2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
72 * B. Checksumming on output.
74 * NONE: skb is checksummed by protocol or csum is not required.
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91 * Any questions? No questions, good. --ANK
96 struct pipe_inode_info
;
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info
{
107 struct net_device
*physindev
;
108 struct net_device
*physoutdev
;
110 unsigned long data
[32 / sizeof(unsigned long)];
114 struct sk_buff_head
{
115 /* These two members must be first. */
116 struct sk_buff
*next
;
117 struct sk_buff
*prev
;
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
128 typedef struct skb_frag_struct skb_frag_t
;
130 struct skb_frag_struct
{
136 #define HAVE_HW_TIME_STAMP
139 * struct skb_shared_hwtstamps - hardware time stamps
140 * @hwtstamp: hardware time stamp transformed into duration
141 * since arbitrary point in time
142 * @syststamp: hwtstamp transformed to system time base
144 * Software time stamps generated by ktime_get_real() are stored in
145 * skb->tstamp. The relation between the different kinds of time
146 * stamps is as follows:
148 * syststamp and tstamp can be compared against each other in
149 * arbitrary combinations. The accuracy of a
150 * syststamp/tstamp/"syststamp from other device" comparison is
151 * limited by the accuracy of the transformation into system time
152 * base. This depends on the device driver and its underlying
155 * hwtstamps can only be compared against other hwtstamps from
158 * This structure is attached to packets as part of the
159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
161 struct skb_shared_hwtstamps
{
167 * struct skb_shared_tx - instructions for time stamping of outgoing packets
168 * @hardware: generate hardware time stamp
169 * @software: generate software time stamp
170 * @in_progress: device driver is going to provide
171 * hardware time stamp
172 * @flags: all shared_tx flags
174 * These flags are attached to packets as part of the
175 * &skb_shared_info. Use skb_tx() to get a pointer.
177 union skb_shared_tx
{
186 /* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
189 struct skb_shared_info
{
191 unsigned short nr_frags
;
192 unsigned short gso_size
;
193 #ifdef CONFIG_HAS_DMA
196 /* Warning: this field is not always filled in (UFO)! */
197 unsigned short gso_segs
;
198 unsigned short gso_type
;
200 union skb_shared_tx tx_flags
;
201 struct sk_buff
*frag_list
;
202 struct skb_shared_hwtstamps hwtstamps
;
203 skb_frag_t frags
[MAX_SKB_FRAGS
];
204 #ifdef CONFIG_HAS_DMA
205 dma_addr_t dma_maps
[MAX_SKB_FRAGS
];
207 /* Intermediate layers must ensure that destructor_arg
208 * remains valid until skb destructor */
209 void * destructor_arg
;
212 /* We divide dataref into two halves. The higher 16 bits hold references
213 * to the payload part of skb->data. The lower 16 bits hold references to
214 * the entire skb->data. A clone of a headerless skb holds the length of
215 * the header in skb->hdr_len.
217 * All users must obey the rule that the skb->data reference count must be
218 * greater than or equal to the payload reference count.
220 * Holding a reference to the payload part means that the user does not
221 * care about modifications to the header part of skb->data.
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
228 SKB_FCLONE_UNAVAILABLE
,
234 SKB_GSO_TCPV4
= 1 << 0,
235 SKB_GSO_UDP
= 1 << 1,
237 /* This indicates the skb is from an untrusted source. */
238 SKB_GSO_DODGY
= 1 << 2,
240 /* This indicates the tcp segment has CWR set. */
241 SKB_GSO_TCP_ECN
= 1 << 3,
243 SKB_GSO_TCPV6
= 1 << 4,
245 SKB_GSO_FCOE
= 1 << 5,
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t
;
255 typedef unsigned char *sk_buff_data_t
;
259 * struct sk_buff - socket buffer
260 * @next: Next buffer in list
261 * @prev: Previous buffer in list
262 * @sk: Socket we are owned by
263 * @tstamp: Time we arrived
264 * @dev: Device we arrived on/are leaving by
265 * @transport_header: Transport layer header
266 * @network_header: Network layer header
267 * @mac_header: Link layer header
268 * @_skb_dst: destination entry
269 * @sp: the security path, used for xfrm
270 * @cb: Control buffer. Free for use by every layer. Put private vars here
271 * @len: Length of actual data
272 * @data_len: Data length
273 * @mac_len: Length of link layer header
274 * @hdr_len: writable header length of cloned skb
275 * @csum: Checksum (must include start/offset pair)
276 * @csum_start: Offset from skb->head where checksumming should start
277 * @csum_offset: Offset from csum_start where checksum should be stored
278 * @local_df: allow local fragmentation
279 * @cloned: Head may be cloned (check refcnt to be sure)
280 * @nohdr: Payload reference only, must not modify header
281 * @pkt_type: Packet class
282 * @fclone: skbuff clone status
283 * @ip_summed: Driver fed us an IP checksum
284 * @priority: Packet queueing priority
285 * @users: User count - see {datagram,tcp}.c
286 * @protocol: Packet protocol from driver
287 * @truesize: Buffer size
288 * @head: Head of buffer
289 * @data: Data head pointer
290 * @tail: Tail pointer
292 * @destructor: Destruct function
293 * @mark: Generic packet mark
294 * @nfct: Associated connection, if any
295 * @ipvs_property: skbuff is owned by ipvs
296 * @peeked: this packet has been seen already, so stats have been
297 * done for it, don't do them again
298 * @nf_trace: netfilter packet trace flag
299 * @nfctinfo: Relationship of this skb to the connection
300 * @nfct_reasm: netfilter conntrack re-assembly pointer
301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302 * @skb_iif: ifindex of device we arrived on
303 * @queue_mapping: Queue mapping for multiqueue devices
304 * @tc_index: Traffic control index
305 * @tc_verd: traffic control verdict
306 * @ndisc_nodetype: router type (from link layer)
307 * @dma_cookie: a cookie to one of several possible DMA operations
308 * done by skb DMA functions
309 * @secmark: security marking
310 * @vlan_tci: vlan tag control information
314 /* These two members must be first. */
315 struct sk_buff
*next
;
316 struct sk_buff
*prev
;
320 struct net_device
*dev
;
322 unsigned long _skb_dst
;
327 * This is the control buffer. It is free to use for every
328 * layer. Please put your private variables there. If you
329 * want to keep them across layers you have to do a skb_clone()
330 * first. This is owned by whoever has the skb queued ATM.
