Linux 2.6.34-rc3
[pohmelfs.git] / drivers / firewire / ohci.c
blobe33917bf97d28eb803699e46f4dfb46860ec1b45
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
49 #include "core.h"
50 #include "ohci.h"
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
66 struct descriptor {
67 __le16 req_count;
68 __le16 control;
69 __le32 data_address;
70 __le32 branch_address;
71 __le16 res_count;
72 __le16 transfer_status;
73 } __attribute__((aligned(16)));
75 #define CONTROL_SET(regs) (regs)
76 #define CONTROL_CLEAR(regs) ((regs) + 4)
77 #define COMMAND_PTR(regs) ((regs) + 12)
78 #define CONTEXT_MATCH(regs) ((regs) + 16)
80 struct ar_buffer {
81 struct descriptor descriptor;
82 struct ar_buffer *next;
83 __le32 data[0];
86 struct ar_context {
87 struct fw_ohci *ohci;
88 struct ar_buffer *current_buffer;
89 struct ar_buffer *last_buffer;
90 void *pointer;
91 u32 regs;
92 struct tasklet_struct tasklet;
95 struct context;
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98 struct descriptor *d,
99 struct descriptor *last);
102 * A buffer that contains a block of DMA-able coherent memory used for
103 * storing a portion of a DMA descriptor program.
105 struct descriptor_buffer {
106 struct list_head list;
107 dma_addr_t buffer_bus;
108 size_t buffer_size;
109 size_t used;
110 struct descriptor buffer[0];
113 struct context {
114 struct fw_ohci *ohci;
115 u32 regs;
116 int total_allocation;
119 * List of page-sized buffers for storing DMA descriptors.
120 * Head of list contains buffers in use and tail of list contains
121 * free buffers.
123 struct list_head buffer_list;
126 * Pointer to a buffer inside buffer_list that contains the tail
127 * end of the current DMA program.
129 struct descriptor_buffer *buffer_tail;
132 * The descriptor containing the branch address of the first
133 * descriptor that has not yet been filled by the device.
135 struct descriptor *last;
138 * The last descriptor in the DMA program. It contains the branch
139 * address that must be updated upon appending a new descriptor.
141 struct descriptor *prev;
143 descriptor_callback_t callback;
145 struct tasklet_struct tasklet;
148 #define IT_HEADER_SY(v) ((v) << 0)
149 #define IT_HEADER_TCODE(v) ((v) << 4)
150 #define IT_HEADER_CHANNEL(v) ((v) << 8)
151 #define IT_HEADER_TAG(v) ((v) << 14)
152 #define IT_HEADER_SPEED(v) ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
155 struct iso_context {
156 struct fw_iso_context base;
157 struct context context;
158 int excess_bytes;
159 void *header;
160 size_t header_length;
163 #define CONFIG_ROM_SIZE 1024
165 struct fw_ohci {
166 struct fw_card card;
168 __iomem char *registers;
169 int node_id;
170 int generation;
171 int request_generation; /* for timestamping incoming requests */
172 unsigned quirks;
175 * Spinlock for accessing fw_ohci data. Never call out of
176 * this driver with this lock held.
178 spinlock_t lock;
180 struct ar_context ar_request_ctx;
181 struct ar_context ar_response_ctx;
182 struct context at_request_ctx;
183 struct context at_response_ctx;
185 u32 it_context_mask;
186 struct iso_context *it_context_list;
187 u64 ir_context_channels;
188 u32 ir_context_mask;
189 struct iso_context *ir_context_list;
191 __be32 *config_rom;
192 dma_addr_t config_rom_bus;
193 __be32 *next_config_rom;
194 dma_addr_t next_config_rom_bus;
195 __be32 next_header;
197 __le32 *self_id_cpu;
198 dma_addr_t self_id_bus;
199 struct tasklet_struct bus_reset_tasklet;
201 u32 self_id_buffer[512];
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
206 return container_of(card, struct fw_ohci, card);
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
210 #define IR_CONTEXT_BUFFER_FILL 0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
216 #define CONTEXT_RUN 0x8000
217 #define CONTEXT_WAKE 0x1000
218 #define CONTEXT_DEAD 0x0800
219 #define CONTEXT_ACTIVE 0x0400
221 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
225 #define OHCI1394_REGISTER_SIZE 0x800
226 #define OHCI_LOOP_COUNT 500
227 #define OHCI1394_PCI_HCI_Control 0x40
228 #define SELF_ID_BUF_SIZE 0x800
229 #define OHCI_TCODE_PHY_PACKET 0x0e
230 #define OHCI_VERSION_1_1 0x010010
232 static char ohci_driver_name[] = KBUILD_MODNAME;
234 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
236 #define QUIRK_CYCLE_TIMER 1
237 #define QUIRK_RESET_PACKET 2
238 #define QUIRK_BE_HEADERS 4
240 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
241 static const struct {
242 unsigned short vendor, device, flags;
243 } ohci_quirks[] = {
244 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
245 QUIRK_RESET_PACKET},
246 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
247 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
248 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
249 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
250 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
253 /* This overrides anything that was found in ohci_quirks[]. */
254 static int param_quirks;
255 module_param_named(quirks, param_quirks, int, 0644);
256 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
257 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
258 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
259 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
260 ")");
262 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
264 #define OHCI_PARAM_DEBUG_AT_AR 1
265 #define OHCI_PARAM_DEBUG_SELFIDS 2
266 #define OHCI_PARAM_DEBUG_IRQS 4
267 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
269 static int param_debug;
270 module_param_named(debug, param_debug, int, 0644);
271 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
272 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
273 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
274 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
275 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
276 ", or a combination, or all = -1)");
278 static void log_irqs(u32 evt)
280 if (likely(!(param_debug &
281 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
282 return;
284 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
285 !(evt & OHCI1394_busReset))
286 return;
288 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
289 evt & OHCI1394_selfIDComplete ? " selfID" : "",
290 evt & OHCI1394_RQPkt ? " AR_req" : "",
291 evt & OHCI1394_RSPkt ? " AR_resp" : "",
292 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
293 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
294 evt & OHCI1394_isochRx ? " IR" : "",
295 evt & OHCI1394_isochTx ? " IT" : "",
296 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
297 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
298 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
299 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
300 evt & OHCI1394_busReset ? " busReset" : "",
301 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
302 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
303 OHCI1394_respTxComplete | OHCI1394_isochRx |
304 OHCI1394_isochTx | OHCI1394_postedWriteErr |
305 OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
306 OHCI1394_regAccessFail | OHCI1394_busReset)
307 ? " ?" : "");
310 static const char *speed[] = {
311 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
313 static const char *power[] = {
314 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
315 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
317 static const char port[] = { '.', '-', 'p', 'c', };
319 static char _p(u32 *s, int shift)
321 return port[*s >> shift & 3];
324 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
326 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
327 return;
329 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
330 self_id_count, generation, node_id);
332 for (; self_id_count--; ++s)
333 if ((*s & 1 << 23) == 0)
334 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
335 "%s gc=%d %s %s%s%s\n",
336 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
337 speed[*s >> 14 & 3], *s >> 16 & 63,
338 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
339 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
340 else
341 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
342 *s, *s >> 24 & 63,
343 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
344 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
347 static const char *evts[] = {
348 [0x00] = "evt_no_status", [0x01] = "-reserved-",
349 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
350 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
351 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
352 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
353 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
354 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
355 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
356 [0x10] = "-reserved-", [0x11] = "ack_complete",
357 [0x12] = "ack_pending ", [0x13] = "-reserved-",
358 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
359 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
360 [0x18] = "-reserved-", [0x19] = "-reserved-",
361 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
362 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
363 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
364 [0x20] = "pending/cancelled",
366 static const char *tcodes[] = {
367 [0x0] = "QW req", [0x1] = "BW req",
368 [0x2] = "W resp", [0x3] = "-reserved-",
369 [0x4] = "QR req", [0x5] = "BR req",
370 [0x6] = "QR resp", [0x7] = "BR resp",
371 [0x8] = "cycle start", [0x9] = "Lk req",
372 [0xa] = "async stream packet", [0xb] = "Lk resp",
373 [0xc] = "-reserved-", [0xd] = "-reserved-",
374 [0xe] = "link internal", [0xf] = "-reserved-",
376 static const char *phys[] = {
377 [0x0] = "phy config packet", [0x1] = "link-on packet",
378 [0x2] = "self-id packet", [0x3] = "-reserved-",
381 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
383 int tcode = header[0] >> 4 & 0xf;
384 char specific[12];
386 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
387 return;
389 if (unlikely(evt >= ARRAY_SIZE(evts)))
390 evt = 0x1f;
392 if (evt == OHCI1394_evt_bus_reset) {
393 fw_notify("A%c evt_bus_reset, generation %d\n",
394 dir, (header[2] >> 16) & 0xff);
395 return;
398 if (header[0] == ~header[1]) {
399 fw_notify("A%c %s, %s, %08x\n",
