 brdp = stli_brds[portp->brdnr];
1566 if (brdp == NULL)
1567 return 0;
1569 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1570 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1571 if (tty->flags & (1 << TTY_IO_ERROR))
1572 return -EIO;
1575 rc = 0;
1577 switch (cmd) {
1578 case TIOCGSERIAL:
1579 rc = stli_getserial(portp, argp);
1580 break;
1581 case TIOCSSERIAL:
1582 rc = stli_setserial(tty, argp);
1583 break;
1584 case STL_GETPFLAG:
1585 rc = put_user(portp->pflag, (unsigned __user *)argp);
1586 break;
1587 case STL_SETPFLAG:
1588 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1589 stli_setport(tty);
1590 break;
1591 case COM_GETPORTSTATS:
1592 rc = stli_getportstats(tty, portp, argp);
1593 break;
1594 case COM_CLRPORTSTATS:
1595 rc = stli_clrportstats(portp, argp);
1596 break;
1597 case TIOCSERCONFIG:
1598 case TIOCSERGWILD:
1599 case TIOCSERSWILD:
1600 case TIOCSERGETLSR:
1601 case TIOCSERGSTRUCT:
1602 case TIOCSERGETMULTI:
1603 case TIOCSERSETMULTI:
1604 default:
1605 rc = -ENOIOCTLCMD;
1606 break;
1609 return rc;
1612 /*****************************************************************************/
1615 * This routine assumes that we have user context and can sleep.
1616 * Looks like it is true for the current ttys implementation..!!
1619 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1621 struct stliport *portp;
1622 struct stlibrd *brdp;
1623 struct ktermios *tiosp;
1624 asyport_t aport;
1626 portp = tty->driver_data;
1627 if (portp == NULL)
1628 return;
1629 if (portp->brdnr >= stli_nrbrds)
1630 return;
1631 brdp = stli_brds[portp->brdnr];
1632 if (brdp == NULL)
1633 return;
1635 tiosp = tty->termios;
1637 stli_mkasyport(tty, portp, &aport, tiosp);
1638 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1639 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1640 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1641 sizeof(asysigs_t), 0);
1642 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1643 tty->hw_stopped = 0;
1644 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1645 wake_up_interruptible(&portp->port.open_wait);
1648 /*****************************************************************************/
1651 * Attempt to flow control who ever is sending us data. We won't really
1652 * do any flow control action here. We can't directly, and even if we
1653 * wanted to we would have to send a command to the slave. The slave
1654 * knows how to flow control, and will do so when its buffers reach its
1655 * internal high water marks. So what we will do is set a local state
1656 * bit that will stop us sending any RX data up from the poll routine
1657 * (which is the place where RX data from the slave is handled).
1660 static void stli_throttle(struct tty_struct *tty)
1662 struct stliport *portp = tty->driver_data;
1663 if (portp == NULL)
1664 return;
1665 set_bit(ST_RXSTOP, &portp->state);
1668 /*****************************************************************************/
1671 * Unflow control the device sending us data... That means that all
1672 * we have to do is clear the RXSTOP state bit. The next poll call
1673 * will then be able to pass the RX data back up.
1676 static void stli_unthrottle(struct tty_struct *tty)
1678 struct stliport *portp = tty->driver_data;
1679 if (portp == NULL)
1680 return;
1681 clear_bit(ST_RXSTOP, &portp->state);
1684 /*****************************************************************************/
1687 * Stop the transmitter.
1690 static void stli_stop(struct tty_struct *tty)
1694 /*****************************************************************************/
1697 * Start the transmitter again.
1700 static void stli_start(struct tty_struct *tty)
1704 /*****************************************************************************/
1708 * Hangup this port. This is pretty much like closing the port, only
1709 * a little more brutal. No waiting for data to drain. Shutdown the
1710 * port and maybe drop signals. This is rather tricky really. We want
1711 * to close the port as well.
1714 static void stli_hangup(struct tty_struct *tty)
1716 struct stliport *portp = tty->driver_data;
1717 tty_port_hangup(&portp->port);
1720 /*****************************************************************************/
1723 * Flush characters from the lower buffer. We may not have user context
1724 * so we cannot sleep waiting for it to complete. Also we need to check
1725 * if there is chars for this port in the TX cook buffer, and flush them
1726 * as well.
1729 static void stli_flushbuffer(struct tty_struct *tty)
1731 struct stliport *portp;
1732 struct stlibrd *brdp;
1733 unsigned long ftype, flags;
1735 portp = tty->driver_data;
1736 if (portp == NULL)
1737 return;
1738 if (portp->brdnr >= stli_nrbrds)
1739 return;
1740 brdp = stli_brds[portp->brdnr];
1741 if (brdp == NULL)
1742 return;
1744 spin_lock_irqsave(&brd_lock, flags);
1745 if (tty == stli_txcooktty) {
1746 stli_txcooktty = NULL;
1747 stli_txcooksize = 0;
1748 stli_txcookrealsize = 0;
1750 if (test_bit(ST_CMDING, &portp->state)) {
1751 set_bit(ST_DOFLUSHTX, &portp->state);
1752 } else {
1753 ftype = FLUSHTX;
1754 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1755 ftype |= FLUSHRX;
1756 clear_bit(ST_DOFLUSHRX, &portp->state);
1758 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1760 spin_unlock_irqrestore(&brd_lock, flags);
1761 tty_wakeup(tty);
1764 /*****************************************************************************/
1766 static int stli_breakctl(struct tty_struct *tty, int state)
1768 struct stlibrd *brdp;
1769 struct stliport *portp;
1770 long arg;
1772 portp = tty->driver_data;
1773 if (portp == NULL)
1774 return -EINVAL;
1775 if (portp->brdnr >= stli_nrbrds)
1776 return -EINVAL;
1777 brdp = stli_brds[portp->brdnr];
1778 if (brdp == NULL)
1779 return -EINVAL;
1781 arg = (state == -1) ? BREAKON : BREAKOFF;
1782 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1783 return 0;
1786 /*****************************************************************************/
1788 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1790 struct stliport *portp;
1791 unsigned long tend;
1793 portp = tty->driver_data;
1794 if (portp == NULL)
1795 return;
1797 if (timeout == 0)
1798 timeout = HZ;
1799 tend = jiffies + timeout;
1801 while (test_bit(ST_TXBUSY, &portp->state)) {
1802 if (signal_pending(current))
1803 break;
1804 msleep_interruptible(20);
1805 if (time_after_eq(jiffies, tend))
1806 break;
1810 /*****************************************************************************/
1812 static void stli_sendxchar(struct tty_struct *tty, char ch)
1814 struct stlibrd *brdp;
1815 struct stliport *portp;
1816 asyctrl_t actrl;
1818 portp = tty->driver_data;
1819 if (portp == NULL)
1820 return;
1821 if (portp->brdnr >= stli_nrbrds)
1822 return;
1823 brdp = stli_brds[portp->brdnr];
1824 if (brdp == NULL)
1825 return;
1827 memset(&actrl, 0, sizeof(asyctrl_t));
1828 if (ch == STOP_CHAR(tty)) {
1829 actrl.rxctrl = CT_STOPFLOW;
1830 } else if (ch == START_CHAR(tty)) {
1831 actrl.rxctrl = CT_STARTFLOW;
1832 } else {
1833 actrl.txctrl = CT_SENDCHR;
1834 actrl.tximdch = ch;
1836 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1839 static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1841 char *uart;
1842 int rc;
1844 rc = stli_portcmdstats(NULL, portp);
1846 uart = "UNKNOWN";
1847 if (brdp->state & BST_STARTED) {
1848 switch (stli_comstats.hwid) {
1849 case 0: uart = "2681"; break;
1850 case 1: uart = "SC26198"; break;
1851 default:uart = "CD1400"; break;
1854 seq_printf(m, "%d: uart:%s ", portnr, uart);
1856 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
1857 char sep;
1859 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1860 (int) stli_comstats.rxtotal);
1862 if (stli_comstats.rxframing)
1863 seq_printf(m, " fe:%d",
1864 (int) stli_comstats.rxframing);
1865 if (stli_comstats.rxparity)
1866 seq_printf(m, " pe:%d",
1867 (int) stli_comstats.rxparity);
1868 if (stli_comstats.rxbreaks)
1869 seq_printf(m, " brk:%d",
1870 (int) stli_comstats.rxbreaks);
1871 if (stli_comstats.rxoverrun)
1872 seq_printf(m, " oe:%d",
1873 (int) stli_comstats.rxoverrun);
1875 sep = ' ';
1876 if (stli_comstats.signals & TIOCM_RTS) {
1877 seq_printf(m, "%c%s", sep, "RTS");
1878 sep = '|';
1880 if (stli_comstats.signals & TIOCM_CTS) {
1881 seq_printf(m, "%c%s", sep, "CTS");
1882 sep = '|';
1884 if (stli_comstats.signals & TIOCM_DTR) {
1885 seq_printf(m, "%c%s", sep, "DTR");
1886 sep = '|';
1888 if (stli_comstats.signals & TIOCM_CD) {
1889 seq_printf(m, "%c%s", sep, "DCD");
1890 sep = '|';
1892 if (stli_comstats.signals & TIOCM_DSR) {
1893 seq_printf(m, "%c%s", sep, "DSR");
1894 sep = '|';
1897 seq_putc(m, '\n');
1900 /*****************************************************************************/
1903 * Port info, read from the /proc file system.
1906 static int stli_proc_show(struct seq_file *m, void *v)
1908 struct stlibrd *brdp;
1909 struct stliport *portp;
1910 unsigned int brdnr, portnr, totalport;
1912 totalport = 0;
1914 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1917 * We scan through for each board, panel and port. The offset is
1918 * calculated on the fly, and irrelevant ports are skipped.
