2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
39 #include <asm/delay.h>
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
47 #define PFX "powernow-k8: "
48 #define BFX PFX "BIOS error: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
52 /* serialize freq changes */
53 static DEFINE_MUTEX(fidvid_mutex
);
55 static DEFINE_PER_CPU(struct powernow_k8_data
*, powernow_data
);
57 static int cpu_family
= CPU_OPTERON
;
60 DEFINE_PER_CPU(cpumask_t
, cpu_core_map
);
63 /* Return a frequency in MHz, given an input fid */
64 static u32
find_freq_from_fid(u32 fid
)
66 return 800 + (fid
* 100);
70 /* Return a frequency in KHz, given an input fid */
71 static u32
find_khz_freq_from_fid(u32 fid
)
73 return 1000 * find_freq_from_fid(fid
);
76 static u32
find_khz_freq_from_pstate(struct cpufreq_frequency_table
*data
, u32 pstate
)
78 return data
[pstate
].frequency
;
82 /* Return the vco fid for an input fid
84 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
85 * only from corresponding high fids. This returns "high" fid corresponding to
88 static u32
convert_fid_to_vco_fid(u32 fid
)
90 if (fid
< HI_FID_TABLE_BOTTOM
)
97 * Return 1 if the pending bit is set. Unless we just instructed the processor
98 * to transition to a new state, seeing this bit set is really bad news.
100 static int pending_bit_stuck(void)
104 if (cpu_family
== CPU_HW_PSTATE
)
107 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
108 return lo
& MSR_S_LO_CHANGE_PENDING
? 1 : 0;
112 * Update the global current fid / vid values from the status msr.
113 * Returns 1 on error.
115 static int query_current_values_with_pending_wait(struct powernow_k8_data
*data
)
120 if (cpu_family
== CPU_HW_PSTATE
) {
121 rdmsr(MSR_PSTATE_STATUS
, lo
, hi
);
122 i
= lo
& HW_PSTATE_MASK
;
123 data
->currpstate
= i
;
128 dprintk("detected change pending stuck\n");
131 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
132 } while (lo
& MSR_S_LO_CHANGE_PENDING
);
134 data
->currvid
= hi
& MSR_S_HI_CURRENT_VID
;
135 data
->currfid
= lo
& MSR_S_LO_CURRENT_FID
;
140 /* the isochronous relief time */
141 static void count_off_irt(struct powernow_k8_data
*data
)
143 udelay((1 << data
->irt
) * 10);
147 /* the voltage stabilization time */
148 static void count_off_vst(struct powernow_k8_data
*data
)
150 udelay(data
->vstable
* VST_UNITS_20US
);
154 /* need to init the control msr to a safe value (for each cpu) */
155 static void fidvid_msr_init(void)
160 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
161 vid
= hi
& MSR_S_HI_CURRENT_VID
;
162 fid
= lo
& MSR_S_LO_CURRENT_FID
;
163 lo
= fid
| (vid
<< MSR_C_LO_VID_SHIFT
);
164 hi
= MSR_C_HI_STP_GNT_BENIGN
;
165 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo
, hi
);
166 wrmsr(MSR_FIDVID_CTL
, lo
, hi
);
170 /* write the new fid value along with the other control fields to the msr */
171 static int write_new_fid(struct powernow_k8_data
*data
, u32 fid
)
174 u32 savevid
= data
->currvid
;
177 if ((fid
& INVALID_FID_MASK
) || (data
->currvid
& INVALID_VID_MASK
)) {
178 printk(KERN_ERR PFX
"internal error - overflow on fid write\n");
182 lo
= fid
| (data
->currvid
<< MSR_C_LO_VID_SHIFT
) | MSR_C_LO_INIT_FID_VID
;
184 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
185 fid
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
188 wrmsr(MSR_FIDVID_CTL
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
190 printk(KERN_ERR PFX
"Hardware error - pending bit very stuck - no further pstate changes possible\n");
193 } while (query_current_values_with_pending_wait(data
));
197 if (savevid
!= data
->currvid
) {
198 printk(KERN_ERR PFX
"vid change on fid trans, old 0x%x, new 0x%x\n",
199 savevid
, data
->currvid
);
203 if (fid
!= data
->currfid
) {
204 printk(KERN_ERR PFX
"fid trans failed, fid 0x%x, curr 0x%x\n", fid
,
212 /* Write a new vid to the hardware */
213 static int write_new_vid(struct powernow_k8_data
*data
, u32 vid
)
216 u32 savefid
= data
->currfid
;
219 if ((data
->currfid
& INVALID_FID_MASK
) || (vid
& INVALID_VID_MASK
)) {
220 printk(KERN_ERR PFX
"internal error - overflow on vid write\n");
224 lo
= data
->currfid
| (vid
<< MSR_C_LO_VID_SHIFT
) | MSR_C_LO_INIT_FID_VID
;
226 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
227 vid
, lo
, STOP_GRANT_5NS
);
230 wrmsr(MSR_FIDVID_CTL
, lo
, STOP_GRANT_5NS
);
232 printk(KERN_ERR PFX
"internal error - pending bit very stuck - no further pstate changes possible\n");
235 } while (query_current_values_with_pending_wait(data
));
237 if (savefid
!= data
->currfid
) {
238 printk(KERN_ERR PFX
"fid changed on vid trans, old 0x%x new 0x%x\n",
239 savefid
, data
->currfid
);
243 if (vid
!= data
->currvid
) {
244 printk(KERN_ERR PFX
"vid trans failed, vid 0x%x, curr 0x%x\n", vid
,
253 * Reduce the vid by the max of step or reqvid.
