Use dentry_path() to create full path to inode object
[pohmelfs.git] / include / linux / skbuff.h
blobae86adee3746aec6661ef35e2b18cf62e0d17780
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/netdev_features.h>
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* return minimum truesize of one skb containing X bytes of data */
51 #define SKB_TRUESIZE(X) ((X) + \
52 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
53 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 /* A. Checksumming of received packets by device.
57 * NONE: device failed to checksum this packet.
58 * skb->csum is undefined.
60 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
61 * skb->csum is undefined.
62 * It is bad option, but, unfortunately, many of vendors do this.
63 * Apparently with secret goal to sell you new device, when you
64 * will add new protocol to your host. F.e. IPv6. 8)
66 * COMPLETE: the most generic way. Device supplied checksum of _all_
67 * the packet as seen by netif_rx in skb->csum.
68 * NOTE: Even if device supports only some protocols, but
69 * is able to produce some skb->csum, it MUST use COMPLETE,
70 * not UNNECESSARY.
72 * PARTIAL: identical to the case for output below. This may occur
73 * on a packet received directly from another Linux OS, e.g.,
74 * a virtualised Linux kernel on the same host. The packet can
75 * be treated in the same way as UNNECESSARY except that on
76 * output (i.e., forwarding) the checksum must be filled in
77 * by the OS or the hardware.
79 * B. Checksumming on output.
81 * NONE: skb is checksummed by protocol or csum is not required.
83 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
84 * from skb->csum_start to the end and to record the checksum
85 * at skb->csum_start + skb->csum_offset.
87 * Device must show its capabilities in dev->features, set
88 * at device setup time.
89 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
90 * everything.
91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92 * TCP/UDP over IPv4. Sigh. Vendors like this
93 * way by an unknown reason. Though, see comment above
94 * about CHECKSUM_UNNECESSARY. 8)
95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 * Any questions? No questions, good. --ANK
100 struct net_device;
101 struct scatterlist;
102 struct pipe_inode_info;
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack {
106 atomic_t use;
108 #endif
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info {
112 atomic_t use;
113 struct net_device *physindev;
114 struct net_device *physoutdev;
115 unsigned int mask;
116 unsigned long data[32 / sizeof(unsigned long)];
118 #endif
120 struct sk_buff_head {
121 /* These two members must be first. */
122 struct sk_buff *next;
123 struct sk_buff *prev;
125 __u32 qlen;
126 spinlock_t lock;
129 struct sk_buff;
131 /* To allow 64K frame to be packed as single skb without frag_list we
132 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
133 * buffers which do not start on a page boundary.
135 * Since GRO uses frags we allocate at least 16 regardless of page
136 * size.
138 #if (65536/PAGE_SIZE + 1) < 16
139 #define MAX_SKB_FRAGS 16UL
140 #else
141 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
142 #endif
144 typedef struct skb_frag_struct skb_frag_t;
146 struct skb_frag_struct {
147 struct {
148 struct page *p;
149 } page;
150 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
151 __u32 page_offset;
152 __u32 size;
153 #else
154 __u16 page_offset;
155 __u16 size;
156 #endif
159 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
161 return frag->size;
164 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
166 frag->size = size;
169 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
171 frag->size += delta;
174 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
176 frag->size -= delta;
179 #define HAVE_HW_TIME_STAMP
182 * struct skb_shared_hwtstamps - hardware time stamps
183 * @hwtstamp: hardware time stamp transformed into duration
184 * since arbitrary point in time
185 * @syststamp: hwtstamp transformed to system time base
187 * Software time stamps generated by ktime_get_real() are stored in
188 * skb->tstamp. The relation between the different kinds of time
189 * stamps is as follows:
191 * syststamp and tstamp can be compared against each other in
192 * arbitrary combinations. The accuracy of a
193 * syststamp/tstamp/"syststamp from other device" comparison is
194 * limited by the accuracy of the transformation into system time
195 * base. This depends on the device driver and its underlying
196 * hardware.
198 * hwtstamps can only be compared against other hwtstamps from
199 * the same device.
201 * This structure is attached to packets as part of the
202 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
204 struct skb_shared_hwtstamps {
205 ktime_t hwtstamp;
206 ktime_t syststamp;
209 /* Definitions for tx_flags in struct skb_shared_info */
210 enum {
211 /* generate hardware time stamp */
212 SKBTX_HW_TSTAMP = 1 << 0,
214 /* generate software time stamp */
215 SKBTX_SW_TSTAMP = 1 << 1,
217 /* device driver is going to provide hardware time stamp */
218 SKBTX_IN_PROGRESS = 1 << 2,
220 /* ensure the originating sk reference is available on driver level */
221 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
223 /* device driver supports TX zero-copy buffers */
224 SKBTX_DEV_ZEROCOPY = 1 << 4,
226 /* generate wifi status information (where possible) */
227 SKBTX_WIFI_STATUS = 1 << 5,
231 * The callback notifies userspace to release buffers when skb DMA is done in
232 * lower device, the skb last reference should be 0 when calling this.
233 * The desc is used to track userspace buffer index.
235 struct ubuf_info {
236 void (*callback)(void *);
237 void *arg;
238 unsigned long desc;
241 /* This data is invariant across clones and lives at
242 * the end of the header data, ie. at skb->end.
244 struct skb_shared_info {
245 unsigned char nr_frags;
246 __u8 tx_flags;
247 unsigned short gso_size;
248 /* Warning: this field is not always filled in (UFO)! */
249 unsigned short gso_segs;
250 unsigned short gso_type;
251 struct sk_buff *frag_list;
252 struct skb_shared_hwtstamps hwtstamps;
253 __be32 ip6_frag_id;
256 * Warning : all fields before dataref are cleared in __alloc_skb()
258 atomic_t dataref;
260 /* Intermediate layers must ensure that destructor_arg
261 * remains valid until skb destructor */
262 void * destructor_arg;
264 /* must be last field, see pskb_expand_head() */
265 skb_frag_t frags[MAX_SKB_FRAGS];
268 /* We divide dataref into two halves. The higher 16 bits hold references
269 * to the payload part of skb->data. The lower 16 bits hold references to
270 * the entire skb->data. A clone of a headerless skb holds the length of
271 * the header in skb->hdr_len.
273 * All users must obey the rule that the skb->data reference count must be
274 * greater than or equal to the payload reference count.
276 * Holding a reference to the payload part means that the user does not
277 * care about modifications to the header part of skb->data.