1920 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1921 brdp = stli_brds[brdnr];
1922 if (brdp == NULL)
1923 continue;
1924 if (brdp->state == 0)
1925 continue;
1927 totalport = brdnr * STL_MAXPORTS;
1928 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1929 totalport++) {
1930 portp = brdp->ports[portnr];
1931 if (portp == NULL)
1932 continue;
1933 stli_portinfo(m, brdp, portp, totalport);
1936 return 0;
1939 static int stli_proc_open(struct inode *inode, struct file *file)
1941 return single_open(file, stli_proc_show, NULL);
1944 static const struct file_operations stli_proc_fops = {
1945 .owner = THIS_MODULE,
1946 .open = stli_proc_open,
1947 .read = seq_read,
1948 .llseek = seq_lseek,
1949 .release = single_release,
1952 /*****************************************************************************/
1955 * Generic send command routine. This will send a message to the slave,
1956 * of the specified type with the specified argument. Must be very
1957 * careful of data that will be copied out from shared memory -
1958 * containing command results. The command completion is all done from
1959 * a poll routine that does not have user context. Therefore you cannot
1960 * copy back directly into user space, or to the kernel stack of a
1961 * process. This routine does not sleep, so can be called from anywhere.
1963 * The caller must hold the brd_lock (see also stli_sendcmd the usual
1964 * entry point)
1967 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1969 cdkhdr_t __iomem *hdrp;
1970 cdkctrl_t __iomem *cp;
1971 unsigned char __iomem *bits;
1973 if (test_bit(ST_CMDING, &portp->state)) {
1974 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
1975 (int) cmd);
1976 return;
1979 EBRDENABLE(brdp);
1980 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1981 if (size > 0) {
1982 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
1983 if (copyback) {
1984 portp->argp = arg;
1985 portp->argsize = size;
1988 writel(0, &cp->status);
1989 writel(cmd, &cp->cmd);
1990 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1991 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1992 portp->portidx;
1993 writeb(readb(bits) | portp->portbit, bits);
1994 set_bit(ST_CMDING, &portp->state);
1995 EBRDDISABLE(brdp);
1998 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2000 unsigned long flags;
2002 spin_lock_irqsave(&brd_lock, flags);
2003 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2004 spin_unlock_irqrestore(&brd_lock, flags);
2007 /*****************************************************************************/
2010 * Read data from shared memory. This assumes that the shared memory
2011 * is enabled and that interrupts are off. Basically we just empty out
2012 * the shared memory buffer into the tty buffer. Must be careful to
2013 * handle the case where we fill up the tty buffer, but still have
2014 * more chars to unload.
2017 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2019 cdkasyrq_t __iomem *rp;
2020 char __iomem *shbuf;
2021 struct tty_struct *tty;
2022 unsigned int head, tail, size;
2023 unsigned int len, stlen;
2025 if (test_bit(ST_RXSTOP, &portp->state))
2026 return;
2027 tty = tty_port_tty_get(&portp->port);
2028 if (tty == NULL)
2029 return;
2031 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2032 head = (unsigned int) readw(&rp->head);
2033 if (head != ((unsigned int) readw(&rp->head)))
2034 head = (unsigned int) readw(&rp->head);
2035 tail = (unsigned int) readw(&rp->tail);
2036 size = portp->rxsize;
2037 if (head >= tail) {
2038 len = head - tail;
2039 stlen = len;
2040 } else {
2041 len = size - (tail - head);
2042 stlen = size - tail;
2045 len = tty_buffer_request_room(tty, len);
2047 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2049 while (len > 0) {
2050 unsigned char *cptr;
2052 stlen = min(len, stlen);
2053 tty_prepare_flip_string(tty, &cptr, stlen);
2054 memcpy_fromio(cptr, shbuf + tail, stlen);
2055 len -= stlen;
2056 tail += stlen;
2057 if (tail >= size) {
2058 tail = 0;
2059 stlen = head;
2062 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2063 writew(tail, &rp->tail);
2065 if (head != tail)
2066 set_bit(ST_RXING, &portp->state);
2068 tty_schedule_flip(tty);
2069 tty_kref_put(tty);
2072 /*****************************************************************************/
2075 * Set up and carry out any delayed commands. There is only a small set
2076 * of slave commands that can be done "off-level". So it is not too
2077 * difficult to deal with them here.
2080 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2082 int cmd;
2084 if (test_bit(ST_DOSIGS, &portp->state)) {
2085 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2086 test_bit(ST_DOFLUSHRX, &portp->state))
2087 cmd = A_SETSIGNALSF;
2088 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2089 cmd = A_SETSIGNALSFTX;
2090 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2091 cmd = A_SETSIGNALSFRX;
2092 else
2093 cmd = A_SETSIGNALS;
2094 clear_bit(ST_DOFLUSHTX, &portp->state);
2095 clear_bit(ST_DOFLUSHRX, &portp->state);
2096 clear_bit(ST_DOSIGS, &portp->state);
2097 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2098 sizeof(asysigs_t));
2099 writel(0, &cp->status);
2100 writel(cmd, &cp->cmd);
2101 set_bit(ST_CMDING, &portp->state);
2102 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2103 test_bit(ST_DOFLUSHRX, &portp->state)) {
2104 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2105 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2106 clear_bit(ST_DOFLUSHTX, &portp->state);
2107 clear_bit(ST_DOFLUSHRX, &portp->state);
2108 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2109 writel(0, &cp->status);
2110 writel(A_FLUSH, &cp->cmd);
2111 set_bit(ST_CMDING, &portp->state);
2115 /*****************************************************************************/
2118 * Host command service checking. This handles commands or messages
2119 * coming from the slave to the host. Must have board shared memory
2120 * enabled and interrupts off when called. Notice that by servicing the
2121 * read data last we don't need to change the shared memory pointer
2122 * during processing (which is a slow IO operation).
2123 * Return value indicates if this port is still awaiting actions from
2124 * the slave (like open, command, or even TX data being sent). If 0
2125 * then port is still busy, otherwise no longer busy.
2128 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2130 cdkasy_t __iomem *ap;
2131 cdkctrl_t __iomem *cp;
2132 struct tty_struct *tty;
2133 asynotify_t nt;
2134 unsigned long oldsigs;
2135 int rc, donerx;
2137 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2138 cp = &ap->ctrl;
2141 * Check if we are waiting for an open completion message.
2143 if (test_bit(ST_OPENING, &portp->state)) {
2144 rc = readl(&cp->openarg);
2145 if (readb(&cp->open) == 0 && rc != 0) {
2146 if (rc > 0)
2147 rc--;
2148 writel(0, &cp->openarg);
2149 portp->rc = rc;
2150 clear_bit(ST_OPENING, &portp->state);
2151 wake_up_interruptible(&portp->raw_wait);
2156 * Check if we are waiting for a close completion message.
2158 if (test_bit(ST_CLOSING, &portp->state)) {
2159 rc = (int) readl(&cp->closearg);
2160 if (readb(&cp->close) == 0 && rc != 0) {
2161 if (rc > 0)
2162 rc--;
2163 writel(0, &cp->closearg);
2164 portp->rc = rc;
2165 clear_bit(ST_CLOSING, &portp->state);
2166 wake_up_interruptible(&portp->raw_wait);
2171 * Check if we are waiting for a command completion message. We may
2172 * need to copy out the command results associated with this command.
2174 if (test_bit(ST_CMDING, &portp->state)) {
2175 rc = readl(&cp->status);
2176 if (readl(&cp->cmd) == 0 && rc != 0) {
2177 if (rc > 0)
2178 rc--;
2179 if (portp->argp != NULL) {
2180 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2181 portp->argsize);
2182 portp->argp = NULL;
2184 writel(0, &cp->status);
2185 portp->rc = rc;
2186 clear_bit(ST_CMDING, &portp->state);
2187 stli_dodelaycmd(portp, cp);
2188 wake_up_interruptible(&portp->raw_wait);
2193 * Check for any notification messages ready. This includes lots of
2194 * different types of events - RX chars ready, RX break received,
2195 * TX data low or empty in the slave, modem signals changed state.
2197 donerx = 0;
2199 if (ap->notify) {
2200 nt = ap->changed;
2201 ap->notify = 0;
2202 tty = tty_port_tty_get(&portp->port);
2204 if (nt.signal & SG_DCD) {
2205 oldsigs = portp->sigs;
2206 portp->sigs = stli_mktiocm(nt.sigvalue);
2207 clear_bit(ST_GETSIGS, &portp->state);
2208 if ((portp->sigs & TIOCM_CD) &&
2209 ((oldsigs & TIOCM_CD) == 0))
2210 wake_up_interruptible(&portp->port.open_wait);
2211 if ((oldsigs & TIOCM_CD) &&
2212 ((portp->sigs & TIOCM_CD) == 0)) {
2213 if (portp->port.flags & ASYNC_CHECK_CD) {
2214 if (tty)
2215 tty_hangup(tty);
2220 if (nt.data & DT_TXEMPTY)
2221 clear_bit(ST_TXBUSY, &portp->state);
2222 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2223 if (tty != NULL) {
2224 tty_wakeup(tty);
2225 EBRDENABLE(brdp);
2229 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2230 if (tty != NULL) {
2231 tty_insert_flip_char(tty, 0, TTY_BREAK);
2232 if (portp->port.flags & ASYNC_SAK) {
2233 do_SAK(tty);
2234 EBRDENABLE(brdp);
2236 tty_schedule_flip(tty);
2239 tty_kref_put(tty);
2241 if (nt.data & DT_RXBUSY) {
2242 donerx++;
2243 stli_read(brdp, portp);
2248 * It might seem odd that we are checking for more RX chars here.
2249 * But, we need to handle the case where the tty buffer was previously
2250 * filled, but we had more characters to pass up. The slave will not
2251 * send any more RX notify messages until the RX buffer has been emptied.
2252 * But it will leave the service bits on (since the buffer is not empty).
2253 * So from here we can try to process more RX chars.