254 * Decreasing vid codes represent increasing voltages:
255 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
257 static int decrease_vid_code_by_step(struct powernow_k8_data
*data
, u32 reqvid
, u32 step
)
259 if ((data
->currvid
- reqvid
) > step
)
260 reqvid
= data
->currvid
- step
;
262 if (write_new_vid(data
, reqvid
))
270 /* Change hardware pstate by single MSR write */
271 static int transition_pstate(struct powernow_k8_data
*data
, u32 pstate
)
273 wrmsr(MSR_PSTATE_CTRL
, pstate
, 0);
274 data
->currpstate
= pstate
;
278 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
279 static int transition_fid_vid(struct powernow_k8_data
*data
, u32 reqfid
, u32 reqvid
)
281 if (core_voltage_pre_transition(data
, reqvid
))
284 if (core_frequency_transition(data
, reqfid
))
287 if (core_voltage_post_transition(data
, reqvid
))
290 if (query_current_values_with_pending_wait(data
))
293 if ((reqfid
!= data
->currfid
) || (reqvid
!= data
->currvid
)) {
294 printk(KERN_ERR PFX
"failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
296 reqfid
, reqvid
, data
->currfid
, data
->currvid
);
300 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
301 smp_processor_id(), data
->currfid
, data
->currvid
);
306 /* Phase 1 - core voltage transition ... setup voltage */
307 static int core_voltage_pre_transition(struct powernow_k8_data
*data
, u32 reqvid
)
309 u32 rvosteps
= data
->rvo
;
310 u32 savefid
= data
->currfid
;
313 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
315 data
->currfid
, data
->currvid
, reqvid
, data
->rvo
);
317 rdmsr(MSR_FIDVID_STATUS
, lo
, maxvid
);
318 maxvid
= 0x1f & (maxvid
>> 16);
319 dprintk("ph1 maxvid=0x%x\n", maxvid
);
320 if (reqvid
< maxvid
) /* lower numbers are higher voltages */
323 while (data
->currvid
> reqvid
) {
324 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
325 data
->currvid
, reqvid
);
326 if (decrease_vid_code_by_step(data
, reqvid
, data
->vidmvs
))
330 while ((rvosteps
> 0) && ((data
->rvo
+ data
->currvid
) > reqvid
)) {
331 if (data
->currvid
== maxvid
) {
334 dprintk("ph1: changing vid for rvo, req 0x%x\n",
336 if (decrease_vid_code_by_step(data
, data
->currvid
- 1, 1))
342 if (query_current_values_with_pending_wait(data
))
345 if (savefid
!= data
->currfid
) {
346 printk(KERN_ERR PFX
"ph1 err, currfid changed 0x%x\n", data
->currfid
);
350 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
351 data
->currfid
, data
->currvid
);
356 /* Phase 2 - core frequency transition */
357 static int core_frequency_transition(struct powernow_k8_data
*data
, u32 reqfid
)
359 u32 vcoreqfid
, vcocurrfid
, vcofiddiff
, fid_interval
, savevid
= data
->currvid
;
361 if ((reqfid
< HI_FID_TABLE_BOTTOM
) && (data
->currfid
< HI_FID_TABLE_BOTTOM
)) {
362 printk(KERN_ERR PFX
"ph2: illegal lo-lo transition 0x%x 0x%x\n",
363 reqfid
, data
->currfid
);
367 if (data
->currfid
== reqfid
) {
368 printk(KERN_ERR PFX
"ph2 null fid transition 0x%x\n", data
->currfid
);
372 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
374 data
->currfid
, data
->currvid
, reqfid
);
376 vcoreqfid
= convert_fid_to_vco_fid(reqfid
);
377 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
378 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
379 : vcoreqfid
- vcocurrfid
;
381 while (vcofiddiff
> 2) {
382 (data
->currfid
& 1) ? (fid_interval
= 1) : (fid_interval
= 2);
384 if (reqfid
> data
->currfid
) {
385 if (data
->currfid
> LO_FID_TABLE_TOP
) {
386 if (write_new_fid(data
, data
->currfid
+ fid_interval
)) {
391 (data
, 2 + convert_fid_to_vco_fid(data
->currfid
))) {
396 if (write_new_fid(data
, data
->currfid
- fid_interval
))
400 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
401 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
402 : vcoreqfid
- vcocurrfid
;
405 if (write_new_fid(data
, reqfid
))
408 if (query_current_values_with_pending_wait(data
))
411 if (data
->currfid
!= reqfid
) {
413 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
414 data
->currfid
, reqfid
);
418 if (savevid
!= data
->currvid
