[PATCH] mm: clean up pagecache allocation
[pv_ops_mirror.git] / drivers / char / epca.c
blob706733c0b36a7e7af833f97580fb978454dc0ed1
1 /*
4 Copyright (C) 1996 Digi International.
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
9 ** This driver is no longer supported by Digi **
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/types.h>
36 #include <linux/init.h>
37 #include <linux/serial.h>
38 #include <linux/delay.h>
39 #include <linux/ctype.h>
40 #include <linux/tty.h>
41 #include <linux/tty_flip.h>
42 #include <linux/slab.h>
43 #include <linux/ioport.h>
44 #include <linux/interrupt.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <linux/spinlock.h>
48 #include <linux/pci.h>
49 #include "digiPCI.h"
52 #include "digi1.h"
53 #include "digiFep1.h"
54 #include "epca.h"
55 #include "epcaconfig.h"
57 /* ---------------------- Begin defines ------------------------ */
59 #define VERSION "1.3.0.1-LK2.6"
61 /* This major needs to be submitted to Linux to join the majors list */
63 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
66 #define MAXCARDS 7
67 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
69 #define PFX "epca: "
71 /* ----------------- Begin global definitions ------------------- */
73 static int nbdevs, num_cards, liloconfig;
74 static int digi_poller_inhibited = 1 ;
76 static int setup_error_code;
77 static int invalid_lilo_config;
79 /* The ISA boards do window flipping into the same spaces so its only sane
80 with a single lock. It's still pretty efficient */
82 static DEFINE_SPINLOCK(epca_lock);
84 /* -----------------------------------------------------------------------
85 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
86 7 below.
87 --------------------------------------------------------------------------*/
88 static struct board_info boards[MAXBOARDS];
91 /* ------------- Begin structures used for driver registeration ---------- */
93 static struct tty_driver *pc_driver;
94 static struct tty_driver *pc_info;
96 /* ------------------ Begin Digi specific structures -------------------- */
98 /* ------------------------------------------------------------------------
99 digi_channels represents an array of structures that keep track of
100 each channel of the Digi product. Information such as transmit and
101 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
102 are stored here. This structure is NOT used to overlay the cards
103 physical channel structure.
104 -------------------------------------------------------------------------- */
106 static struct channel digi_channels[MAX_ALLOC];
108 /* ------------------------------------------------------------------------
109 card_ptr is an array used to hold the address of the
110 first channel structure of each card. This array will hold
111 the addresses of various channels located in digi_channels.
112 -------------------------------------------------------------------------- */
113 static struct channel *card_ptr[MAXCARDS];
115 static struct timer_list epca_timer;
117 /* ---------------------- Begin function prototypes --------------------- */
119 /* ----------------------------------------------------------------------
120 Begin generic memory functions. These functions will be alias
121 (point at) more specific functions dependent on the board being
122 configured.
123 ----------------------------------------------------------------------- */
125 static void memwinon(struct board_info *b, unsigned int win);
126 static void memwinoff(struct board_info *b, unsigned int win);
127 static void globalwinon(struct channel *ch);
128 static void rxwinon(struct channel *ch);
129 static void txwinon(struct channel *ch);
130 static void memoff(struct channel *ch);
131 static void assertgwinon(struct channel *ch);
132 static void assertmemoff(struct channel *ch);
134 /* ---- Begin more 'specific' memory functions for cx_like products --- */
136 static void pcxem_memwinon(struct board_info *b, unsigned int win);
137 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
138 static void pcxem_globalwinon(struct channel *ch);
139 static void pcxem_rxwinon(struct channel *ch);
140 static void pcxem_txwinon(struct channel *ch);
141 static void pcxem_memoff(struct channel *ch);
143 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
145 static void pcxe_memwinon(struct board_info *b, unsigned int win);
146 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
147 static void pcxe_globalwinon(struct channel *ch);
148 static void pcxe_rxwinon(struct channel *ch);
149 static void pcxe_txwinon(struct channel *ch);
150 static void pcxe_memoff(struct channel *ch);