346 kmemcheck_bitfield_begin(flags1
);
358 kmemcheck_bitfield_end(flags1
);
360 void (*destructor
)(struct sk_buff
*skb
);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362 struct nf_conntrack
*nfct
;
363 struct sk_buff
*nfct_reasm
;
365 #ifdef CONFIG_BRIDGE_NETFILTER
366 struct nf_bridge_info
*nf_bridge
;
370 #ifdef CONFIG_NET_SCHED
371 __u16 tc_index
; /* traffic control index */
372 #ifdef CONFIG_NET_CLS_ACT
373 __u16 tc_verd
; /* traffic control verdict */
377 kmemcheck_bitfield_begin(flags2
);
378 __u16 queue_mapping
:16;
379 #ifdef CONFIG_IPV6_NDISC_NODETYPE
380 __u8 ndisc_nodetype
:2;
382 kmemcheck_bitfield_end(flags2
);
386 #ifdef CONFIG_NET_DMA
387 dma_cookie_t dma_cookie
;
389 #ifdef CONFIG_NETWORK_SECMARK
399 sk_buff_data_t transport_header
;
400 sk_buff_data_t network_header
;
401 sk_buff_data_t mac_header
;
402 /* These elements must be at the end, see alloc_skb() for details. */
407 unsigned int truesize
;
413 * Handling routines are only of interest to the kernel
415 #include <linux/slab.h>
417 #include <asm/system.h>
419 static inline struct dst_entry
*skb_dst(const struct sk_buff
*skb
)
421 return (struct dst_entry
*)skb
->_skb_dst
;
424 static inline void skb_dst_set(struct sk_buff
*skb
, struct dst_entry
*dst
)
426 skb
->_skb_dst
= (unsigned long)dst
;
429 static inline struct rtable
*skb_rtable(const struct sk_buff
*skb
)
431 return (struct rtable
*)skb_dst(skb
);
434 extern void kfree_skb(struct sk_buff
*skb
);
435 extern void consume_skb(struct sk_buff
*skb
);
436 extern void __kfree_skb(struct sk_buff
*skb
);
437 extern struct sk_buff
*__alloc_skb(unsigned int size
,
438 gfp_t priority
, int fclone
, int node
);
439 static inline struct sk_buff
*alloc_skb(unsigned int size
,
442 return __alloc_skb(size
, priority
, 0, -1);
445 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
448 return __alloc_skb(size
, priority
, 1, -1);
451 extern int skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
453 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
454 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
456 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
458 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
460 extern int pskb_expand_head(struct sk_buff
*skb
,
461 int nhead
, int ntail
,
463 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
464 unsigned int headroom
);
465 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
466 int newheadroom
, int newtailroom
,
468 extern int skb_to_sgvec(struct sk_buff
*skb
,
469 struct scatterlist
*sg
, int offset
,
471 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
472 struct sk_buff
**trailer
);
473 extern int skb_pad(struct sk_buff
*skb
, int pad
);
474 #define dev_kfree_skb(a) consume_skb(a)
475 #define dev_consume_skb(a) kfree_skb_clean(a)
476 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
478 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
481 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
482 int getfrag(void *from
, char *to
, int offset
,
483 int len
,int odd
, struct sk_buff
*skb
),
484 void *from
, int length
);
486 struct skb_seq_state
{
490 __u32 stepped_offset
;
491 struct sk_buff
*root_skb
;
492 struct sk_buff
*cur_skb
;
496 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
497 unsigned int from
, unsigned int to
,
498 struct skb_seq_state
*st
);
499 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
500 struct skb_seq_state
*st
);
501 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
503 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
504 unsigned int to
, struct ts_config
*config
,
505 struct ts_state
*state
);
507 #ifdef NET_SKBUFF_DATA_USES_OFFSET
508 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
510 return skb
->head
+ skb
->end
;
513 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
520 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
522 static inline struct skb_shared_hwtstamps
*skb_hwtstamps(struct sk_buff
*skb
)
524 return &skb_shinfo(skb
)->hwtstamps
;
527 static inline union skb_shared_tx
*skb_tx(struct sk_buff
*skb
)
529 return &skb_shinfo(skb
)->tx_flags
;
533 * skb_queue_empty - check if a queue is empty
536 * Returns true if the queue is empty, false otherwise.