400 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
401 return;
404 switch (tcode) {
405 case 0x0: case 0x6: case 0x8:
406 snprintf(specific, sizeof(specific), " = %08x",
407 be32_to_cpu((__force __be32)header[3]));
408 break;
409 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
410 snprintf(specific, sizeof(specific), " %x,%x",
411 header[3] >> 16, header[3] & 0xffff);
412 break;
413 default:
414 specific[0] = '\0';
417 switch (tcode) {
418 case 0xe: case 0xa:
419 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
420 break;
421 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
422 fw_notify("A%c spd %x tl %02x, "
423 "%04x -> %04x, %s, "
424 "%s, %04x%08x%s\n",
425 dir, speed, header[0] >> 10 & 0x3f,
426 header[1] >> 16, header[0] >> 16, evts[evt],
427 tcodes[tcode], header[1] & 0xffff, header[2], specific);
428 break;
429 default:
430 fw_notify("A%c spd %x tl %02x, "
431 "%04x -> %04x, %s, "
432 "%s%s\n",
433 dir, speed, header[0] >> 10 & 0x3f,
434 header[1] >> 16, header[0] >> 16, evts[evt],
435 tcodes[tcode], specific);
439 #else
441 #define log_irqs(evt)
442 #define log_selfids(node_id, generation, self_id_count, sid)
443 #define log_ar_at_event(dir, speed, header, evt)
445 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
447 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
449 writel(data, ohci->registers + offset);
452 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
454 return readl(ohci->registers + offset);
457 static inline void flush_writes(const struct fw_ohci *ohci)
459 /* Do a dummy read to flush writes. */
460 reg_read(ohci, OHCI1394_Version);
463 static int ohci_update_phy_reg(struct fw_card *card, int addr,
464 int clear_bits, int set_bits)
466 struct fw_ohci *ohci = fw_ohci(card);
467 u32 val, old;
469 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
470 flush_writes(ohci);
471 msleep(2);
472 val = reg_read(ohci, OHCI1394_PhyControl);
473 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
474 fw_error("failed to set phy reg bits.\n");
475 return -EBUSY;
478 old = OHCI1394_PhyControl_ReadData(val);
479 old = (old & ~clear_bits) | set_bits;
480 reg_write(ohci, OHCI1394_PhyControl,
481 OHCI1394_PhyControl_Write(addr, old));
483 return 0;
486 static int ar_context_add_page(struct ar_context *ctx)
488 struct device *dev = ctx->ohci->card.device;
489 struct ar_buffer *ab;
490 dma_addr_t uninitialized_var(ab_bus);
491 size_t offset;
493 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
494 if (ab == NULL)
495 return -ENOMEM;
497 ab->next = NULL;
498 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
499 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
500 DESCRIPTOR_STATUS |
501 DESCRIPTOR_BRANCH_ALWAYS);
502 offset = offsetof(struct ar_buffer, data);
503 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
504 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
505 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
506 ab->descriptor.branch_address = 0;
508 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
509 ctx->last_buffer->next = ab;
510 ctx->last_buffer = ab;
512 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
513 flush_writes(ctx->ohci);
515 return 0;
518 static void ar_context_release(struct ar_context *ctx)
520 struct ar_buffer *ab, *ab_next;
521 size_t offset;
522 dma_addr_t ab_bus;
524 for (ab = ctx->current_buffer; ab; ab = ab_next) {
525 ab_next = ab->next;
526 offset = offsetof(struct ar_buffer, data);
527 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
528 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
529 ab, ab_bus);
533 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
534 #define cond_le32_to_cpu(v) \
535 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
536 #else
537 #define cond_le32_to_cpu(v) le32_to_cpu(v)
538 #endif
540 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
542 struct fw_ohci *ohci = ctx->ohci;
543 struct fw_packet p;
544 u32 status, length, tcode;
545 int evt;
547 p.header[0] = cond_le32_to_cpu(buffer[0]);
548 p.header[1] = cond_le32_to_cpu(buffer[1]);
549 p.header[2] = cond_le32_to_cpu(buffer[2]);
551 tcode = (p.header[0] >> 4) & 0x0f;
552 switch (tcode) {
553 case TCODE_WRITE_QUADLET_REQUEST:
554 case TCODE_READ_QUADLET_RESPONSE:
555 p.header[3] = (__force __u32) buffer[3];
556 p.header_length = 16;
557 p.payload_length = 0;
558 break;
560 case TCODE_READ_BLOCK_REQUEST :
561 p.header[3] = cond_le32_to_cpu(buffer[3]);
562 p.header_length = 16;
563 p.payload_length = 0;
564 break;
566 case TCODE_WRITE_BLOCK_REQUEST:
567 case TCODE_READ_BLOCK_RESPONSE:
568 case TCODE_LOCK_REQUEST:
569 case TCODE_LOCK_RESPONSE:
570 p.header[3] = cond_le32_to_cpu(buffer[3]);
571 p.header_length = 16;
572 p.payload_length = p.header[3] >> 16;
573 break;
575 case TCODE_WRITE_RESPONSE:
576 case TCODE_READ_QUADLET_REQUEST:
577 case OHCI_TCODE_PHY_PACKET:
578 p.header_length = 12;
579 p.payload_length = 0;
580 break;
582 default:
583 /* FIXME: Stop context, discard everything, and restart? */
584 p.header_length = 0;
585 p.payload_length = 0;
588 p.payload = (void *) buffer + p.header_length;
590 /* FIXME: What to do about evt_* errors? */
591 length = (p.header_length + p.payload_length + 3) / 4;
592 status = cond_le32_to_cpu(buffer[length]);
593 evt = (status >> 16) & 0x1f;
595 p.ack = evt - 16;
596 p.speed = (status >> 21) & 0x7;
597 p.timestamp = status & 0xffff;
598 p.generation = ohci->request_generation;
600 log_ar_at_event('R', p.speed, p.header, evt);
603 * The OHCI bus reset handler synthesizes a phy packet with
604 * the new generation number when a bus reset happens (see
605 * section 8.4.2.3). This helps us determine when a request
606 * was received and make sure we send the response in the same
607 * generation. We only need this for requests; for responses
608 * we use the unique tlabel for finding the matching
609 * request.
611 * Alas some chips sometimes emit bus reset packets with a
612 * wrong generation. We set the correct generation for these
613 * at a slightly incorrect time (in bus_reset_tasklet).
615 if (evt == OHCI1394_evt_bus_reset) {
616 if (!(ohci->quirks & QUIRK_RESET_PACKET))
617 ohci->request_generation = (p.header[2] >> 16) & 0xff;
618 } else if (ctx == &ohci->ar_request_ctx) {
619 fw_core_handle_request(&ohci->card, &p);
620 } else {
621 fw_core_handle_response(&ohci->card, &p);
624 return buffer + length + 1;
627 static void ar_context_tasklet(unsigned long data)
629 struct ar_context *ctx = (struct ar_context *)data;
630 struct fw_ohci *ohci = ctx->ohci;
631 struct ar_buffer *ab;
632 struct descriptor *d;
633 void *buffer, *end;
635 ab = ctx->current_buffer;
636 d = &ab->descriptor;
638 if (d->res_count == 0) {
639 size_t size, rest, offset;
640 dma_addr_t start_bus;
641 void *start;
644 * This descriptor is finished and we may have a
645 * packet split across this and the next buffer. We
646 * reuse the page for reassembling the split packet.
649 offset = offsetof(struct ar_buffer, data);
650 start = buffer = ab;
651 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
653 ab = ab->next;
654 d = &ab->descriptor;
655 size = buffer + PAGE_SIZE - ctx->pointer;
656 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
657 memmove(buffer, ctx->pointer, size);
658 memcpy(buffer + size, ab->data, rest);
659 ctx->current_buffer = ab;
660 ctx->pointer = (void *) ab->data + rest;
661 end = buffer + size + rest;
663 while (buffer < end)
664 buffer = handle_ar_packet(ctx, buffer);
666 dma_free_coherent(ohci->card.device, PAGE_SIZE,
667 start, start_bus);
668 ar_context_add_page(ctx);
669 } else {
670 buffer = ctx->pointer;
671 ctx->pointer = end =
672 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
674 while (buffer < end)
675 buffer = handle_ar_packet(ctx, buffer);
679 static int ar_context_init(struct ar_context *ctx,
680 struct fw_ohci *ohci, u32 regs)
682 struct ar_buffer ab;
684 ctx->regs = regs;
685 ctx->ohci = ohci;
686 ctx->last_buffer = &ab;
687 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
689 ar_context_add_page(ctx);
690 ar_context_add_page(ctx);
691 ctx->current_buffer = ab.next;
692 ctx->pointer = ctx->current_buffer->data;
694 return 0;
697 static void ar_context_run(struct ar_context *ctx)
699 struct ar_buffer *ab = ctx->current_buffer;
700 dma_addr_t ab_bus;
701 size_t offset;
703 offset = offsetof(struct ar_buffer, data);
704 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
706 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
707 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
708 flush_writes(ctx->ohci);
711 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
713 int b, key;
715 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
716 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
718 /* figure out which descriptor the branch address goes in */
719 if (z == 2 && (b == 3 || key == 2))
720 return d;
721 else
722 return d + z - 1;
725 static void context_tasklet(unsigned long data)
727 struct context *ctx = (struct context *) data;
728 struct descriptor *d, *last;
729 u32 address;
730 int z;
731 struct descriptor_buffer *desc;
733 desc = list_entry(ctx->buffer_list.next,
734 struct descriptor_buffer, list);
735 last = ctx->last;
736 while (last->branch_address != 0) {
737 struct descriptor_buffer *old_desc = desc;
738 address = le32_to_cpu(last->branch_address);
739 z = address & 0xf;
740 address &= ~0xf;
742 /* If the branch address points to a buffer outside of the
743 * current buffer, advance to the next buffer. */
744 if (address < desc->buffer_bus ||
745 address >= desc->buffer_bus + desc->used)
746 desc = list_entry(desc->list.next,
747 struct descriptor_buffer, list);
748 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
749 last = find_branch_descriptor(d, z);
751 if (!ctx->callback(ctx, d, last))
752 break;
754 if (old_desc != desc) {
755 /* If we've advanced to the next buffer, move the
756 * previous buffer to the free list. */
757 unsigned long flags;
758 old_desc->used = 0;
759 spin_lock_irqsave(&ctx->ohci->lock, flags);
760 list_move_tail(&old_desc->list, &ctx->buffer_list);
761 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
763 ctx->last = last;
768 * Allocate a new buffer and add it to the list of free buffers for this
769 * context. Must be called with ohci->lock held.