152 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
153 /* Note : pc64xe and pcxi share the same windowing routines */
155 static void pcxi_memwinon(struct board_info *b, unsigned int win);
156 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
157 static void pcxi_globalwinon(struct channel *ch);
158 static void pcxi_rxwinon(struct channel *ch);
159 static void pcxi_txwinon(struct channel *ch);
160 static void pcxi_memoff(struct channel *ch);
162 /* - Begin 'specific' do nothing memory functions needed for some cards - */
164 static void dummy_memwinon(struct board_info *b, unsigned int win);
165 static void dummy_memwinoff(struct board_info *b, unsigned int win);
166 static void dummy_globalwinon(struct channel *ch);
167 static void dummy_rxwinon(struct channel *ch);
168 static void dummy_txwinon(struct channel *ch);
169 static void dummy_memoff(struct channel *ch);
170 static void dummy_assertgwinon(struct channel *ch);
171 static void dummy_assertmemoff(struct channel *ch);
173 /* ------------------- Begin declare functions ----------------------- */
175 static struct channel *verifyChannel(struct tty_struct *);
176 static void pc_sched_event(struct channel *, int);
177 static void epca_error(int, char *);
178 static void pc_close(struct tty_struct *, struct file *);
179 static void shutdown(struct channel *);
180 static void pc_hangup(struct tty_struct *);
181 static void pc_put_char(struct tty_struct *, unsigned char);
182 static int pc_write_room(struct tty_struct *);
183 static int pc_chars_in_buffer(struct tty_struct *);
184 static void pc_flush_buffer(struct tty_struct *);
185 static void pc_flush_chars(struct tty_struct *);
186 static int block_til_ready(struct tty_struct *, struct file *,
187 struct channel *);
188 static int pc_open(struct tty_struct *, struct file *);
189 static void post_fep_init(unsigned int crd);
190 static void epcapoll(unsigned long);
191 static void doevent(int);
192 static void fepcmd(struct channel *, int, int, int, int, int);
193 static unsigned termios2digi_h(struct channel *ch, unsigned);
194 static unsigned termios2digi_i(struct channel *ch, unsigned);
195 static unsigned termios2digi_c(struct channel *ch, unsigned);
196 static void epcaparam(struct tty_struct *, struct channel *);
197 static void receive_data(struct channel *);
198 static int pc_ioctl(struct tty_struct *, struct file *,
199 unsigned int, unsigned long);
200 static int info_ioctl(struct tty_struct *, struct file *,
201 unsigned int, unsigned long);
202 static void pc_set_termios(struct tty_struct *, struct termios *);
203 static void do_softint(void *);
204 static void pc_stop(struct tty_struct *);
205 static void pc_start(struct tty_struct *);
206 static void pc_throttle(struct tty_struct * tty);
207 static void pc_unthrottle(struct tty_struct *tty);
208 static void digi_send_break(struct channel *ch, int msec);
209 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
210 void epca_setup(char *, int *);
212 static int get_termio(struct tty_struct *, struct termio __user *);
213 static int pc_write(struct tty_struct *, const unsigned char *, int);
214 static int pc_init(void);
215 static int init_PCI(void);
218 /* ------------------------------------------------------------------
219 Table of functions for each board to handle memory. Mantaining
220 parallelism is a *very* good idea here. The idea is for the
221 runtime code to blindly call these functions, not knowing/caring
222 about the underlying hardware. This stuff should contain no
223 conditionals; if more functionality is needed a different entry
224 should be established. These calls are the interface calls and
225 are the only functions that should be accessed. Anyone caught
226 making direct calls deserves what they get.
227 -------------------------------------------------------------------- */
229 static void memwinon(struct board_info *b, unsigned int win)
231 (b->memwinon)(b, win);
234 static void memwinoff(struct board_info *b, unsigned int win)
236 (b->memwinoff)(b, win);
239 static void globalwinon(struct channel *ch)
241 (ch->board->globalwinon)(ch);
244 static void rxwinon(struct channel *ch)
246 (ch->board->rxwinon)(ch);
249 static void txwinon(struct channel *ch)
251 (ch->board->txwinon)(ch);
254 static void memoff(struct channel *ch)
256 (ch->board->memoff)(ch);
258 static void assertgwinon(struct channel *ch)
260 (ch->board->assertgwinon)(ch);
263 static void assertmemoff(struct channel *ch)
265 (ch->board->assertmemoff)(ch);
268 /* ---------------------------------------------------------
269 PCXEM windowing is the same as that used in the PCXR
270 and CX series cards.