538 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
540 return list
->next
== (struct sk_buff
*)list
;
544 * skb_queue_is_last - check if skb is the last entry in the queue
548 * Returns true if @skb is the last buffer on the list.
550 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
551 const struct sk_buff
*skb
)
553 return (skb
->next
== (struct sk_buff
*) list
);
557 * skb_queue_is_first - check if skb is the first entry in the queue
561 * Returns true if @skb is the first buffer on the list.
563 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
564 const struct sk_buff
*skb
)
566 return (skb
->prev
== (struct sk_buff
*) list
);
570 * skb_queue_next - return the next packet in the queue
572 * @skb: current buffer
574 * Return the next packet in @list after @skb. It is only valid to
575 * call this if skb_queue_is_last() evaluates to false.
577 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
578 const struct sk_buff
*skb
)
580 /* This BUG_ON may seem severe, but if we just return then we
581 * are going to dereference garbage.
583 BUG_ON(skb_queue_is_last(list
, skb
));
588 * skb_queue_prev - return the prev packet in the queue
590 * @skb: current buffer
592 * Return the prev packet in @list before @skb. It is only valid to
593 * call this if skb_queue_is_first() evaluates to false.
595 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
596 const struct sk_buff
*skb
)
598 /* This BUG_ON may seem severe, but if we just return then we
599 * are going to dereference garbage.
601 BUG_ON(skb_queue_is_first(list
, skb
));
606 * skb_get - reference buffer
607 * @skb: buffer to reference
609 * Makes another reference to a socket buffer and returns a pointer
612 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
614 atomic_inc(&skb
->users
);
619 * If users == 1, we are the only owner and are can avoid redundant
624 * skb_cloned - is the buffer a clone
625 * @skb: buffer to check
627 * Returns true if the buffer was generated with skb_clone() and is
628 * one of multiple shared copies of the buffer. Cloned buffers are
629 * shared data so must not be written to under normal circumstances.
631 static inline int skb_cloned(const struct sk_buff
*skb
)
633 return skb
->cloned
&&
634 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
638 * skb_header_cloned - is the header a clone
639 * @skb: buffer to check
641 * Returns true if modifying the header part of the buffer requires
642 * the data to be copied.
644 static inline int skb_header_cloned(const struct sk_buff
*skb
)
651 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
652 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
657 * skb_header_release - release reference to header
658 * @skb: buffer to operate on
660 * Drop a reference to the header part of the buffer. This is done
661 * by acquiring a payload reference. You must not read from the header
662 * part of skb->data after this.
664 static inline void skb_header_release(struct sk_buff
*skb
)
668 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
672 * skb_shared - is the buffer shared
673 * @skb: buffer to check
675 * Returns true if more than one person has a reference to this
678 static inline int skb_shared(const struct sk_buff
*skb
)
680 return atomic_read(&skb
->users
) != 1;
684 * skb_share_check - check if buffer is shared and if so clone it
685 * @skb: buffer to check
686 * @pri: priority for memory allocation
688 * If the buffer is shared the buffer is cloned and the old copy
689 * drops a reference. A new clone with a single reference is returned.
690 * If the buffer is not shared the original buffer is returned. When
691 * being called from interrupt status or with spinlocks held pri must
694 * NULL is returned on a memory allocation failure.
696 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
699 might_sleep_if(pri
& __GFP_WAIT
);
700 if (skb_shared(skb
)) {
701 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
709 * Copy shared buffers into a new sk_buff. We effectively do COW on
710 * packets to handle cases where we have a local reader and forward
711 * and a couple of other messy ones. The normal one is tcpdumping
712 * a packet thats being forwarded.
716 * skb_unshare - make a copy of a shared buffer
717 * @skb: buffer to check
718 * @pri: priority for memory allocation
720 * If the socket buffer is a clone then this function creates a new
721 * copy of the data, drops a reference count on the old copy and returns
722 * the new copy with the reference count at 1. If the buffer is not a clone
723 * the original buffer is returned. When called with a spinlock held or
724 * from interrupt state @pri must be %GFP_ATOMIC
726 * %NULL is returned on a memory allocation failure.
728 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
731 might_sleep_if(pri
& __GFP_WAIT
);
732 if (skb_cloned(skb
)) {
733 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
734 kfree_skb(skb
); /* Free our shared copy */
742 * @list_: list to peek at
744 * Peek an &sk_buff. Unlike most other operations you _MUST_
745 * be careful with this one. A peek leaves the buffer on the
746 * list and someone else may run off with it. You must hold
747 * the appropriate locks or have a private queue to do this.
749 * Returns %NULL for an empty list or a pointer to the head element.
750 * The reference count is not incremented and the reference is therefore
751 * volatile. Use with caution.
753 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
755 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
756 if (list
== (struct sk_buff
*)list_
)
763 * @list_: list to peek at
765 * Peek an &sk_buff. Unlike most other operations you _MUST_
766 * be careful with this one. A peek leaves the buffer on the
767 * list and someone else may run off with it. You must hold
768 * the appropriate locks or have a private queue to do this.
770 * Returns %NULL for an empty list or a pointer to the tail element.
771 * The reference count is not incremented and the reference is therefore
772 * volatile. Use with caution.
774 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
776 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
777 if (list
== (struct sk_buff
*)list_
)
783 * skb_queue_len - get queue length
784 * @list_: list to measure
786 * Return the length of an &sk_buff queue.