2255 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2256 clear_bit(ST_RXING, &portp->state);
2257 stli_read(brdp, portp);
2260 return((test_bit(ST_OPENING, &portp->state) ||
2261 test_bit(ST_CLOSING, &portp->state) ||
2262 test_bit(ST_CMDING, &portp->state) ||
2263 test_bit(ST_TXBUSY, &portp->state) ||
2264 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2267 /*****************************************************************************/
2270 * Service all ports on a particular board. Assumes that the boards
2271 * shared memory is enabled, and that the page pointer is pointed
2272 * at the cdk header structure.
2275 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2277 struct stliport *portp;
2278 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2279 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2280 unsigned char __iomem *slavep;
2281 int bitpos, bitat, bitsize;
2282 int channr, nrdevs, slavebitchange;
2284 bitsize = brdp->bitsize;
2285 nrdevs = brdp->nrdevs;
2288 * Check if slave wants any service. Basically we try to do as
2289 * little work as possible here. There are 2 levels of service
2290 * bits. So if there is nothing to do we bail early. We check
2291 * 8 service bits at a time in the inner loop, so we can bypass
2292 * the lot if none of them want service.
2294 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2295 bitsize);
2297 memset(&slavebits[0], 0, bitsize);
2298 slavebitchange = 0;
2300 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2301 if (hostbits[bitpos] == 0)
2302 continue;
2303 channr = bitpos * 8;
2304 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2305 if (hostbits[bitpos] & bitat) {
2306 portp = brdp->ports[(channr - 1)];
2307 if (stli_hostcmd(brdp, portp)) {
2308 slavebitchange++;
2309 slavebits[bitpos] |= bitat;
2316 * If any of the ports are no longer busy then update them in the
2317 * slave request bits. We need to do this after, since a host port
2318 * service may initiate more slave requests.
2320 if (slavebitchange) {
2321 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2322 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2323 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2324 if (readb(slavebits + bitpos))
2325 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2330 /*****************************************************************************/
2333 * Driver poll routine. This routine polls the boards in use and passes
2334 * messages back up to host when necessary. This is actually very
2335 * CPU efficient, since we will always have the kernel poll clock, it
2336 * adds only a few cycles when idle (since board service can be
2337 * determined very easily), but when loaded generates no interrupts
2338 * (with their expensive associated context change).
2341 static void stli_poll(unsigned long arg)
2343 cdkhdr_t __iomem *hdrp;
2344 struct stlibrd *brdp;
2345 unsigned int brdnr;
2347 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2350 * Check each board and do any servicing required.
2352 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2353 brdp = stli_brds[brdnr];
2354 if (brdp == NULL)
2355 continue;
2356 if ((brdp->state & BST_STARTED) == 0)
2357 continue;
2359 spin_lock(&brd_lock);
2360 EBRDENABLE(brdp);
2361 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2362 if (readb(&hdrp->hostreq))
2363 stli_brdpoll(brdp, hdrp);
2364 EBRDDISABLE(brdp);
2365 spin_unlock(&brd_lock);
2369 /*****************************************************************************/
2372 * Translate the termios settings into the port setting structure of
2373 * the slave.
2376 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2377 asyport_t *pp, struct ktermios *tiosp)
2379 memset(pp, 0, sizeof(asyport_t));
2382 * Start of by setting the baud, char size, parity and stop bit info.
2384 pp->baudout = tty_get_baud_rate(tty);
2385 if ((tiosp->c_cflag & CBAUD) == B38400) {
2386 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2387 pp->baudout = 57600;
2388 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2389 pp->baudout = 115200;
2390 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2391 pp->baudout = 230400;
2392 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2393 pp->baudout = 460800;
2394 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2395 pp->baudout = (portp->baud_base / portp->custom_divisor);
2397 if (pp->baudout > STL_MAXBAUD)
2398 pp->baudout = STL_MAXBAUD;
2399 pp->baudin = pp->baudout;
2401 switch (tiosp->c_cflag & CSIZE) {
2402 case CS5:
2403 pp->csize = 5;
2404 break;
2405 case CS6:
2406 pp->csize = 6;
2407 break;
2408 case CS7:
2409 pp->csize = 7;
2410 break;
2411 default:
2412 pp->csize = 8;
2413 break;
2416 if (tiosp->c_cflag & CSTOPB)
2417 pp->stopbs = PT_STOP2;
2418 else
2419 pp->stopbs = PT_STOP1;
2421 if (tiosp->c_cflag & PARENB) {
2422 if (tiosp->c_cflag & PARODD)
2423 pp->parity = PT_ODDPARITY;
2424 else
2425 pp->parity = PT_EVENPARITY;
2426 } else {
2427 pp->parity = PT_NOPARITY;
2431 * Set up any flow control options enabled.
2433 if (tiosp->c_iflag & IXON) {
2434 pp->flow |= F_IXON;
2435 if (tiosp->c_iflag & IXANY)
2436 pp->flow |= F_IXANY;
2438 if (tiosp->c_cflag & CRTSCTS)
2439 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2441 pp->startin = tiosp->c_cc[VSTART];
2442 pp->stopin = tiosp->c_cc[VSTOP];
2443 pp->startout = tiosp->c_cc[VSTART];
2444 pp->stopout = tiosp->c_cc[VSTOP];
2447 * Set up the RX char marking mask with those RX error types we must
2448 * catch. We can get the slave to help us out a little here, it will
2449 * ignore parity errors and breaks for us, and mark parity errors in
2450 * the data stream.
2452 if (tiosp->c_iflag & IGNPAR)
2453 pp->iflag |= FI_IGNRXERRS;
2454 if (tiosp->c_iflag & IGNBRK)
2455 pp->iflag |= FI_IGNBREAK;
2457 portp->rxmarkmsk = 0;
2458 if (tiosp->c_iflag & (INPCK | PARMRK))
2459 pp->iflag |= FI_1MARKRXERRS;
2460 if (tiosp->c_iflag & BRKINT)
2461 portp->rxmarkmsk |= BRKINT;
2464 * Set up clocal processing as required.
2466 if (tiosp->c_cflag & CLOCAL)
2467 portp->port.flags &= ~ASYNC_CHECK_CD;
2468 else
2469 portp->port.flags |= ASYNC_CHECK_CD;
2472 * Transfer any persistent flags into the asyport structure.
2474 pp->pflag = (portp->pflag & 0xffff);
2475 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2476 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2477 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2480 /*****************************************************************************/
2483 * Construct a slave signals structure for setting the DTR and RTS
2484 * signals as specified.
2487 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2489 memset(sp, 0, sizeof(asysigs_t));
2490 if (dtr >= 0) {
2491 sp->signal |= SG_DTR;
2492 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2494 if (rts >= 0) {
2495 sp->signal |= SG_RTS;
2496 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2500 /*****************************************************************************/
2503 * Convert the signals returned from the slave into a local TIOCM type
2504 * signals value. We keep them locally in TIOCM format.
2507 static long stli_mktiocm(unsigned long sigvalue)
2509 long tiocm = 0;
2510 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2511 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2512 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2513 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2514 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2515 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2516 return(tiocm);
2519 /*****************************************************************************/
2522 * All panels and ports actually attached have been worked out. All
2523 * we need to do here is set up the appropriate per port data structures.
2526 static int stli_initports(struct stlibrd *brdp)
2528 struct stliport *portp;
2529 unsigned int i, panelnr, panelport;
2531 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2532 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2533 if (!portp) {
2534 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2535 continue;
2537 tty_port_init(&portp->port);
2538 portp->port.ops = &stli_port_ops;
2539 portp->magic = STLI_PORTMAGIC;
2540 portp->portnr = i;
2541 portp->brdnr = brdp->brdnr;
2542 portp->panelnr = panelnr;
2543 portp->baud_base = STL_BAUDBASE;
2544 portp->port.close_delay = STL_CLOSEDELAY;
2545 portp->closing_wait = 30 * HZ;
2546 init_waitqueue_head(&portp->port.open_wait);
2547 init_waitqueue_head(&portp->port.close_wait);
2548 init_waitqueue_head(&portp->raw_wait);
2549 panelport++;
2550 if (panelport >= brdp->panels[panelnr]) {
2551 panelport = 0;
2552 panelnr++;
2554 brdp->ports[i] = portp;
2557 return 0;
2560 /*****************************************************************************/
2563 * All the following routines are board specific hardware operations.
2566 static void stli_ecpinit(struct stlibrd *brdp)
2568 unsigned long memconf;
2570 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2571 udelay(10);
2572 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2573 udelay(100);
2575 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2576 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2579 /*****************************************************************************/
2581 static void stli_ecpenable(struct stlibrd *brdp)
2583 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2586 /*****************************************************************************/
2588 static void stli_ecpdisable(struct stlibrd *brdp)
2590 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2593 /*****************************************************************************/
2595 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2597 void __iomem *ptr;
2598 unsigned char val;
2600 if (offset > brdp->memsize) {
2601 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2602 "range at line=%d(%d), brd=%d\n",
2603 (int) offset, line, __LINE__, brdp->brdnr);
2604 ptr = NULL;
2605 val = 0;
2606 } else {
2607 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2608 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2610 outb(val, (brdp->iobase + ECP_ATMEMPR));
2611 return(ptr);
2614 /*****************************************************************************/
2616 static void stli_ecpreset(struct stlibrd *brdp)
2618 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2619 udelay(10);
2620 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2621 udelay(500);
2624 /*****************************************************************************/
2626 static void stli_ecpintr(struct stlibrd *brdp)
2628 outb(0x1, brdp->iobase);
2631 /*****************************************************************************/
2634 * The following set of functions act on ECP EISA boards.