279 #define SKB_DATAREF_SHIFT 16
280 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
283 enum {
284 SKB_FCLONE_UNAVAILABLE,
285 SKB_FCLONE_ORIG,
286 SKB_FCLONE_CLONE,
289 enum {
290 SKB_GSO_TCPV4 = 1 << 0,
291 SKB_GSO_UDP = 1 << 1,
293 /* This indicates the skb is from an untrusted source. */
294 SKB_GSO_DODGY = 1 << 2,
296 /* This indicates the tcp segment has CWR set. */
297 SKB_GSO_TCP_ECN = 1 << 3,
299 SKB_GSO_TCPV6 = 1 << 4,
301 SKB_GSO_FCOE = 1 << 5,
304 #if BITS_PER_LONG > 32
305 #define NET_SKBUFF_DATA_USES_OFFSET 1
306 #endif
308 #ifdef NET_SKBUFF_DATA_USES_OFFSET
309 typedef unsigned int sk_buff_data_t;
310 #else
311 typedef unsigned char *sk_buff_data_t;
312 #endif
314 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
315 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
316 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
317 #endif
319 /**
320 * struct sk_buff - socket buffer
321 * @next: Next buffer in list
322 * @prev: Previous buffer in list
323 * @tstamp: Time we arrived
324 * @sk: Socket we are owned by
325 * @dev: Device we arrived on/are leaving by
326 * @cb: Control buffer. Free for use by every layer. Put private vars here
327 * @_skb_refdst: destination entry (with norefcount bit)
328 * @sp: the security path, used for xfrm
329 * @len: Length of actual data
330 * @data_len: Data length
331 * @mac_len: Length of link layer header
332 * @hdr_len: writable header length of cloned skb
333 * @csum: Checksum (must include start/offset pair)
334 * @csum_start: Offset from skb->head where checksumming should start
335 * @csum_offset: Offset from csum_start where checksum should be stored
336 * @priority: Packet queueing priority
337 * @local_df: allow local fragmentation
338 * @cloned: Head may be cloned (check refcnt to be sure)
339 * @ip_summed: Driver fed us an IP checksum
340 * @nohdr: Payload reference only, must not modify header
341 * @nfctinfo: Relationship of this skb to the connection
342 * @pkt_type: Packet class
343 * @fclone: skbuff clone status
344 * @ipvs_property: skbuff is owned by ipvs
345 * @peeked: this packet has been seen already, so stats have been
346 * done for it, don't do them again
347 * @nf_trace: netfilter packet trace flag
348 * @protocol: Packet protocol from driver
349 * @destructor: Destruct function
350 * @nfct: Associated connection, if any
351 * @nfct_reasm: netfilter conntrack re-assembly pointer
352 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
353 * @skb_iif: ifindex of device we arrived on
354 * @tc_index: Traffic control index
355 * @tc_verd: traffic control verdict
356 * @rxhash: the packet hash computed on receive
357 * @queue_mapping: Queue mapping for multiqueue devices
358 * @ndisc_nodetype: router type (from link layer)
359 * @ooo_okay: allow the mapping of a socket to a queue to be changed
360 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
361 * ports.
362 * @wifi_acked_valid: wifi_acked was set
363 * @wifi_acked: whether frame was acked on wifi or not
364 * @dma_cookie: a cookie to one of several possible DMA operations
365 * done by skb DMA functions
366 * @secmark: security marking
367 * @mark: Generic packet mark
368 * @dropcount: total number of sk_receive_queue overflows
369 * @vlan_tci: vlan tag control information
370 * @transport_header: Transport layer header
371 * @network_header: Network layer header
372 * @mac_header: Link layer header
373 * @tail: Tail pointer
374 * @end: End pointer
375 * @head: Head of buffer
376 * @data: Data head pointer
377 * @truesize: Buffer size
378 * @users: User count - see {datagram,tcp}.c
381 struct sk_buff {
382 /* These two members must be first. */
383 struct sk_buff *next;
384 struct sk_buff *prev;
386 ktime_t tstamp;
388 struct sock *sk;
389 struct net_device *dev;
392 * This is the control buffer. It is free to use for every
393 * layer. Please put your private variables there. If you
394 * want to keep them across layers you have to do a skb_clone()
395 * first. This is owned by whoever has the skb queued ATM.
397 char cb[48] __aligned(8);
399 unsigned long _skb_refdst;
400 #ifdef CONFIG_XFRM
401 struct sec_path *sp;
402 #endif
403 unsigned int len,
404 data_len;
405 __u16 mac_len,
406 hdr_len;
407 union {
408 __wsum csum;
409 struct {
410 __u16 csum_start;
411 __u16 csum_offset;
414 __u32 priority;
415 kmemcheck_bitfield_begin(flags1);
416 __u8 local_df:1,
417 cloned:1,
418 ip_summed:2,
419 nohdr:1,
420 nfctinfo:3;
421 __u8 pkt_type:3,
422 fclone:2,
423 ipvs_property:1,
424 peeked:1,
425 nf_trace:1;
426 kmemcheck_bitfield_end(flags1);
427 __be16 protocol;
429 void (*destructor)(struct sk_buff *skb);
430 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
431 struct nf_conntrack *nfct;
432 #endif
433 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
434 struct sk_buff *nfct_reasm;
435 #endif
436 #ifdef CONFIG_BRIDGE_NETFILTER
437 struct nf_bridge_info *nf_bridge;
438 #endif
440 int skb_iif;
441 #ifdef CONFIG_NET_SCHED
442 __u16 tc_index; /* traffic control index */
443 #ifdef CONFIG_NET_CLS_ACT
444 __u16 tc_verd; /* traffic control verdict */
445 #endif
446 #endif
448 __u32 rxhash;
450 __u16 queue_mapping;
451 kmemcheck_bitfield_begin(flags2);
452 #ifdef CONFIG_IPV6_NDISC_NODETYPE
453 __u8 ndisc_nodetype:2;
454 #endif
455 __u8 ooo_okay:1;
456 __u8 l4_rxhash:1;
457 __u8 wifi_acked_valid:1;
458 __u8 wifi_acked:1;
459 /* 10/12 bit hole (depending on ndisc_nodetype presence) */
460 kmemcheck_bitfield_end(flags2);
462 #ifdef CONFIG_NET_DMA
463 dma_cookie_t dma_cookie;
464 #endif
465 #ifdef CONFIG_NETWORK_SECMARK
466 __u32 secmark;
467 #endif
468 union {
469 __u32 mark;
470 __u32 dropcount;
473 __u16 vlan_tci;
475 sk_buff_data_t transport_header;
476 sk_buff_data_t network_header;
477 sk_buff_data_t mac_header;
478 /* These elements must be at the end, see alloc_skb() for details. */
479 sk_buff_data_t tail;
480 sk_buff_data_t end;
481 unsigned char *head,
482 *data;
483 unsigned int truesize;
484 atomic_t users;
487 #ifdef __KERNEL__
489 * Handling routines are only of interest to the kernel
491 #include <linux/slab.h>
493 #include <asm/system.h>
496 * skb might have a dst pointer attached, refcounted or not.
497 * _skb_refdst low order bit is set if refcount was _not_ taken
499 #define SKB_DST_NOREF 1UL
500 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
503 * skb_dst - returns skb dst_entry
504 * @skb: buffer
506 * Returns skb dst_entry, regardless of reference taken or not.