771 static int context_add_buffer(struct context *ctx)
773 struct descriptor_buffer *desc;
774 dma_addr_t uninitialized_var(bus_addr);
775 int offset;
778 * 16MB of descriptors should be far more than enough for any DMA
779 * program. This will catch run-away userspace or DoS attacks.
781 if (ctx->total_allocation >= 16*1024*1024)
782 return -ENOMEM;
784 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
785 &bus_addr, GFP_ATOMIC);
786 if (!desc)
787 return -ENOMEM;
789 offset = (void *)&desc->buffer - (void *)desc;
790 desc->buffer_size = PAGE_SIZE - offset;
791 desc->buffer_bus = bus_addr + offset;
792 desc->used = 0;
794 list_add_tail(&desc->list, &ctx->buffer_list);
795 ctx->total_allocation += PAGE_SIZE;
797 return 0;
800 static int context_init(struct context *ctx, struct fw_ohci *ohci,
801 u32 regs, descriptor_callback_t callback)
803 ctx->ohci = ohci;
804 ctx->regs = regs;
805 ctx->total_allocation = 0;
807 INIT_LIST_HEAD(&ctx->buffer_list);
808 if (context_add_buffer(ctx) < 0)
809 return -ENOMEM;
811 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
812 struct descriptor_buffer, list);
814 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
815 ctx->callback = callback;
818 * We put a dummy descriptor in the buffer that has a NULL
819 * branch address and looks like it's been sent. That way we
820 * have a descriptor to append DMA programs to.
822 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
823 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
824 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
825 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
826 ctx->last = ctx->buffer_tail->buffer;
827 ctx->prev = ctx->buffer_tail->buffer;
829 return 0;
832 static void context_release(struct context *ctx)
834 struct fw_card *card = &ctx->ohci->card;
835 struct descriptor_buffer *desc, *tmp;
837 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
838 dma_free_coherent(card->device, PAGE_SIZE, desc,
839 desc->buffer_bus -
840 ((void *)&desc->buffer - (void *)desc));
843 /* Must be called with ohci->lock held */
844 static struct descriptor *context_get_descriptors(struct context *ctx,
845 int z, dma_addr_t *d_bus)
847 struct descriptor *d = NULL;
848 struct descriptor_buffer *desc = ctx->buffer_tail;
850 if (z * sizeof(*d) > desc->buffer_size)
851 return NULL;
853 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
854 /* No room for the descriptor in this buffer, so advance to the
855 * next one. */
857 if (desc->list.next == &ctx->buffer_list) {
858 /* If there is no free buffer next in the list,
859 * allocate one. */
860 if (context_add_buffer(ctx) < 0)
861 return NULL;
863 desc = list_entry(desc->list.next,
864 struct descriptor_buffer, list);
865 ctx->buffer_tail = desc;
868 d = desc->buffer + desc->used / sizeof(*d);
869 memset(d, 0, z * sizeof(*d));
870 *d_bus = desc->buffer_bus + desc->used;
872 return d;
875 static void context_run(struct context *ctx, u32 extra)
877 struct fw_ohci *ohci = ctx->ohci;
879 reg_write(ohci, COMMAND_PTR(ctx->regs),
880 le32_to_cpu(ctx->last->branch_address));
881 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
882 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
883 flush_writes(ohci);
886 static void context_append(struct context *ctx,
887 struct descriptor *d, int z, int extra)
889 dma_addr_t d_bus;
890 struct descriptor_buffer *desc = ctx->buffer_tail;
892 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
894 desc->used += (z + extra) * sizeof(*d);
895 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
896 ctx->prev = find_branch_descriptor(d, z);
898 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
899 flush_writes(ctx->ohci);
902 static void context_stop(struct context *ctx)
904 u32 reg;
905 int i;
907 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
908 flush_writes(ctx->ohci);
910 for (i = 0; i < 10; i++) {
911 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
912 if ((reg & CONTEXT_ACTIVE) == 0)
913 return;
915 mdelay(1);
917 fw_error("Error: DMA context still active (0x%08x)\n", reg);
920 struct driver_data {
921 struct fw_packet *packet;
925 * This function apppends a packet to the DMA queue for transmission.
926 * Must always be called with the ochi->lock held to ensure proper
927 * generation handling and locking around packet queue manipulation.
929 static int at_context_queue_packet(struct context *ctx,
930 struct fw_packet *packet)
932 struct fw_ohci *ohci = ctx->ohci;
933 dma_addr_t d_bus, uninitialized_var(payload_bus);
934 struct driver_data *driver_data;
935 struct descriptor *d, *last;
936 __le32 *header;
937 int z, tcode;
938 u32 reg;
940 d = context_get_descriptors(ctx, 4, &d_bus);
941 if (d == NULL) {
942 packet->ack = RCODE_SEND_ERROR;
943 return -1;
946 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
947 d[0].res_count = cpu_to_le16(packet->timestamp);
950 * The DMA format for asyncronous link packets is different
951 * from the IEEE1394 layout, so shift the fields around
952 * accordingly. If header_length is 8, it's a PHY packet, to
953 * which we need to prepend an extra quadlet.
956 header = (__le32 *) &d[1];
957 switch (packet->header_length) {
958 case 16:
959 case 12:
960 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
961 (packet->speed << 16));
962 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
963 (packet->header[0] & 0xffff0000));
964 header[2] = cpu_to_le32(packet->header[2]);
966 tcode = (packet->header[0] >> 4) & 0x0f;
967 if (TCODE_IS_BLOCK_PACKET(tcode))
968 header[3] = cpu_to_le32(packet->header[3]);
969 else
970 header[3] = (__force __le32) packet->header[3];
972 d[0].req_count = cpu_to_le16(packet->header_length);
973 break;
975 case 8:
976 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
977 (packet->speed << 16));
978 header[1] = cpu_to_le32(packet->header[0]);
979 header[2] = cpu_to_le32(packet->header[1]);
980 d[0].req_count = cpu_to_le16(12);
981 break;
983 case 4:
984 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
985 (packet->speed << 16));
986 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
987 d[0].req_count = cpu_to_le16(8);
988 break;
990 default:
991 /* BUG(); */
992 packet->ack = RCODE_SEND_ERROR;
993 return -1;
996 driver_data = (struct driver_data *) &d[3];
997 driver_data->packet = packet;
998 packet->driver_data = driver_data;
1000 if (packet->payload_length > 0) {
1001 payload_bus =
1002 dma_map_single(ohci->card.device, packet->payload,
1003 packet->payload_length, DMA_TO_DEVICE);
1004 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1005 packet->ack = RCODE_SEND_ERROR;
1006 return -1;
1008 packet->payload_bus = payload_bus;
1009 packet->payload_mapped = true;
1011 d[2].req_count = cpu_to_le16(packet->payload_length);
1012 d[2].data_address = cpu_to_le32(payload_bus);
1013 last = &d[2];
1014 z = 3;
1015 } else {
1016 last = &d[0];
1017 z = 2;
1020 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1021 DESCRIPTOR_IRQ_ALWAYS |
1022 DESCRIPTOR_BRANCH_ALWAYS);
1025 * If the controller and packet generations don't match, we need to
1026 * bail out and try again. If IntEvent.busReset is set, the AT context
1027 * is halted, so appending to the context and trying to run it is
1028 * futile. Most controllers do the right thing and just flush the AT
1029 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1030 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1031 * up stalling out. So we just bail out in software and try again
1032 * later, and everyone is happy.
1033 * FIXME: Document how the locking works.
