Linux 2.6.39-rc2
[pohmelfs.git] / arch / powerpc / kernel / perf_event.c
blob97e0ae414940ee30c6a0a297f9c15dd53b5a0470
1 /*
2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
39 unsigned int group_flag;
40 int n_txn_start;
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
44 struct power_pmu *ppmu;
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
59 #ifdef CONFIG_PPC32
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
69 return 0;
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
74 return 0;
76 static inline void perf_read_regs(struct pt_regs *regs) { }
77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
79 return 0;
82 #endif /* CONFIG_PPC32 */
85 * Things that are specific to 64-bit implementations.
87 #ifdef CONFIG_PPC64
89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
91 unsigned long mmcra = regs->dsisr;
93 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 if (slot > 1)
96 return 4 * (slot - 1);
98 return 0;
102 * The user wants a data address recorded.
103 * If we're not doing instruction sampling, give them the SDAR
104 * (sampled data address). If we are doing instruction sampling, then
105 * only give them the SDAR if it corresponds to the instruction
106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107 * bit in MMCRA.
109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
111 unsigned long mmcra = regs->dsisr;
112 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
115 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 *addrp = mfspr(SPRN_SDAR);
119 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
121 unsigned long mmcra = regs->dsisr;
122 unsigned long sihv = MMCRA_SIHV;
123 unsigned long sipr = MMCRA_SIPR;
125 if (TRAP(regs) != 0xf00)
126 return 0; /* not a PMU interrupt */
128 if (ppmu->flags & PPMU_ALT_SIPR) {
129 sihv = POWER6_MMCRA_SIHV;
130 sipr = POWER6_MMCRA_SIPR;
133 /* PR has priority over HV, so order below is important */
134 if (mmcra & sipr)
135 return PERF_RECORD_MISC_USER;
136 if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
137 return PERF_RECORD_MISC_HYPERVISOR;
138 return PERF_RECORD_MISC_KERNEL;
142 * Overload regs->dsisr to store MMCRA so we only need to read it once
143 * on each interrupt.
145 static inline void perf_read_regs(struct pt_regs *regs)
147 regs->dsisr = mfspr(SPRN_MMCRA);
151 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
152 * it as an NMI.
154 static inline int perf_intr_is_nmi(struct pt_regs *regs)
156 return !regs->softe;
159 #endif /* CONFIG_PPC64 */
161 static void perf_event_interrupt(struct pt_regs *regs);
163 void perf_event_print_debug(void)
168 * Read one performance monitor counter (PMC).
170 static unsigned long read_pmc(int idx)
172 unsigned long val;
174 switch (idx) {
175 case 1:
176 val = mfspr(SPRN_PMC1);
177 break;
178 case 2:
179 val = mfspr(SPRN_PMC2);
180 break;
181 case 3:
182 val = mfspr(SPRN_PMC3);
183 break;
184 case 4:
185 val = mfspr(SPRN_PMC4);
186 break;
187 case 5:
188 val = mfspr(SPRN_PMC5);
189 break;
190 case 6:
191 val = mfspr(SPRN_PMC6);
192 break;
193 #ifdef CONFIG_PPC64
194 case 7:
195 val = mfspr(SPRN_PMC7);
196 break;
197 case 8:
198 val = mfspr(SPRN_PMC8);
199 break;
200 #endif /* CONFIG_PPC64 */
201 default:
202 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
203 val = 0;
205 return val;
209 * Write one PMC.
211 static void write_pmc(int idx, unsigned long val)
213 switch (idx) {
214 case 1:
215 mtspr(SPRN_PMC1, val);
216 break;
217 case 2:
218 mtspr(SPRN_PMC2, val);
219 break;
220 case 3:
221 mtspr(SPRN_PMC3, val);
222 break;
223 case 4:
224 mtspr(SPRN_PMC4, val);
225 break;
226 case 5:
227 mtspr(SPRN_PMC5, val);
228 break;
229 case 6:
230 mtspr(SPRN_PMC6, val);
231 break;
232 #ifdef CONFIG_PPC64
233 case 7:
234 mtspr(SPRN_PMC7, val);
235 break;
236 case 8:
237 mtspr(SPRN_PMC8, val);
238 break;
239 #endif /* CONFIG_PPC64 */
240 default:
241 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
246 * Check if a set of events can all go on the PMU at once.
247 * If they can't, this will look at alternative codes for the events
248 * and see if any combination of alternative codes is feasible.
249 * The feasible set is returned in event_id[].