) {
419 printk(KERN_ERR PFX
"ph2: vid changed, save 0x%x, curr 0x%x\n",
420 savevid
, data
->currvid
);
424 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
425 data
->currfid
, data
->currvid
);
430 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
431 static int core_voltage_post_transition(struct powernow_k8_data
*data
, u32 reqvid
)
433 u32 savefid
= data
->currfid
;
434 u32 savereqvid
= reqvid
;
436 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
438 data
->currfid
, data
->currvid
);
440 if (reqvid
!= data
->currvid
) {
441 if (write_new_vid(data
, reqvid
))
444 if (savefid
!= data
->currfid
) {
446 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
447 savefid
, data
->currfid
);
451 if (data
->currvid
!= reqvid
) {
453 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
454 reqvid
, data
->currvid
);
459 if (query_current_values_with_pending_wait(data
))
462 if (savereqvid
!= data
->currvid
) {
463 dprintk("ph3 failed, currvid 0x%x\n", data
->currvid
);
467 if (savefid
!= data
->currfid
) {
468 dprintk("ph3 failed, currfid changed 0x%x\n",
473 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
474 data
->currfid
, data
->currvid
);
479 static int check_supported_cpu(unsigned int cpu
)
481 cpumask_t oldmask
= CPU_MASK_ALL
;
482 u32 eax
, ebx
, ecx
, edx
;
485 oldmask
= current
->cpus_allowed
;
486 set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
488 if (smp_processor_id() != cpu
) {
489 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", cpu
);
493 if (current_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
)
496 eax
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
497 if (((eax
& CPUID_XFAM
) != CPUID_XFAM_K8
) &&
498 ((eax
& CPUID_XFAM
) < CPUID_XFAM_10H
))
501 if ((eax
& CPUID_XFAM
) == CPUID_XFAM_K8
) {
502 if (((eax
& CPUID_USE_XFAM_XMOD
) != CPUID_USE_XFAM_XMOD
) ||
503 ((eax
& CPUID_XMOD
) > CPUID_XMOD_REV_MASK
)) {
504 printk(KERN_INFO PFX
"Processor cpuid %x not supported\n", eax
);
508 eax
= cpuid_eax(CPUID_GET_MAX_CAPABILITIES
);
509 if (eax
< CPUID_FREQ_VOLT_CAPABILITIES
) {
511 "No frequency change capabilities detected\n");
515 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
516 if ((edx
& P_STATE_TRANSITION_CAPABLE
) != P_STATE_TRANSITION_CAPABLE
) {
517 printk(KERN_INFO PFX
"Power state transitions not supported\n");
520 } else { /* must be a HW Pstate capable processor */
521 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
522 if ((edx
& USE_HW_PSTATE
) == USE_HW_PSTATE
)
523 cpu_family
= CPU_HW_PSTATE
;
531 set_cpus_allowed(current
, oldmask
);
535 static int check_pst_table(struct powernow_k8_data
*data
, struct pst_s
*pst
, u8 maxvid
)
540 for (j
= 0; j
< data
->numps
; j
++) {
541 if (pst
[j
].vid
> LEAST_VID
) {
542 printk(KERN_ERR PFX
"vid %d invalid : 0x%x\n", j
, pst
[j
].vid
);
545 if (pst
[j
].vid
< data
->rvo
) { /* vid + rvo >= 0 */
546 printk(KERN_ERR BFX
"0 vid exceeded with pstate %d\n", j
);
549 if (pst
[j
].vid
< maxvid
+ data
->rvo
) { /* vid + rvo >= maxvid */
550 printk(KERN_ERR BFX
"maxvid exceeded with pstate %d\n", j
);
553 if (pst
[j
].fid
> MAX_FID
) {
554 printk(KERN_ERR BFX
"maxfid exceeded with pstate %d\n", j
);
557 if (j
&& (pst
[j
].fid
< HI_FID_TABLE_BOTTOM
)) {
558 /* Only first fid is allowed to be in "low" range */
559 printk(KERN_ERR BFX
"two low fids - %d : 0x%x\n", j
, pst
[j
].fid
);
562 if (pst
[j
].fid
< lastfid
)
563 lastfid
= pst
[j
].fid
;
566 printk(KERN_ERR BFX
"lastfid invalid\n");
569 if (lastfid
> LO_FID_TABLE_TOP
)
570 printk(KERN_INFO BFX
"first fid not from lo freq table\n");
575 static void print_basics(struct powernow_k8_data
*data
)
578 for (j
= 0; j
< data
->numps
; j
++) {
579 if (data
->powernow_table
[j
].frequency
!= CPUFREQ_ENTRY_INVALID
) {
580 if (cpu_family
== CPU_HW_PSTATE
) {
581 printk(KERN_INFO PFX
" %d : pstate %d (%d MHz)\n",
583 data
->powernow_table
[j
].index
,
584 data
->powernow_table
[j
].frequency
/1000);
586 printk(KERN_INFO PFX
" %d : fid 0x%x (%d MHz), vid 0x%x\n",
588 data
->powernow_table