1035 if (ohci->generation != packet->generation ||
1036 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1037 if (packet->payload_mapped)
1038 dma_unmap_single(ohci->card.device, payload_bus,
1039 packet->payload_length, DMA_TO_DEVICE);
1040 packet->ack = RCODE_GENERATION;
1041 return -1;
1044 context_append(ctx, d, z, 4 - z);
1046 /* If the context isn't already running, start it up. */
1047 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1048 if ((reg & CONTEXT_RUN) == 0)
1049 context_run(ctx, 0);
1051 return 0;
1054 static int handle_at_packet(struct context *context,
1055 struct descriptor *d,
1056 struct descriptor *last)
1058 struct driver_data *driver_data;
1059 struct fw_packet *packet;
1060 struct fw_ohci *ohci = context->ohci;
1061 int evt;
1063 if (last->transfer_status == 0)
1064 /* This descriptor isn't done yet, stop iteration. */
1065 return 0;
1067 driver_data = (struct driver_data *) &d[3];
1068 packet = driver_data->packet;
1069 if (packet == NULL)
1070 /* This packet was cancelled, just continue. */
1071 return 1;
1073 if (packet->payload_mapped)
1074 dma_unmap_single(ohci->card.device, packet->payload_bus,
1075 packet->payload_length, DMA_TO_DEVICE);
1077 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1078 packet->timestamp = le16_to_cpu(last->res_count);
1080 log_ar_at_event('T', packet->speed, packet->header, evt);
1082 switch (evt) {
1083 case OHCI1394_evt_timeout:
1084 /* Async response transmit timed out. */
1085 packet->ack = RCODE_CANCELLED;
1086 break;
1088 case OHCI1394_evt_flushed:
1090 * The packet was flushed should give same error as
1091 * when we try to use a stale generation count.
1093 packet->ack = RCODE_GENERATION;
1094 break;
1096 case OHCI1394_evt_missing_ack:
1098 * Using a valid (current) generation count, but the
1099 * node is not on the bus or not sending acks.
1101 packet->ack = RCODE_NO_ACK;
1102 break;
1104 case ACK_COMPLETE + 0x10:
1105 case ACK_PENDING + 0x10:
1106 case ACK_BUSY_X + 0x10:
1107 case ACK_BUSY_A + 0x10:
1108 case ACK_BUSY_B + 0x10:
1109 case ACK_DATA_ERROR + 0x10:
1110 case ACK_TYPE_ERROR + 0x10:
1111 packet->ack = evt - 0x10;
1112 break;
1114 default:
1115 packet->ack = RCODE_SEND_ERROR;
1116 break;
1119 packet->callback(packet, &ohci->card, packet->ack);
1121 return 1;
1124 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1125 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1126 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1127 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1128 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1130 static void handle_local_rom(struct fw_ohci *ohci,
1131 struct fw_packet *packet, u32 csr)
1133 struct fw_packet response;
1134 int tcode, length, i;
1136 tcode = HEADER_GET_TCODE(packet->header[0]);
1137 if (TCODE_IS_BLOCK_PACKET(tcode))
1138 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1139 else
1140 length = 4;
1142 i = csr - CSR_CONFIG_ROM;
1143 if (i + length > CONFIG_ROM_SIZE) {
1144 fw_fill_response(&response, packet->header,
1145 RCODE_ADDRESS_ERROR, NULL, 0);
1146 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1147 fw_fill_response(&response, packet->header,
1148 RCODE_TYPE_ERROR, NULL, 0);
1149 } else {
1150 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1151 (void *) ohci->config_rom + i, length);
1154 fw_core_handle_response(&ohci->card, &response);
1157 static void handle_local_lock(struct fw_ohci *ohci,
1158 struct fw_packet *packet, u32 csr)
1160 struct fw_packet response;
1161 int tcode, length, ext_tcode, sel;
1162 __be32 *payload, lock_old;
1163 u32 lock_arg, lock_data;
1165 tcode = HEADER_GET_TCODE(packet->header[0]);
1166 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1167 payload = packet->payload;
1168 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1170 if (tcode == TCODE_LOCK_REQUEST &&
1171 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1172 lock_arg = be32_to_cpu(payload[0]);
1173 lock_data = be32_to_cpu(payload[1]);
1174 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1175 lock_arg = 0;
1176 lock_data = 0;
1177 } else {
1178 fw_fill_response(&response, packet->header,
1179 RCODE_TYPE_ERROR, NULL, 0);
1180 goto out;
1183 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1184 reg_write(ohci, OHCI1394_CSRData, lock_data);
1185 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1186 reg_write(ohci, OHCI1394_CSRControl, sel);
1188 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1189 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1190 else
1191 fw_notify("swap not done yet\n");
1193 fw_fill_response(&response, packet->header,
1194 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1195 out:
1196 fw_core_handle_response(&ohci->card, &response);
1199 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1201 u64 offset;
1202 u32 csr;
1204 if (ctx == &ctx->ohci->at_request_ctx) {
1205 packet->ack = ACK_PENDING;
1206 packet->callback(packet, &ctx->ohci->card, packet->ack);
1209 offset =
1210 ((unsigned long long)
1211 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1212 packet->header[2];
1213 csr = offset - CSR_REGISTER_BASE;
1215 /* Handle config rom reads. */
1216 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1217 handle_local_rom(ctx->ohci, packet, csr);
1218 else switch (csr) {
1219 case CSR_BUS_MANAGER_ID:
1220 case CSR_BANDWIDTH_AVAILABLE:
1221 case CSR_CHANNELS_AVAILABLE_HI:
1222 case CSR_CHANNELS_AVAILABLE_LO:
1223 handle_local_lock(ctx->ohci, packet, csr);
1224 break;
1225 default:
1226 if (ctx == &ctx->ohci->at_request_ctx)
1227 fw_core_handle_request(&ctx->ohci->card, packet);
1228 else
1229 fw_core_handle_response(&ctx->ohci->card, packet);
1230 break;
1233 if (ctx == &ctx->ohci->at_response_ctx) {
1234 packet->ack = ACK_COMPLETE;
1235 packet->callback(packet, &ctx->ohci->card, packet->ack);
1239 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1241 unsigned long flags;
1242 int ret;
1244 spin_lock_irqsave(&ctx->ohci->lock, flags);
1246 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1247 ctx->ohci->generation == packet->generation) {
1248 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1249 handle_local_request(ctx, packet);
1250 return;
1253 ret = at_context_queue_packet(ctx, packet);
1254 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1256 if (ret < 0)
1257 packet->callback(packet, &ctx->ohci->card, packet->ack);
1261 static void bus_reset_tasklet(unsigned long data)
1263 struct fw_ohci *ohci = (struct fw_ohci *)data;
1264 int self_id_count, i, j, reg;
1265 int generation, new_generation;
1266 unsigned long flags;
1267 void *free_rom = NULL;
1268 dma_addr_t free_rom_bus = 0;
1270 reg = reg_read(ohci, OHCI1394_NodeID);
1271 if (!(reg & OHCI1394_NodeID_idValid)) {
1272 fw_notify("node ID not valid, new bus reset in progress\n");
1273 return;
1275 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1276 fw_notify("malconfigured bus\n");
1277 return;
1279 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1280 OHCI1394_NodeID_nodeNumber);
1282 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1283 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1284 fw_notify("inconsistent self IDs\n");
1285 return;
1288 * The count in the SelfIDCount register is the number of
1289 * bytes in the self ID receive buffer. Since we also receive
1290 * the inverted quadlets and a header quadlet, we shift one
1291 * bit extra to get the actual number of self IDs.
1293 self_id_count = (reg >> 3) & 0xff;
1294 if (self_id_count == 0 || self_id_count > 252) {
1295 fw_notify("inconsistent self IDs\n");
1296 return;
1298 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1299 rmb();
1301 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1302 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1303 fw_notify("inconsistent self IDs\n");
1304 return;
1306 ohci->self_id_buffer[j] =
1307 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1309 rmb();
1312 * Check the consistency of the self IDs we just read. The
1313 * problem we face is that a new bus reset can start while we
1314 * read out the self IDs from the DMA buffer. If this happens,
1315 * the DMA buffer will be overwritten with new self IDs and we
1316 * will read out inconsistent data. The OHCI specification
1317 * (section 11.2) recommends a technique similar to
1318 * linux/seqlock.h, where we remember the generation of the
1319 * self IDs in the buffer before reading them out and compare
1320 * it to the current generation after reading them out. If
1321 * the two generations match we know we have a consistent set
1322 * of self IDs.
1325 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1326 if (new_generation != generation) {
1327 fw_notify("recursive bus reset detected, "
1328 "discarding self ids\n");
1329 return;
1332 /* FIXME: Document how the locking works. */
1333 spin_lock_irqsave(&ohci->lock, flags);
1335 ohci->generation = generation;
1336 context_stop(&ohci->at_request_ctx);
1337 context_stop(&ohci->at_response_ctx);
1338 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1340 if (ohci->quirks & QUIRK_RESET_PACKET)
1341 ohci->request_generation = generation;
1344 * This next bit is unrelated to the AT context stuff but we
1345 * have to do it under the spinlock also. If a new config rom
1346 * was set up before this reset, the old one is now no longer
1347 * in use and we can free it. Update the config rom pointers
1348 * to point to the current config rom and clear the
1349 * next_config_rom pointer so a new udpate can take place.