251 static int power_check_constraints(struct cpu_hw_events *cpuhw,
252 u64 event_id[], unsigned int cflags[],
253 int n_ev)
255 unsigned long mask, value, nv;
256 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
257 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
258 int i, j;
259 unsigned long addf = ppmu->add_fields;
260 unsigned long tadd = ppmu->test_adder;
262 if (n_ev > ppmu->n_counter)
263 return -1;
265 /* First see if the events will go on as-is */
266 for (i = 0; i < n_ev; ++i) {
267 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
268 && !ppmu->limited_pmc_event(event_id[i])) {
269 ppmu->get_alternatives(event_id[i], cflags[i],
270 cpuhw->alternatives[i]);
271 event_id[i] = cpuhw->alternatives[i][0];
273 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
274 &cpuhw->avalues[i][0]))
275 return -1;
277 value = mask = 0;
278 for (i = 0; i < n_ev; ++i) {
279 nv = (value | cpuhw->avalues[i][0]) +
280 (value & cpuhw->avalues[i][0] & addf);
281 if ((((nv + tadd) ^ value) & mask) != 0 ||
282 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
283 cpuhw->amasks[i][0]) != 0)
284 break;
285 value = nv;
286 mask |= cpuhw->amasks[i][0];
288 if (i == n_ev)
289 return 0; /* all OK */
291 /* doesn't work, gather alternatives... */
292 if (!ppmu->get_alternatives)
293 return -1;
294 for (i = 0; i < n_ev; ++i) {
295 choice[i] = 0;
296 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
297 cpuhw->alternatives[i]);
298 for (j = 1; j < n_alt[i]; ++j)
299 ppmu->get_constraint(cpuhw->alternatives[i][j],
300 &cpuhw->amasks[i][j],
301 &cpuhw->avalues[i][j]);
304 /* enumerate all possibilities and see if any will work */
305 i = 0;
306 j = -1;
307 value = mask = nv = 0;
308 while (i < n_ev) {
309 if (j >= 0) {
310 /* we're backtracking, restore context */
311 value = svalues[i];
312 mask = smasks[i];
313 j = choice[i];
316 * See if any alternative k for event_id i,
317 * where k > j, will satisfy the constraints.
319 while (++j < n_alt[i]) {
320 nv = (value | cpuhw->avalues[i][j]) +
321 (value & cpuhw->avalues[i][j] & addf);
322 if ((((nv + tadd) ^ value) & mask) == 0 &&
323 (((nv + tadd) ^ cpuhw->avalues[i][j])
324 & cpuhw->amasks[i][j]) == 0)
325 break;
327 if (j >= n_alt[i]) {
329 * No feasible alternative, backtrack
330 * to event_id i-1 and continue enumerating its
331 * alternatives from where we got up to.
333 if (--i < 0)
334 return -1;
335 } else {
337 * Found a feasible alternative for event_id i,
338 * remember where we got up to with this event_id,
339 * go on to the next event_id, and start with
340 * the first alternative for it.
342 choice[i] = j;
343 svalues[i] = value;
344 smasks[i] = mask;
345 value = nv;
346 mask |= cpuhw->amasks[i][j];
347 ++i;
348 j = -1;
352 /* OK, we have a feasible combination, tell the caller the solution */
353 for (i = 0; i < n_ev; ++i)
354 event_id[i] = cpuhw->alternatives[i][choice[i]];
355 return 0;
359 * Check if newly-added events have consistent settings for
360 * exclude_{user,kernel,hv} with each other and any previously
361 * added events.
363 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
364 int n_prev, int n_new)
366 int eu = 0, ek = 0, eh = 0;
367 int i, n, first;
368 struct perf_event *event;
370 n = n_prev + n_new;
371 if (n <= 1)
372 return 0;
374 first = 1;
375 for (i = 0; i < n; ++i) {
376 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
377 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
378 continue;
380 event = ctrs[i];
381 if (first) {
382 eu = event->attr.exclude_user;
383 ek = event->attr.exclude_kernel;
384 eh = event->attr.exclude_hv;
385 first = 0;
386 } else if (event->attr.exclude_user != eu ||
387 event->attr.exclude_kernel != ek ||
388 event->attr.exclude_hv != eh) {
389 return -EAGAIN;
393 if (eu || ek || eh)
394 for (i = 0; i < n; ++i)
395 if (cflags[i] & PPMU_LIMITED_PMC_OK)
396 cflags[i] |= PPMU_LIMITED_PMC_REQD;
398 return 0;
401 static void power_pmu_read(struct perf_event *event)
403 s64 val, delta, prev;
405 if (event->hw.state & PERF_HES_STOPPED)
406 return;
408 if (!event->hw.idx)
409 return;
411 * Performance monitor interrupts come even when interrupts
412 * are soft-disabled, as long as interrupts are hard-enabled.