508 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
510 /* If refdst was not refcounted, check we still are in a
511 * rcu_read_lock section
513 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
514 !rcu_read_lock_held() &&
515 !rcu_read_lock_bh_held());
516 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
520 * skb_dst_set - sets skb dst
521 * @skb: buffer
522 * @dst: dst entry
524 * Sets skb dst, assuming a reference was taken on dst and should
525 * be released by skb_dst_drop()
527 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
529 skb->_skb_refdst = (unsigned long)dst;
532 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
535 * skb_dst_is_noref - Test if skb dst isn't refcounted
536 * @skb: buffer
538 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
540 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
543 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
545 return (struct rtable *)skb_dst(skb);
548 extern void kfree_skb(struct sk_buff *skb);
549 extern void consume_skb(struct sk_buff *skb);
550 extern void __kfree_skb(struct sk_buff *skb);
551 extern struct sk_buff *__alloc_skb(unsigned int size,
552 gfp_t priority, int fclone, int node);
553 extern struct sk_buff *build_skb(void *data);
554 static inline struct sk_buff *alloc_skb(unsigned int size,
555 gfp_t priority)
557 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
560 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
561 gfp_t priority)
563 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
566 extern void skb_recycle(struct sk_buff *skb);
567 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
569 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
570 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
571 extern struct sk_buff *skb_clone(struct sk_buff *skb,
572 gfp_t priority);
573 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
574 gfp_t priority);
575 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
576 int headroom, gfp_t gfp_mask);
578 extern int pskb_expand_head(struct sk_buff *skb,
579 int nhead, int ntail,
580 gfp_t gfp_mask);
581 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
582 unsigned int headroom);
583 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
584 int newheadroom, int newtailroom,
585 gfp_t priority);
586 extern int skb_to_sgvec(struct sk_buff *skb,
587 struct scatterlist *sg, int offset,
588 int len);
589 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
590 struct sk_buff **trailer);
591 extern int skb_pad(struct sk_buff *skb, int pad);
592 #define dev_kfree_skb(a) consume_skb(a)
594 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
595 int getfrag(void *from, char *to, int offset,
596 int len,int odd, struct sk_buff *skb),
597 void *from, int length);
599 struct skb_seq_state {
600 __u32 lower_offset;
601 __u32 upper_offset;
602 __u32 frag_idx;
603 __u32 stepped_offset;
604 struct sk_buff *root_skb;
605 struct sk_buff *cur_skb;
606 __u8 *frag_data;
609 extern void skb_prepare_seq_read(struct sk_buff *skb,
610 unsigned int from, unsigned int to,
611 struct skb_seq_state *st);
612 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
613 struct skb_seq_state *st);
614 extern void skb_abort_seq_read(struct skb_seq_state *st);
616 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
617 unsigned int to, struct ts_config *config,
618 struct ts_state *state);
620 extern void __skb_get_rxhash(struct sk_buff *skb);
621 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
623 if (!skb->rxhash)
624 __skb_get_rxhash(skb);
626 return skb->rxhash;
629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
630 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
632 return skb->head + skb->end;
634 #else
635 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
637 return skb->end;
639 #endif
641 /* Internal */
642 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
644 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
646 return &skb_shinfo(skb)->hwtstamps;
650 * skb_queue_empty - check if a queue is empty
651 * @list: queue head
653 * Returns true if the queue is empty, false otherwise.
655 static inline int skb_queue_empty(const struct sk_buff_head *list)
657 return list->next == (struct sk_buff *)list;
661 * skb_queue_is_last - check if skb is the last entry in the queue
662 * @list: queue head
663 * @skb: buffer
665 * Returns true if @skb is the last buffer on the list.
667 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
668 const struct sk_buff *skb)
670 return skb->next == (struct sk_buff *)list;
674 * skb_queue_is_first - check if skb is the first entry in the queue
675 * @list: queue head
676 * @skb: buffer
678 * Returns true if @skb is the first buffer on the list.
680 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
681 const struct sk_buff *skb)
683 return skb->prev == (struct sk_buff *)list;
687 * skb_queue_next - return the next packet in the queue
688 * @list: queue head
689 * @skb: current buffer
691 * Return the next packet in @list after @skb. It is only valid to
692 * call this if skb_queue_is_last() evaluates to false.
694 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
695 const struct sk_buff *skb)
697 /* This BUG_ON may seem severe, but if we just return then we
698 * are going to dereference garbage.
700 BUG_ON(skb_queue_is_last(list, skb));
701 return skb->next;
705 * skb_queue_prev - return the prev packet in the queue
706 * @list: queue head
707 * @skb: current buffer
709 * Return the prev packet in @list before @skb. It is only valid to
710 * call this if skb_queue_is_first() evaluates to false.
712 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
713 const struct sk_buff *skb)
715 /* This BUG_ON may seem severe, but if we just return then we
716 * are going to dereference garbage.
718 BUG_ON(skb_queue_is_first(list, skb));
719 return skb->prev;
723 * skb_get - reference buffer
724 * @skb: buffer to reference
726 * Makes another reference to a socket buffer and returns a pointer
727 * to the buffer.
729 static inline struct sk_buff *skb_get(struct sk_buff *skb)
731 atomic_inc(&skb->users);
732 return skb;
736 * If users == 1, we are the only owner and are can avoid redundant
737 * atomic change.
741 * skb_cloned - is the buffer a clone
742 * @skb: buffer to check
744 * Returns true if the buffer was generated with skb_clone() and is
745 * one of multiple shared copies of the buffer. Cloned buffers are
746 * shared data so must not be written to under normal circumstances.
748 static inline int skb_cloned(const struct sk_buff *skb)
750 return skb->cloned &&
751 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
755 * skb_header_cloned - is the header a clone
756 * @skb: buffer to check
758 * Returns true if modifying the header part of the buffer requires
759 * the data to be copied.
761 static inline int skb_header_cloned(const struct sk_buff *skb)
763 int dataref;
765 if (!skb->cloned)
766 return 0;
768 dataref = atomic_read(&skb_shinfo(skb)->dataref);
769 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
770 return dataref != 1;
774 * skb_header_release - release reference to header
775 * @skb: buffer to operate on
777 * Drop a reference to the header part of the buffer. This is done
778 * by acquiring a payload reference. You must not read from the header
779 * part of skb->data after this.
781 static inline void skb_header_release(struct sk_buff *skb)
783 BUG_ON(skb->nohdr);
784 skb->nohdr = 1;
785 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
789 * skb_shared - is the buffer shared
790 * @skb: buffer to check
792 * Returns true if more than one person has a reference to this
793 * buffer.
795 static inline int skb_shared(const struct sk_buff *skb)
797 return atomic_read(&skb->users) != 1;
801 * skb_share_check - check if buffer is shared and if so clone it
802 * @skb: buffer to check
803 * @pri: priority for memory allocation
805 * If the buffer is shared the buffer is cloned and the old copy
806 * drops a reference. A new clone with a single reference is returned.
807 * If the buffer is not shared the original buffer is returned. When
808 * being called from interrupt status or with spinlocks held pri must
809 * be GFP_ATOMIC.
811 * NULL is returned on a memory allocation failure.
813 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
814 gfp_t pri)
816 might_sleep_if(pri & __GFP_WAIT);
817 if (skb_shared(skb)) {
818 struct sk_buff *nskb = skb_clone(skb, pri);
819 kfree_skb(skb);
820 skb = nskb;
822 return skb;
826 * Copy shared buffers into a new sk_buff. We effectively do COW on
827 * packets to handle cases where we have a local reader and forward
828 * and a couple of other messy ones. The normal one is tcpdumping
829 * a packet thats being forwarded.
833 * skb_unshare - make a copy of a shared buffer
834 * @skb: buffer to check
835 * @pri: priority for memory allocation
837 * If the socket buffer is a clone then this function creates a new
838 * copy of the data, drops a reference count on the old copy and returns
839 * the new copy with the reference count at 1. If the buffer is not a clone
840 * the original buffer is returned. When called with a spinlock held or
841 * from interrupt state @pri must be %GFP_ATOMIC
843 * %NULL is returned on a memory allocation failure.
845 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
846 gfp_t pri)
848 might_sleep_if(pri & __GFP_WAIT);
849 if (skb_cloned(skb)) {
850 struct sk_buff *nskb = skb_copy(skb, pri);
851 kfree_skb(skb); /* Free our shared copy */
852 skb = nskb;
854 return skb;
858 * skb_peek - peek at the head of an &sk_buff_head
859 * @list_: list to peek at
861 * Peek an &sk_buff. Unlike most other operations you _MUST_
862 * be careful with this one. A peek leaves the buffer on the
863 * list and someone else may run off with it. You must hold
864 * the appropriate locks or have a private queue to do this.