1352 if (ohci->next_config_rom != NULL) {
1353 if (ohci->next_config_rom != ohci->config_rom) {
1354 free_rom = ohci->config_rom;
1355 free_rom_bus = ohci->config_rom_bus;
1357 ohci->config_rom = ohci->next_config_rom;
1358 ohci->config_rom_bus = ohci->next_config_rom_bus;
1359 ohci->next_config_rom = NULL;
1362 * Restore config_rom image and manually update
1363 * config_rom registers. Writing the header quadlet
1364 * will indicate that the config rom is ready, so we
1365 * do that last.
1367 reg_write(ohci, OHCI1394_BusOptions,
1368 be32_to_cpu(ohci->config_rom[2]));
1369 ohci->config_rom[0] = ohci->next_header;
1370 reg_write(ohci, OHCI1394_ConfigROMhdr,
1371 be32_to_cpu(ohci->next_header));
1374 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1375 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1376 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1377 #endif
1379 spin_unlock_irqrestore(&ohci->lock, flags);
1381 if (free_rom)
1382 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1383 free_rom, free_rom_bus);
1385 log_selfids(ohci->node_id, generation,
1386 self_id_count, ohci->self_id_buffer);
1388 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1389 self_id_count, ohci->self_id_buffer);
1392 static irqreturn_t irq_handler(int irq, void *data)
1394 struct fw_ohci *ohci = data;
1395 u32 event, iso_event;
1396 int i;
1398 event = reg_read(ohci, OHCI1394_IntEventClear);
1400 if (!event || !~event)
1401 return IRQ_NONE;
1403 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1404 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1405 log_irqs(event);
1407 if (event & OHCI1394_selfIDComplete)
1408 tasklet_schedule(&ohci->bus_reset_tasklet);
1410 if (event & OHCI1394_RQPkt)
1411 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1413 if (event & OHCI1394_RSPkt)
1414 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1416 if (event & OHCI1394_reqTxComplete)
1417 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1419 if (event & OHCI1394_respTxComplete)
1420 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1422 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1423 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1425 while (iso_event) {
1426 i = ffs(iso_event) - 1;
1427 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1428 iso_event &= ~(1 << i);
1431 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1432 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1434 while (iso_event) {
1435 i = ffs(iso_event) - 1;
1436 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1437 iso_event &= ~(1 << i);
1440 if (unlikely(event & OHCI1394_regAccessFail))
1441 fw_error("Register access failure - "
1442 "please notify linux1394-devel@lists.sf.net\n");
1444 if (unlikely(event & OHCI1394_postedWriteErr))
1445 fw_error("PCI posted write error\n");
1447 if (unlikely(event & OHCI1394_cycleTooLong)) {
1448 if (printk_ratelimit())
1449 fw_notify("isochronous cycle too long\n");
1450 reg_write(ohci, OHCI1394_LinkControlSet,
1451 OHCI1394_LinkControl_cycleMaster);
1454 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1456 * We need to clear this event bit in order to make
1457 * cycleMatch isochronous I/O work. In theory we should
1458 * stop active cycleMatch iso contexts now and restart
1459 * them at least two cycles later. (FIXME?)
1461 if (printk_ratelimit())
1462 fw_notify("isochronous cycle inconsistent\n");
1465 return IRQ_HANDLED;
1468 static int software_reset(struct fw_ohci *ohci)
1470 int i;
1472 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1474 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1475 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1476 OHCI1394_HCControl_softReset) == 0)
1477 return 0;
1478 msleep(1);
1481 return -EBUSY;
1484 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1486 size_t size = length * 4;
1488 memcpy(dest, src, size);
1489 if (size < CONFIG_ROM_SIZE)
1490 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1493 static int ohci_enable(struct fw_card *card,
1494 const __be32 *config_rom, size_t length)
1496 struct fw_ohci *ohci = fw_ohci(card);
1497 struct pci_dev *dev = to_pci_dev(card->device);
1498 u32 lps;
1499 int i;
1501 if (software_reset(ohci)) {
1502 fw_error("Failed to reset ohci card.\n");
1503 return -EBUSY;
1507 * Now enable LPS, which we need in order to start accessing
1508 * most of the registers. In fact, on some cards (ALI M5251),
1509 * accessing registers in the SClk domain without LPS enabled
1510 * will lock up the machine. Wait 50msec to make sure we have
1511 * full link enabled. However, with some cards (well, at least
1512 * a JMicron PCIe card), we have to try again sometimes.
1514 reg_write(ohci, OHCI1394_HCControlSet,
1515 OHCI1394_HCControl_LPS |
1516 OHCI1394_HCControl_postedWriteEnable);
1517 flush_writes(ohci);
1519 for (lps = 0, i = 0; !lps && i < 3; i++) {
1520 msleep(50);
1521 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1522 OHCI1394_HCControl_LPS;
1525 if (!lps) {
1526 fw_error("Failed to set Link Power Status\n");
1527 return -EIO;
1530 reg_write(ohci, OHCI1394_HCControlClear,
1531 OHCI1394_HCControl_noByteSwapData);
1533 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1534 reg_write(ohci, OHCI1394_LinkControlClear,
1535 OHCI1394_LinkControl_rcvPhyPkt);
1536 reg_write(ohci, OHCI1394_LinkControlSet,
1537 OHCI1394_LinkControl_rcvSelfID |
1538 OHCI1394_LinkControl_cycleTimerEnable |
1539 OHCI1394_LinkControl_cycleMaster);
1541 reg_write(ohci, OHCI1394_ATRetries,
1542 OHCI1394_MAX_AT_REQ_RETRIES |
1543 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1544 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1546 ar_context_run(&ohci->ar_request_ctx);
1547 ar_context_run(&ohci->ar_response_ctx);
1549 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1550 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1551 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1552 reg_write(ohci, OHCI1394_IntMaskSet,
1553 OHCI1394_selfIDComplete |
1554 OHCI1394_RQPkt | OHCI1394_RSPkt |
1555 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1556 OHCI1394_isochRx | OHCI1394_isochTx |
1557 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1558 OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1559 OHCI1394_masterIntEnable);
1560 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1561 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1563 /* Activate link_on bit and contender bit in our self ID packets.*/
1564 if (ohci_update_phy_reg(card, 4, 0,
1565 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1566 return -EIO;
1569 * When the link is not yet enabled, the atomic config rom
1570 * update mechanism described below in ohci_set_config_rom()
1571 * is not active. We have to update ConfigRomHeader and
1572 * BusOptions manually, and the write to ConfigROMmap takes
1573 * effect immediately. We tie this to the enabling of the
1574 * link, so we have a valid config rom before enabling - the
1575 * OHCI requires that ConfigROMhdr and BusOptions have valid
1576 * values before enabling.
1578 * However, when the ConfigROMmap is written, some controllers
1579 * always read back quadlets 0 and 2 from the config rom to
1580 * the ConfigRomHeader and BusOptions registers on bus reset.
1581 * They shouldn't do that in this initial case where the link
1582 * isn't enabled. This means we have to use the same
1583 * workaround here, setting the bus header to 0 and then write
1584 * the right values in the bus reset tasklet.
1587 if (config_rom) {
1588 ohci->next_config_rom =
1589 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1590 &ohci->next_config_rom_bus,
1591 GFP_KERNEL);
1592 if (ohci->next_config_rom == NULL)
1593 return -ENOMEM;
1595 copy_config_rom(ohci->next_config_rom, config_rom, length);
1596 } else {
1598 * In the suspend case, config_rom is NULL, which
1599 * means that we just reuse the old config rom.
1601 ohci->next_config_rom = ohci->config_rom;
1602 ohci->next_config_rom_bus = ohci->config_rom_bus;
1605 ohci->next_header = ohci->next_config_rom[0];
1606 ohci->next_config_rom[0] = 0;
1607 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1608 reg_write(ohci, OHCI1394_BusOptions,
1609 be32_to_cpu(ohci->next_config_rom[2]));
1610 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1612 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1614 if (request_irq(dev->irq, irq_handler,
1615 IRQF_SHARED, ohci_driver_name, ohci)) {
1616 fw_error("Failed to allocate shared interrupt %d.\n",
1617 dev->irq);
1618 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1619 ohci->config_rom, ohci->config_rom_bus);
1620 return -EIO;
1623 reg_write(ohci, OHCI1394_HCControlSet,
1624 OHCI1394_HCControl_linkEnable |
1625 OHCI1394_HCControl_BIBimageValid);
1626 flush_writes(ohci);
1629 * We are ready to go, initiate bus reset to finish the
1630 * initialization.
1633 fw_core_initiate_bus_reset(&ohci->card, 1);
1635 return 0;
1638 static int ohci_set_config_rom(struct fw_card *card,
1639 const __be32 *config_rom, size_t length)
1641 struct fw_ohci *ohci;
1642 unsigned long flags;
1643 int ret = -EBUSY;
1644 __be32 *next_config_rom;
1645 dma_addr_t uninitialized_var(next_config_rom_bus);
1647 ohci = fw_ohci(card);
1650 * When the OHCI controller is enabled, the config rom update
1651 * mechanism is a bit tricky, but easy enough to use. See
1652 * section 5.5.6 in the OHCI specification.