413 * Therefore we treat them like NMIs.
415 do {
416 prev = local64_read(&event->hw.prev_count);
417 barrier();
418 val = read_pmc(event->hw.idx);
419 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
421 /* The counters are only 32 bits wide */
422 delta = (val - prev) & 0xfffffffful;
423 local64_add(delta, &event->count);
424 local64_sub(delta, &event->hw.period_left);
428 * On some machines, PMC5 and PMC6 can't be written, don't respect
429 * the freeze conditions, and don't generate interrupts. This tells
430 * us if `event' is using such a PMC.
432 static int is_limited_pmc(int pmcnum)
434 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
435 && (pmcnum == 5 || pmcnum == 6);
438 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
439 unsigned long pmc5, unsigned long pmc6)
441 struct perf_event *event;
442 u64 val, prev, delta;
443 int i;
445 for (i = 0; i < cpuhw->n_limited; ++i) {
446 event = cpuhw->limited_counter[i];
447 if (!event->hw.idx)
448 continue;
449 val = (event->hw.idx == 5) ? pmc5 : pmc6;
450 prev = local64_read(&event->hw.prev_count);
451 event->hw.idx = 0;
452 delta = (val - prev) & 0xfffffffful;
453 local64_add(delta, &event->count);
457 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
458 unsigned long pmc5, unsigned long pmc6)
460 struct perf_event *event;
461 u64 val;
462 int i;
464 for (i = 0; i < cpuhw->n_limited; ++i) {
465 event = cpuhw->limited_counter[i];
466 event->hw.idx = cpuhw->limited_hwidx[i];
467 val = (event->hw.idx == 5) ? pmc5 : pmc6;
468 local64_set(&event->hw.prev_count, val);
469 perf_event_update_userpage(event);
474 * Since limited events don't respect the freeze conditions, we
475 * have to read them immediately after freezing or unfreezing the
476 * other events. We try to keep the values from the limited
477 * events as consistent as possible by keeping the delay (in
478 * cycles and instructions) between freezing/unfreezing and reading
479 * the limited events as small and consistent as possible.
480 * Therefore, if any limited events are in use, we read them
481 * both, and always in the same order, to minimize variability,
482 * and do it inside the same asm that writes MMCR0.
484 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
486 unsigned long pmc5, pmc6;
488 if (!cpuhw->n_limited) {
489 mtspr(SPRN_MMCR0, mmcr0);
490 return;
494 * Write MMCR0, then read PMC5 and PMC6 immediately.
495 * To ensure we don't get a performance monitor interrupt
496 * between writing MMCR0 and freezing/thawing the limited
497 * events, we first write MMCR0 with the event overflow
498 * interrupt enable bits turned off.
500 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
501 : "=&r" (pmc5), "=&r" (pmc6)
502 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
503 "i" (SPRN_MMCR0),
504 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
506 if (mmcr0 & MMCR0_FC)
507 freeze_limited_counters(cpuhw, pmc5, pmc6);
508 else
509 thaw_limited_counters(cpuhw, pmc5, pmc6);
512 * Write the full MMCR0 including the event overflow interrupt
513 * enable bits, if necessary.
515 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
516 mtspr(SPRN_MMCR0, mmcr0);
520 * Disable all events to prevent PMU interrupts and to allow
521 * events to be added or removed.
523 static void power_pmu_disable(struct pmu *pmu)
525 struct cpu_hw_events *cpuhw;
526 unsigned long flags;
528 if (!ppmu)
529 return;
530 local_irq_save(flags);
531 cpuhw = &__get_cpu_var(cpu_hw_events);
533 if (!cpuhw->disabled) {
534 cpuhw->disabled = 1;
535 cpuhw->n_added = 0;
538 * Check if we ever enabled the PMU on this cpu.
540 if (!cpuhw->pmcs_enabled) {
541 ppc_enable_pmcs();
542 cpuhw->pmcs_enabled = 1;
546 * Disable instruction sampling if it was enabled
548 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
549 mtspr(SPRN_MMCRA,
550 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
551 mb();
555 * Set the 'freeze counters' bit.
556 * The barrier is to make sure the mtspr has been
557 * executed and the PMU has frozen the events
558 * before we return.
560 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
561 mb();
563 local_irq_restore(flags);
567 * Re-enable all events if disable == 0.
568 * If we were previously disabled and events were added, then
569 * put the new config on the PMU.