866 * Returns %NULL for an empty list or a pointer to the head element.
867 * The reference count is not incremented and the reference is therefore
868 * volatile. Use with caution.
870 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
872 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
873 if (list == (struct sk_buff *)list_)
874 list = NULL;
875 return list;
879 * skb_peek_tail - peek at the tail of an &sk_buff_head
880 * @list_: list to peek at
882 * Peek an &sk_buff. Unlike most other operations you _MUST_
883 * be careful with this one. A peek leaves the buffer on the
884 * list and someone else may run off with it. You must hold
885 * the appropriate locks or have a private queue to do this.
887 * Returns %NULL for an empty list or a pointer to the tail element.
888 * The reference count is not incremented and the reference is therefore
889 * volatile. Use with caution.
891 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
893 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
894 if (list == (struct sk_buff *)list_)
895 list = NULL;
896 return list;
900 * skb_queue_len - get queue length
901 * @list_: list to measure
903 * Return the length of an &sk_buff queue.
905 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
907 return list_->qlen;
911 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
912 * @list: queue to initialize
914 * This initializes only the list and queue length aspects of
915 * an sk_buff_head object. This allows to initialize the list
916 * aspects of an sk_buff_head without reinitializing things like
917 * the spinlock. It can also be used for on-stack sk_buff_head
918 * objects where the spinlock is known to not be used.
920 static inline void __skb_queue_head_init(struct sk_buff_head *list)
922 list->prev = list->next = (struct sk_buff *)list;
923 list->qlen = 0;
927 * This function creates a split out lock class for each invocation;
928 * this is needed for now since a whole lot of users of the skb-queue
929 * infrastructure in drivers have different locking usage (in hardirq)
930 * than the networking core (in softirq only). In the long run either the
931 * network layer or drivers should need annotation to consolidate the
932 * main types of usage into 3 classes.
934 static inline void skb_queue_head_init(struct sk_buff_head *list)
936 spin_lock_init(&list->lock);
937 __skb_queue_head_init(list);
940 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
941 struct lock_class_key *class)
943 skb_queue_head_init(list);
944 lockdep_set_class(&list->lock, class);
948 * Insert an sk_buff on a list.
950 * The "__skb_xxxx()" functions are the non-atomic ones that
951 * can only be called with interrupts disabled.
953 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
954 static inline void __skb_insert(struct sk_buff *newsk,
955 struct sk_buff *prev, struct sk_buff *next,
956 struct sk_buff_head *list)
958 newsk->next = next;
959 newsk->prev = prev;
960 next->prev = prev->next = newsk;
961 list->qlen++;
964 static inline void __skb_queue_splice(const struct sk_buff_head *list,
965 struct sk_buff *prev,
966 struct sk_buff *next)
968 struct sk_buff *first = list->next;
969 struct sk_buff *last = list->prev;
971 first->prev = prev;
972 prev->next = first;
974 last->next = next;
975 next->prev = last;
979 * skb_queue_splice - join two skb lists, this is designed for stacks
980 * @list: the new list to add
981 * @head: the place to add it in the first list
983 static inline void skb_queue_splice(const struct sk_buff_head *list,
984 struct sk_buff_head *head)
986 if (!skb_queue_empty(list)) {
987 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
988 head->qlen += list->qlen;
993 * skb_queue_splice - join two skb lists and reinitialise the emptied list
994 * @list: the new list to add
995 * @head: the place to add it in the first list
997 * The list at @list is reinitialised
999 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1000 struct sk_buff_head *head)
1002 if (!skb_queue_empty(list)) {
1003 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1004 head->qlen += list->qlen;
1005 __skb_queue_head_init(list);
1010 * skb_queue_splice_tail - join two skb lists, each list being a queue
1011 * @list: the new list to add
1012 * @head: the place to add it in the first list
1014 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1015 struct sk_buff_head *head)
1017 if (!skb_queue_empty(list)) {
1018 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1019 head->qlen += list->qlen;
1024 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1025 * @list: the new list to add
1026 * @head: the place to add it in the first list
1028 * Each of the lists is a queue.
1029 * The list at @list is reinitialised
1031 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1032 struct sk_buff_head *head)
1034 if (!skb_queue_empty(list)) {
1035 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1036 head->qlen += list->qlen;
1037 __skb_queue_head_init(list);
1042 * __skb_queue_after - queue a buffer at the list head
1043 * @list: list to use
1044 * @prev: place after this buffer
1045 * @newsk: buffer to queue
1047 * Queue a buffer int the middle of a list. This function takes no locks
1048 * and you must therefore hold required locks before calling it.
1050 * A buffer cannot be placed on two lists at the same time.
1052 static inline void __skb_queue_after(struct sk_buff_head *list,
1053 struct sk_buff *prev,
1054 struct sk_buff *newsk)
1056 __skb_insert(newsk, prev, prev->next, list);
1059 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1060 struct sk_buff_head *list);
1062 static inline void __skb_queue_before(struct sk_buff_head *list,
1063 struct sk_buff *next,
1064 struct sk_buff *newsk)
1066 __skb_insert(newsk, next->prev, next, list);
1070 * __skb_queue_head - queue a buffer at the list head
1071 * @list: list to use
1072 * @newsk: buffer to queue
1074 * Queue a buffer at the start of a list. This function takes no locks
1075 * and you must therefore hold required locks before calling it.
1077 * A buffer cannot be placed on two lists at the same time.
1079 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1080 static inline void __skb_queue_head(struct sk_buff_head *list,
1081 struct sk_buff *newsk)
1083 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1087 * __skb_queue_tail - queue a buffer at the list tail
1088 * @list: list to use
1089 * @newsk: buffer to queue
1091 * Queue a buffer at the end of a list. This function takes no locks
1092 * and you must therefore hold required locks before calling it.
1094 * A buffer cannot be placed on two lists at the same time.
1096 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1097 static inline void __skb_queue_tail(struct sk_buff_head *list,
1098 struct sk_buff *newsk)
1100 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1104 * remove sk_buff from list. _Must_ be called atomically, and with
1105 * the list known..
1107 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1108 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1110 struct sk_buff *next, *prev;
1112 list->qlen--;
1113 next = skb->next;
1114 prev = skb->prev;
1115 skb->next = skb->prev = NULL;
1116 next->prev = prev;
1117 prev->next = next;
1121 * __skb_dequeue - remove from the head of the queue
1122 * @list: list to dequeue from
1124 * Remove the head of the list. This function does not take any locks
1125 * so must be used with appropriate locks held only. The head item is
1126 * returned or %NULL if the list is empty.
1128 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1129 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1131 struct sk_buff *skb = skb_peek(list);
1132 if (skb)
1133 __skb_unlink(skb, list);
1134 return skb;
1138 * __skb_dequeue_tail - remove from the tail of the queue
1139 * @list: list to dequeue from
1141 * Remove the tail of the list. This function does not take any locks
1142 * so must be used with appropriate locks held only. The tail item is
1143 * returned or %NULL if the list is empty.