2637 static void stli_ecpeiinit(struct stlibrd *brdp)
2639 unsigned long memconf;
2641 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2642 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2643 udelay(10);
2644 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2645 udelay(500);
2647 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2648 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2649 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2650 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2653 /*****************************************************************************/
2655 static void stli_ecpeienable(struct stlibrd *brdp)
2657 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2660 /*****************************************************************************/
2662 static void stli_ecpeidisable(struct stlibrd *brdp)
2664 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2667 /*****************************************************************************/
2669 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2671 void __iomem *ptr;
2672 unsigned char val;
2674 if (offset > brdp->memsize) {
2675 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2676 "range at line=%d(%d), brd=%d\n",
2677 (int) offset, line, __LINE__, brdp->brdnr);
2678 ptr = NULL;
2679 val = 0;
2680 } else {
2681 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2682 if (offset < ECP_EIPAGESIZE)
2683 val = ECP_EIENABLE;
2684 else
2685 val = ECP_EIENABLE | 0x40;
2687 outb(val, (brdp->iobase + ECP_EICONFR));
2688 return(ptr);
2691 /*****************************************************************************/
2693 static void stli_ecpeireset(struct stlibrd *brdp)
2695 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2696 udelay(10);
2697 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2698 udelay(500);
2701 /*****************************************************************************/
2704 * The following set of functions act on ECP MCA boards.
2707 static void stli_ecpmcenable(struct stlibrd *brdp)
2709 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2712 /*****************************************************************************/
2714 static void stli_ecpmcdisable(struct stlibrd *brdp)
2716 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2719 /*****************************************************************************/
2721 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2723 void __iomem *ptr;
2724 unsigned char val;
2726 if (offset > brdp->memsize) {
2727 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2728 "range at line=%d(%d), brd=%d\n",
2729 (int) offset, line, __LINE__, brdp->brdnr);
2730 ptr = NULL;
2731 val = 0;
2732 } else {
2733 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2734 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2736 outb(val, (brdp->iobase + ECP_MCCONFR));
2737 return(ptr);
2740 /*****************************************************************************/
2742 static void stli_ecpmcreset(struct stlibrd *brdp)
2744 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2745 udelay(10);
2746 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2747 udelay(500);
2750 /*****************************************************************************/
2753 * The following set of functions act on ECP PCI boards.
2756 static void stli_ecppciinit(struct stlibrd *brdp)
2758 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2759 udelay(10);
2760 outb(0, (brdp->iobase + ECP_PCICONFR));
2761 udelay(500);
2764 /*****************************************************************************/
2766 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2768 void __iomem *ptr;
2769 unsigned char val;
2771 if (offset > brdp->memsize) {
2772 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2773 "range at line=%d(%d), board=%d\n",
2774 (int) offset, line, __LINE__, brdp->brdnr);
2775 ptr = NULL;
2776 val = 0;
2777 } else {
2778 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2779 val = (offset / ECP_PCIPAGESIZE) << 1;
2781 outb(val, (brdp->iobase + ECP_PCICONFR));
2782 return(ptr);
2785 /*****************************************************************************/
2787 static void stli_ecppcireset(struct stlibrd *brdp)
2789 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2790 udelay(10);
2791 outb(0, (brdp->iobase + ECP_PCICONFR));
2792 udelay(500);
2795 /*****************************************************************************/
2798 * The following routines act on ONboards.
2801 static void stli_onbinit(struct stlibrd *brdp)
2803 unsigned long memconf;
2805 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2806 udelay(10);
2807 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2808 mdelay(1000);
2810 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2811 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2812 outb(0x1, brdp->iobase);
2813 mdelay(1);
2816 /*****************************************************************************/
2818 static void stli_onbenable(struct stlibrd *brdp)
2820 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2823 /*****************************************************************************/
2825 static void stli_onbdisable(struct stlibrd *brdp)
2827 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2830 /*****************************************************************************/
2832 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2834 void __iomem *ptr;
2836 if (offset > brdp->memsize) {
2837 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2838 "range at line=%d(%d), brd=%d\n",
2839 (int) offset, line, __LINE__, brdp->brdnr);
2840 ptr = NULL;
2841 } else {
2842 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2844 return(ptr);
2847 /*****************************************************************************/
2849 static void stli_onbreset(struct stlibrd *brdp)
2851 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2852 udelay(10);
2853 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2854 mdelay(1000);
2857 /*****************************************************************************/
2860 * The following routines act on ONboard EISA.
2863 static void stli_onbeinit(struct stlibrd *brdp)
2865 unsigned long memconf;
2867 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2868 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2869 udelay(10);
2870 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2871 mdelay(1000);
2873 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2874 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2875 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2876 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2877 outb(0x1, brdp->iobase);
2878 mdelay(1);
2881 /*****************************************************************************/
2883 static void stli_onbeenable(struct stlibrd *brdp)
2885 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2888 /*****************************************************************************/
2890 static void stli_onbedisable(struct stlibrd *brdp)
2892 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2895 /*****************************************************************************/
2897 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2899 void __iomem *ptr;
2900 unsigned char val;
2902 if (offset > brdp->memsize) {
2903 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2904 "range at line=%d(%d), brd=%d\n",
2905 (int) offset, line, __LINE__, brdp->brdnr);
2906 ptr = NULL;
2907 val = 0;
2908 } else {
2909 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2910 if (offset < ONB_EIPAGESIZE)
2911 val = ONB_EIENABLE;
2912 else
2913 val = ONB_EIENABLE | 0x40;
2915 outb(val, (brdp->iobase + ONB_EICONFR));
2916 return(ptr);
2919 /*****************************************************************************/
2921 static void stli_onbereset(struct stlibrd *brdp)
2923 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2924 udelay(10);
2925 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2926 mdelay(1000);
2929 /*****************************************************************************/
2932 * The following routines act on Brumby boards.
2935 static void stli_bbyinit(struct stlibrd *brdp)
2937 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2938 udelay(10);
2939 outb(0, (brdp->iobase + BBY_ATCONFR));
2940 mdelay(1000);
2941 outb(0x1, brdp->iobase);
2942 mdelay(1);
2945 /*****************************************************************************/
2947 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2949 void __iomem *ptr;
2950 unsigned char val;
2952 BUG_ON(offset > brdp->memsize);
2954 ptr = brdp->membase + (offset % BBY_PAGESIZE);
2955 val = (unsigned char) (offset / BBY_PAGESIZE);
2956 outb(val, (brdp->iobase + BBY_ATCONFR));
2957 return(ptr);
2960 /*****************************************************************************/
2962 static void stli_bbyreset(struct stlibrd *brdp)
2964 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2965 udelay(10);
2966 outb(0, (brdp->iobase + BBY_ATCONFR));
2967 mdelay(1000);
2970 /*****************************************************************************/
2973 * The following routines act on original old Stallion boards.
2976 static void stli_stalinit(struct stlibrd *brdp)
2978 outb(0x1, brdp->iobase);
2979 mdelay(1000);
2982 /*****************************************************************************/
2984 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2986 BUG_ON(offset > brdp->memsize);
2987 return brdp->membase + (offset % STAL_PAGESIZE);
2990 /*****************************************************************************/
2992 static void stli_stalreset(struct stlibrd *brdp)
2994 u32 __iomem *vecp;
2996 vecp = (u32 __iomem *) (brdp->membase + 0x30);
2997 writel(0xffff0000, vecp);
2998 outb(0, brdp->iobase);
2999 mdelay(1000);
3002 /*****************************************************************************/
3005 * Try to find an ECP board and initialize it. This handles only ECP
3006 * board types.
3009 static int stli_initecp(struct stlibrd *brdp)
3011 cdkecpsig_t sig;
3012 cdkecpsig_t __iomem *sigsp;
3013 unsigned int status, nxtid;
3014 char *name;
3015 int retval, panelnr, nrports;
3017 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3018 retval = -ENODEV;
3019 goto err;
3022 brdp->iosize = ECP_IOSIZE;
3024 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3025 retval = -EIO;
3026 goto err;
3030 * Based on the specific board type setup the common vars to access
3031 * and enable shared memory. Set all board specific information now
3032 * as well.
3034 switch (brdp->brdtype) {
3035 case BRD_ECP:
3036 brdp->memsize = ECP_MEMSIZE;
3037 brdp->pagesize = ECP_ATPAGESIZE;
3038 brdp->init = stli_ecpinit;
3039 brdp->enable = stli_ecpenable;
3040 brdp->reenable = stli_ecpenable;
3041 brdp->disable = stli_ecpdisable;
3042 brdp->getmemptr = stli_ecpgetmemptr;
3043 brdp->intr = stli_ecpintr;
3044 brdp->reset = stli_ecpreset;
3045 name = "serial(EC8/64)";
3046 break;
3048 case BRD_ECPE:
3049 brdp->memsize = ECP_MEMSIZE;
3050 brdp->pagesize = ECP_EIPAGESIZE;
3051 brdp->init = stli_ecpeiinit;
3052 brdp->enable = stli_ecpeienable;
3053 brdp->reenable = stli_ecpeienable;
3054 brdp->disable = stli_ecpeidisable;
3055 brdp->getmemptr = stli_ecpeigetmemptr;
3056 brdp->intr = stli_ecpintr;
3057 brdp->reset = stli_ecpeireset;
3058 name = "serial(EC8/64-EI)";
3059 break;
3061 case BRD_ECPMC:
3062 brdp->memsize = ECP_MEMSIZE;
3063 brdp->pagesize = ECP_MCPAGESIZE;
3064 brdp->init = NULL;
3065 brdp->enable = stli_ecpmcenable;
3066 brdp->reenable = stli_ecpmcenable;
3067 brdp->disable = stli_ecpmcdisable;
3068 brdp->getmemptr = stli_ecpmcgetmemptr;
3069 brdp->intr = stli_ecpintr;
3070 brdp->reset = stli_ecpmcreset;
3071 name = "serial(EC8/64-MCA)";
3072 break;
3074 case BRD_ECPPCI:
3075 brdp->memsize = ECP_PCIMEMSIZE;
3076 brdp->pagesize = ECP_PCIPAGESIZE;
3077 brdp->init = stli_ecppciinit;
3078 brdp->enable = NULL;
3079 brdp->reenable = NULL;
3080 brdp->disable = NULL;
3081 brdp->getmemptr = stli_ecppcigetmemptr;
3082 brdp->intr = stli_ecpintr;
3083 brdp->reset = stli_ecppcireset;
3084 name = "serial(EC/RA-PCI)";
3085 break;
3087 default:
3088 retval = -EINVAL;
3089 goto err_reg;
3093 * The per-board operations structure is all set up, so now let's go
3094 * and get the board operational. Firstly initialize board configuration
3095 * registers. Set the memory mapping info so we can get at the boards
3096 * shared memory.