1654 * The OHCI controller caches the new config rom address in a
1655 * shadow register (ConfigROMmapNext) and needs a bus reset
1656 * for the changes to take place. When the bus reset is
1657 * detected, the controller loads the new values for the
1658 * ConfigRomHeader and BusOptions registers from the specified
1659 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1660 * shadow register. All automatically and atomically.
1662 * Now, there's a twist to this story. The automatic load of
1663 * ConfigRomHeader and BusOptions doesn't honor the
1664 * noByteSwapData bit, so with a be32 config rom, the
1665 * controller will load be32 values in to these registers
1666 * during the atomic update, even on litte endian
1667 * architectures. The workaround we use is to put a 0 in the
1668 * header quadlet; 0 is endian agnostic and means that the
1669 * config rom isn't ready yet. In the bus reset tasklet we
1670 * then set up the real values for the two registers.
1672 * We use ohci->lock to avoid racing with the code that sets
1673 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1676 next_config_rom =
1677 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1678 &next_config_rom_bus, GFP_KERNEL);
1679 if (next_config_rom == NULL)
1680 return -ENOMEM;
1682 spin_lock_irqsave(&ohci->lock, flags);
1684 if (ohci->next_config_rom == NULL) {
1685 ohci->next_config_rom = next_config_rom;
1686 ohci->next_config_rom_bus = next_config_rom_bus;
1688 copy_config_rom(ohci->next_config_rom, config_rom, length);
1690 ohci->next_header = config_rom[0];
1691 ohci->next_config_rom[0] = 0;
1693 reg_write(ohci, OHCI1394_ConfigROMmap,
1694 ohci->next_config_rom_bus);
1695 ret = 0;
1698 spin_unlock_irqrestore(&ohci->lock, flags);
1701 * Now initiate a bus reset to have the changes take
1702 * effect. We clean up the old config rom memory and DMA
1703 * mappings in the bus reset tasklet, since the OHCI
1704 * controller could need to access it before the bus reset
1705 * takes effect.
1707 if (ret == 0)
1708 fw_core_initiate_bus_reset(&ohci->card, 1);
1709 else
1710 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1711 next_config_rom, next_config_rom_bus);
1713 return ret;
1716 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1718 struct fw_ohci *ohci = fw_ohci(card);
1720 at_context_transmit(&ohci->at_request_ctx, packet);
1723 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1725 struct fw_ohci *ohci = fw_ohci(card);
1727 at_context_transmit(&ohci->at_response_ctx, packet);
1730 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1732 struct fw_ohci *ohci = fw_ohci(card);
1733 struct context *ctx = &ohci->at_request_ctx;
1734 struct driver_data *driver_data = packet->driver_data;
1735 int ret = -ENOENT;
1737 tasklet_disable(&ctx->tasklet);
1739 if (packet->ack != 0)
1740 goto out;
1742 if (packet->payload_mapped)
1743 dma_unmap_single(ohci->card.device, packet->payload_bus,
1744 packet->payload_length, DMA_TO_DEVICE);
1746 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1747 driver_data->packet = NULL;
1748 packet->ack = RCODE_CANCELLED;
1749 packet->callback(packet, &ohci->card, packet->ack);
1750 ret = 0;
1751 out:
1752 tasklet_enable(&ctx->tasklet);
1754 return ret;
1757 static int ohci_enable_phys_dma(struct fw_card *card,
1758 int node_id, int generation)
1760 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1761 return 0;
1762 #else
1763 struct fw_ohci *ohci = fw_ohci(card);
1764 unsigned long flags;
1765 int n, ret = 0;
1768 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1769 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1772 spin_lock_irqsave(&ohci->lock, flags);
1774 if (ohci->generation != generation) {
1775 ret = -ESTALE;
1776 goto out;
1780 * Note, if the node ID contains a non-local bus ID, physical DMA is
1781 * enabled for _all_ nodes on remote buses.
1784 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1785 if (n < 32)
1786 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1787 else
1788 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1790 flush_writes(ohci);
1791 out:
1792 spin_unlock_irqrestore(&ohci->lock, flags);
1794 return ret;
1795 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1798 static u32 cycle_timer_ticks(u32 cycle_timer)
1800 u32 ticks;
1802 ticks = cycle_timer & 0xfff;
1803 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1804 ticks += (3072 * 8000) * (cycle_timer >> 25);
1806 return ticks;
1810 * Some controllers exhibit one or more of the following bugs when updating the
1811 * iso cycle timer register:
1812 * - When the lowest six bits are wrapping around to zero, a read that happens
1813 * at the same time will return garbage in the lowest ten bits.
1814 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1815 * not incremented for about 60 ns.
1816 * - Occasionally, the entire register reads zero.
1818 * To catch these, we read the register three times and ensure that the
1819 * difference between each two consecutive reads is approximately the same, i.e.
1820 * less than twice the other. Furthermore, any negative difference indicates an
1821 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1822 * execute, so we have enough precision to compute the ratio of the differences.)
1824 static u32 ohci_get_cycle_time(struct fw_card *card)
1826 struct fw_ohci *ohci = fw_ohci(card);
1827 u32 c0, c1, c2;
1828 u32 t0, t1, t2;
1829 s32 diff01, diff12;
1830 int i;
1832 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1834 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1835 i = 0;
1836 c1 = c2;
1837 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1838 do {
1839 c0 = c1;
1840 c1 = c2;
1841 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1842 t0 = cycle_timer_ticks(c0);
1843 t1 = cycle_timer_ticks(c1);
1844 t2 = cycle_timer_ticks(c2);
1845 diff01 = t1 - t0;
1846 diff12 = t2 - t1;
1847 } while ((diff01 <= 0 || diff12 <= 0 ||
1848 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1849 && i++ < 20);
1852 return c2;
1855 static void copy_iso_headers(struct iso_context *ctx, void *p)
1857 int i = ctx->header_length;
1859 if (i + ctx->base.header_size > PAGE_SIZE)
1860 return;
1863 * The iso header is byteswapped to little endian by
1864 * the controller, but the remaining header quadlets
1865 * are big endian. We want to present all the headers
1866 * as big endian, so we have to swap the first quadlet.
1868 if (ctx->base.header_size > 0)
1869 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1870 if (ctx->base.header_size > 4)
1871 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1872 if (ctx->base.header_size > 8)
1873 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1874 ctx->header_length += ctx->base.header_size;
1877 static int handle_ir_packet_per_buffer(struct context *context,
1878 struct descriptor *d,
1879 struct descriptor *last)
1881 struct iso_context *ctx =
1882 container_of(context, struct iso_context, context);
1883 struct descriptor *pd;
1884 __le32 *ir_header;
1885 void *p;
1887 for (pd = d; pd <= last; pd++) {
1888 if (pd->transfer_status)
1889 break;
1891 if (pd > last)
1892 /* Descriptor(s) not done yet, stop iteration */
1893 return 0;
1895 p = last + 1;
1896 copy_iso_headers(ctx, p);
1898 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1899 ir_header = (__le32 *) p;
1900 ctx->base.callback(&ctx->base,
1901 le32_to_cpu(ir_header[0]) & 0xffff,
1902 ctx->header_length, ctx->header,
1903 ctx->base.callback_data);
1904 ctx->header_length = 0;
1907 return 1;
1910 static int handle_it_packet(struct context *context,
1911 struct descriptor *d,
1912 struct descriptor *last)
1914 struct iso_context *ctx =
1915 container_of(context, struct iso_context, context);
1916 int i;
1917 struct descriptor *pd;
1919 for (pd = d; pd <= last; pd++)
1920 if (pd->transfer_status)
1921 break;
1922 if (pd > last)
1923 /* Descriptor(s) not done yet, stop iteration */
1924 return 0;
1926 i = ctx->header_length;
1927 if (i + 4 < PAGE_SIZE) {
1928 /* Present this value as big-endian to match the receive code */