1145 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1146 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1148 struct sk_buff *skb = skb_peek_tail(list);
1149 if (skb)
1150 __skb_unlink(skb, list);
1151 return skb;
1155 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1157 return skb->data_len;
1160 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1162 return skb->len - skb->data_len;
1165 static inline int skb_pagelen(const struct sk_buff *skb)
1167 int i, len = 0;
1169 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1170 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1171 return len + skb_headlen(skb);
1175 * __skb_fill_page_desc - initialise a paged fragment in an skb
1176 * @skb: buffer containing fragment to be initialised
1177 * @i: paged fragment index to initialise
1178 * @page: the page to use for this fragment
1179 * @off: the offset to the data with @page
1180 * @size: the length of the data
1182 * Initialises the @i'th fragment of @skb to point to &size bytes at
1183 * offset @off within @page.
1185 * Does not take any additional reference on the fragment.
1187 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1188 struct page *page, int off, int size)
1190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1192 frag->page.p = page;
1193 frag->page_offset = off;
1194 skb_frag_size_set(frag, size);
1198 * skb_fill_page_desc - initialise a paged fragment in an skb
1199 * @skb: buffer containing fragment to be initialised
1200 * @i: paged fragment index to initialise
1201 * @page: the page to use for this fragment
1202 * @off: the offset to the data with @page
1203 * @size: the length of the data
1205 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1206 * @skb to point to &size bytes at offset @off within @page. In
1207 * addition updates @skb such that @i is the last fragment.
1209 * Does not take any additional reference on the fragment.
1211 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1212 struct page *page, int off, int size)
1214 __skb_fill_page_desc(skb, i, page, off, size);
1215 skb_shinfo(skb)->nr_frags = i + 1;
1218 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1219 int off, int size);
1221 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1222 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1223 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1225 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1226 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1228 return skb->head + skb->tail;
1231 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1233 skb->tail = skb->data - skb->head;
1236 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1238 skb_reset_tail_pointer(skb);
1239 skb->tail += offset;
1241 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1242 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1244 return skb->tail;
1247 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1249 skb->tail = skb->data;
1252 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1254 skb->tail = skb->data + offset;
1257 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1260 * Add data to an sk_buff
1262 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1263 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1265 unsigned char *tmp = skb_tail_pointer(skb);
1266 SKB_LINEAR_ASSERT(skb);
1267 skb->tail += len;
1268 skb->len += len;
1269 return tmp;
1272 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1273 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1275 skb->data -= len;
1276 skb->len += len;
1277 return skb->data;
1280 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1281 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1283 skb->len -= len;
1284 BUG_ON(skb->len < skb->data_len);
1285 return skb->data += len;
1288 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1290 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1293 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1295 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1297 if (len > skb_headlen(skb) &&
1298 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1299 return NULL;
1300 skb->len -= len;
1301 return skb->data += len;
1304 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1306 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1309 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1311 if (likely(len <= skb_headlen(skb)))
1312 return 1;
1313 if (unlikely(len > skb->len))
1314 return 0;
1315 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1319 * skb_headroom - bytes at buffer head
1320 * @skb: buffer to check
1322 * Return the number of bytes of free space at the head of an &sk_buff.
1324 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1326 return skb->data - skb->head;
1330 * skb_tailroom - bytes at buffer end
1331 * @skb: buffer to check
1333 * Return the number of bytes of free space at the tail of an sk_buff
1335 static inline int skb_tailroom(const struct sk_buff *skb)
1337 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1341 * skb_reserve - adjust headroom
1342 * @skb: buffer to alter
1343 * @len: bytes to move
1345 * Increase the headroom of an empty &sk_buff by reducing the tail
1346 * room. This is only allowed for an empty buffer.
1348 static inline void skb_reserve(struct sk_buff *skb, int len)
1350 skb->data += len;
1351 skb->tail += len;
1354 static inline void skb_reset_mac_len(struct sk_buff *skb)
1356 skb->mac_len = skb->network_header - skb->mac_header;
1359 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1360 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1362 return skb->head + skb->transport_header;
1365 static inline void skb_reset_transport_header(struct sk_buff *skb)
1367 skb->transport_header = skb->data - skb->head;
1370 static inline void skb_set_transport_header(struct sk_buff *skb,
1371 const int offset)
1373 skb_reset_transport_header(skb);
1374 skb->transport_header += offset;
1377 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1379 return skb->head + skb->network_header;
1382 static inline void skb_reset_network_header(struct sk_buff *skb)
1384 skb->network_header = skb->data - skb->head;
1387 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1389 skb_reset_network_header(skb);
1390 skb->network_header += offset;
1393 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1395 return skb->head + skb->mac_header;
1398 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1400 return skb->mac_header != ~0U;
1403 static inline void skb_reset_mac_header(struct sk_buff *skb)
1405 skb->mac_header = skb->data - skb->head;
1408 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1410 skb_reset_mac_header(skb);
1411 skb->mac_header += offset;
1414 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1416 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1418 return skb->transport_header;
1421 static inline void skb_reset_transport_header(struct sk_buff *skb)
1423 skb->transport_header = skb->data;
1426 static inline void skb_set_transport_header(struct sk_buff *skb,
1427 const int offset)
1429 skb->transport_header = skb->data + offset;
1432 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1434 return skb->network_header;
1437 static inline void skb_reset_network_header(struct sk_buff *skb)
1439 skb->network_header = skb->data;
1442 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1444 skb->network_header = skb->data + offset;
1447 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1449 return skb->mac_header;
1452 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1454 return skb->mac_header != NULL;
1457 static inline void skb_reset_mac_header(struct sk_buff *skb)
1459 skb->mac_header = skb->data;
1462 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1464 skb->mac_header = skb->data + offset;
1466 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1468 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1470 if (skb_mac_header_was_set(skb)) {
1471 const unsigned char *old_mac = skb_mac_header(skb);
1473 skb_set_mac_header(skb, -skb->mac_len);
1474 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1478 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1480 return skb->csum_start - skb_headroom(skb);
1483 static inline int skb_transport_offset(const struct sk_buff *skb)
1485 return skb_transport_header(skb) - skb->data;
1488 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1490 return skb->transport_header - skb->network_header;
1493 static inline int skb_network_offset(const struct sk_buff *skb)
1495 return skb_network_header(skb) - skb->data;
1498 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1500 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1504 * CPUs often take a performance hit when accessing unaligned memory
1505 * locations. The actual performance hit varies, it can be small if the
1506 * hardware handles it or large if we have to take an exception and fix it
1507 * in software.
1509 * Since an ethernet header is 14 bytes network drivers often end up with
1510 * the IP header at an unaligned offset. The IP header can be aligned by
1511 * shifting the start of the packet by 2 bytes. Drivers should do this
1512 * with:
1514 * skb_reserve(skb, NET_IP_ALIGN);
1516 * The downside to this alignment of the IP header is that the DMA is now
1517 * unaligned. On some architectures the cost of an unaligned DMA is high
1518 * and this cost outweighs the gains made by aligning the IP header.
1520 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1521 * to be overridden.
1523 #ifndef NET_IP_ALIGN
1524 #define NET_IP_ALIGN 2
1525 #endif
1528 * The networking layer reserves some headroom in skb data (via
1529 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1530 * the header has to grow. In the default case, if the header has to grow
1531 * 32 bytes or less we avoid the reallocation.
1533 * Unfortunately this headroom changes the DMA alignment of the resulting
1534 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1535 * on some architectures. An architecture can override this value,
1536 * perhaps setting it to a cacheline in size (since that will maintain
1537 * cacheline alignment of the DMA). It must be a power of 2.
1539 * Various parts of the networking layer expect at least 32 bytes of
1540 * headroom, you should not reduce this.
1542 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1543 * to reduce average number of cache lines per packet.