3098 EBRDINIT(brdp);
3100 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3101 if (brdp->membase == NULL) {
3102 retval = -ENOMEM;
3103 goto err_reg;
3107 * Now that all specific code is set up, enable the shared memory and
3108 * look for the a signature area that will tell us exactly what board
3109 * this is, and what it is connected to it.
3111 EBRDENABLE(brdp);
3112 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3113 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3114 EBRDDISABLE(brdp);
3116 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3117 retval = -ENODEV;
3118 goto err_unmap;
3122 * Scan through the signature looking at the panels connected to the
3123 * board. Calculate the total number of ports as we go.
3125 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3126 status = sig.panelid[nxtid];
3127 if ((status & ECH_PNLIDMASK) != nxtid)
3128 break;
3130 brdp->panelids[panelnr] = status;
3131 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3132 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3133 nxtid++;
3134 brdp->panels[panelnr] = nrports;
3135 brdp->nrports += nrports;
3136 nxtid++;
3137 brdp->nrpanels++;
3141 brdp->state |= BST_FOUND;
3142 return 0;
3143 err_unmap:
3144 iounmap(brdp->membase);
3145 brdp->membase = NULL;
3146 err_reg:
3147 release_region(brdp->iobase, brdp->iosize);
3148 err:
3149 return retval;
3152 /*****************************************************************************/
3155 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3156 * This handles only these board types.
3159 static int stli_initonb(struct stlibrd *brdp)
3161 cdkonbsig_t sig;
3162 cdkonbsig_t __iomem *sigsp;
3163 char *name;
3164 int i, retval;
3167 * Do a basic sanity check on the IO and memory addresses.
3169 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3170 retval = -ENODEV;
3171 goto err;
3174 brdp->iosize = ONB_IOSIZE;
3176 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3177 retval = -EIO;
3178 goto err;
3182 * Based on the specific board type setup the common vars to access
3183 * and enable shared memory. Set all board specific information now
3184 * as well.
3186 switch (brdp->brdtype) {
3187 case BRD_ONBOARD:
3188 case BRD_ONBOARD2:
3189 brdp->memsize = ONB_MEMSIZE;
3190 brdp->pagesize = ONB_ATPAGESIZE;
3191 brdp->init = stli_onbinit;
3192 brdp->enable = stli_onbenable;
3193 brdp->reenable = stli_onbenable;
3194 brdp->disable = stli_onbdisable;
3195 brdp->getmemptr = stli_onbgetmemptr;
3196 brdp->intr = stli_ecpintr;
3197 brdp->reset = stli_onbreset;
3198 if (brdp->memaddr > 0x100000)
3199 brdp->enabval = ONB_MEMENABHI;
3200 else
3201 brdp->enabval = ONB_MEMENABLO;
3202 name = "serial(ONBoard)";
3203 break;
3205 case BRD_ONBOARDE:
3206 brdp->memsize = ONB_EIMEMSIZE;
3207 brdp->pagesize = ONB_EIPAGESIZE;
3208 brdp->init = stli_onbeinit;
3209 brdp->enable = stli_onbeenable;
3210 brdp->reenable = stli_onbeenable;
3211 brdp->disable = stli_onbedisable;
3212 brdp->getmemptr = stli_onbegetmemptr;
3213 brdp->intr = stli_ecpintr;
3214 brdp->reset = stli_onbereset;
3215 name = "serial(ONBoard/E)";
3216 break;
3218 case BRD_BRUMBY4:
3219 brdp->memsize = BBY_MEMSIZE;
3220 brdp->pagesize = BBY_PAGESIZE;
3221 brdp->init = stli_bbyinit;
3222 brdp->enable = NULL;
3223 brdp->reenable = NULL;
3224 brdp->disable = NULL;
3225 brdp->getmemptr = stli_bbygetmemptr;
3226 brdp->intr = stli_ecpintr;
3227 brdp->reset = stli_bbyreset;
3228 name = "serial(Brumby)";
3229 break;
3231 case BRD_STALLION:
3232 brdp->memsize = STAL_MEMSIZE;
3233 brdp->pagesize = STAL_PAGESIZE;
3234 brdp->init = stli_stalinit;
3235 brdp->enable = NULL;
3236 brdp->reenable = NULL;
3237 brdp->disable = NULL;
3238 brdp->getmemptr = stli_stalgetmemptr;
3239 brdp->intr = stli_ecpintr;
3240 brdp->reset = stli_stalreset;
3241 name = "serial(Stallion)";
3242 break;
3244 default:
3245 retval = -EINVAL;
3246 goto err_reg;
3250 * The per-board operations structure is all set up, so now let's go
3251 * and get the board operational. Firstly initialize board configuration
3252 * registers. Set the memory mapping info so we can get at the boards
3253 * shared memory.
3255 EBRDINIT(brdp);
3257 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3258 if (brdp->membase == NULL) {
3259 retval = -ENOMEM;
3260 goto err_reg;
3264 * Now that all specific code is set up, enable the shared memory and
3265 * look for the a signature area that will tell us exactly what board
3266 * this is, and how many ports.
3268 EBRDENABLE(brdp);
3269 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3270 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3271 EBRDDISABLE(brdp);
3273 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3274 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3275 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3276 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3277 retval = -ENODEV;
3278 goto err_unmap;
3282 * Scan through the signature alive mask and calculate how many ports
3283 * there are on this board.
3285 brdp->nrpanels = 1;
3286 if (sig.amask1) {
3287 brdp->nrports = 32;
3288 } else {
3289 for (i = 0; (i < 16); i++) {
3290 if (((sig.amask0 << i) & 0x8000) == 0)
3291 break;
3293 brdp->nrports = i;
3295 brdp->panels[0] = brdp->nrports;
3298 brdp->state |= BST_FOUND;
3299 return 0;
3300 err_unmap:
3301 iounmap(brdp->membase);
3302 brdp->membase = NULL;
3303 err_reg:
3304 release_region(brdp->iobase, brdp->iosize);
3305 err:
3306 return retval;
3309 /*****************************************************************************/
3312 * Start up a running board. This routine is only called after the
3313 * code has been down loaded to the board and is operational. It will
3314 * read in the memory map, and get the show on the road...
3317 static int stli_startbrd(struct stlibrd *brdp)
3319 cdkhdr_t __iomem *hdrp;
3320 cdkmem_t __iomem *memp;
3321 cdkasy_t __iomem *ap;
3322 unsigned long flags;
3323 unsigned int portnr, nrdevs, i;
3324 struct stliport *portp;
3325 int rc = 0;
3326 u32 memoff;
3328 spin_lock_irqsave(&brd_lock, flags);
3329 EBRDENABLE(brdp);
3330 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3331 nrdevs = hdrp->nrdevs;
3333 #if 0
3334 printk("%s(%d): CDK version %d.%d.%d --> "
3335 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3336 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3337 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3338 readl(&hdrp->slavep));
3339 #endif
3341 if (nrdevs < (brdp->nrports + 1)) {
3342 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3343 "all devices, devices=%d\n", nrdevs);
3344 brdp->nrports = nrdevs - 1;
3346 brdp->nrdevs = nrdevs;
3347 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3348 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3349 brdp->bitsize = (nrdevs + 7) / 8;
3350 memoff = readl(&hdrp->memp);
3351 if (memoff > brdp->memsize) {
3352 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3353 rc = -EIO;
3354 goto stli_donestartup;
3356 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3357 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3358 printk(KERN_ERR "istallion: no slave control device found\n");
3359 goto stli_donestartup;
3361 memp++;
3364 * Cycle through memory allocation of each port. We are guaranteed to
3365 * have all ports inside the first page of slave window, so no need to
3366 * change pages while reading memory map.
3368 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3369 if (readw(&memp->dtype) != TYP_ASYNC)
3370 break;
3371 portp = brdp->ports[portnr];
3372 if (portp == NULL)
3373 break;
3374 portp->devnr = i;
3375 portp->addr = readl(&memp->offset);
3376 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3377 portp->portidx = (unsigned char) (i / 8);
3378 portp->portbit = (unsigned char) (0x1 << (i % 8));
3381 writeb(0xff, &hdrp->slavereq);
3384 * For each port setup a local copy of the RX and TX buffer offsets
3385 * and sizes. We do this separate from the above, because we need to
3386 * move the shared memory page...
3388 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3389 portp = brdp->ports[portnr];
3390 if (portp == NULL)
3391 break;
3392 if (portp->addr == 0)
3393 break;
3394 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3395 if (ap != NULL) {
3396 portp->rxsize = readw(&ap->rxq.size);
3397 portp->txsize = readw(&ap->txq.size);
3398 portp->rxoffset = readl(&ap->rxq.offset);
3399 portp->txoffset = readl(&ap->txq.offset);
3403 stli_donestartup:
3404 EBRDDISABLE(brdp);
3405 spin_unlock_irqrestore(&brd_lock, flags);
3407 if (rc == 0)
3408 brdp->state |= BST_STARTED;
3410 if (! stli_timeron) {
3411 stli_timeron++;
3412 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3415 return rc;
3418 /*****************************************************************************/
3421 * Probe and initialize the specified board.