271 ------------------------------------------------------------ */
273 static void pcxem_memwinon(struct board_info *b, unsigned int win)
275 outb_p(FEPWIN|win, b->port + 1);
278 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
280 outb_p(0, b->port + 1);
283 static void pcxem_globalwinon(struct channel *ch)
285 outb_p( FEPWIN, (int)ch->board->port + 1);
288 static void pcxem_rxwinon(struct channel *ch)
290 outb_p(ch->rxwin, (int)ch->board->port + 1);
293 static void pcxem_txwinon(struct channel *ch)
295 outb_p(ch->txwin, (int)ch->board->port + 1);
298 static void pcxem_memoff(struct channel *ch)
300 outb_p(0, (int)ch->board->port + 1);
303 /* ----------------- Begin pcxe memory window stuff ------------------ */
305 static void pcxe_memwinon(struct board_info *b, unsigned int win)
307 outb_p(FEPWIN | win, b->port + 1);
310 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
312 outb_p(inb(b->port) & ~FEPMEM,
313 b->port + 1);
314 outb_p(0, b->port + 1);
317 static void pcxe_globalwinon(struct channel *ch)
319 outb_p( FEPWIN, (int)ch->board->port + 1);
322 static void pcxe_rxwinon(struct channel *ch)
324 outb_p(ch->rxwin, (int)ch->board->port + 1);
327 static void pcxe_txwinon(struct channel *ch)
329 outb_p(ch->txwin, (int)ch->board->port + 1);
332 static void pcxe_memoff(struct channel *ch)
334 outb_p(0, (int)ch->board->port);
335 outb_p(0, (int)ch->board->port + 1);
338 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
340 static void pcxi_memwinon(struct board_info *b, unsigned int win)
342 outb_p(inb(b->port) | FEPMEM, b->port);
345 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
347 outb_p(inb(b->port) & ~FEPMEM, b->port);
350 static void pcxi_globalwinon(struct channel *ch)
352 outb_p(FEPMEM, ch->board->port);
355 static void pcxi_rxwinon(struct channel *ch)
357 outb_p(FEPMEM, ch->board->port);
360 static void pcxi_txwinon(struct channel *ch)
362 outb_p(FEPMEM, ch->board->port);
365 static void pcxi_memoff(struct channel *ch)
367 outb_p(0, ch->board->port);
370 static void pcxi_assertgwinon(struct channel *ch)
372 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
375 static void pcxi_assertmemoff(struct channel *ch)
377 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
381 /* ----------------------------------------------------------------------
382 Not all of the cards need specific memory windowing routines. Some
383 cards (Such as PCI) needs no windowing routines at all. We provide
384 these do nothing routines so that the same code base can be used.
385 The driver will ALWAYS call a windowing routine if it thinks it needs
386 to; regardless of the card. However, dependent on the card the routine
387 may or may not do anything.
388 ---------------------------------------------------------------------------*/
390 static void dummy_memwinon(struct board_info *b, unsigned int win)
394 static void dummy_memwinoff(struct board_info *b, unsigned int win)
398 static void dummy_globalwinon(struct channel *ch)
402 static void dummy_rxwinon(struct channel *ch)
406 static void dummy_txwinon(struct channel *ch)
410 static void dummy_memoff(struct channel *ch)
414 static void dummy_assertgwinon(struct channel *ch)
418 static void dummy_assertmemoff(struct channel *ch)
422 /* ----------------- Begin verifyChannel function ----------------------- */
423 static struct channel *verifyChannel(struct tty_struct *tty)
424 { /* Begin verifyChannel */
425 /* --------------------------------------------------------------------
426 This routine basically provides a sanity check. It insures that
427 the channel returned is within the proper range of addresses as
428 well as properly initialized. If some bogus info gets passed in
429 through tty->driver_data this should catch it.
430 --------------------------------------------------------------------- */
431 if (tty) {
432 struct channel *ch = (struct channel *)tty->driver_data;
433 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
434 if (ch->magic == EPCA_MAGIC)
435 return ch;
438 return NULL;
440 } /* End verifyChannel */
442 /* ------------------ Begin pc_sched_event ------------------------- */
444 static void pc_sched_event(struct channel *ch, int event)
446 /* ----------------------------------------------------------------------
447 We call this to schedule interrupt processing on some event. The
448 kernel sees our request and calls the related routine in OUR driver.
449 -------------------------------------------------------------------------*/
450 ch->event |= 1 << event;
451 schedule_work(&ch->tqueue);
452 } /* End pc_sched_event */
454 /* ------------------ Begin epca_error ------------------------- */
456 static void epca_error(int line, char *msg)
458 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
461 /* ------------------ Begin pc_close ------------------------- */
462 static void pc_close(struct tty_struct * tty, struct file * filp)
464 struct channel *ch;
465 unsigned long flags;
466 /* ---------------------------------------------------------
467 verifyChannel returns the channel from the tty struct
468 if it is valid. This serves as a sanity check.