1544 * get_rps_cpus() for example only access one 64 bytes aligned block :
1545 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1547 #ifndef NET_SKB_PAD
1548 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1549 #endif
1551 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1553 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1555 if (unlikely(skb_is_nonlinear(skb))) {
1556 WARN_ON(1);
1557 return;
1559 skb->len = len;
1560 skb_set_tail_pointer(skb, len);
1563 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1565 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1567 if (skb->data_len)
1568 return ___pskb_trim(skb, len);
1569 __skb_trim(skb, len);
1570 return 0;
1573 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1575 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1579 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1580 * @skb: buffer to alter
1581 * @len: new length
1583 * This is identical to pskb_trim except that the caller knows that
1584 * the skb is not cloned so we should never get an error due to out-
1585 * of-memory.
1587 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1589 int err = pskb_trim(skb, len);
1590 BUG_ON(err);
1594 * skb_orphan - orphan a buffer
1595 * @skb: buffer to orphan
1597 * If a buffer currently has an owner then we call the owner's
1598 * destructor function and make the @skb unowned. The buffer continues
1599 * to exist but is no longer charged to its former owner.
1601 static inline void skb_orphan(struct sk_buff *skb)
1603 if (skb->destructor)
1604 skb->destructor(skb);
1605 skb->destructor = NULL;
1606 skb->sk = NULL;
1610 * __skb_queue_purge - empty a list
1611 * @list: list to empty
1613 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1614 * the list and one reference dropped. This function does not take the
1615 * list lock and the caller must hold the relevant locks to use it.
1617 extern void skb_queue_purge(struct sk_buff_head *list);
1618 static inline void __skb_queue_purge(struct sk_buff_head *list)
1620 struct sk_buff *skb;
1621 while ((skb = __skb_dequeue(list)) != NULL)
1622 kfree_skb(skb);
1626 * __dev_alloc_skb - allocate an skbuff for receiving
1627 * @length: length to allocate
1628 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1630 * Allocate a new &sk_buff and assign it a usage count of one. The
1631 * buffer has unspecified headroom built in. Users should allocate
1632 * the headroom they think they need without accounting for the
1633 * built in space. The built in space is used for optimisations.
1635 * %NULL is returned if there is no free memory.
1637 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1638 gfp_t gfp_mask)
1640 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1641 if (likely(skb))
1642 skb_reserve(skb, NET_SKB_PAD);
1643 return skb;
1646 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1648 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1649 unsigned int length, gfp_t gfp_mask);
1652 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1653 * @dev: network device to receive on
1654 * @length: length to allocate
1656 * Allocate a new &sk_buff and assign it a usage count of one. The
1657 * buffer has unspecified headroom built in. Users should allocate
1658 * the headroom they think they need without accounting for the
1659 * built in space. The built in space is used for optimisations.
1661 * %NULL is returned if there is no free memory. Although this function
1662 * allocates memory it can be called from an interrupt.
1664 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1665 unsigned int length)
1667 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1670 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1671 unsigned int length, gfp_t gfp)
1673 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1675 if (NET_IP_ALIGN && skb)
1676 skb_reserve(skb, NET_IP_ALIGN);
1677 return skb;
1680 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1681 unsigned int length)
1683 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1687 * skb_frag_page - retrieve the page refered to by a paged fragment
1688 * @frag: the paged fragment
1690 * Returns the &struct page associated with @frag.
1692 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1694 return frag->page.p;
1698 * __skb_frag_ref - take an addition reference on a paged fragment.
1699 * @frag: the paged fragment
1701 * Takes an additional reference on the paged fragment @frag.
1703 static inline void __skb_frag_ref(skb_frag_t *frag)
1705 get_page(skb_frag_page(frag));
1709 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1710 * @skb: the buffer
1711 * @f: the fragment offset.
1713 * Takes an additional reference on the @f'th paged fragment of @skb.
1715 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1717 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1721 * __skb_frag_unref - release a reference on a paged fragment.
1722 * @frag: the paged fragment
1724 * Releases a reference on the paged fragment @frag.
1726 static inline void __skb_frag_unref(skb_frag_t *frag)
1728 put_page(skb_frag_page(frag));
1732 * skb_frag_unref - release a reference on a paged fragment of an skb.
1733 * @skb: the buffer
1734 * @f: the fragment offset
1736 * Releases a reference on the @f'th paged fragment of @skb.
1738 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1740 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1744 * skb_frag_address - gets the address of the data contained in a paged fragment
1745 * @frag: the paged fragment buffer
1747 * Returns the address of the data within @frag. The page must already
1748 * be mapped.
1750 static inline void *skb_frag_address(const skb_frag_t *frag)
1752 return page_address(skb_frag_page(frag)) + frag->page_offset;
1756 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1757 * @frag: the paged fragment buffer
1759 * Returns the address of the data within @frag. Checks that the page
1760 * is mapped and returns %NULL otherwise.
1762 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1764 void *ptr = page_address(skb_frag_page(frag));
1765 if (unlikely(!ptr))
1766 return NULL;
1768 return ptr + frag->page_offset;
1772 * __skb_frag_set_page - sets the page contained in a paged fragment
1773 * @frag: the paged fragment
1774 * @page: the page to set
1776 * Sets the fragment @frag to contain @page.
1778 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1780 frag->page.p = page;
1784 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1785 * @skb: the buffer
1786 * @f: the fragment offset
1787 * @page: the page to set
1789 * Sets the @f'th fragment of @skb to contain @page.
1791 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1792 struct page *page)
1794 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1798 * skb_frag_dma_map - maps a paged fragment via the DMA API
1799 * @dev: the device to map the fragment to
1800 * @frag: the paged fragment to map
1801 * @offset: the offset within the fragment (starting at the
1802 * fragment's own offset)
1803 * @size: the number of bytes to map
1804 * @dir: the direction of the mapping (%PCI_DMA_*)
1806 * Maps the page associated with @frag to @device.
1808 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1809 const skb_frag_t *frag,
1810 size_t offset, size_t size,
1811 enum dma_data_direction dir)
1813 return dma_map_page(dev, skb_frag_page(frag),
1814 frag->page_offset + offset, size, dir);
1817 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1818 gfp_t gfp_mask)
1820 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1824 * skb_clone_writable - is the header of a clone writable
1825 * @skb: buffer to check
1826 * @len: length up to which to write
1828 * Returns true if modifying the header part of the cloned buffer
1829 * does not requires the data to be copied.
1831 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1833 return !skb_header_cloned(skb) &&
1834 skb_headroom(skb) + len <= skb->hdr_len;
1837 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1838 int cloned)
1840 int delta = 0;
1842 if (headroom < NET_SKB_PAD)
1843 headroom = NET_SKB_PAD;
1844 if (headroom > skb_headroom(skb))
1845 delta = headroom - skb_headroom(skb);
1847 if (delta || cloned)
1848 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1849 GFP_ATOMIC);
1850 return 0;
1854 * skb_cow - copy header of skb when it is required
1855 * @skb: buffer to cow
1856 * @headroom: needed headroom
1858 * If the skb passed lacks sufficient headroom or its data part
1859 * is shared, data is reallocated. If reallocation fails, an error
1860 * is returned and original skb is not changed.
1862 * The result is skb with writable area skb->head...skb->tail
1863 * and at least @headroom of space at head.