3424 static int __devinit stli_brdinit(struct stlibrd *brdp)
3426 int retval;
3428 switch (brdp->brdtype) {
3429 case BRD_ECP:
3430 case BRD_ECPE:
3431 case BRD_ECPMC:
3432 case BRD_ECPPCI:
3433 retval = stli_initecp(brdp);
3434 break;
3435 case BRD_ONBOARD:
3436 case BRD_ONBOARDE:
3437 case BRD_ONBOARD2:
3438 case BRD_BRUMBY4:
3439 case BRD_STALLION:
3440 retval = stli_initonb(brdp);
3441 break;
3442 default:
3443 printk(KERN_ERR "istallion: board=%d is unknown board "
3444 "type=%d\n", brdp->brdnr, brdp->brdtype);
3445 retval = -ENODEV;
3448 if (retval)
3449 return retval;
3451 stli_initports(brdp);
3452 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3453 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3454 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3455 brdp->nrpanels, brdp->nrports);
3456 return 0;
3459 #if STLI_EISAPROBE != 0
3460 /*****************************************************************************/
3463 * Probe around trying to find where the EISA boards shared memory
3464 * might be. This is a bit if hack, but it is the best we can do.
3467 static int stli_eisamemprobe(struct stlibrd *brdp)
3469 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3470 cdkonbsig_t onbsig, __iomem *onbsigp;
3471 int i, foundit;
3474 * First up we reset the board, to get it into a known state. There
3475 * is only 2 board types here we need to worry about. Don;t use the
3476 * standard board init routine here, it programs up the shared
3477 * memory address, and we don't know it yet...
3479 if (brdp->brdtype == BRD_ECPE) {
3480 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3481 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3482 udelay(10);
3483 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3484 udelay(500);
3485 stli_ecpeienable(brdp);
3486 } else if (brdp->brdtype == BRD_ONBOARDE) {
3487 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3488 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3489 udelay(10);
3490 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3491 mdelay(100);
3492 outb(0x1, brdp->iobase);
3493 mdelay(1);
3494 stli_onbeenable(brdp);
3495 } else {
3496 return -ENODEV;
3499 foundit = 0;
3500 brdp->memsize = ECP_MEMSIZE;
3503 * Board shared memory is enabled, so now we have a poke around and
3504 * see if we can find it.
3506 for (i = 0; (i < stli_eisamempsize); i++) {
3507 brdp->memaddr = stli_eisamemprobeaddrs[i];
3508 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3509 if (brdp->membase == NULL)
3510 continue;
3512 if (brdp->brdtype == BRD_ECPE) {
3513 ecpsigp = stli_ecpeigetmemptr(brdp,
3514 CDK_SIGADDR, __LINE__);
3515 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3516 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3517 foundit = 1;
3518 } else {
3519 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3520 CDK_SIGADDR, __LINE__);
3521 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3522 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3523 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3524 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3525 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3526 foundit = 1;
3529 iounmap(brdp->membase);
3530 if (foundit)
3531 break;
3535 * Regardless of whether we found the shared memory or not we must
3536 * disable the region. After that return success or failure.
3538 if (brdp->brdtype == BRD_ECPE)
3539 stli_ecpeidisable(brdp);
3540 else
3541 stli_onbedisable(brdp);
3543 if (! foundit) {
3544 brdp->memaddr = 0;
3545 brdp->membase = NULL;
3546 printk(KERN_ERR "istallion: failed to probe shared memory "
3547 "region for %s in EISA slot=%d\n",
3548 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3549 return -ENODEV;
3551 return 0;
3553 #endif
3555 static int stli_getbrdnr(void)
3557 unsigned int i;
3559 for (i = 0; i < STL_MAXBRDS; i++) {
3560 if (!stli_brds[i]) {
3561 if (i >= stli_nrbrds)
3562 stli_nrbrds = i + 1;
3563 return i;
3566 return -1;
3569 #if STLI_EISAPROBE != 0
3570 /*****************************************************************************/
3573 * Probe around and try to find any EISA boards in system. The biggest
3574 * problem here is finding out what memory address is associated with
3575 * an EISA board after it is found. The registers of the ECPE and
3576 * ONboardE are not readable - so we can't read them from there. We
3577 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3578 * actually have any way to find out the real value. The best we can
3579 * do is go probing around in the usual places hoping we can find it.
3582 static int __init stli_findeisabrds(void)
3584 struct stlibrd *brdp;
3585 unsigned int iobase, eid, i;
3586 int brdnr, found = 0;
3589 * Firstly check if this is an EISA system. If this is not an EISA system then
3590 * don't bother going any further!
3592 if (EISA_bus)
3593 return 0;
3596 * Looks like an EISA system, so go searching for EISA boards.
3598 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3599 outb(0xff, (iobase + 0xc80));
3600 eid = inb(iobase + 0xc80);
3601 eid |= inb(iobase + 0xc81) << 8;
3602 if (eid != STL_EISAID)
3603 continue;
3606 * We have found a board. Need to check if this board was
3607 * statically configured already (just in case!).
3609 for (i = 0; (i < STL_MAXBRDS); i++) {
3610 brdp = stli_brds[i];
3611 if (brdp == NULL)
3612 continue;
3613 if (brdp->iobase == iobase)
3614 break;
3616 if (i < STL_MAXBRDS)
3617 continue;
3620 * We have found a Stallion board and it is not configured already.
3621 * Allocate a board structure and initialize it.
3623 if ((brdp = stli_allocbrd()) == NULL)
3624 return found ? : -ENOMEM;
3625 brdnr = stli_getbrdnr();
3626 if (brdnr < 0)
3627 return found ? : -ENOMEM;
3628 brdp->brdnr = (unsigned int)brdnr;
3629 eid = inb(iobase + 0xc82);
3630 if (eid == ECP_EISAID)
3631 brdp->brdtype = BRD_ECPE;
3632 else if (eid == ONB_EISAID)
3633 brdp->brdtype = BRD_ONBOARDE;
3634 else
3635 brdp->brdtype = BRD_UNKNOWN;
3636 brdp->iobase = iobase;
3637 outb(0x1, (iobase + 0xc84));
3638 if (stli_eisamemprobe(brdp))
3639 outb(0, (iobase + 0xc84));
3640 if (stli_brdinit(brdp) < 0) {
3641 kfree(brdp);
3642 continue;
3645 stli_brds[brdp->brdnr] = brdp;
3646 found++;
3648 for (i = 0; i < brdp->nrports; i++)
3649 tty_register_device(stli_serial,
3650 brdp->brdnr * STL_MAXPORTS + i, NULL);
3653 return found;
3655 #else
3656 static inline int stli_findeisabrds(void) { return 0; }
3657 #endif
3659 /*****************************************************************************/
3662 * Find the next available board number that is free.
3665 /*****************************************************************************/
3668 * We have a Stallion board. Allocate a board structure and
3669 * initialize it. Read its IO and MEMORY resources from PCI
3670 * configuration space.
3673 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3674 const struct pci_device_id *ent)
3676 struct stlibrd *brdp;
3677 unsigned int i;
3678 int brdnr, retval = -EIO;
3680 retval = pci_enable_device(pdev);
3681 if (retval)
3682 goto err;
3683 brdp = stli_allocbrd();
3684 if (brdp == NULL) {
3685 retval = -ENOMEM;
3686 goto err;
3688 mutex_lock(&stli_brdslock);
3689 brdnr = stli_getbrdnr();
3690 if (brdnr < 0) {
3691 printk(KERN_INFO "istallion: too many boards found, "
3692 "maximum supported %d\n", STL_MAXBRDS);
3693 mutex_unlock(&stli_brdslock);
3694 retval = -EIO;
3695 goto err_fr;
3697 brdp->brdnr = (unsigned int)brdnr;
3698 stli_brds[brdp->brdnr] = brdp;
3699 mutex_unlock(&stli_brdslock);
3700 brdp->brdtype = BRD_ECPPCI;
3702 * We have all resources from the board, so lets setup the actual
3703 * board structure now.
3705 brdp->iobase = pci_resource_start(pdev, 3);
3706 brdp->memaddr = pci_resource_start(pdev, 2);
3707 retval = stli_brdinit(brdp);
3708 if (retval)
3709 goto err_null;
3711 brdp->state |= BST_PROBED;
3712 pci_set_drvdata(pdev, brdp);
3714 EBRDENABLE(brdp);
3715 brdp->enable = NULL;
3716 brdp->disable = NULL;
3718 for (i = 0; i < brdp->nrports; i++)
3719 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3720 &pdev->dev);
3722 return 0;
3723 err_null:
3724 stli_brds[brdp->brdnr] = NULL;
3725 err_fr:
3726 kfree(brdp);
3727 err:
3728 return retval;
3731 static void __devexit stli_pciremove(struct pci_dev *pdev)
3733 struct stlibrd *brdp = pci_get_drvdata(pdev);
3735 stli_cleanup_ports(brdp);
3737 iounmap(brdp->membase);
3738 if (brdp->iosize > 0)
3739 release_region(brdp->iobase, brdp->iosize);
3741 stli_brds[brdp->brdnr] = NULL;
3742 kfree(brdp);
3745 static struct pci_driver stli_pcidriver = {
3746 .name = "istallion",
3747 .id_table = istallion_pci_tbl,
3748 .probe = stli_pciprobe,
3749 .remove = __devexit_p(stli_pciremove)
3751 /*****************************************************************************/
3754 * Allocate a new board structure. Fill out the basic info in it.
3757 static struct stlibrd *stli_allocbrd(void)
3759 struct stlibrd *brdp;
3761 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3762 if (!brdp) {
3763 printk(KERN_ERR "istallion: failed to allocate memory "
3764 "(size=%Zd)\n", sizeof(struct stlibrd));
3765 return NULL;
3767 brdp->magic = STLI_BOARDMAGIC;
3768 return brdp;
3771 /*****************************************************************************/
3774 * Scan through all the boards in the configuration and see what we
3775 * can find.