1929 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1930 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1931 le16_to_cpu(pd->res_count));
1932 ctx->header_length += 4;
1934 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1935 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1936 ctx->header_length, ctx->header,
1937 ctx->base.callback_data);
1938 ctx->header_length = 0;
1940 return 1;
1943 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1944 int type, int channel, size_t header_size)
1946 struct fw_ohci *ohci = fw_ohci(card);
1947 struct iso_context *ctx, *list;
1948 descriptor_callback_t callback;
1949 u64 *channels, dont_care = ~0ULL;
1950 u32 *mask, regs;
1951 unsigned long flags;
1952 int index, ret = -ENOMEM;
1954 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1955 channels = &dont_care;
1956 mask = &ohci->it_context_mask;
1957 list = ohci->it_context_list;
1958 callback = handle_it_packet;
1959 } else {
1960 channels = &ohci->ir_context_channels;
1961 mask = &ohci->ir_context_mask;
1962 list = ohci->ir_context_list;
1963 callback = handle_ir_packet_per_buffer;
1966 spin_lock_irqsave(&ohci->lock, flags);
1967 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1968 if (index >= 0) {
1969 *channels &= ~(1ULL << channel);
1970 *mask &= ~(1 << index);
1972 spin_unlock_irqrestore(&ohci->lock, flags);
1974 if (index < 0)
1975 return ERR_PTR(-EBUSY);
1977 if (type == FW_ISO_CONTEXT_TRANSMIT)
1978 regs = OHCI1394_IsoXmitContextBase(index);
1979 else
1980 regs = OHCI1394_IsoRcvContextBase(index);
1982 ctx = &list[index];
1983 memset(ctx, 0, sizeof(*ctx));
1984 ctx->header_length = 0;
1985 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1986 if (ctx->header == NULL)
1987 goto out;
1989 ret = context_init(&ctx->context, ohci, regs, callback);
1990 if (ret < 0)
1991 goto out_with_header;
1993 return &ctx->base;
1995 out_with_header:
1996 free_page((unsigned long)ctx->header);
1997 out:
1998 spin_lock_irqsave(&ohci->lock, flags);
1999 *mask |= 1 << index;
2000 spin_unlock_irqrestore(&ohci->lock, flags);
2002 return ERR_PTR(ret);
2005 static int ohci_start_iso(struct fw_iso_context *base,
2006 s32 cycle, u32 sync, u32 tags)
2008 struct iso_context *ctx = container_of(base, struct iso_context, base);
2009 struct fw_ohci *ohci = ctx->context.ohci;
2010 u32 control, match;
2011 int index;
2013 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2014 index = ctx - ohci->it_context_list;
2015 match = 0;
2016 if (cycle >= 0)
2017 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2018 (cycle & 0x7fff) << 16;
2020 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2021 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2022 context_run(&ctx->context, match);
2023 } else {
2024 index = ctx - ohci->ir_context_list;
2025 control = IR_CONTEXT_ISOCH_HEADER;
2026 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2027 if (cycle >= 0) {
2028 match |= (cycle & 0x07fff) << 12;
2029 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2032 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2033 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2034 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2035 context_run(&ctx->context, control);
2038 return 0;
2041 static int ohci_stop_iso(struct fw_iso_context *base)
2043 struct fw_ohci *ohci = fw_ohci(base->card);
2044 struct iso_context *ctx = container_of(base, struct iso_context, base);
2045 int index;
2047 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2048 index = ctx - ohci->it_context_list;
2049 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2050 } else {
2051 index = ctx - ohci->ir_context_list;
2052 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2054 flush_writes(ohci);
2055 context_stop(&ctx->context);
2057 return 0;
2060 static void ohci_free_iso_context(struct fw_iso_context *base)
2062 struct fw_ohci *ohci = fw_ohci(base->card);
2063 struct iso_context *ctx = container_of(base, struct iso_context, base);
2064 unsigned long flags;
2065 int index;
2067 ohci_stop_iso(base);
2068 context_release(&ctx->context);
2069 free_page((unsigned long)ctx->header);
2071 spin_lock_irqsave(&ohci->lock, flags);
2073 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2074 index = ctx - ohci->it_context_list;
2075 ohci->it_context_mask |= 1 << index;
2076 } else {
2077 index = ctx - ohci->ir_context_list;
2078 ohci->ir_context_mask |= 1 << index;
2079 ohci->ir_context_channels |= 1ULL << base->channel;
2082 spin_unlock_irqrestore(&ohci->lock, flags);
2085 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2086 struct fw_iso_packet *packet,
2087 struct fw_iso_buffer *buffer,
2088 unsigned long payload)
2090 struct iso_context *ctx = container_of(base, struct iso_context, base);
2091 struct descriptor *d, *last, *pd;
2092 struct fw_iso_packet *p;
2093 __le32 *header;
2094 dma_addr_t d_bus, page_bus;
2095 u32 z, header_z, payload_z, irq;
2096 u32 payload_index, payload_end_index, next_page_index;
2097 int page, end_page, i, length, offset;
2099 p = packet;
2100 payload_index = payload;
2102 if (p->skip)
2103 z = 1;
2104 else
2105 z = 2;
2106 if (p->header_length > 0)
2107 z++;
2109 /* Determine the first page the payload isn't contained in. */
2110 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2111 if (p->payload_length > 0)
2112 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2113 else
2114 payload_z = 0;
2116 z += payload_z;
2118 /* Get header size in number of descriptors. */
2119 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2121 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2122 if (d == NULL)
2123 return -ENOMEM;
2125 if (!p->skip) {
2126 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2127 d[0].req_count = cpu_to_le16(8);
2129 * Link the skip address to this descriptor itself. This causes
2130 * a context to skip a cycle whenever lost cycles or FIFO
2131 * overruns occur, without dropping the data. The application
2132 * should then decide whether this is an error condition or not.
2133 * FIXME: Make the context's cycle-lost behaviour configurable?
2135 d[0].branch_address = cpu_to_le32(d_bus | z);
2137 header = (__le32 *) &d[1];
2138 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2139 IT_HEADER_TAG(p->tag) |
2140 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2141 IT_HEADER_CHANNEL(ctx->base.channel) |
2142 IT_HEADER_SPEED(ctx->base.speed));
2143 header[1] =
2144 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2145 p->payload_length));
2148 if (p->header_length > 0) {
2149 d[2].req_count = cpu_to_le16(p->header_length);
2150 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2151 memcpy(&d[z], p->header, p->header_length);
2154 pd = d + z - payload_z;
2155 payload_end_index = payload_index + p->payload_length;
2156 for (i = 0; i < payload_z; i++) {
2157 page = payload_index >> PAGE_SHIFT;
2158 offset = payload_index & ~PAGE_MASK;
2159 next_page_index = (page + 1) << PAGE_SHIFT;
2160 length =
2161 min(next_page_index, payload_end_index) - payload_index;
2162 pd[i].req_count = cpu_to_le16(length);
2164 page_bus = page_private(buffer->pages[page]);
2165 pd[i].data_address = cpu_to_le32(page_bus + offset);
2167 payload_index += length;
2170 if (p->interrupt)
2171 irq = DESCRIPTOR_IRQ_ALWAYS;
2172 else
2173 irq = DESCRIPTOR_NO_IRQ;
2175 last = z == 2 ? d : d + z - 1;
2176 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2177 DESCRIPTOR_STATUS |
2178 DESCRIPTOR_BRANCH_ALWAYS |
2179 irq);
2181 context_append(&ctx->context, d, z, header_z);
2183 return 0;
2186 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2187 struct fw_iso_packet *packet,
2188 struct fw_iso_buffer *buffer,
2189 unsigned long payload)
2191 struct iso_context *ctx = container_of(base, struct iso_context, base);
2192 struct descriptor *d, *pd;
2193 struct fw_iso_packet *p = packet;
2194 dma_addr_t d_bus, page_bus;
2195 u32 z, header_z, rest;
2196 int i, j, length;
2197 int page, offset, packet_count, header_size, payload_per_buffer;
2200 * The OHCI controller puts the isochronous header and trailer in the
2201 * buffer, so we need at least 8 bytes.