[j
].index
& 0xff,
589 data
->powernow_table
[j
].frequency
/1000,
590 data
->powernow_table
[j
].index
>> 8);
595 printk(KERN_INFO PFX
"Only %d pstates on battery\n", data
->batps
);
598 static int fill_powernow_table(struct powernow_k8_data
*data
, struct pst_s
*pst
, u8 maxvid
)
600 struct cpufreq_frequency_table
*powernow_table
;
603 if (data
->batps
) { /* use ACPI support to get full speed on mains power */
604 printk(KERN_WARNING PFX
"Only %d pstates usable (use ACPI driver for full range\n", data
->batps
);
605 data
->numps
= data
->batps
;
608 for ( j
=1; j
<data
->numps
; j
++ ) {
609 if (pst
[j
-1].fid
>= pst
[j
].fid
) {
610 printk(KERN_ERR PFX
"PST out of sequence\n");
615 if (data
->numps
< 2) {
616 printk(KERN_ERR PFX
"no p states to transition\n");
620 if (check_pst_table(data
, pst
, maxvid
))
623 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
624 * (data
->numps
+ 1)), GFP_KERNEL
);
625 if (!powernow_table
) {
626 printk(KERN_ERR PFX
"powernow_table memory alloc failure\n");
630 for (j
= 0; j
< data
->numps
; j
++) {
631 powernow_table
[j
].index
= pst
[j
].fid
; /* lower 8 bits */
632 powernow_table
[j
].index
|= (pst
[j
].vid
<< 8); /* upper 8 bits */
633 powernow_table
[j
].frequency
= find_khz_freq_from_fid(pst
[j
].fid
);
635 powernow_table
[data
->numps
].frequency
= CPUFREQ_TABLE_END
;
636 powernow_table
[data
->numps
].index
= 0;
638 if (query_current_values_with_pending_wait(data
)) {
639 kfree(powernow_table
);
643 dprintk("cfid 0x%x, cvid 0x%x\n", data
->currfid
, data
->currvid
);
644 data
->powernow_table
= powernow_table
;
645 if (first_cpu(per_cpu(cpu_core_map
, data
->cpu
)) == data
->cpu
)
648 for (j
= 0; j
< data
->numps
; j
++)
649 if ((pst
[j
].fid
==data
->currfid
) && (pst
[j
].vid
==data
->currvid
))
652 dprintk("currfid/vid do not match PST, ignoring\n");
656 /* Find and validate the PSB/PST table in BIOS. */
657 static int find_psb_table(struct powernow_k8_data
*data
)
666 for (i
= 0xc0000; i
< 0xffff0; i
+= 0x10) {
667 /* Scan BIOS looking for the signature. */
668 /* It can not be at ffff0 - it is too big. */
670 psb
= phys_to_virt(i
);
671 if (memcmp(psb
, PSB_ID_STRING
, PSB_ID_STRING_LEN
) != 0)
674 dprintk("found PSB header at 0x%p\n", psb
);
676 dprintk("table vers: 0x%x\n", psb
->tableversion
);
677 if (psb
->tableversion
!= PSB_VERSION_1_4
) {
678 printk(KERN_ERR BFX
"PSB table is not v1.4\n");
682 dprintk("flags: 0x%x\n", psb
->flags1
);
684 printk(KERN_ERR BFX
"unknown flags\n");
688 data
->vstable
= psb
->vstable
;
689 dprintk("voltage stabilization time: %d(*20us)\n", data
->vstable
);
691 dprintk("flags2: 0x%x\n", psb
->flags2
);
692 data
->rvo
= psb
->flags2
& 3;
693 data
->irt
= ((psb
->flags2
) >> 2) & 3;
694 mvs
= ((psb
->flags2
) >> 4) & 3;
695 data
->vidmvs
= 1 << mvs
;
696 data
->batps
= ((psb
->flags2
) >> 6) & 3;
698 dprintk("ramp voltage offset: %d\n", data
->rvo
);
699 dprintk("isochronous relief time: %d\n", data
->irt
);
700 dprintk("maximum voltage step: %d - 0x%x\n", mvs
, data
->vidmvs
);
702 dprintk("numpst: 0x%x\n", psb
->num_tables
);
703 cpst
= psb
->num_tables
;
704 if ((psb
->cpuid
== 0x00000fc0) || (psb
->cpuid
== 0x00000fe0) ){
705 thiscpuid
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
706 if ((thiscpuid
== 0x00000fc0) || (thiscpuid
== 0x00000fe0) ) {
711 printk(KERN_ERR BFX
"numpst must be 1\n");
715 data
->plllock
= psb
->plllocktime
;
716 dprintk("plllocktime: 0x%x (units 1us)\n", psb
->plllocktime
);
717 dprintk("maxfid: 0x%x\n", psb
->maxfid
);
718 dprintk("maxvid: 0x%x\n", psb
->maxvid
);
719 maxvid
= psb
->maxvid
;
721 data
->numps
= psb
->numps
;
722 dprintk("numpstates: 0x%x\n", data
->numps
);
723 return fill_powernow_table(data
, (struct pst_s
*)(psb
+1), maxvid
);
726 * If you see this message, complain to BIOS manufacturer. If
727 * he tells you "we do not support Linux" or some similar
728 * nonsense, remember that Windows 2000 uses the same legacy
729 * mechanism that the old Linux PSB driver uses. Tell them it
730 * is broken with Windows 2000.