1865 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1867 return __skb_cow(skb, headroom, skb_cloned(skb));
1871 * skb_cow_head - skb_cow but only making the head writable
1872 * @skb: buffer to cow
1873 * @headroom: needed headroom
1875 * This function is identical to skb_cow except that we replace the
1876 * skb_cloned check by skb_header_cloned. It should be used when
1877 * you only need to push on some header and do not need to modify
1878 * the data.
1880 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1882 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1886 * skb_padto - pad an skbuff up to a minimal size
1887 * @skb: buffer to pad
1888 * @len: minimal length
1890 * Pads up a buffer to ensure the trailing bytes exist and are
1891 * blanked. If the buffer already contains sufficient data it
1892 * is untouched. Otherwise it is extended. Returns zero on
1893 * success. The skb is freed on error.
1896 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1898 unsigned int size = skb->len;
1899 if (likely(size >= len))
1900 return 0;
1901 return skb_pad(skb, len - size);
1904 static inline int skb_add_data(struct sk_buff *skb,
1905 char __user *from, int copy)
1907 const int off = skb->len;
1909 if (skb->ip_summed == CHECKSUM_NONE) {
1910 int err = 0;
1911 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1912 copy, 0, &err);
1913 if (!err) {
1914 skb->csum = csum_block_add(skb->csum, csum, off);
1915 return 0;
1917 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1918 return 0;
1920 __skb_trim(skb, off);
1921 return -EFAULT;
1924 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1925 const struct page *page, int off)
1927 if (i) {
1928 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1930 return page == skb_frag_page(frag) &&
1931 off == frag->page_offset + skb_frag_size(frag);
1933 return 0;
1936 static inline int __skb_linearize(struct sk_buff *skb)
1938 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1942 * skb_linearize - convert paged skb to linear one
1943 * @skb: buffer to linarize
1945 * If there is no free memory -ENOMEM is returned, otherwise zero
1946 * is returned and the old skb data released.
1948 static inline int skb_linearize(struct sk_buff *skb)
1950 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1954 * skb_linearize_cow - make sure skb is linear and writable
1955 * @skb: buffer to process
1957 * If there is no free memory -ENOMEM is returned, otherwise zero
1958 * is returned and the old skb data released.
1960 static inline int skb_linearize_cow(struct sk_buff *skb)
1962 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1963 __skb_linearize(skb) : 0;
1967 * skb_postpull_rcsum - update checksum for received skb after pull
1968 * @skb: buffer to update
1969 * @start: start of data before pull
1970 * @len: length of data pulled
1972 * After doing a pull on a received packet, you need to call this to
1973 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1974 * CHECKSUM_NONE so that it can be recomputed from scratch.
1977 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1978 const void *start, unsigned int len)
1980 if (skb->ip_summed == CHECKSUM_COMPLETE)
1981 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1984 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1987 * pskb_trim_rcsum - trim received skb and update checksum
1988 * @skb: buffer to trim
1989 * @len: new length
1991 * This is exactly the same as pskb_trim except that it ensures the
1992 * checksum of received packets are still valid after the operation.
1995 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1997 if (likely(len >= skb->len))
1998 return 0;
1999 if (skb->ip_summed == CHECKSUM_COMPLETE)
2000 skb->ip_summed = CHECKSUM_NONE;
2001 return __pskb_trim(skb, len);
2004 #define skb_queue_walk(queue, skb) \
2005 for (skb = (queue)->next; \
2006 skb != (struct sk_buff *)(queue); \
2007 skb = skb->next)
2009 #define skb_queue_walk_safe(queue, skb, tmp) \
2010 for (skb = (queue)->next, tmp = skb->next; \
2011 skb != (struct sk_buff *)(queue); \
2012 skb = tmp, tmp = skb->next)
2014 #define skb_queue_walk_from(queue, skb) \
2015 for (; skb != (struct sk_buff *)(queue); \
2016 skb = skb->next)
2018 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2019 for (tmp = skb->next; \
2020 skb != (struct sk_buff *)(queue); \
2021 skb = tmp, tmp = skb->next)
2023 #define skb_queue_reverse_walk(queue, skb) \
2024 for (skb = (queue)->prev; \
2025 skb != (struct sk_buff *)(queue); \
2026 skb = skb->prev)
2028 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2029 for (skb = (queue)->prev, tmp = skb->prev; \
2030 skb != (struct sk_buff *)(queue); \
2031 skb = tmp, tmp = skb->prev)
2033 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2034 for (tmp = skb->prev; \
2035 skb != (struct sk_buff *)(queue); \
2036 skb = tmp, tmp = skb->prev)
2038 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2040 return skb_shinfo(skb)->frag_list != NULL;
2043 static inline void skb_frag_list_init(struct sk_buff *skb)
2045 skb_shinfo(skb)->frag_list = NULL;
2048 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2050 frag->next = skb_shinfo(skb)->frag_list;
2051 skb_shinfo(skb)->frag_list = frag;
2054 #define skb_walk_frags(skb, iter) \
2055 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2057 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2058 int *peeked, int *err);
2059 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2060 int noblock, int *err);
2061 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2062 struct poll_table_struct *wait);
2063 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2064 int offset, struct iovec *to,
2065 int size);
2066 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2067 int hlen,
2068 struct iovec *iov);
2069 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2070 int offset,
2071 const struct iovec *from,
2072 int from_offset,
2073 int len);
2074 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2075 int offset,
2076 const struct iovec *to,
2077 int to_offset,
2078 int size);
2079 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2080 extern void skb_free_datagram_locked(struct sock *sk,
2081 struct sk_buff *skb);
2082 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2083 unsigned int flags);
2084 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2085 int len, __wsum csum);
2086 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2087 void *to, int len);
2088 extern int skb_store_bits(struct sk_buff *skb, int offset,
2089 const void *from, int len);
2090 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2091 int offset, u8 *to, int len,
2092 __wsum csum);
2093 extern int skb_splice_bits(struct sk_buff *skb,
2094 unsigned int offset,
2095 struct pipe_inode_info *pipe,
2096 unsigned int len,
2097 unsigned int flags);
2098 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2099 extern void skb_split(struct sk_buff *skb,
2100 struct sk_buff *skb1, const u32 len);
2101 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2102 int shiftlen);
2104 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2105 netdev_features_t features);
2107 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2108 int len, void *buffer)
2110 int hlen = skb_headlen(skb);
2112 if (hlen - offset >= len)
2113 return skb->data + offset;
2115 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2116 return NULL;
2118 return buffer;
2121 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2122 void *to,
2123 const unsigned int len)
2125 memcpy(to, skb->data, len);
2128 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2129 const int offset, void *to,
2130 const unsigned int len)
2132 memcpy(to, skb->data + offset, len);
2135 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2136 const void *from,
2137 const unsigned int len)
2139 memcpy(skb->data, from, len);
2142 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2143 const int offset,
2144 const void *from,
2145 const unsigned int len)
2147 memcpy(skb->data + offset, from, len);
2150 extern void skb_init(void);
2152 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2154 return skb->tstamp;
2158 * skb_get_timestamp - get timestamp from a skb
2159 * @skb: skb to get stamp from
2160 * @stamp: pointer to struct timeval to store stamp in
2162 * Timestamps are stored in the skb as offsets to a base timestamp.
2163 * This function converts the offset back to a struct timeval and stores
2164 * it in stamp.