788 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
794 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
795 * @list: queue to initialize
797 * This initializes only the list and queue length aspects of
798 * an sk_buff_head object. This allows to initialize the list
799 * aspects of an sk_buff_head without reinitializing things like
800 * the spinlock. It can also be used for on-stack sk_buff_head
801 * objects where the spinlock is known to not be used.
803 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
805 list
->prev
= list
->next
= (struct sk_buff
*)list
;
810 * This function creates a split out lock class for each invocation;
811 * this is needed for now since a whole lot of users of the skb-queue
812 * infrastructure in drivers have different locking usage (in hardirq)
813 * than the networking core (in softirq only). In the long run either the
814 * network layer or drivers should need annotation to consolidate the
815 * main types of usage into 3 classes.
817 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
819 spin_lock_init(&list
->lock
);
820 __skb_queue_head_init(list
);
823 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
824 struct lock_class_key
*class)
826 skb_queue_head_init(list
);
827 lockdep_set_class(&list
->lock
, class);
831 * Insert an sk_buff on a list.
833 * The "__skb_xxxx()" functions are the non-atomic ones that
834 * can only be called with interrupts disabled.
836 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
837 static inline void __skb_insert(struct sk_buff
*newsk
,
838 struct sk_buff
*prev
, struct sk_buff
*next
,
839 struct sk_buff_head
*list
)
843 next
->prev
= prev
->next
= newsk
;
847 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
848 struct sk_buff
*prev
,
849 struct sk_buff
*next
)
851 struct sk_buff
*first
= list
->next
;
852 struct sk_buff
*last
= list
->prev
;
862 * skb_queue_splice - join two skb lists, this is designed for stacks
863 * @list: the new list to add
864 * @head: the place to add it in the first list
866 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
867 struct sk_buff_head
*head
)
869 if (!skb_queue_empty(list
)) {
870 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
871 head
->qlen
+= list
->qlen
;
876 * skb_queue_splice - join two skb lists and reinitialise the emptied list
877 * @list: the new list to add
878 * @head: the place to add it in the first list
880 * The list at @list is reinitialised
882 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
883 struct sk_buff_head
*head
)
885 if (!skb_queue_empty(list
)) {
886 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
887 head
->qlen
+= list
->qlen
;
888 __skb_queue_head_init(list
);
893 * skb_queue_splice_tail - join two skb lists, each list being a queue
894 * @list: the new list to add
895 * @head: the place to add it in the first list
897 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
898 struct sk_buff_head
*head
)
900 if (!skb_queue_empty(list
)) {
901 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
902 head
->qlen
+= list
->qlen
;
907 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
908 * @list: the new list to add
909 * @head: the place to add it in the first list
911 * Each of the lists is a queue.
912 * The list at @list is reinitialised
914 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
915 struct sk_buff_head
*head
)
917 if (!skb_queue_empty(list
)) {
918 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
919 head
->qlen
+= list
->qlen
;
920 __skb_queue_head_init(list
);
925 * __skb_queue_after - queue a buffer at the list head
927 * @prev: place after this buffer
928 * @newsk: buffer to queue
930 * Queue a buffer int the middle of a list. This function takes no locks
931 * and you must therefore hold required locks before calling it.
933 * A buffer cannot be placed on two lists at the same time.
935 static inline void __skb_queue_after(struct sk_buff_head
*list
,
936 struct sk_buff
*prev
,
937 struct sk_buff
*newsk
)
939 __skb_insert(newsk
, prev
, prev
->next
, list
);
942 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
943 struct sk_buff_head
*list
);
945 static inline void __skb_queue_before(struct sk_buff_head
*list
,
946 struct sk_buff
*next
,
947 struct sk_buff
*newsk
)
949 __skb_insert(newsk
, next
->prev
, next
, list
);
953 * __skb_queue_head - queue a buffer at the list head
955 * @newsk: buffer to queue
957 * Queue a buffer at the start of a list. This function takes no locks
958 * and you must therefore hold required locks before calling it.
960 * A buffer cannot be placed on two lists at the same time.
962 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
963 static inline void __skb_queue_head(struct sk_buff_head
*list
,
964 struct sk_buff
*newsk
)
966 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
970 * __skb_queue_tail - queue a buffer at the list tail
972 * @newsk: buffer to queue
974 * Queue a buffer at the end of a list. This function takes no locks
975 * and you must therefore hold required locks before calling it.
977 * A buffer cannot be placed on two lists at the same time.
979 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
980 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
981 struct sk_buff
*newsk
)
983 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
987 * remove sk_buff from list. _Must_ be called atomically, and with
990 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
991 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
993 struct sk_buff
*next
, *prev
;
998 skb
->next
= skb
->prev
= NULL
;
1004 * __skb_dequeue - remove from the head of the queue
1005 * @list: list to dequeue from
1007 * Remove the head of the list. This function does not take any locks
1008 * so must be used with appropriate locks held only. The head item is
1009 * returned or %NULL if the list is empty.
1011 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
1012 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
1014 struct sk_buff
*skb
= skb_peek(list
);
1016 __skb_unlink(skb
, list
);
1021 * __skb_dequeue_tail - remove from the tail of the queue
1022 * @list: list to dequeue from
1024 * Remove the tail of the list. This function does not take any locks
1025 * so must be used with appropriate locks held only. The tail item is
1026 * returned or %NULL if the list is empty.