732 * The reference to the AMD documentation is chapter 9 in the
733 * BIOS and Kernel Developer's Guide, which is available on
736 printk(KERN_ERR PFX
"BIOS error - no PSB or ACPI _PSS objects\n");
740 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
741 static void powernow_k8_acpi_pst_values(struct powernow_k8_data
*data
, unsigned int index
)
743 if (!data
->acpi_data
.state_count
|| (cpu_family
== CPU_HW_PSTATE
))
746 data
->irt
= (data
->acpi_data
.states
[index
].control
>> IRT_SHIFT
) & IRT_MASK
;
747 data
->rvo
= (data
->acpi_data
.states
[index
].control
>> RVO_SHIFT
) & RVO_MASK
;
748 data
->exttype
= (data
->acpi_data
.states
[index
].control
>> EXT_TYPE_SHIFT
) & EXT_TYPE_MASK
;
749 data
->plllock
= (data
->acpi_data
.states
[index
].control
>> PLL_L_SHIFT
) & PLL_L_MASK
;
750 data
->vidmvs
= 1 << ((data
->acpi_data
.states
[index
].control
>> MVS_SHIFT
) & MVS_MASK
);
751 data
->vstable
= (data
->acpi_data
.states
[index
].control
>> VST_SHIFT
) & VST_MASK
;
754 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data
*data
)
756 struct cpufreq_frequency_table
*powernow_table
;
759 if (acpi_processor_register_performance(&data
->acpi_data
, data
->cpu
)) {
760 dprintk("register performance failed: bad ACPI data\n");
764 /* verify the data contained in the ACPI structures */
765 if (data
->acpi_data
.state_count
<= 1) {
766 dprintk("No ACPI P-States\n");
770 if ((data
->acpi_data
.control_register
.space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
) ||
771 (data
->acpi_data
.status_register
.space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
)) {
772 dprintk("Invalid control/status registers (%x - %x)\n",
773 data
->acpi_data
.control_register
.space_id
,
774 data
->acpi_data
.status_register
.space_id
);
778 /* fill in data->powernow_table */
779 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
780 * (data
->acpi_data
.state_count
+ 1)), GFP_KERNEL
);
781 if (!powernow_table
) {
782 dprintk("powernow_table memory alloc failure\n");
786 if (cpu_family
== CPU_HW_PSTATE
)
787 ret_val
= fill_powernow_table_pstate(data
, powernow_table
);
789 ret_val
= fill_powernow_table_fidvid(data
, powernow_table
);
793 powernow_table
[data
->acpi_data
.state_count
].frequency
= CPUFREQ_TABLE_END
;
794 powernow_table
[data
->acpi_data
.state_count
].index
= 0;
795 data
->powernow_table
= powernow_table
;
798 data
->numps
= data
->acpi_data
.state_count
;
799 if (first_cpu(per_cpu(cpu_core_map
, data
->cpu
)) == data
->cpu
)
801 powernow_k8_acpi_pst_values(data
, 0);
803 /* notify BIOS that we exist */
804 acpi_processor_notify_smm(THIS_MODULE
);
809 kfree(powernow_table
);
812 acpi_processor_unregister_performance(&data
->acpi_data
, data
->cpu
);
814 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
815 data
->acpi_data
.state_count
= 0;
820 static int fill_powernow_table_pstate(struct powernow_k8_data
*data
, struct cpufreq_frequency_table
*powernow_table
)
824 rdmsr(MSR_PSTATE_CUR_LIMIT
, hi
, lo
);
825 data
->max_hw_pstate
= (hi
& HW_PSTATE_MAX_MASK
) >> HW_PSTATE_MAX_SHIFT
;
827 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
830 index
= data
->acpi_data
.states
[i
].control
& HW_PSTATE_MASK
;
831 if (index
> data
->max_hw_pstate
) {
832 printk(KERN_ERR PFX
"invalid pstate %d - bad value %d.\n", i
, index
);
833 printk(KERN_ERR PFX
"Please report to BIOS manufacturer\n");
