2 * linux/arch/alpha/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
8 * This file handles the architecture-dependent parts of process handling.
11 #include <linux/config.h>
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/smp_lock.h>
19 #include <linux/stddef.h>
20 #include <linux/unistd.h>
21 #include <linux/ptrace.h>
22 #include <linux/slab.h>
23 #include <linux/user.h>
24 #include <linux/a.out.h>
25 #include <linux/utsname.h>
26 #include <linux/time.h>
27 #include <linux/major.h>
28 #include <linux/stat.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
39 #include <asm/pgtable.h>
40 #include <asm/hwrpb.h>
46 void default_idle(void)
55 void (*idle
)(void) = default_idle
;
56 /* FIXME -- EV6 and LCA45 know how to power down
59 while (!need_resched())
72 common_shutdown_1(void *generic_ptr
)
74 struct halt_info
*how
= (struct halt_info
*)generic_ptr
;
75 struct percpu_struct
*cpup
;
76 unsigned long *pflags
, flags
;
77 int cpuid
= smp_processor_id();
79 /* No point in taking interrupts anymore. */
82 cpup
= (struct percpu_struct
*)
83 ((unsigned long)hwrpb
+ hwrpb
->processor_offset
84 + hwrpb
->processor_size
* cpuid
);
85 pflags
= &cpup
->flags
;
88 /* Clear reason to "default"; clear "bootstrap in progress". */
89 flags
&= ~0x00ff0001UL
;
92 /* Secondaries halt here. */
93 if (cpuid
!= boot_cpuid
) {
94 flags
|= 0x00040000UL
; /* "remain halted" */
96 clear_bit(cpuid
, &cpu_present_mask
);
101 if (how
->mode
== LINUX_REBOOT_CMD_RESTART
) {
102 if (!how
->restart_cmd
) {
103 flags
|= 0x00020000UL
; /* "cold bootstrap" */
105 /* For SRM, we could probably set environment
106 variables to get this to work. We'd have to
107 delay this until after srm_paging_stop unless
108 we ever got srm_fixup working.
110 At the moment, SRM will use the last boot device,
111 but the file and flags will be the defaults, when
112 doing a "warm" bootstrap. */
113 flags
|= 0x00030000UL
; /* "warm bootstrap" */
116 flags
|= 0x00040000UL
; /* "remain halted" */
121 /* Wait for the secondaries to halt. */
122 cpu_clear(boot_cpuid
, cpu_possible_map
);
123 while (cpus_weight(cpu_possible_map
))
127 /* If booted from SRM, reset some of the original environment. */
128 if (alpha_using_srm
) {
129 #ifdef CONFIG_DUMMY_CONSOLE
130 /* This has the effect of resetting the VGA video origin. */
131 take_over_console(&dummy_con
, 0, MAX_NR_CONSOLES
-1, 1);
133 pci_restore_srm_config();
137 if (alpha_mv
.kill_arch
)
138 alpha_mv
.kill_arch(how
->mode
);
140 if (! alpha_using_srm
&& how
->mode
!= LINUX_REBOOT_CMD_RESTART
) {
141 /* Unfortunately, since MILO doesn't currently understand
142 the hwrpb bits above, we can't reliably halt the
143 processor and keep it halted. So just loop. */
154 common_shutdown(int mode
, char *restart_cmd
)
156 struct halt_info args
;
158 args
.restart_cmd
= restart_cmd
;
159 on_each_cpu(common_shutdown_1
, &args
, 1, 0);
163 machine_restart(char *restart_cmd
)
165 common_shutdown(LINUX_REBOOT_CMD_RESTART
, restart_cmd
);
168 EXPORT_SYMBOL(machine_restart
);
173 common_shutdown(LINUX_REBOOT_CMD_HALT
, NULL
);
176 EXPORT_SYMBOL(machine_halt
);
179 machine_power_off(void)
181 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF
, NULL
);
184 EXPORT_SYMBOL(machine_power_off
);
186 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
187 saved in the context it's used. */
190 show_regs(struct pt_regs
*regs
)
192 dik_show_regs(regs
, NULL
);
196 * Re-start a thread when doing execve()
199 start_thread(struct pt_regs
* regs
, unsigned long pc
, unsigned long sp
)
208 * Free current thread data structures etc..
218 /* Arrange for each exec'ed process to start off with a clean slate
219 with respect to the FPU. This is all exceptions disabled. */
220 current_thread_info()->ieee_state
= 0;
221 wrfpcr(FPCR_DYN_NORMAL
| ieee_swcr_to_fpcr(0));
223 /* Clean slate for TLS. */
224 current_thread_info()->pcb
.unique
= 0;
228 release_thread(struct task_struct
*dead_task
)
233 * "alpha_clone()".. By the time we get here, the
234 * non-volatile registers have also been saved on the
235 * stack. We do some ugly pointer stuff here.. (see
238 * Notice that "fork()" is implemented in terms of clone,
239 * with parameters (SIGCHLD, 0).