3778 static int __init stli_initbrds(void)
3780 struct stlibrd *brdp, *nxtbrdp;
3781 struct stlconf conf;
3782 unsigned int i, j, found = 0;
3783 int retval;
3785 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3786 stli_nrbrds++) {
3787 memset(&conf, 0, sizeof(conf));
3788 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3789 continue;
3790 if ((brdp = stli_allocbrd()) == NULL)
3791 continue;
3792 brdp->brdnr = stli_nrbrds;
3793 brdp->brdtype = conf.brdtype;
3794 brdp->iobase = conf.ioaddr1;
3795 brdp->memaddr = conf.memaddr;
3796 if (stli_brdinit(brdp) < 0) {
3797 kfree(brdp);
3798 continue;
3800 stli_brds[brdp->brdnr] = brdp;
3801 found++;
3803 for (i = 0; i < brdp->nrports; i++)
3804 tty_register_device(stli_serial,
3805 brdp->brdnr * STL_MAXPORTS + i, NULL);
3808 retval = stli_findeisabrds();
3809 if (retval > 0)
3810 found += retval;
3813 * All found boards are initialized. Now for a little optimization, if
3814 * no boards are sharing the "shared memory" regions then we can just
3815 * leave them all enabled. This is in fact the usual case.
3817 stli_shared = 0;
3818 if (stli_nrbrds > 1) {
3819 for (i = 0; (i < stli_nrbrds); i++) {
3820 brdp = stli_brds[i];
3821 if (brdp == NULL)
3822 continue;
3823 for (j = i + 1; (j < stli_nrbrds); j++) {
3824 nxtbrdp = stli_brds[j];
3825 if (nxtbrdp == NULL)
3826 continue;
3827 if ((brdp->membase >= nxtbrdp->membase) &&
3828 (brdp->membase <= (nxtbrdp->membase +
3829 nxtbrdp->memsize - 1))) {
3830 stli_shared++;
3831 break;
3837 if (stli_shared == 0) {
3838 for (i = 0; (i < stli_nrbrds); i++) {
3839 brdp = stli_brds[i];
3840 if (brdp == NULL)
3841 continue;
3842 if (brdp->state & BST_FOUND) {
3843 EBRDENABLE(brdp);
3844 brdp->enable = NULL;
3845 brdp->disable = NULL;
3850 retval = pci_register_driver(&stli_pcidriver);
3851 if (retval && found == 0) {
3852 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3853 "driver can be registered!\n");
3854 goto err;
3857 return 0;
3858 err:
3859 return retval;
3862 /*****************************************************************************/
3865 * Code to handle an "staliomem" read operation. This device is the
3866 * contents of the board shared memory. It is used for down loading
3867 * the slave image (and debugging :-)
3870 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3872 unsigned long flags;
3873 void __iomem *memptr;
3874 struct stlibrd *brdp;
3875 unsigned int brdnr;
3876 int size, n;
3877 void *p;
3878 loff_t off = *offp;
3880 brdnr = iminor(fp->f_path.dentry->d_inode);
3881 if (brdnr >= stli_nrbrds)
3882 return -ENODEV;
3883 brdp = stli_brds[brdnr];
3884 if (brdp == NULL)
3885 return -ENODEV;
3886 if (brdp->state == 0)
3887 return -ENODEV;
3888 if (off >= brdp->memsize || off + count < off)
3889 return 0;
3891 size = min(count, (size_t)(brdp->memsize - off));
3894 * Copy the data a page at a time
3897 p = (void *)__get_free_page(GFP_KERNEL);
3898 if(p == NULL)
3899 return -ENOMEM;
3901 while (size > 0) {
3902 spin_lock_irqsave(&brd_lock, flags);
3903 EBRDENABLE(brdp);
3904 memptr = EBRDGETMEMPTR(brdp, off);
3905 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3906 n = min(n, (int)PAGE_SIZE);
3907 memcpy_fromio(p, memptr, n);
3908 EBRDDISABLE(brdp);
3909 spin_unlock_irqrestore(&brd_lock, flags);
3910 if (copy_to_user(buf, p, n)) {
3911 count = -EFAULT;
3912 goto out;
3914 off += n;
3915 buf += n;
3916 size -= n;
3918 out:
3919 *offp = off;
3920 free_page((unsigned long)p);
3921 return count;
3924 /*****************************************************************************/
3927 * Code to handle an "staliomem" write operation. This device is the
3928 * contents of the board shared memory. It is used for down loading
3929 * the slave image (and debugging :-)
3931 * FIXME: copy under lock
3934 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3936 unsigned long flags;
3937 void __iomem *memptr;
3938 struct stlibrd *brdp;
3939 char __user *chbuf;
3940 unsigned int brdnr;
3941 int size, n;
3942 void *p;
3943 loff_t off = *offp;
3945 brdnr = iminor(fp->f_path.dentry->d_inode);
3947 if (brdnr >= stli_nrbrds)
3948 return -ENODEV;
3949 brdp = stli_brds[brdnr];
3950 if (brdp == NULL)
3951 return -ENODEV;
3952 if (brdp->state == 0)
3953 return -ENODEV;
3954 if (off >= brdp->memsize || off + count < off)
3955 return 0;
3957 chbuf = (char __user *) buf;
3958 size = min(count, (size_t)(brdp->memsize - off));
3961 * Copy the data a page at a time
3964 p = (void *)__get_free_page(GFP_KERNEL);
3965 if(p == NULL)
3966 return -ENOMEM;
3968 while (size > 0) {
3969 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3970 n = min(n, (int)PAGE_SIZE);
3971 if (copy_from_user(p, chbuf, n)) {
3972 if (count == 0)
3973 count = -EFAULT;
3974 goto out;
3976 spin_lock_irqsave(&brd_lock, flags);
3977 EBRDENABLE(brdp);
3978 memptr = EBRDGETMEMPTR(brdp, off);
3979 memcpy_toio(memptr, p, n);
3980 EBRDDISABLE(brdp);
3981 spin_unlock_irqrestore(&brd_lock, flags);
3982 off += n;
3983 chbuf += n;
3984 size -= n;
3986 out:
3987 free_page((unsigned long) p);
3988 *offp = off;
3989 return count;
3992 /*****************************************************************************/
3995 * Return the board stats structure to user app.
3998 static int stli_getbrdstats(combrd_t __user *bp)
4000 struct stlibrd *brdp;
4001 unsigned int i;
4003 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4004 return -EFAULT;
4005 if (stli_brdstats.brd >= STL_MAXBRDS)
4006 return -ENODEV;
4007 brdp = stli_brds[stli_brdstats.brd];
4008 if (brdp == NULL)
4009 return -ENODEV;
4011 memset(&stli_brdstats, 0, sizeof(combrd_t));
4012 stli_brdstats.brd = brdp->brdnr;
4013 stli_brdstats.type = brdp->brdtype;
4014 stli_brdstats.hwid = 0;
4015 stli_brdstats.state = brdp->state;
4016 stli_brdstats.ioaddr = brdp->iobase;
4017 stli_brdstats.memaddr = brdp->memaddr;
4018 stli_brdstats.nrpanels = brdp->nrpanels;
4019 stli_brdstats.nrports = brdp->nrports;
4020 for (i = 0; (i < brdp->nrpanels); i++) {
4021 stli_brdstats.panels[i].panel = i;
4022 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4023 stli_brdstats.panels[i].nrports = brdp->panels[i];
4026 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4027 return -EFAULT;
4028 return 0;
4031 /*****************************************************************************/
4034 * Resolve the referenced port number into a port struct pointer.
4037 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4038 unsigned int portnr)
4040 struct stlibrd *brdp;
4041 unsigned int i;
4043 if (brdnr >= STL_MAXBRDS)
4044 return NULL;
4045 brdp = stli_brds[brdnr];
4046 if (brdp == NULL)
4047 return NULL;
4048 for (i = 0; (i < panelnr); i++)
4049 portnr += brdp->panels[i];
4050 if (portnr >= brdp->nrports)
4051 return NULL;
4052 return brdp->ports[portnr];
4055 /*****************************************************************************/
4058 * Return the port stats structure to user app. A NULL port struct
4059 * pointer passed in means that we need to find out from the app
4060 * what port to get stats for (used through board control device).
4063 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4065 unsigned long flags;
4066 struct stlibrd *brdp;
4067 int rc;
4069 memset(&stli_comstats, 0, sizeof(comstats_t));
4071 if (portp == NULL)
4072 return -ENODEV;
4073 brdp = stli_brds[portp->brdnr];
4074 if (brdp == NULL)
4075 return -ENODEV;
4077 if (brdp->state & BST_STARTED) {
4078 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4079 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4080 return rc;
4081 } else {
4082 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4085 stli_comstats.brd = portp->brdnr;
4086 stli_comstats.panel = portp->panelnr;
4087 stli_comstats.port = portp->portnr;
4088 stli_comstats.state = portp->state;
4089 stli_comstats.flags = portp->port.flags;
4091 spin_lock_irqsave(&brd_lock, flags);
4092 if (tty != NULL) {
4093 if (portp->port.tty == tty) {
4094 stli_comstats.ttystate = tty->flags;
4095 stli_comstats.rxbuffered = -1;
4096 if (tty->termios != NULL) {
4097 stli_comstats.cflags = tty->termios->c_cflag;
4098 stli_comstats.iflags = tty->termios->c_iflag;
4099 stli_comstats.oflags = tty->termios->c_oflag;
4100 stli_comstats.lflags = tty->termios->c_lflag;
4104 spin_unlock_irqrestore(&brd_lock, flags);
4106 stli_comstats.txtotal = stli_cdkstats.txchars;
4107 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4108 stli_comstats.txbuffered = stli_cdkstats.txringq;
4109 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4110 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4111 stli_comstats.rxparity = stli_cdkstats.parity;
4112 stli_comstats.rxframing = stli_cdkstats.framing;
4113 stli_comstats.rxlost = stli_cdkstats.ringover;
4114 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4115 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4116 stli_comstats.txxon = stli_cdkstats.txstart;
4117 stli_comstats.txxoff = stli_cdkstats.txstop;
4118 stli_comstats.rxxon = stli_cdkstats.rxstart;
4119 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4120 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4121 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4122 stli_comstats.modem = stli_cdkstats.dcdcnt;
4123 stli_comstats.hwid = stli_cdkstats.hwid;
4124 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4126 return 0;
4129 /*****************************************************************************/
4132 * Return the port stats structure to user app. A NULL port struct
4133 * pointer passed in means that we need to find out from the app
4134 * what port to get stats for (used through board control device).