834 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
837 rdmsr(MSR_PSTATE_DEF_BASE
+ index
, lo
, hi
);
838 if (!(hi
& HW_PSTATE_VALID_MASK
)) {
839 dprintk("invalid pstate %d, ignoring\n", index
);
840 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
844 powernow_table
[i
].index
= index
;
846 powernow_table
[i
].frequency
= data
->acpi_data
.states
[i
].core_frequency
* 1000;
851 static int fill_powernow_table_fidvid(struct powernow_k8_data
*data
, struct cpufreq_frequency_table
*powernow_table
)
855 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
860 fid
= data
->acpi_data
.states
[i
].status
& EXT_FID_MASK
;
861 vid
= (data
->acpi_data
.states
[i
].status
>> VID_SHIFT
) & EXT_VID_MASK
;
863 fid
= data
->acpi_data
.states
[i
].control
& FID_MASK
;
864 vid
= (data
->acpi_data
.states
[i
].control
>> VID_SHIFT
) & VID_MASK
;
867 dprintk(" %d : fid 0x%x, vid 0x%x\n", i
, fid
, vid
);
869 powernow_table
[i
].index
= fid
; /* lower 8 bits */
870 powernow_table
[i
].index
|= (vid
<< 8); /* upper 8 bits */
871 powernow_table
[i
].frequency
= find_khz_freq_from_fid(fid
);
873 /* verify frequency is OK */
874 if ((powernow_table
[i
].frequency
> (MAX_FREQ
* 1000)) ||
875 (powernow_table
[i
].frequency
< (MIN_FREQ
* 1000))) {
876 dprintk("invalid freq %u kHz, ignoring\n", powernow_table
[i
].frequency
);
877 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
881 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
882 if (vid
== VID_OFF
) {
883 dprintk("invalid vid %u, ignoring\n", vid
);
884 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
888 /* verify only 1 entry from the lo frequency table */
889 if (fid
< HI_FID_TABLE_BOTTOM
) {
891 /* if both entries are the same, ignore this one ... */
892 if ((powernow_table
[i
].frequency
!= powernow_table
[cntlofreq
].frequency
) ||
893 (powernow_table
[i
].index
!= powernow_table
[cntlofreq
].index
)) {
894 printk(KERN_ERR PFX
"Too many lo freq table entries\n");
898 dprintk("double low frequency table entry, ignoring it.\n");
899 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
905 if (powernow_table
[i
].frequency
!= (data
->acpi_data
.states
[i
].core_frequency
* 1000)) {
906 printk(KERN_INFO PFX
"invalid freq entries %u kHz vs. %u kHz\n",
907 powernow_table
[i
].frequency
,
908 (unsigned int) (data
->acpi_data
.states
[i
].core_frequency
* 1000));
909 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
916 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data
*data
)
918 if (data
->acpi_data
.state_count
)
919 acpi_processor_unregister_performance(&data
->acpi_data
, data
->cpu
);
923 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data
*data
) { return -ENODEV
; }
924 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data
*data
) { return; }
925 static void powernow_k8_acpi_pst_values(struct powernow_k8_data
*data
, unsigned int index
) { return; }
926 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
928 /* Take a frequency, and issue the fid/vid transition command */
929 static int transition_frequency_fidvid(struct powernow_k8_data
*data
, unsigned int index
)
934 struct cpufreq_freqs freqs
;
936 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
938 /* fid/vid correctness check for k8 */
939 /* fid are the lower 8 bits of the index we stored into
940 * the cpufreq frequency table in find_psb_table, vid
941 * are the upper 8 bits.