571 static void power_pmu_enable(struct pmu *pmu)
573 struct perf_event *event;
574 struct cpu_hw_events *cpuhw;
575 unsigned long flags;
576 long i;
577 unsigned long val;
578 s64 left;
579 unsigned int hwc_index[MAX_HWEVENTS];
580 int n_lim;
581 int idx;
583 if (!ppmu)
584 return;
585 local_irq_save(flags);
586 cpuhw = &__get_cpu_var(cpu_hw_events);
587 if (!cpuhw->disabled) {
588 local_irq_restore(flags);
589 return;
591 cpuhw->disabled = 0;
594 * If we didn't change anything, or only removed events,
595 * no need to recalculate MMCR* settings and reset the PMCs.
596 * Just reenable the PMU with the current MMCR* settings
597 * (possibly updated for removal of events).
599 if (!cpuhw->n_added) {
600 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
601 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
602 if (cpuhw->n_events == 0)
603 ppc_set_pmu_inuse(0);
604 goto out_enable;
608 * Compute MMCR* values for the new set of events
610 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
611 cpuhw->mmcr)) {
612 /* shouldn't ever get here */
613 printk(KERN_ERR "oops compute_mmcr failed\n");
614 goto out;
618 * Add in MMCR0 freeze bits corresponding to the
619 * attr.exclude_* bits for the first event.
620 * We have already checked that all events have the
621 * same values for these bits as the first event.
623 event = cpuhw->event[0];
624 if (event->attr.exclude_user)
625 cpuhw->mmcr[0] |= MMCR0_FCP;
626 if (event->attr.exclude_kernel)
627 cpuhw->mmcr[0] |= freeze_events_kernel;
628 if (event->attr.exclude_hv)
629 cpuhw->mmcr[0] |= MMCR0_FCHV;
632 * Write the new configuration to MMCR* with the freeze
633 * bit set and set the hardware events to their initial values.
634 * Then unfreeze the events.
636 ppc_set_pmu_inuse(1);
637 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
638 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
639 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
640 | MMCR0_FC);
643 * Read off any pre-existing events that need to move
644 * to another PMC.
646 for (i = 0; i < cpuhw->n_events; ++i) {
647 event = cpuhw->event[i];
648 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
649 power_pmu_read(event);
650 write_pmc(event->hw.idx, 0);
651 event->hw.idx = 0;
656 * Initialize the PMCs for all the new and moved events.
658 cpuhw->n_limited = n_lim = 0;
659 for (i = 0; i < cpuhw->n_events; ++i) {
660 event = cpuhw->event[i];
661 if (event->hw.idx)
662 continue;
663 idx = hwc_index[i] + 1;
664 if (is_limited_pmc(idx)) {
665 cpuhw->limited_counter[n_lim] = event;
666 cpuhw->limited_hwidx[n_lim] = idx;
667 ++n_lim;
668 continue;
670 val = 0;
671 if (event->hw.sample_period) {
672 left = local64_read(&event->hw.period_left);
673 if (left < 0x80000000L)
674 val = 0x80000000L - left;
676 local64_set(&event->hw.prev_count, val);
677 event->hw.idx = idx;
678 if (event->hw.state & PERF_HES_STOPPED)
679 val = 0;
680 write_pmc(idx, val);
681 perf_event_update_userpage(event);
683 cpuhw->n_limited = n_lim;
684 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
686 out_enable:
687 mb();
688 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
691 * Enable instruction sampling if necessary
693 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
694 mb();
695 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
698 out:
699 local_irq_restore(flags);
702 static int collect_events(struct perf_event *group, int max_count,
703 struct perf_event *ctrs[], u64 *events,
704 unsigned int *flags)
706 int n = 0;
707 struct perf_event *event;
709 if (!is_software_event(group)) {
710 if (n >= max_count)
711 return -1;
712 ctrs[n] = group;
713 flags[n] = group->hw.event_base;
714 events[n++] = group->hw.config;
716 list_for_each_entry(event, &group->sibling_list, group_entry) {
717 if (!is_software_event(event) &&
718 event->state != PERF_EVENT_STATE_OFF) {
719 if (n >= max_count)
720 return -1;
721 ctrs[n] = event;
722 flags[n] = event->hw.event_base;
723 events[n++] = event->hw.config;
726 return n;
730 * Add a event to the PMU.
731 * If all events are not already frozen, then we disable and
732 * re-enable the PMU in order to get hw_perf_enable to do the
733 * actual work of reconfiguring the PMU.
735 static int power_pmu_add(struct perf_event *event, int ef_flags)
737 struct cpu_hw_events *cpuhw;
738 unsigned long flags;
739 int n0;
740 int ret = -EAGAIN;
742 local_irq_save(flags);
743 perf_pmu_disable(event->pmu);
746 * Add the event to the list (if there is room)
747 * and check whether the total set is still feasible.