1028 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
1029 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
1031 struct sk_buff
*skb
= skb_peek_tail(list
);
1033 __skb_unlink(skb
, list
);
1038 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
1040 return skb
->data_len
;
1043 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
1045 return skb
->len
- skb
->data_len
;
1048 static inline int skb_pagelen(const struct sk_buff
*skb
)
1052 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
1053 len
+= skb_shinfo(skb
)->frags
[i
].size
;
1054 return len
+ skb_headlen(skb
);
1057 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1058 struct page
*page
, int off
, int size
)
1060 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1063 frag
->page_offset
= off
;
1065 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1068 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
1071 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1072 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
1073 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1075 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1076 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1078 return skb
->head
+ skb
->tail
;
1081 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1083 skb
->tail
= skb
->data
- skb
->head
;
1086 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1088 skb_reset_tail_pointer(skb
);
1089 skb
->tail
+= offset
;
1091 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1092 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1097 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1099 skb
->tail
= skb
->data
;
1102 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1104 skb
->tail
= skb
->data
+ offset
;
1107 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1110 * Add data to an sk_buff
1112 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1113 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1115 unsigned char *tmp
= skb_tail_pointer(skb
);
1116 SKB_LINEAR_ASSERT(skb
);
1122 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1123 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1130 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1131 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1134 BUG_ON(skb
->len
< skb
->data_len
);
1135 return skb
->data
+= len
;
1138 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1140 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1142 if (len
> skb_headlen(skb
) &&
1143 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1146 return skb
->data
+= len
;
1149 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1151 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1154 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1156 if (likely(len
<= skb_headlen(skb
)))
1158 if (unlikely(len
> skb
->len
))
1160 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1164 * skb_headroom - bytes at buffer head
1165 * @skb: buffer to check
1167 * Return the number of bytes of free space at the head of an &sk_buff.
1169 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1171 return skb
->data
- skb
->head
;
1175 * skb_tailroom - bytes at buffer end
1176 * @skb: buffer to check
1178 * Return the number of bytes of free space at the tail of an sk_buff
1180 static inline int skb_tailroom(const struct sk_buff
*skb
)
1182 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1186 * skb_reserve - adjust headroom
1187 * @skb: buffer to alter
1188 * @len: bytes to move
1190 * Increase the headroom of an empty &sk_buff by reducing the tail
1191 * room. This is only allowed for an empty buffer.
1193 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1199 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1200 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1202 return skb
->head
+ skb
->transport_header
;
1205 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1207 skb
->transport_header
= skb
->data
- skb
->head
;
1210 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1213 skb_reset_transport_header(skb
);
1214 skb
->transport_header
+= offset
;
1217 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1219 return skb
->head
+ skb
->network_header
;
1222 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1224 skb
->network_header
= skb
->data
- skb
->head
;
1227 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1229 skb_reset_network_header(skb
);
1230 skb
->network_header
+= offset
;
1233 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1235 return skb
->head
+ skb
->mac_header
;
1238 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1240 return skb
->mac_header
!= ~0U;
1243 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1245 skb
->mac_header
= skb
->data
- skb
->head
;
1248 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1250 skb_reset_mac_header(skb
);
1251 skb
->mac_header
+= offset
;
1254 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1256 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1258 return skb
->transport_header
;
1261 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1263 skb
->transport_header
= skb
->data
;
1266 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1269 skb
->transport_header
= skb
->data
+ offset
;
1272 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1274 return skb
->network_header
;
1277 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1279 skb
->network_header
= skb
->data
;
1282 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1284 skb
->network_header
= skb
->data
+ offset
;
1287 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1289 return skb
->mac_header
;
1292 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1294 return skb
->mac_header
!= NULL
;
1297 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1299 skb
->mac_header
= skb
->data
;
1302 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1304 skb
->mac_header
= skb
->data
+ offset
;
1306 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1308 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1310 return skb_transport_header(skb
) - skb
->data
;
1313 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1315 return skb
->transport_header
- skb
->network_header
;
1318 static inline int skb_network_offset(const struct sk_buff
*skb
)
1320 return skb_network_header(skb
) - skb
->data
;
1324 * CPUs often take a performance hit when accessing unaligned memory
1325 * locations. The actual performance hit varies, it can be small if the
1326 * hardware handles it or large if we have to take an exception and fix it
1329 * Since an ethernet header is 14 bytes network drivers often end up with
1330 * the IP header at an unaligned offset. The IP header can be aligned by
1331 * shifting the start of the packet by 2 bytes. Drivers should do this
1334 * skb_reserve(skb, NET_IP_ALIGN);
1336 * The downside to this alignment of the IP header is that the DMA is now
1337 * unaligned. On some architectures the cost of an unaligned DMA is high
1338 * and this cost outweighs the gains made by aligning the IP header.
1340 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1343 #ifndef NET_IP_ALIGN
1344 #define NET_IP_ALIGN 2
1348 * The networking layer reserves some headroom in skb data (via
1349 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1350 * the header has to grow. In the default case, if the header has to grow
1351 * 32 bytes or less we avoid the reallocation.
1353 * Unfortunately this headroom changes the DMA alignment of the resulting
1354 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1355 * on some architectures. An architecture can override this value,
1356 * perhaps setting it to a cacheline in size (since that will maintain
1357 * cacheline alignment of the DMA). It must be a power of 2.
1359 * Various parts of the networking layer expect at least 32 bytes of
1360 * headroom, you should not reduce this.