943 fid
= data
->powernow_table
[index
].index
& 0xFF;
944 vid
= (data
->powernow_table
[index
].index
& 0xFF00) >> 8;
946 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid
, vid
);
948 if (query_current_values_with_pending_wait(data
))
951 if ((data
->currvid
== vid
) && (data
->currfid
== fid
)) {
952 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
957 if ((fid
< HI_FID_TABLE_BOTTOM
) && (data
->currfid
< HI_FID_TABLE_BOTTOM
)) {
959 "ignoring illegal change in lo freq table-%x to 0x%x\n",
964 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
965 smp_processor_id(), fid
, vid
);
966 freqs
.old
= find_khz_freq_from_fid(data
->currfid
);
967 freqs
.new = find_khz_freq_from_fid(fid
);
969 for_each_cpu_mask(i
, *(data
->available_cores
)) {
971 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
974 res
= transition_fid_vid(data
, fid
, vid
);
975 freqs
.new = find_khz_freq_from_fid(data
->currfid
);
977 for_each_cpu_mask(i
, *(data
->available_cores
)) {
979 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
984 /* Take a frequency, and issue the hardware pstate transition command */
985 static int transition_frequency_pstate(struct powernow_k8_data
*data
, unsigned int index
)
989 struct cpufreq_freqs freqs
;
991 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
993 /* get MSR index for hardware pstate transition */
994 pstate
= index
& HW_PSTATE_MASK
;
995 if (pstate
> data
->max_hw_pstate
)
997 freqs
.old
= find_khz_freq_from_pstate(data
->powernow_table
, data
->currpstate
);
998 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1000 for_each_cpu_mask(i
, *(data
->available_cores
)) {
1002 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1005 res
= transition_pstate(data
, pstate
);
1006 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1008 for_each_cpu_mask(i
, *(data
->available_cores
)) {
1010 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1015 /* Driver entry point to switch to the target frequency */
1016 static int powernowk8_target(struct cpufreq_policy
*pol
, unsigned targfreq
, unsigned relation
)
1018 cpumask_t oldmask
= CPU_MASK_ALL
;
1019 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1022 unsigned int newstate
;
1028 checkfid
= data
->currfid
;
1029 checkvid
= data
->currvid
;
1031 /* only run on specific CPU from here on */
1032 oldmask
= current
->cpus_allowed
;
1033 set_cpus_allowed(current
, cpumask_of_cpu(pol
->cpu
));
1035 if (smp_processor_id() != pol
->cpu
) {
1036 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", pol
->cpu
);
1040 if (pending_bit_stuck()) {
1041 printk(KERN_ERR PFX
"failing targ, change pending bit set\n");
1045 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1046 pol
->cpu
, targfreq
, pol
->min
, pol
->max
, relation
);
1048 if (query_current_values_with_pending_wait(data
))
1051 if (cpu_family
!= CPU_HW_PSTATE
) {
1052 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1053 data
->currfid
, data
->currvid
);
1055 if ((checkvid
!= data
->currvid
) || (checkfid
!= data
->currfid
)) {
1056 printk(KERN_INFO PFX
1057 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1058 checkfid
, data
->currfid
, checkvid
, data
->currvid
);
1062 if (cpufreq_frequency_table_target(pol
, data
->powernow_table
, targfreq
, relation
, &newstate
))
1065 mutex_lock(&fidvid_mutex
);
1067 powernow_k8_acpi_pst_values(data
, newstate
);
1069 if (cpu_family
== CPU_HW_PSTATE
)
1070 ret
= transition_frequency_pstate(data
, newstate
);
1072 ret
= transition_frequency_fidvid(data
, newstate
);
1074 printk(KERN_ERR PFX
"transition frequency failed\n");
1076 mutex_unlock(&fidvid_mutex
);
1079 mutex_unlock(&fidvid_mutex
);
1081 if (cpu_family
== CPU_HW_PSTATE
)
1082 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
, newstate
);
1084 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1088 set_cpus_allowed(current
, oldmask
);
1092 /* Driver entry point to verify the policy and range of frequencies */
1093 static int powernowk8_verify(struct cpufreq_policy
*pol
)
1095 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1100 return cpufreq_frequency_table_verify(pol
, data
->powernow_table
);
1103 /* per CPU init entry point to the driver */
1104 static int __cpuinit
powernowk8_cpu_init(struct cpufreq_policy
*pol
)
1106 struct powernow_k8_data
*data
;
1107 cpumask_t oldmask
= CPU_MASK_ALL
;
1110 if (!cpu_online(pol
->cpu
))
1113 if (!check_supported_cpu(pol
->cpu
))
1116 data
= kzalloc(sizeof(struct powernow_k8_data
), GFP_KERNEL
);
1118 printk(KERN_ERR PFX
"unable to alloc powernow_k8_data");
1122 data
->cpu
= pol
->cpu
;
1124 if (powernow_k8_cpu_init_acpi(data
)) {
1126 * Use the PSB BIOS structure. This is only availabe on
1127 * an UP version, and is deprecated by AMD.