749 cpuhw = &__get_cpu_var(cpu_hw_events);
750 n0 = cpuhw->n_events;
751 if (n0 >= ppmu->n_counter)
752 goto out;
753 cpuhw->event[n0] = event;
754 cpuhw->events[n0] = event->hw.config;
755 cpuhw->flags[n0] = event->hw.event_base;
757 if (!(ef_flags & PERF_EF_START))
758 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
761 * If group events scheduling transaction was started,
762 * skip the schedulability test here, it will be peformed
763 * at commit time(->commit_txn) as a whole
765 if (cpuhw->group_flag & PERF_EVENT_TXN)
766 goto nocheck;
768 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
769 goto out;
770 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
771 goto out;
772 event->hw.config = cpuhw->events[n0];
774 nocheck:
775 ++cpuhw->n_events;
776 ++cpuhw->n_added;
778 ret = 0;
779 out:
780 perf_pmu_enable(event->pmu);
781 local_irq_restore(flags);
782 return ret;
786 * Remove a event from the PMU.
788 static void power_pmu_del(struct perf_event *event, int ef_flags)
790 struct cpu_hw_events *cpuhw;
791 long i;
792 unsigned long flags;
794 local_irq_save(flags);
795 perf_pmu_disable(event->pmu);
797 power_pmu_read(event);
799 cpuhw = &__get_cpu_var(cpu_hw_events);
800 for (i = 0; i < cpuhw->n_events; ++i) {
801 if (event == cpuhw->event[i]) {
802 while (++i < cpuhw->n_events) {
803 cpuhw->event[i-1] = cpuhw->event[i];
804 cpuhw->events[i-1] = cpuhw->events[i];
805 cpuhw->flags[i-1] = cpuhw->flags[i];
807 --cpuhw->n_events;
808 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
809 if (event->hw.idx) {
810 write_pmc(event->hw.idx, 0);
811 event->hw.idx = 0;
813 perf_event_update_userpage(event);
814 break;
817 for (i = 0; i < cpuhw->n_limited; ++i)
818 if (event == cpuhw->limited_counter[i])
819 break;
820 if (i < cpuhw->n_limited) {
821 while (++i < cpuhw->n_limited) {
822 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
823 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
825 --cpuhw->n_limited;
827 if (cpuhw->n_events == 0) {
828 /* disable exceptions if no events are running */
829 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
832 perf_pmu_enable(event->pmu);
833 local_irq_restore(flags);
837 * POWER-PMU does not support disabling individual counters, hence
838 * program their cycle counter to their max value and ignore the interrupts.
841 static void power_pmu_start(struct perf_event *event, int ef_flags)
843 unsigned long flags;
844 s64 left;
846 if (!event->hw.idx || !event->hw.sample_period)
847 return;
849 if (!(event->hw.state & PERF_HES_STOPPED))
850 return;
852 if (ef_flags & PERF_EF_RELOAD)
853 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
855 local_irq_save(flags);
856 perf_pmu_disable(event->pmu);
858 event->hw.state = 0;
859 left = local64_read(&event->hw.period_left);
860 write_pmc(event->hw.idx, left);
862 perf_event_update_userpage(event);
863 perf_pmu_enable(event->pmu);
864 local_irq_restore(flags);
867 static void power_pmu_stop(struct perf_event *event, int ef_flags)
869 unsigned long flags;
871 if (!event->hw.idx || !event->hw.sample_period)
872 return;
874 if (event->hw.state & PERF_HES_STOPPED)
875 return;
877 local_irq_save(flags);
878 perf_pmu_disable(event->pmu);
880 power_pmu_read(event);
881 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
882 write_pmc(event->hw.idx, 0);
884 perf_event_update_userpage(event);
885 perf_pmu_enable(event->pmu);
886 local_irq_restore(flags);
890 * Start group events scheduling transaction
891 * Set the flag to make pmu::enable() not perform the
892 * schedulability test, it will be performed at commit time
894 void power_pmu_start_txn(struct pmu *pmu)
896 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
898 perf_pmu_disable(pmu);
899 cpuhw->group_flag |= PERF_EVENT_TXN;
900 cpuhw->n_txn_start = cpuhw->n_events;
904 * Stop group events scheduling transaction
905 * Clear the flag and pmu::enable() will perform the
906 * schedulability test.