4137 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4138 comstats_t __user *cp)
4140 struct stlibrd *brdp;
4141 int rc;
4143 if (!portp) {
4144 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4145 return -EFAULT;
4146 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4147 stli_comstats.port);
4148 if (!portp)
4149 return -ENODEV;
4152 brdp = stli_brds[portp->brdnr];
4153 if (!brdp)
4154 return -ENODEV;
4156 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4157 return rc;
4159 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4160 -EFAULT : 0;
4163 /*****************************************************************************/
4166 * Clear the port stats structure. We also return it zeroed out...
4169 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4171 struct stlibrd *brdp;
4172 int rc;
4174 if (!portp) {
4175 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4176 return -EFAULT;
4177 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4178 stli_comstats.port);
4179 if (!portp)
4180 return -ENODEV;
4183 brdp = stli_brds[portp->brdnr];
4184 if (!brdp)
4185 return -ENODEV;
4187 if (brdp->state & BST_STARTED) {
4188 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4189 return rc;
4192 memset(&stli_comstats, 0, sizeof(comstats_t));
4193 stli_comstats.brd = portp->brdnr;
4194 stli_comstats.panel = portp->panelnr;
4195 stli_comstats.port = portp->portnr;
4197 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4198 return -EFAULT;
4199 return 0;
4202 /*****************************************************************************/
4205 * Return the entire driver ports structure to a user app.
4208 static int stli_getportstruct(struct stliport __user *arg)
4210 struct stliport stli_dummyport;
4211 struct stliport *portp;
4213 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4214 return -EFAULT;
4215 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4216 stli_dummyport.portnr);
4217 if (!portp)
4218 return -ENODEV;
4219 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4220 return -EFAULT;
4221 return 0;
4224 /*****************************************************************************/
4227 * Return the entire driver board structure to a user app.
4230 static int stli_getbrdstruct(struct stlibrd __user *arg)
4232 struct stlibrd stli_dummybrd;
4233 struct stlibrd *brdp;
4235 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4236 return -EFAULT;
4237 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4238 return -ENODEV;
4239 brdp = stli_brds[stli_dummybrd.brdnr];
4240 if (!brdp)
4241 return -ENODEV;
4242 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4243 return -EFAULT;
4244 return 0;
4247 /*****************************************************************************/
4250 * The "staliomem" device is also required to do some special operations on
4251 * the board. We need to be able to send an interrupt to the board,
4252 * reset it, and start/stop it.
4255 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg)
4257 struct stlibrd *brdp;
4258 int brdnr, rc, done;
4259 void __user *argp = (void __user *)arg;
4262 * First up handle the board independent ioctls.
4264 done = 0;
4265 rc = 0;
4267 lock_kernel();
4269 switch (cmd) {
4270 case COM_GETPORTSTATS:
4271 rc = stli_getportstats(NULL, NULL, argp);
4272 done++;
4273 break;
4274 case COM_CLRPORTSTATS:
4275 rc = stli_clrportstats(NULL, argp);
4276 done++;
4277 break;
4278 case COM_GETBRDSTATS:
4279 rc = stli_getbrdstats(argp);
4280 done++;
4281 break;
4282 case COM_READPORT:
4283 rc = stli_getportstruct(argp);
4284 done++;
4285 break;
4286 case COM_READBOARD:
4287 rc = stli_getbrdstruct(argp);
4288 done++;
4289 break;
4291 unlock_kernel();
4293 if (done)
4294 return rc;
4297 * Now handle the board specific ioctls. These all depend on the
4298 * minor number of the device they were called from.
4300 brdnr = iminor(fp->f_dentry->d_inode);
4301 if (brdnr >= STL_MAXBRDS)
4302 return -ENODEV;
4303 brdp = stli_brds[brdnr];
4304 if (!brdp)
4305 return -ENODEV;
4306 if (brdp->state == 0)
4307 return -ENODEV;
4309 lock_kernel();
4311 switch (cmd) {
4312 case STL_BINTR:
4313 EBRDINTR(brdp);
4314 break;
4315 case STL_BSTART:
4316 rc = stli_startbrd(brdp);
4317 break;
4318 case STL_BSTOP:
4319 brdp->state &= ~BST_STARTED;
4320 break;
4321 case STL_BRESET:
4322 brdp->state &= ~BST_STARTED;
4323 EBRDRESET(brdp);
4324 if (stli_shared == 0) {
4325 if (brdp->reenable != NULL)
4326 (* brdp->reenable)(brdp);
4328 break;
4329 default:
4330 rc = -ENOIOCTLCMD;
4331 break;
4333 unlock_kernel();
4334 return rc;
4337 static const struct tty_operations stli_ops = {
4338 .open = stli_open,
4339 .close = stli_close,
4340 .write = stli_write,
4341 .put_char = stli_putchar,
4342 .flush_chars = stli_flushchars,
4343 .write_room = stli_writeroom,
4344 .chars_in_buffer = stli_charsinbuffer,
4345 .ioctl = stli_ioctl,
4346 .set_termios = stli_settermios,
4347 .throttle = stli_throttle,
4348 .unthrottle = stli_unthrottle,
4349 .stop = stli_stop,
4350 .start = stli_start,
4351 .hangup = stli_hangup,
4352 .flush_buffer = stli_flushbuffer,
4353 .break_ctl = stli_breakctl,
4354 .wait_until_sent = stli_waituntilsent,
4355 .send_xchar = stli_sendxchar,
4356 .tiocmget = stli_tiocmget,
4357 .tiocmset = stli_tiocmset,
4358 .proc_fops = &stli_proc_fops,
4361 static const struct tty_port_operations stli_port_ops = {
4362 .carrier_raised = stli_carrier_raised,
4363 .dtr_rts = stli_dtr_rts,
4364 .activate = stli_activate,
4365 .shutdown = stli_shutdown,
4368 /*****************************************************************************/
4370 * Loadable module initialization stuff.
4373 static void istallion_cleanup_isa(void)
4375 struct stlibrd *brdp;
4376 unsigned int j;
4378 for (j = 0; (j < stli_nrbrds); j++) {
4379 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4380 continue;
4382 stli_cleanup_ports(brdp);
4384 iounmap(brdp->membase);
4385 if (brdp->iosize > 0)
4386 release_region(brdp->iobase, brdp->iosize);
4387 kfree(brdp);
4388 stli_brds[j] = NULL;
4392 static int __init istallion_module_init(void)
4394 unsigned int i;
4395 int retval;
4397 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4399 spin_lock_init(&stli_lock);
4400 spin_lock_init(&brd_lock);
4402 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4403 if (!stli_txcookbuf) {
4404 printk(KERN_ERR "istallion: failed to allocate memory "
4405 "(size=%d)\n", STLI_TXBUFSIZE);
4406 retval = -ENOMEM;
4407 goto err;
4410 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4411 if (!stli_serial) {
4412 retval = -ENOMEM;
4413 goto err_free;
4416 stli_serial->owner = THIS_MODULE;
4417 stli_serial->driver_name = stli_drvname;
4418 stli_serial->name = stli_serialname;
4419 stli_serial->major = STL_SERIALMAJOR;
4420 stli_serial->minor_start = 0;
4421 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4422 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4423 stli_serial->init_termios = stli_deftermios;
4424 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4425 tty_set_operations(stli_serial, &stli_ops);
4427 retval = tty_register_driver(stli_serial);
4428 if (retval) {
4429 printk(KERN_ERR "istallion: failed to register serial driver\n");
4430 goto err_ttyput;
4433 retval = stli_initbrds();
4434 if (retval)
4435 goto err_ttyunr;
4438 * Set up a character driver for the shared memory region. We need this
4439 * to down load the slave code image. Also it is a useful debugging tool.
4441 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4442 if (retval) {
4443 printk(KERN_ERR "istallion: failed to register serial memory "
4444 "device\n");
4445 goto err_deinit;
4448 istallion_class = class_create(THIS_MODULE, "staliomem");
4449 for (i = 0; i < 4; i++)
4450 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4451 NULL, "staliomem%d", i);
4453 return 0;
4454 err_deinit:
4455 pci_unregister_driver(&stli_pcidriver);
4456 istallion_cleanup_isa();
4457 err_ttyunr:
4458 tty_unregister_driver(stli_serial);
4459 err_ttyput:
4460 put_tty_driver(stli_serial);
4461 err_free:
4462 kfree(stli_txcookbuf);
4463 err:
4464 return retval;
4467 /*****************************************************************************/
4469 static void __exit istallion_module_exit(void)
4471 unsigned int j;
4473 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4474 stli_drvversion);
4476 if (stli_timeron) {
4477 stli_timeron = 0;
4478 del_timer_sync(&stli_timerlist);
4481 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4483 for (j = 0; j < 4; j++)
4484 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4485 class_destroy(istallion_class);
4487 pci_unregister_driver(&stli_pcidriver);
4488 istallion_cleanup_isa();
4490 tty_unregister_driver(stli_serial);
4491 put_tty_driver(stli_serial);
4493 kfree(stli_txcookbuf);
4496 module_init(istallion_module_init);
4497 module_exit(istallion_module_exit);