1363 #define NET_SKB_PAD 32
1366 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1368 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1370 if (unlikely(skb
->data_len
)) {
1375 skb_set_tail_pointer(skb
, len
);
1378 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1380 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1383 return ___pskb_trim(skb
, len
);
1384 __skb_trim(skb
, len
);
1388 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1390 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1394 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1395 * @skb: buffer to alter
1398 * This is identical to pskb_trim except that the caller knows that
1399 * the skb is not cloned so we should never get an error due to out-
1402 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1404 int err
= pskb_trim(skb
, len
);
1409 * skb_orphan - orphan a buffer
1410 * @skb: buffer to orphan
1412 * If a buffer currently has an owner then we call the owner's
1413 * destructor function and make the @skb unowned. The buffer continues
1414 * to exist but is no longer charged to its former owner.
1416 static inline void skb_orphan(struct sk_buff
*skb
)
1418 if (skb
->destructor
)
1419 skb
->destructor(skb
);
1420 skb
->destructor
= NULL
;
1425 * __skb_queue_purge - empty a list
1426 * @list: list to empty
1428 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1429 * the list and one reference dropped. This function does not take the
1430 * list lock and the caller must hold the relevant locks to use it.
1432 extern void skb_queue_purge(struct sk_buff_head
*list
);
1433 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1435 struct sk_buff
*skb
;
1436 while ((skb
= __skb_dequeue(list
)) != NULL
)
1441 * __dev_alloc_skb - allocate an skbuff for receiving
1442 * @length: length to allocate
1443 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1445 * Allocate a new &sk_buff and assign it a usage count of one. The
1446 * buffer has unspecified headroom built in. Users should allocate
1447 * the headroom they think they need without accounting for the
1448 * built in space. The built in space is used for optimisations.
1450 * %NULL is returned if there is no free memory.
1452 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1455 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1457 skb_reserve(skb
, NET_SKB_PAD
);
1461 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1463 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1464 unsigned int length
, gfp_t gfp_mask
);
1467 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1468 * @dev: network device to receive on
1469 * @length: length to allocate
1471 * Allocate a new &sk_buff and assign it a usage count of one. The
1472 * buffer has unspecified headroom built in. Users should allocate
1473 * the headroom they think they need without accounting for the
1474 * built in space. The built in space is used for optimisations.
1476 * %NULL is returned if there is no free memory. Although this function
1477 * allocates memory it can be called from an interrupt.
1479 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1480 unsigned int length
)
1482 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1485 static inline struct sk_buff
*netdev_alloc_skb_ip_align(struct net_device
*dev
,
1486 unsigned int length
)
1488 struct sk_buff
*skb
= netdev_alloc_skb(dev
, length
+ NET_IP_ALIGN
);
1490 if (NET_IP_ALIGN
&& skb
)
1491 skb_reserve(skb
, NET_IP_ALIGN
);
1495 extern struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
);
1498 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1499 * @dev: network device to receive on
1501 * Allocate a new page node local to the specified device.
1503 * %NULL is returned if there is no free memory.
1505 static inline struct page
*netdev_alloc_page(struct net_device
*dev
)
1507 return __netdev_alloc_page(dev
, GFP_ATOMIC
);
1510 static inline void netdev_free_page(struct net_device
*dev
, struct page
*page
)
1516 * skb_clone_writable - is the header of a clone writable
1517 * @skb: buffer to check
1518 * @len: length up to which to write
1520 * Returns true if modifying the header part of the cloned buffer
1521 * does not requires the data to be copied.
1523 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1525 return !skb_header_cloned(skb
) &&
1526 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1529 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1534 if (headroom
< NET_SKB_PAD
)
1535 headroom
= NET_SKB_PAD
;
1536 if (headroom
> skb_headroom(skb
))
1537 delta
= headroom
- skb_headroom(skb
);
1539 if (delta
|| cloned
)
1540 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1546 * skb_cow - copy header of skb when it is required
1547 * @skb: buffer to cow
1548 * @headroom: needed headroom
1550 * If the skb passed lacks sufficient headroom or its data part
1551 * is shared, data is reallocated. If reallocation fails, an error
1552 * is returned and original skb is not changed.
1554 * The result is skb with writable area skb->head...skb->tail
1555 * and at least @headroom of space at head.
1557 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1559 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1563 * skb_cow_head - skb_cow but only making the head writable
1564 * @skb: buffer to cow
1565 * @headroom: needed headroom
1567 * This function is identical to skb_cow except that we replace the
1568 * skb_cloned check by skb_header_cloned. It should be used when
1569 * you only need to push on some header and do not need to modify
1572 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1574 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1578 * skb_padto - pad an skbuff up to a minimal size
1579 * @skb: buffer to pad
1580 * @len: minimal length
1582 * Pads up a buffer to ensure the trailing bytes exist and are
1583 * blanked. If the buffer already contains sufficient data it
1584 * is untouched. Otherwise it is extended. Returns zero on
1585 * success. The skb is freed on error.
1588 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1590 unsigned int size
= skb
->len
;
1591 if (likely(size
>= len
))
1593 return skb_pad(skb
, len
- size
);
1596 static inline int skb_add_data(struct sk_buff
*skb
,
1597 char __user
*from
, int copy
)
1599 const int off
= skb
->len
;
1601 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1603 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1606 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1609 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1612 __skb_trim(skb
, off
);
1616 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1617 struct page
*page
, int off
)
1620 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1622 return page
== frag
->page
&&
1623 off
== frag
->page_offset
+ frag
->size
;
1628 static inline int __skb_linearize(struct sk_buff
*skb
)
1630 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1634 * skb_linearize - convert paged skb to linear one
1635 * @skb: buffer to linarize
1637 * If there is no free memory -ENOMEM is returned, otherwise zero
1638 * is returned and the old skb data released.