908 void power_pmu_cancel_txn(struct pmu *pmu)
910 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
912 cpuhw->group_flag &= ~PERF_EVENT_TXN;
913 perf_pmu_enable(pmu);
917 * Commit group events scheduling transaction
918 * Perform the group schedulability test as a whole
919 * Return 0 if success
921 int power_pmu_commit_txn(struct pmu *pmu)
923 struct cpu_hw_events *cpuhw;
924 long i, n;
926 if (!ppmu)
927 return -EAGAIN;
928 cpuhw = &__get_cpu_var(cpu_hw_events);
929 n = cpuhw->n_events;
930 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
931 return -EAGAIN;
932 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
933 if (i < 0)
934 return -EAGAIN;
936 for (i = cpuhw->n_txn_start; i < n; ++i)
937 cpuhw->event[i]->hw.config = cpuhw->events[i];
939 cpuhw->group_flag &= ~PERF_EVENT_TXN;
940 perf_pmu_enable(pmu);
941 return 0;
945 * Return 1 if we might be able to put event on a limited PMC,
946 * or 0 if not.
947 * A event can only go on a limited PMC if it counts something
948 * that a limited PMC can count, doesn't require interrupts, and
949 * doesn't exclude any processor mode.
951 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
952 unsigned int flags)
954 int n;
955 u64 alt[MAX_EVENT_ALTERNATIVES];
957 if (event->attr.exclude_user
958 || event->attr.exclude_kernel
959 || event->attr.exclude_hv
960 || event->attr.sample_period)
961 return 0;
963 if (ppmu->limited_pmc_event(ev))
964 return 1;
967 * The requested event_id isn't on a limited PMC already;
968 * see if any alternative code goes on a limited PMC.
970 if (!ppmu->get_alternatives)
971 return 0;
973 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
974 n = ppmu->get_alternatives(ev, flags, alt);
976 return n > 0;
980 * Find an alternative event_id that goes on a normal PMC, if possible,
981 * and return the event_id code, or 0 if there is no such alternative.
982 * (Note: event_id code 0 is "don't count" on all machines.)
984 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
986 u64 alt[MAX_EVENT_ALTERNATIVES];
987 int n;
989 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
990 n = ppmu->get_alternatives(ev, flags, alt);
991 if (!n)
992 return 0;
993 return alt[0];
996 /* Number of perf_events counting hardware events */
997 static atomic_t num_events;
998 /* Used to avoid races in calling reserve/release_pmc_hardware */
999 static DEFINE_MUTEX(pmc_reserve_mutex);
1002 * Release the PMU if this is the last perf_event.
1004 static void hw_perf_event_destroy(struct perf_event *event)
1006 if (!atomic_add_unless(&num_events, -1, 1)) {
1007 mutex_lock(&pmc_reserve_mutex);
1008 if (atomic_dec_return(&num_events) == 0)
1009 release_pmc_hardware();
1010 mutex_unlock(&pmc_reserve_mutex);
1015 * Translate a generic cache event_id config to a raw event_id code.
1017 static int hw_perf_cache_event(u64 config, u64 *eventp)
1019 unsigned long type, op, result;
1020 int ev;
1022 if (!ppmu->cache_events)
1023 return -EINVAL;
1025 /* unpack config */
1026 type = config & 0xff;
1027 op = (config >> 8) & 0xff;
1028 result = (config >> 16) & 0xff;
1030 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1031 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1032 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1033 return -EINVAL;
1035 ev = (*ppmu->cache_events)[type][op][result];
1036 if (ev == 0)
1037 return -EOPNOTSUPP;
1038 if (ev == -1)
1039 return -EINVAL;
1040 *eventp = ev;
1041 return 0;
1044 static int power_pmu_event_init(struct perf_event *event)
1046 u64 ev;
1047 unsigned long flags;
1048 struct perf_event *ctrs[MAX_HWEVENTS];
1049 u64 events[MAX_HWEVENTS];
1050 unsigned int cflags[MAX_HWEVENTS];
1051 int n;
1052 int err;
1053 struct cpu_hw_events *cpuhw;
1055 if (!ppmu)
1056 return -ENOENT;
1058 switch (event->attr.type) {
1059 case PERF_TYPE_HARDWARE:
1060 ev = event->attr.config;
1061 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1062 return -EOPNOTSUPP;
1063 ev = ppmu->generic_events[ev];
1064 break;
1065 case PERF_TYPE_HW_CACHE:
1066 err = hw_perf_cache_event(event->attr.config, &ev);
1067 if (err)
1068 return err;
1069 break;
1070 case PERF_TYPE_RAW:
1071 ev = event->attr.config;
1072 break;
1073 default:
1074 return -ENOENT;
1077 event->hw.config_base = ev;
1078 event->hw.idx = 0;
1081 * If we are not running on a hypervisor, force the
1082 * exclude_hv bit to 0 so that we don't care what
1083 * the user set it to.