2203 packet_count = p->header_length / ctx->base.header_size;
2204 header_size = max(ctx->base.header_size, (size_t)8);
2206 /* Get header size in number of descriptors. */
2207 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2208 page = payload >> PAGE_SHIFT;
2209 offset = payload & ~PAGE_MASK;
2210 payload_per_buffer = p->payload_length / packet_count;
2212 for (i = 0; i < packet_count; i++) {
2213 /* d points to the header descriptor */
2214 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2215 d = context_get_descriptors(&ctx->context,
2216 z + header_z, &d_bus);
2217 if (d == NULL)
2218 return -ENOMEM;
2220 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2221 DESCRIPTOR_INPUT_MORE);
2222 if (p->skip && i == 0)
2223 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2224 d->req_count = cpu_to_le16(header_size);
2225 d->res_count = d->req_count;
2226 d->transfer_status = 0;
2227 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2229 rest = payload_per_buffer;
2230 pd = d;
2231 for (j = 1; j < z; j++) {
2232 pd++;
2233 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2234 DESCRIPTOR_INPUT_MORE);
2236 if (offset + rest < PAGE_SIZE)
2237 length = rest;
2238 else
2239 length = PAGE_SIZE - offset;
2240 pd->req_count = cpu_to_le16(length);
2241 pd->res_count = pd->req_count;
2242 pd->transfer_status = 0;
2244 page_bus = page_private(buffer->pages[page]);
2245 pd->data_address = cpu_to_le32(page_bus + offset);
2247 offset = (offset + length) & ~PAGE_MASK;
2248 rest -= length;
2249 if (offset == 0)
2250 page++;
2252 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2253 DESCRIPTOR_INPUT_LAST |
2254 DESCRIPTOR_BRANCH_ALWAYS);
2255 if (p->interrupt && i == packet_count - 1)
2256 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2258 context_append(&ctx->context, d, z, header_z);
2261 return 0;
2264 static int ohci_queue_iso(struct fw_iso_context *base,
2265 struct fw_iso_packet *packet,
2266 struct fw_iso_buffer *buffer,
2267 unsigned long payload)
2269 struct iso_context *ctx = container_of(base, struct iso_context, base);
2270 unsigned long flags;
2271 int ret;
2273 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2274 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2275 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2276 else
2277 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2278 buffer, payload);
2279 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2281 return ret;
2284 static const struct fw_card_driver ohci_driver = {
2285 .enable = ohci_enable,
2286 .update_phy_reg = ohci_update_phy_reg,
2287 .set_config_rom = ohci_set_config_rom,
2288 .send_request = ohci_send_request,
2289 .send_response = ohci_send_response,
2290 .cancel_packet = ohci_cancel_packet,
2291 .enable_phys_dma = ohci_enable_phys_dma,
2292 .get_cycle_time = ohci_get_cycle_time,
2294 .allocate_iso_context = ohci_allocate_iso_context,
2295 .free_iso_context = ohci_free_iso_context,
2296 .queue_iso = ohci_queue_iso,
2297 .start_iso = ohci_start_iso,
2298 .stop_iso = ohci_stop_iso,
2301 #ifdef CONFIG_PPC_PMAC
2302 static void ohci_pmac_on(struct pci_dev *dev)
2304 if (machine_is(powermac)) {
2305 struct device_node *ofn = pci_device_to_OF_node(dev);
2307 if (ofn) {
2308 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2309 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2314 static void ohci_pmac_off(struct pci_dev *dev)
2316 if (machine_is(powermac)) {
2317 struct device_node *ofn = pci_device_to_OF_node(dev);
2319 if (ofn) {
2320 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2321 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2325 #else
2326 #define ohci_pmac_on(dev)
2327 #define ohci_pmac_off(dev)
2328 #endif /* CONFIG_PPC_PMAC */
2330 static int __devinit pci_probe(struct pci_dev *dev,
2331 const struct pci_device_id *ent)
2333 struct fw_ohci *ohci;
2334 u32 bus_options, max_receive, link_speed, version;
2335 u64 guid;
2336 int i, err, n_ir, n_it;
2337 size_t size;
2339 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2340 if (ohci == NULL) {
2341 err = -ENOMEM;
2342 goto fail;
2345 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2347 ohci_pmac_on(dev);
2349 err = pci_enable_device(dev);
2350 if (err) {
2351 fw_error("Failed to enable OHCI hardware\n");
2352 goto fail_free;
2355 pci_set_master(dev);
2356 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2357 pci_set_drvdata(dev, ohci);
2359 spin_lock_init(&ohci->lock);
2361 tasklet_init(&ohci->bus_reset_tasklet,
2362 bus_reset_tasklet, (unsigned long)ohci);
2364 err = pci_request_region(dev, 0, ohci_driver_name);
2365 if (err) {
2366 fw_error("MMIO resource unavailable\n");
2367 goto fail_disable;
2370 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2371 if (ohci->registers == NULL) {
2372 fw_error("Failed to remap registers\n");
2373 err = -ENXIO;
2374 goto fail_iomem;
2377 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2378 if (ohci_quirks[i].vendor == dev->vendor &&
2379 (ohci_quirks[i].device == dev->device ||
2380 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2381 ohci->quirks = ohci_quirks[i].flags;
2382 break;
2384 if (param_quirks)
2385 ohci->quirks = param_quirks;
2387 ar_context_init(&ohci->ar_request_ctx, ohci,
2388 OHCI1394_AsReqRcvContextControlSet);
2390 ar_context_init(&ohci->ar_response_ctx, ohci,
2391 OHCI1394_AsRspRcvContextControlSet);
2393 context_init(&ohci->at_request_ctx, ohci,
2394 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2396 context_init(&ohci->at_response_ctx, ohci,
2397 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2399 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2400 ohci->ir_context_channels = ~0ULL;
2401 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2402 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2403 n_ir = hweight32(ohci->ir_context_mask);
2404 size = sizeof(struct iso_context) * n_ir;
2405 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2407 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2408 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2409 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2410 n_it = hweight32(ohci->it_context_mask);
2411 size = sizeof(struct iso_context) * n_it;
2412 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2414 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2415 err = -ENOMEM;
2416 goto fail_contexts;
2419 /* self-id dma buffer allocation */
2420 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2421 SELF_ID_BUF_SIZE,
2422 &ohci->self_id_bus,
2423 GFP_KERNEL);
2424 if (ohci->self_id_cpu == NULL) {
2425 err = -ENOMEM;
2426 goto fail_contexts;
2429 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2430 max_receive = (bus_options >> 12) & 0xf;
2431 link_speed = bus_options & 0x7;
2432 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2433 reg_read(ohci, OHCI1394_GUIDLo);
2435 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2436 if (err)
2437 goto fail_self_id;
2439 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2440 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2441 "%d IR + %d IT contexts, quirks 0x%x\n",
2442 dev_name(&dev->dev), version >> 16, version & 0xff,
2443 n_ir, n_it, ohci->quirks);
2445 return 0;
2447 fail_self_id:
2448 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2449 ohci->self_id_cpu, ohci->self_id_bus);
2450 fail_contexts:
2451 kfree(ohci->ir_context_list);
2452 kfree(ohci->it_context_list);
2453 context_release(&ohci->at_response_ctx);
2454 context_release(&ohci->at_request_ctx);
2455 ar_context_release(&ohci->ar_response_ctx);
2456 ar_context_release(&ohci->ar_request_ctx);
2457 pci_iounmap(dev, ohci->registers);
2458 fail_iomem:
2459 pci_release_region(dev, 0);
2460 fail_disable:
2461 pci_disable_device(dev);
2462 fail_free:
2463 kfree(&ohci->card);
2464 ohci_pmac_off(dev);
2465 fail:
2466 if (err == -ENOMEM)
2467 fw_error("Out of memory\n");
2469 return err;
2472 static void pci_remove(struct pci_dev *dev)
2474 struct fw_ohci *ohci;
2476 ohci = pci_get_drvdata(dev);
2477 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2478 flush_writes(ohci);
2479 fw_core_remove_card(&ohci->card);
2482 * FIXME: Fail all pending packets here, now that the upper
2483 * layers can't queue any more.
2486 software_reset(ohci);
2487 free_irq(dev->irq, ohci);
2489 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2490 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2491 ohci->next_config_rom, ohci->next_config_rom_bus);
2492 if (ohci->config_rom)
2493 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2494 ohci->config_rom, ohci->config_rom_bus);
2495 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2496 ohci->self_id_cpu, ohci->self_id_bus);
2497 ar_context_release(&ohci->ar_request_ctx);
2498 ar_context_release(&ohci->ar_response_ctx);
2499 context_release(&ohci->at_request_ctx);
2500 context_release(&ohci->at_response_ctx);
2501 kfree(ohci->it_context_list);
2502 kfree(ohci->ir_context_list);
2503 pci_iounmap(dev, ohci->registers);
2504 pci_release_region(dev, 0);
2505 pci_disable_device(dev);
2506 kfree(&ohci->card);
2507 ohci_pmac_off(dev);
2509 fw_notify("Removed fw-ohci device.\n");
2512 #ifdef CONFIG_PM
2513 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2515 struct fw_ohci *ohci = pci_get_drvdata(dev);
2516 int err;
2518 software_reset(ohci);
2519 free_irq(dev->irq, ohci);
2520 err = pci_save_state(dev);
2521 if (err) {
2522 fw_error("pci_save_state failed\n");
2523 return err;
2525 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2526 if (err)
2527 fw_error("pci_set_power_state failed with %d\n", err);
2528 ohci_pmac_off(dev);
2530 return 0;
2533 static int pci_resume(struct pci_dev *dev)
2535 struct fw_ohci *ohci = pci_get_drvdata(dev);
2536 int err;
2538 ohci_pmac_on(dev);
2539 pci_set_power_state(dev, PCI_D0);
2540 pci_restore_state(dev);
2541 err = pci_enable_device(dev);
2542 if (err) {
2543 fw_error("pci_enable_device failed\n");
2544 return err;
2547 return ohci_enable(&ohci->card, NULL, 0);
2549 #endif
2551 static const struct pci_device_id pci_table[] = {
2552 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2556 MODULE_DEVICE_TABLE(pci, pci_table);
2558 static struct pci_driver fw_ohci_pci_driver = {
2559 .name = ohci_driver_name,
2560 .id_table = pci_table,
2561 .probe = pci_probe,
2562 .remove = pci_remove,
2563 #ifdef CONFIG_PM
2564 .resume = pci_resume,
2565 .suspend = pci_suspend,
2566 #endif
2569 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2570 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2571 MODULE_LICENSE("GPL");
2573 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2574 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2575 MODULE_ALIAS("ohci1394");
2576 #endif
2578 static int __init fw_ohci_init(void)
2580 return pci_register_driver(&fw_ohci_pci_driver);
2583 static void __exit fw_ohci_cleanup(void)
2585 pci_unregister_driver(&fw_ohci_pci_driver);
2588 module_init(fw_ohci_init);
2589 module_exit(fw_ohci_cleanup);