2166 static inline void skb_get_timestamp(const struct sk_buff *skb,
2167 struct timeval *stamp)
2169 *stamp = ktime_to_timeval(skb->tstamp);
2172 static inline void skb_get_timestampns(const struct sk_buff *skb,
2173 struct timespec *stamp)
2175 *stamp = ktime_to_timespec(skb->tstamp);
2178 static inline void __net_timestamp(struct sk_buff *skb)
2180 skb->tstamp = ktime_get_real();
2183 static inline ktime_t net_timedelta(ktime_t t)
2185 return ktime_sub(ktime_get_real(), t);
2188 static inline ktime_t net_invalid_timestamp(void)
2190 return ktime_set(0, 0);
2193 extern void skb_timestamping_init(void);
2195 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2197 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2198 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2200 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2202 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2206 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2208 return false;
2211 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2214 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2216 * PHY drivers may accept clones of transmitted packets for
2217 * timestamping via their phy_driver.txtstamp method. These drivers
2218 * must call this function to return the skb back to the stack, with
2219 * or without a timestamp.
2221 * @skb: clone of the the original outgoing packet
2222 * @hwtstamps: hardware time stamps, may be NULL if not available
2225 void skb_complete_tx_timestamp(struct sk_buff *skb,
2226 struct skb_shared_hwtstamps *hwtstamps);
2229 * skb_tstamp_tx - queue clone of skb with send time stamps
2230 * @orig_skb: the original outgoing packet
2231 * @hwtstamps: hardware time stamps, may be NULL if not available
2233 * If the skb has a socket associated, then this function clones the
2234 * skb (thus sharing the actual data and optional structures), stores
2235 * the optional hardware time stamping information (if non NULL) or
2236 * generates a software time stamp (otherwise), then queues the clone
2237 * to the error queue of the socket. Errors are silently ignored.
2239 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2240 struct skb_shared_hwtstamps *hwtstamps);
2242 static inline void sw_tx_timestamp(struct sk_buff *skb)
2244 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2245 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2246 skb_tstamp_tx(skb, NULL);
2250 * skb_tx_timestamp() - Driver hook for transmit timestamping
2252 * Ethernet MAC Drivers should call this function in their hard_xmit()
2253 * function immediately before giving the sk_buff to the MAC hardware.
2255 * @skb: A socket buffer.
2257 static inline void skb_tx_timestamp(struct sk_buff *skb)
2259 skb_clone_tx_timestamp(skb);
2260 sw_tx_timestamp(skb);
2264 * skb_complete_wifi_ack - deliver skb with wifi status
2266 * @skb: the original outgoing packet
2267 * @acked: ack status
2270 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2272 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2273 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2275 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2277 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2281 * skb_checksum_complete - Calculate checksum of an entire packet
2282 * @skb: packet to process
2284 * This function calculates the checksum over the entire packet plus
2285 * the value of skb->csum. The latter can be used to supply the
2286 * checksum of a pseudo header as used by TCP/UDP. It returns the
2287 * checksum.
2289 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2290 * this function can be used to verify that checksum on received
2291 * packets. In that case the function should return zero if the
2292 * checksum is correct. In particular, this function will return zero
2293 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2294 * hardware has already verified the correctness of the checksum.
2296 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2298 return skb_csum_unnecessary(skb) ?
2299 0 : __skb_checksum_complete(skb);
2302 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2303 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2304 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2306 if (nfct && atomic_dec_and_test(&nfct->use))
2307 nf_conntrack_destroy(nfct);
2309 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2311 if (nfct)
2312 atomic_inc(&nfct->use);
2314 #endif
2315 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2316 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2318 if (skb)
2319 atomic_inc(&skb->users);
2321 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2323 if (skb)
2324 kfree_skb(skb);
2326 #endif
2327 #ifdef CONFIG_BRIDGE_NETFILTER
2328 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2330 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2331 kfree(nf_bridge);
2333 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2335 if (nf_bridge)
2336 atomic_inc(&nf_bridge->use);
2338 #endif /* CONFIG_BRIDGE_NETFILTER */
2339 static inline void nf_reset(struct sk_buff *skb)
2341 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2342 nf_conntrack_put(skb->nfct);
2343 skb->nfct = NULL;
2344 #endif
2345 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2346 nf_conntrack_put_reasm(skb->nfct_reasm);
2347 skb->nfct_reasm = NULL;
2348 #endif
2349 #ifdef CONFIG_BRIDGE_NETFILTER
2350 nf_bridge_put(skb->nf_bridge);
2351 skb->nf_bridge = NULL;
2352 #endif
2355 /* Note: This doesn't put any conntrack and bridge info in dst. */
2356 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2358 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2359 dst->nfct = src->nfct;
2360 nf_conntrack_get(src->nfct);
2361 dst->nfctinfo = src->nfctinfo;
2362 #endif
2363 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2364 dst->nfct_reasm = src->nfct_reasm;
2365 nf_conntrack_get_reasm(src->nfct_reasm);
2366 #endif
2367 #ifdef CONFIG_BRIDGE_NETFILTER
2368 dst->nf_bridge = src->nf_bridge;
2369 nf_bridge_get(src->nf_bridge);
2370 #endif
2373 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2375 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2376 nf_conntrack_put(dst->nfct);
2377 #endif
2378 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2379 nf_conntrack_put_reasm(dst->nfct_reasm);
2380 #endif
2381 #ifdef CONFIG_BRIDGE_NETFILTER
2382 nf_bridge_put(dst->nf_bridge);
2383 #endif
2384 __nf_copy(dst, src);
2387 #ifdef CONFIG_NETWORK_SECMARK
2388 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2390 to->secmark = from->secmark;
2393 static inline void skb_init_secmark(struct sk_buff *skb)
2395 skb->secmark = 0;
2397 #else
2398 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2401 static inline void skb_init_secmark(struct sk_buff *skb)
2403 #endif
2405 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2407 skb->queue_mapping = queue_mapping;
2410 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2412 return skb->queue_mapping;
2415 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2417 to->queue_mapping = from->queue_mapping;
2420 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2422 skb->queue_mapping = rx_queue + 1;
2425 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2427 return skb->queue_mapping - 1;
2430 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2432 return skb->queue_mapping != 0;
2435 extern u16 __skb_tx_hash(const struct net_device *dev,
2436 const struct sk_buff *skb,
2437 unsigned int num_tx_queues);
2439 #ifdef CONFIG_XFRM
2440 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2442 return skb->sp;
2444 #else
2445 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2447 return NULL;
2449 #endif
2451 static inline int skb_is_gso(const struct sk_buff *skb)
2453 return skb_shinfo(skb)->gso_size;
2456 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2458 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2461 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2463 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2465 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2466 * wanted then gso_type will be set. */
2467 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2469 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2470 unlikely(shinfo->gso_type == 0)) {
2471 __skb_warn_lro_forwarding(skb);
2472 return true;
2474 return false;
2477 static inline void skb_forward_csum(struct sk_buff *skb)
2479 /* Unfortunately we don't support this one. Any brave souls? */
2480 if (skb->ip_summed == CHECKSUM_COMPLETE)
2481 skb->ip_summed = CHECKSUM_NONE;
2485 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2486 * @skb: skb to check
2488 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2489 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2490 * use this helper, to document places where we make this assertion.
2492 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2494 #ifdef DEBUG
2495 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2496 #endif
2499 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2501 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2503 if (irqs_disabled())
2504 return false;
2506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2507 return false;
2509 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2510 return false;
2512 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2513 if (skb_end_pointer(skb) - skb->head < skb_size)
2514 return false;
2516 if (skb_shared(skb) || skb_cloned(skb))
2517 return false;
2519 return true;
2521 #endif /* __KERNEL__ */
2522 #endif /* _LINUX_SKBUFF_H */