1640 static inline int skb_linearize(struct sk_buff
*skb
)
1642 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1646 * skb_linearize_cow - make sure skb is linear and writable
1647 * @skb: buffer to process
1649 * If there is no free memory -ENOMEM is returned, otherwise zero
1650 * is returned and the old skb data released.
1652 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1654 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1655 __skb_linearize(skb
) : 0;
1659 * skb_postpull_rcsum - update checksum for received skb after pull
1660 * @skb: buffer to update
1661 * @start: start of data before pull
1662 * @len: length of data pulled
1664 * After doing a pull on a received packet, you need to call this to
1665 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1666 * CHECKSUM_NONE so that it can be recomputed from scratch.
1669 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1670 const void *start
, unsigned int len
)
1672 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1673 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1676 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1679 * pskb_trim_rcsum - trim received skb and update checksum
1680 * @skb: buffer to trim
1683 * This is exactly the same as pskb_trim except that it ensures the
1684 * checksum of received packets are still valid after the operation.
1687 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1689 if (likely(len
>= skb
->len
))
1691 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1692 skb
->ip_summed
= CHECKSUM_NONE
;
1693 return __pskb_trim(skb
, len
);
1696 #define skb_queue_walk(queue, skb) \
1697 for (skb = (queue)->next; \
1698 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1701 #define skb_queue_walk_safe(queue, skb, tmp) \
1702 for (skb = (queue)->next, tmp = skb->next; \
1703 skb != (struct sk_buff *)(queue); \
1704 skb = tmp, tmp = skb->next)
1706 #define skb_queue_walk_from(queue, skb) \
1707 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1710 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1711 for (tmp = skb->next; \
1712 skb != (struct sk_buff *)(queue); \
1713 skb = tmp, tmp = skb->next)
1715 #define skb_queue_reverse_walk(queue, skb) \
1716 for (skb = (queue)->prev; \
1717 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1721 static inline bool skb_has_frags(const struct sk_buff
*skb
)
1723 return skb_shinfo(skb
)->frag_list
!= NULL
;
1726 static inline void skb_frag_list_init(struct sk_buff
*skb
)
1728 skb_shinfo(skb
)->frag_list
= NULL
;
1731 static inline void skb_frag_add_head(struct sk_buff
*skb
, struct sk_buff
*frag
)
1733 frag
->next
= skb_shinfo(skb
)->frag_list
;
1734 skb_shinfo(skb
)->frag_list
= frag
;
1737 #define skb_walk_frags(skb, iter) \
1738 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1740 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1741 int *peeked
, int *err
);
1742 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1743 int noblock
, int *err
);
1744 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1745 struct poll_table_struct
*wait
);
1746 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1747 int offset
, struct iovec
*to
,
1749 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1752 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
1754 const struct iovec
*from
,
1757 extern int skb_copy_datagram_const_iovec(const struct sk_buff
*from
,
1759 const struct iovec
*to
,
1762 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1763 extern void skb_free_datagram_locked(struct sock
*sk
,
1764 struct sk_buff
*skb
);
1765 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1766 unsigned int flags
);
1767 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1768 int len
, __wsum csum
);
1769 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1771 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1772 const void *from
, int len
);
1773 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1774 int offset
, u8
*to
, int len
,
1776 extern int skb_splice_bits(struct sk_buff
*skb
,
1777 unsigned int offset
,
1778 struct pipe_inode_info
*pipe
,
1780 unsigned int flags
);
1781 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1782 extern void skb_split(struct sk_buff
*skb
,
1783 struct sk_buff
*skb1
, const u32 len
);
1784 extern int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
,
1787 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1789 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1790 int len
, void *buffer
)
1792 int hlen
= skb_headlen(skb
);
1794 if (hlen
- offset
>= len
)
1795 return skb
->data
+ offset
;
1797 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1803 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1805 const unsigned int len
)
1807 memcpy(to
, skb
->data
, len
);
1810 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1811 const int offset
, void *to
,
1812 const unsigned int len
)
1814 memcpy(to
, skb
->data
+ offset
, len
);
1817 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1819 const unsigned int len
)
1821 memcpy(skb
->data
, from
, len
);
1824 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1827 const unsigned int len
)
1829 memcpy(skb
->data
+ offset
, from
, len
);
1832 extern void skb_init(void);
1834 static inline ktime_t
skb_get_ktime(const struct sk_buff
*skb
)
1840 * skb_get_timestamp - get timestamp from a skb
1841 * @skb: skb to get stamp from
1842 * @stamp: pointer to struct timeval to store stamp in
1844 * Timestamps are stored in the skb as offsets to a base timestamp.