242 alpha_clone(unsigned long clone_flags
, unsigned long usp
,
243 int __user
*parent_tid
, int __user
*child_tid
,
244 unsigned long tls_value
, struct pt_regs
*regs
)
249 return do_fork(clone_flags
, usp
, regs
, 0, parent_tid
, child_tid
);
253 alpha_vfork(struct pt_regs
*regs
)
255 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, rdusp(),
256 regs
, 0, NULL
, NULL
);
260 * Copy an alpha thread..
262 * Note the "stack_offset" stuff: when returning to kernel mode, we need
263 * to have some extra stack-space for the kernel stack that still exists
264 * after the "ret_from_fork". When returning to user mode, we only want
265 * the space needed by the syscall stack frame (ie "struct pt_regs").
266 * Use the passed "regs" pointer to determine how much space we need
267 * for a kernel fork().
271 copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
272 unsigned long unused
,
273 struct task_struct
* p
, struct pt_regs
* regs
)
275 extern void ret_from_fork(void);
277 struct thread_info
*childti
= p
->thread_info
;
278 struct pt_regs
* childregs
;
279 struct switch_stack
* childstack
, *stack
;
280 unsigned long stack_offset
, settls
;
282 stack_offset
= PAGE_SIZE
- sizeof(struct pt_regs
);
284 stack_offset
= (PAGE_SIZE
-1) & (unsigned long) regs
;
285 childregs
= (struct pt_regs
*)
286 (stack_offset
+ PAGE_SIZE
+ (long) childti
);
292 childregs
->r20
= 1; /* OSF/1 has some strange fork() semantics. */
294 stack
= ((struct switch_stack
*) regs
) - 1;
295 childstack
= ((struct switch_stack
*) childregs
) - 1;
296 *childstack
= *stack
;
297 childstack
->r26
= (unsigned long) ret_from_fork
;
298 childti
->pcb
.usp
= usp
;
299 childti
->pcb
.ksp
= (unsigned long) childstack
;
300 childti
->pcb
.flags
= 1; /* set FEN, clear everything else */
302 /* Set a new TLS for the child thread? Peek back into the
303 syscall arguments that we saved on syscall entry. Oops,
304 except we'd have clobbered it with the parent/child set
305 of r20. Read the saved copy. */
306 /* Note: if CLONE_SETTLS is not set, then we must inherit the
307 value from the parent, which will have been set by the block
308 copy in dup_task_struct. This is non-intuitive, but is
309 required for proper operation in the case of a threaded
310 application calling fork. */
311 if (clone_flags
& CLONE_SETTLS
)
312 childti
->pcb
.unique
= settls
;
318 * Fill in the user structure for an ECOFF core dump.
321 dump_thread(struct pt_regs
* pt
, struct user
* dump
)
323 /* switch stack follows right below pt_regs: */
324 struct switch_stack
* sw
= ((struct switch_stack
*) pt
) - 1;
326 dump
->magic
= CMAGIC
;
327 dump
->start_code
= current
->mm
->start_code
;
328 dump
->start_data
= current
->mm
->start_data
;
329 dump
->start_stack
= rdusp() & ~(PAGE_SIZE
- 1);
330 dump
->u_tsize
= ((current
->mm
->end_code
- dump
->start_code
)
332 dump
->u_dsize
= ((current
->mm
->brk
+ PAGE_SIZE
-1 - dump
->start_data
)
334 dump
->u_ssize
= (current
->mm
->start_stack
- dump
->start_stack
335 + PAGE_SIZE
-1) >> PAGE_SHIFT
;
338 * We store the registers in an order/format that is
339 * compatible with DEC Unix/OSF/1 as this makes life easier
342 dump
->regs
[EF_V0
] = pt
->r0
;
343 dump
->regs
[EF_T0
] = pt
->r1
;
344 dump
->regs
[EF_T1
] = pt
->r2
;
345 dump
->regs
[EF_T2
] = pt
->r3
;
346 dump
->regs
[EF_T3
] = pt
->r4
;
347 dump
->regs
[EF_T4
] = pt
->r5
;
348 dump
->regs
[EF_T5
] = pt
->r6
;
349 dump
->regs
[EF_T6
] = pt
->r7
;
350 dump
->regs
[EF_T7
] = pt
->r8
;
351 dump
->regs
[EF_S0
] = sw
->r9
;
352 dump
->regs
[EF_S1
] = sw
->r10
;
353 dump
->regs
[EF_S2
] = sw
->r11
;
354 dump
->regs
[EF_S3
] = sw
->r12
;
355 dump
->regs
[EF_S4
] = sw
->r13
;
356 dump
->regs
[EF_S5
] = sw
->r14
;
357 dump
->regs
[EF_S6
] = sw
->r15
;
358 dump
->regs
[EF_A3
] = pt
->r19
;
359 dump
->regs
[EF_A4
] = pt
->r20
;
360 dump
->regs
[EF_A5
] = pt
->r21
;
361 dump
->regs
[EF_T8
] = pt
->r22
;
362 dump
->regs
[EF_T9
] = pt
->r23
;
363 dump
->regs
[EF_T10
] = pt
->r24
;
364 dump
->regs
[EF_T11
] = pt
->r25
;
365 dump
->regs
[EF_RA
] = pt
->r26
;
366 dump
->regs
[EF_T12
] = pt
->r27
;
367 dump
->regs
[EF_AT
] = pt
->r28
;
368 dump
->regs
[EF_SP
] = rdusp();
369 dump
->regs
[EF_PS
] = pt
->ps
;
370 dump
->regs
[EF_PC
] = pt
->pc
;
371 dump
->regs
[EF_GP
] = pt
->gp
;
372 dump
->regs
[EF_A0
] = pt
->r16
;
373 dump
->regs
[EF_A1
] = pt
->r17
;
374 dump
->regs
[EF_A2
] = pt
->r18
;
375 memcpy((char *)dump
->regs
+ EF_SIZE
, sw
->fp
, 32 * 8);
379 * Fill in the user structure for a ELF core dump.