1085 if (!firmware_has_feature(FW_FEATURE_LPAR))
1086 event->attr.exclude_hv = 0;
1089 * If this is a per-task event, then we can use
1090 * PM_RUN_* events interchangeably with their non RUN_*
1091 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1092 * XXX we should check if the task is an idle task.
1094 flags = 0;
1095 if (event->attach_state & PERF_ATTACH_TASK)
1096 flags |= PPMU_ONLY_COUNT_RUN;
1099 * If this machine has limited events, check whether this
1100 * event_id could go on a limited event.
1102 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1103 if (can_go_on_limited_pmc(event, ev, flags)) {
1104 flags |= PPMU_LIMITED_PMC_OK;
1105 } else if (ppmu->limited_pmc_event(ev)) {
1107 * The requested event_id is on a limited PMC,
1108 * but we can't use a limited PMC; see if any
1109 * alternative goes on a normal PMC.
1111 ev = normal_pmc_alternative(ev, flags);
1112 if (!ev)
1113 return -EINVAL;
1118 * If this is in a group, check if it can go on with all the
1119 * other hardware events in the group. We assume the event
1120 * hasn't been linked into its leader's sibling list at this point.
1122 n = 0;
1123 if (event->group_leader != event) {
1124 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1125 ctrs, events, cflags);
1126 if (n < 0)
1127 return -EINVAL;
1129 events[n] = ev;
1130 ctrs[n] = event;
1131 cflags[n] = flags;
1132 if (check_excludes(ctrs, cflags, n, 1))
1133 return -EINVAL;
1135 cpuhw = &get_cpu_var(cpu_hw_events);
1136 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1137 put_cpu_var(cpu_hw_events);
1138 if (err)
1139 return -EINVAL;
1141 event->hw.config = events[n];
1142 event->hw.event_base = cflags[n];
1143 event->hw.last_period = event->hw.sample_period;
1144 local64_set(&event->hw.period_left, event->hw.last_period);
1147 * See if we need to reserve the PMU.
1148 * If no events are currently in use, then we have to take a
1149 * mutex to ensure that we don't race with another task doing
1150 * reserve_pmc_hardware or release_pmc_hardware.
1152 err = 0;
1153 if (!atomic_inc_not_zero(&num_events)) {
1154 mutex_lock(&pmc_reserve_mutex);
1155 if (atomic_read(&num_events) == 0 &&
1156 reserve_pmc_hardware(perf_event_interrupt))
1157 err = -EBUSY;
1158 else
1159 atomic_inc(&num_events);
1160 mutex_unlock(&pmc_reserve_mutex);
1162 event->destroy = hw_perf_event_destroy;
1164 return err;
1167 struct pmu power_pmu = {
1168 .pmu_enable = power_pmu_enable,
1169 .pmu_disable = power_pmu_disable,
1170 .event_init = power_pmu_event_init,
1171 .add = power_pmu_add,
1172 .del = power_pmu_del,
1173 .start = power_pmu_start,
1174 .stop = power_pmu_stop,
1175 .read = power_pmu_read,
1176 .start_txn = power_pmu_start_txn,
1177 .cancel_txn = power_pmu_cancel_txn,
1178 .commit_txn = power_pmu_commit_txn,
1182 * A counter has overflowed; update its count and record
1183 * things if requested. Note that interrupts are hard-disabled
1184 * here so there is no possibility of being interrupted.
1186 static void record_and_restart(struct perf_event *event, unsigned long val,
1187 struct pt_regs *regs, int nmi)
1189 u64 period = event->hw.sample_period;
1190 s64 prev, delta, left;
1191 int record = 0;
1193 if (event->hw.state & PERF_HES_STOPPED) {
1194 write_pmc(event->hw.idx, 0);
1195 return;
1198 /* we don't have to worry about interrupts here */
1199 prev = local64_read(&event->hw.prev_count);
1200 delta = (val - prev) & 0xfffffffful;
1201 local64_add(delta, &event->count);
1204 * See if the total period for this event has expired,
1205 * and update for the next period.
1207 val = 0;
1208 left = local64_read(&event->hw.period_left) - delta;
1209 if (period) {
1210 if (left <= 0) {
1211 left += period;
1212 if (left <= 0)
1213 left = period;
1214 record = 1;
1215 event->hw.last_period = event->hw.sample_period;
1217 if (left < 0x80000000LL)
1218 val = 0x80000000LL - left;
1221 write_pmc(event->hw.idx, val);
1222 local64_set(&event->hw.prev_count, val);
1223 local64_set(&event->hw.period_left, left);
1224 perf_event_update_userpage(event);
1227 * Finally record data if requested.