1129 if (num_online_cpus() != 1) {
1130 printk(KERN_ERR PFX
"MP systems not supported by PSB BIOS structure\n");
1134 if (pol
->cpu
!= 0) {
1135 printk(KERN_ERR PFX
"No _PSS objects for CPU other than CPU0\n");
1139 rc
= find_psb_table(data
);
1146 /* only run on specific CPU from here on */
1147 oldmask
= current
->cpus_allowed
;
1148 set_cpus_allowed(current
, cpumask_of_cpu(pol
->cpu
));
1150 if (smp_processor_id() != pol
->cpu
) {
1151 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", pol
->cpu
);
1155 if (pending_bit_stuck()) {
1156 printk(KERN_ERR PFX
"failing init, change pending bit set\n");
1160 if (query_current_values_with_pending_wait(data
))
1163 if (cpu_family
== CPU_OPTERON
)
1166 /* run on any CPU again */
1167 set_cpus_allowed(current
, oldmask
);
1169 if (cpu_family
== CPU_HW_PSTATE
)
1170 pol
->cpus
= cpumask_of_cpu(pol
->cpu
);
1172 pol
->cpus
= per_cpu(cpu_core_map
, pol
->cpu
);
1173 data
->available_cores
= &(pol
->cpus
);
1175 /* Take a crude guess here.
1176 * That guess was in microseconds, so multiply with 1000 */
1177 pol
->cpuinfo
.transition_latency
= (((data
->rvo
+ 8) * data
->vstable
* VST_UNITS_20US
)
1178 + (3 * (1 << data
->irt
) * 10)) * 1000;
1180 if (cpu_family
== CPU_HW_PSTATE
)
1181 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
, data
->currpstate
);
1183 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1184 dprintk("policy current frequency %d kHz\n", pol
->cur
);
1186 /* min/max the cpu is capable of */
1187 if (cpufreq_frequency_table_cpuinfo(pol
, data
->powernow_table
)) {
1188 printk(KERN_ERR PFX
"invalid powernow_table\n");
1189 powernow_k8_cpu_exit_acpi(data
);
1190 kfree(data
->powernow_table
);
1195 cpufreq_frequency_table_get_attr(data
->powernow_table
, pol
->cpu
);
1197 if (cpu_family
== CPU_HW_PSTATE
)
1198 dprintk("cpu_init done, current pstate 0x%x\n", data
->currpstate
);
1200 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1201 data
->currfid
, data
->currvid
);
1203 per_cpu(powernow_data
, pol
->cpu
) = data
;
1208 set_cpus_allowed(current
, oldmask
);
1209 powernow_k8_cpu_exit_acpi(data
);
1215 static int __devexit
powernowk8_cpu_exit (struct cpufreq_policy
*pol
)
1217 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1222 powernow_k8_cpu_exit_acpi(data
);
1224 cpufreq_frequency_table_put_attr(pol
->cpu
);
1226 kfree(data
->powernow_table
);
1232 static unsigned int powernowk8_get (unsigned int cpu
)
1234 struct powernow_k8_data
*data
;
1235 cpumask_t oldmask
= current
->cpus_allowed
;
1236 unsigned int khz
= 0;
1239 first
= first_cpu(per_cpu(cpu_core_map
, cpu
));
1240 data
= per_cpu(powernow_data
, first
);
1245 set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
1246 if (smp_processor_id() != cpu
) {
1247 printk(KERN_ERR PFX
"limiting to CPU %d failed in powernowk8_get\n", cpu
);
1248 set_cpus_allowed(current
, oldmask
);
1252 if (query_current_values_with_pending_wait(data
))
1255 if (cpu_family
== CPU_HW_PSTATE
)
1256 khz
= find_khz_freq_from_pstate(data
->powernow_table
, data
->currpstate
);
1258 khz
= find_khz_freq_from_fid(data
->currfid
);
1262 set_cpus_allowed(current
, oldmask
);
1266 static struct freq_attr
* powernow_k8_attr
[] = {
1267 &cpufreq_freq_attr_scaling_available_freqs
,
1271 static struct cpufreq_driver cpufreq_amd64_driver
= {
1272 .verify
= powernowk8_verify
,
1273 .target
= powernowk8_target
,
1274 .init
= powernowk8_cpu_init
,
1275 .exit
= __devexit_p(powernowk8_cpu_exit
),
1276 .get
= powernowk8_get
,
1277 .name
= "powernow-k8",
1278 .owner
= THIS_MODULE
,
1279 .attr
= powernow_k8_attr
,
1282 /* driver entry point for init */
1283 static int __cpuinit
powernowk8_init(void)
1285 unsigned int i
, supported_cpus
= 0;
1287 for_each_online_cpu(i
) {
1288 if (check_supported_cpu(i
))
1292 if (supported_cpus
== num_online_cpus()) {
1293 printk(KERN_INFO PFX
"Found %d %s "
1294 "processors (%d cpu cores) (" VERSION
")\n",
1296 boot_cpu_data
.x86_model_id
, supported_cpus
);
1297 return cpufreq_register_driver(&cpufreq_amd64_driver
);
1303 /* driver entry point for term */
1304 static void __exit
powernowk8_exit(void)
1308 cpufreq_unregister_driver(&cpufreq_amd64_driver
);
1311 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1312 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1313 MODULE_LICENSE("GPL");
1315 late_initcall(powernowk8_init
);
1316 module_exit(powernowk8_exit
);