382 dump_elf_thread(elf_greg_t
*dest
, struct pt_regs
*pt
, struct thread_info
*ti
)
384 /* switch stack follows right below pt_regs: */
385 struct switch_stack
* sw
= ((struct switch_stack
*) pt
) - 1;
420 /* Once upon a time this was the PS value. Which is stupid
421 since that is always 8 for usermode. Usurped for the more
422 useful value of the thread's UNIQUE field. */
423 dest
[32] = ti
->pcb
.unique
;
427 dump_elf_task(elf_greg_t
*dest
, struct task_struct
*task
)
429 struct thread_info
*ti
;
432 ti
= task
->thread_info
;
433 pt
= (struct pt_regs
*)((unsigned long)ti
+ 2*PAGE_SIZE
) - 1;
435 dump_elf_thread(dest
, pt
, ti
);
441 dump_elf_task_fp(elf_fpreg_t
*dest
, struct task_struct
*task
)
443 struct thread_info
*ti
;
445 struct switch_stack
*sw
;
447 ti
= task
->thread_info
;
448 pt
= (struct pt_regs
*)((unsigned long)ti
+ 2*PAGE_SIZE
) - 1;
449 sw
= (struct switch_stack
*)pt
- 1;
451 memcpy(dest
, sw
->fp
, 32 * 8);
457 * sys_execve() executes a new program.
460 do_sys_execve(char __user
*ufilename
, char __user
* __user
*argv
,
461 char __user
* __user
*envp
, struct pt_regs
*regs
)
466 filename
= getname(ufilename
);
467 error
= PTR_ERR(filename
);
468 if (IS_ERR(filename
))
470 error
= do_execve(filename
, argv
, envp
, regs
);
477 * Return saved PC of a blocked thread. This assumes the frame
478 * pointer is the 6th saved long on the kernel stack and that the
479 * saved return address is the first long in the frame. This all
480 * holds provided the thread blocked through a call to schedule() ($15
481 * is the frame pointer in schedule() and $15 is saved at offset 48 by
482 * entry.S:do_switch_stack).
484 * Under heavy swap load I've seen this lose in an ugly way. So do
485 * some extra sanity checking on the ranges we expect these pointers
486 * to be in so that we can fail gracefully. This is just for ps after
491 thread_saved_pc(task_t
*t
)
493 unsigned long base
= (unsigned long)t
->thread_info
;
494 unsigned long fp
, sp
= t
->thread_info
->pcb
.ksp
;
496 if (sp
> base
&& sp
+6*8 < base
+ 16*1024) {
497 fp
= ((unsigned long*)sp
)[6];
498 if (fp
> sp
&& fp
< base
+ 16*1024)
499 return *(unsigned long *)fp
;
506 get_wchan(struct task_struct
*p
)
508 unsigned long schedule_frame
;
510 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
513 * This one depends on the frame size of schedule(). Do a
514 * "disass schedule" in gdb to find the frame size. Also, the
515 * code assumes that sleep_on() follows immediately after
516 * interruptible_sleep_on() and that add_timer() follows
517 * immediately after interruptible_sleep(). Ugly, isn't it?
518 * Maybe adding a wchan field to task_struct would be better,
522 pc
= thread_saved_pc(p
);
523 if (in_sched_functions(pc
)) {
524 schedule_frame
= ((unsigned long *)p
->thread_info
->pcb
.ksp
)[6];
525 return ((unsigned long *)schedule_frame
)[12];