1229 if (record) {
1230 struct perf_sample_data data;
1232 perf_sample_data_init(&data, ~0ULL);
1233 data.period = event->hw.last_period;
1235 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1236 perf_get_data_addr(regs, &data.addr);
1238 if (perf_event_overflow(event, nmi, &data, regs))
1239 power_pmu_stop(event, 0);
1244 * Called from generic code to get the misc flags (i.e. processor mode)
1245 * for an event_id.
1247 unsigned long perf_misc_flags(struct pt_regs *regs)
1249 u32 flags = perf_get_misc_flags(regs);
1251 if (flags)
1252 return flags;
1253 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1254 PERF_RECORD_MISC_KERNEL;
1258 * Called from generic code to get the instruction pointer
1259 * for an event_id.
1261 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1263 unsigned long ip;
1265 if (TRAP(regs) != 0xf00)
1266 return regs->nip; /* not a PMU interrupt */
1268 ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1269 return ip;
1272 static bool pmc_overflow(unsigned long val)
1274 if ((int)val < 0)
1275 return true;
1278 * Events on POWER7 can roll back if a speculative event doesn't
1279 * eventually complete. Unfortunately in some rare cases they will
1280 * raise a performance monitor exception. We need to catch this to
1281 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1282 * cycles from overflow.
1284 * We only do this if the first pass fails to find any overflowing
1285 * PMCs because a user might set a period of less than 256 and we
1286 * don't want to mistakenly reset them.
1288 if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
1289 return true;
1291 return false;
1295 * Performance monitor interrupt stuff
1297 static void perf_event_interrupt(struct pt_regs *regs)
1299 int i;
1300 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1301 struct perf_event *event;
1302 unsigned long val;
1303 int found = 0;
1304 int nmi;
1306 if (cpuhw->n_limited)
1307 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1308 mfspr(SPRN_PMC6));
1310 perf_read_regs(regs);
1312 nmi = perf_intr_is_nmi(regs);
1313 if (nmi)
1314 nmi_enter();
1315 else
1316 irq_enter();
1318 for (i = 0; i < cpuhw->n_events; ++i) {
1319 event = cpuhw->event[i];
1320 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1321 continue;
1322 val = read_pmc(event->hw.idx);
1323 if ((int)val < 0) {
1324 /* event has overflowed */
1325 found = 1;
1326 record_and_restart(event, val, regs, nmi);
1331 * In case we didn't find and reset the event that caused
1332 * the interrupt, scan all events and reset any that are
1333 * negative, to avoid getting continual interrupts.
1334 * Any that we processed in the previous loop will not be negative.
1336 if (!found) {
1337 for (i = 0; i < ppmu->n_counter; ++i) {
1338 if (is_limited_pmc(i + 1))
1339 continue;
1340 val = read_pmc(i + 1);
1341 if (pmc_overflow(val))
1342 write_pmc(i + 1, 0);
1347 * Reset MMCR0 to its normal value. This will set PMXE and
1348 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1349 * and thus allow interrupts to occur again.
1350 * XXX might want to use MSR.PM to keep the events frozen until
1351 * we get back out of this interrupt.
1353 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1355 if (nmi)
1356 nmi_exit();
1357 else
1358 irq_exit();
1361 static void power_pmu_setup(int cpu)
1363 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1365 if (!ppmu)
1366 return;
1367 memset(cpuhw, 0, sizeof(*cpuhw));
1368 cpuhw->mmcr[0] = MMCR0_FC;
1371 static int __cpuinit
1372 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1374 unsigned int cpu = (long)hcpu;
1376 switch (action & ~CPU_TASKS_FROZEN) {
1377 case CPU_UP_PREPARE:
1378 power_pmu_setup(cpu);
1379 break;
1381 default:
1382 break;
1385 return NOTIFY_OK;
1388 int register_power_pmu(struct power_pmu *pmu)
1390 if (ppmu)
1391 return -EBUSY; /* something's already registered */
1393 ppmu = pmu;
1394 pr_info("%s performance monitor hardware support registered\n",
1395 pmu->name);
1397 #ifdef MSR_HV
1399 * Use FCHV to ignore kernel events if MSR.HV is set.
1401 if (mfmsr() & MSR_HV)
1402 freeze_events_kernel = MMCR0_FCHV;
1403 #endif /* CONFIG_PPC64 */
1405 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1406 perf_cpu_notifier(power_pmu_notifier);
1408 return 0;