1845 * This function converts the offset back to a struct timeval and stores
1848 static inline void skb_get_timestamp(const struct sk_buff
*skb
,
1849 struct timeval
*stamp
)
1851 *stamp
= ktime_to_timeval(skb
->tstamp
);
1854 static inline void skb_get_timestampns(const struct sk_buff
*skb
,
1855 struct timespec
*stamp
)
1857 *stamp
= ktime_to_timespec(skb
->tstamp
);
1860 static inline void __net_timestamp(struct sk_buff
*skb
)
1862 skb
->tstamp
= ktime_get_real();
1865 static inline ktime_t
net_timedelta(ktime_t t
)
1867 return ktime_sub(ktime_get_real(), t
);
1870 static inline ktime_t
net_invalid_timestamp(void)
1872 return ktime_set(0, 0);
1876 * skb_tstamp_tx - queue clone of skb with send time stamps
1877 * @orig_skb: the original outgoing packet
1878 * @hwtstamps: hardware time stamps, may be NULL if not available
1880 * If the skb has a socket associated, then this function clones the
1881 * skb (thus sharing the actual data and optional structures), stores
1882 * the optional hardware time stamping information (if non NULL) or
1883 * generates a software time stamp (otherwise), then queues the clone
1884 * to the error queue of the socket. Errors are silently ignored.
1886 extern void skb_tstamp_tx(struct sk_buff
*orig_skb
,
1887 struct skb_shared_hwtstamps
*hwtstamps
);
1889 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1890 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1892 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1894 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1898 * skb_checksum_complete - Calculate checksum of an entire packet
1899 * @skb: packet to process
1901 * This function calculates the checksum over the entire packet plus
1902 * the value of skb->csum. The latter can be used to supply the
1903 * checksum of a pseudo header as used by TCP/UDP. It returns the
1906 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1907 * this function can be used to verify that checksum on received
1908 * packets. In that case the function should return zero if the
1909 * checksum is correct. In particular, this function will return zero
1910 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1911 * hardware has already verified the correctness of the checksum.
1913 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1915 return skb_csum_unnecessary(skb
) ?
1916 0 : __skb_checksum_complete(skb
);
1919 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1920 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1921 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1923 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1924 nf_conntrack_destroy(nfct
);
1926 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1929 atomic_inc(&nfct
->use
);
1931 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1934 atomic_inc(&skb
->users
);
1936 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1942 #ifdef CONFIG_BRIDGE_NETFILTER
1943 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1945 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1948 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1951 atomic_inc(&nf_bridge
->use
);
1953 #endif /* CONFIG_BRIDGE_NETFILTER */
1954 static inline void nf_reset(struct sk_buff
*skb
)
1956 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1957 nf_conntrack_put(skb
->nfct
);
1959 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1960 skb
->nfct_reasm
= NULL
;
1962 #ifdef CONFIG_BRIDGE_NETFILTER
1963 nf_bridge_put(skb
->nf_bridge
);
1964 skb
->nf_bridge
= NULL
;
1968 /* Note: This doesn't put any conntrack and bridge info in dst. */
1969 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1971 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1972 dst
->nfct
= src
->nfct
;
1973 nf_conntrack_get(src
->nfct
);
1974 dst
->nfctinfo
= src
->nfctinfo
;
1975 dst
->nfct_reasm
= src
->nfct_reasm
;
1976 nf_conntrack_get_reasm(src
->nfct_reasm
);
1978 #ifdef CONFIG_BRIDGE_NETFILTER
1979 dst
->nf_bridge
= src
->nf_bridge
;
1980 nf_bridge_get(src
->nf_bridge
);
1984 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1986 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1987 nf_conntrack_put(dst
->nfct
);
1988 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1990 #ifdef CONFIG_BRIDGE_NETFILTER
1991 nf_bridge_put(dst
->nf_bridge
);
1993 __nf_copy(dst
, src
);
1996 #ifdef CONFIG_NETWORK_SECMARK
1997 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1999 to
->secmark
= from
->secmark
;
2002 static inline void skb_init_secmark(struct sk_buff
*skb
)
2007 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2010 static inline void skb_init_secmark(struct sk_buff
*skb
)
2014 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
2016 skb
->queue_mapping
= queue_mapping
;
2019 static inline u16
skb_get_queue_mapping(const struct sk_buff
*skb
)
2021 return skb
->queue_mapping
;
2024 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
2026 to
->queue_mapping
= from
->queue_mapping
;
2029 static inline void skb_record_rx_queue(struct sk_buff
*skb
, u16 rx_queue
)
2031 skb
->queue_mapping
= rx_queue
+ 1;
2034 static inline u16
skb_get_rx_queue(const struct sk_buff
*skb
)
2036 return skb
->queue_mapping
- 1;
2039 static inline bool skb_rx_queue_recorded(const struct sk_buff
*skb
)
2041 return (skb
->queue_mapping
!= 0);
2044 extern u16
skb_tx_hash(const struct net_device
*dev
,
2045 const struct sk_buff
*skb
);
2048 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2053 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2059 static inline int skb_is_gso(const struct sk_buff
*skb
)
2061 return skb_shinfo(skb
)->gso_size
;
2064 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
2066 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
2069 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
2071 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
2073 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2074 * wanted then gso_type will be set. */
2075 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2076 if (shinfo
->gso_size
!= 0 && unlikely(shinfo
->gso_type
== 0)) {
2077 __skb_warn_lro_forwarding(skb
);
2083 static inline void skb_forward_csum(struct sk_buff
*skb
)
2085 /* Unfortunately we don't support this one. Any brave souls? */
2086 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2087 skb
->ip_summed
= CHECKSUM_NONE
;
2090 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
2091 #endif /* __KERNEL__ */
2092 #endif /* _LINUX_SKBUFF_H */