469 ------------------------------------------------------------- */
470 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
471 spin_lock_irqsave(&epca_lock, flags);
472 if (tty_hung_up_p(filp)) {
473 spin_unlock_irqrestore(&epca_lock, flags);
474 return;
476 /* Check to see if the channel is open more than once */
477 if (ch->count-- > 1) {
478 /* Begin channel is open more than once */
479 /* -------------------------------------------------------------
480 Return without doing anything. Someone might still be using
481 the channel.
482 ---------------------------------------------------------------- */
483 spin_unlock_irqrestore(&epca_lock, flags);
484 return;
485 } /* End channel is open more than once */
487 /* Port open only once go ahead with shutdown & reset */
488 BUG_ON(ch->count < 0);
490 /* ---------------------------------------------------------------
491 Let the rest of the driver know the channel is being closed.
492 This becomes important if an open is attempted before close
493 is finished.
494 ------------------------------------------------------------------ */
495 ch->asyncflags |= ASYNC_CLOSING;
496 tty->closing = 1;
498 spin_unlock_irqrestore(&epca_lock, flags);
500 if (ch->asyncflags & ASYNC_INITIALIZED) {
501 /* Setup an event to indicate when the transmit buffer empties */
502 setup_empty_event(tty, ch);
503 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
505 if (tty->driver->flush_buffer)
506 tty->driver->flush_buffer(tty);
508 tty_ldisc_flush(tty);
509 shutdown(ch);
511 spin_lock_irqsave(&epca_lock, flags);
512 tty->closing = 0;
513 ch->event = 0;
514 ch->tty = NULL;
515 spin_unlock_irqrestore(&epca_lock, flags);
517 if (ch->blocked_open) { /* Begin if blocked_open */
518 if (ch->close_delay)
519 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
520 wake_up_interruptible(&ch->open_wait);
521 } /* End if blocked_open */
522 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
523 ASYNC_CLOSING);
524 wake_up_interruptible(&ch->close_wait);
525 } /* End if ch != NULL */
526 } /* End pc_close */
528 /* ------------------ Begin shutdown ------------------------- */
530 static void shutdown(struct channel *ch)
531 { /* Begin shutdown */
533 unsigned long flags;
534 struct tty_struct *tty;
535 struct board_chan __iomem *bc;
537 if (!(ch->asyncflags & ASYNC_INITIALIZED))
538 return;
540 spin_lock_irqsave(&epca_lock, flags);
542 globalwinon(ch);
543 bc = ch->brdchan;
545 /* ------------------------------------------------------------------
546 In order for an event to be generated on the receipt of data the
547 idata flag must be set. Since we are shutting down, this is not
548 necessary clear this flag.
549 --------------------------------------------------------------------- */
551 if (bc)
552 writeb(0, &bc->idata);
553 tty = ch->tty;
555 /* ----------------------------------------------------------------
556 If we're a modem control device and HUPCL is on, drop RTS & DTR.
557 ------------------------------------------------------------------ */
559 if (tty->termios->c_cflag & HUPCL) {
560 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
561 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
563 memoff(ch);
565 /* ------------------------------------------------------------------
566 The channel has officialy been closed. The next time it is opened
567 it will have to reinitialized. Set a flag to indicate this.
568 ---------------------------------------------------------------------- */
570 /* Prevent future Digi programmed interrupts from coming active */
572 ch->asyncflags &= ~ASYNC_INITIALIZED;
573 spin_unlock_irqrestore(&epca_lock, flags);
575 } /* End shutdown */
577 /* ------------------ Begin pc_hangup ------------------------- */
579 static void pc_hangup(struct tty_struct *tty)
580 { /* Begin pc_hangup */
581 struct channel *ch;
583 /* ---------------------------------------------------------
584 verifyChannel returns the channel from the tty struct
585 if it is valid. This serves as a sanity check.
586 ------------------------------------------------------------- */
588 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
589 unsigned long flags;
591 if (tty->driver->flush_buffer)
592 tty->driver->flush_buffer(tty);
593 tty_ldisc_flush(tty);
594 shutdown(ch);
596 spin_lock_irqsave(&epca_lock, flags);
597 ch->tty = NULL;
598 ch->event = 0;
599 ch->count = 0;
600 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
601 spin_unlock_irqrestore(&epca_lock, flags);
602 wake_up_interruptible(&ch->open_wait);
603 } /* End if ch != NULL */
605 } /* End pc_hangup */
607 /* ------------------ Begin pc_write ------------------------- */
609 static int pc_write(struct tty_struct * tty,
610 const unsigned char *buf, int bytesAvailable)
611 { /* Begin pc_write */
612 unsigned int head, tail;
613 int dataLen;
614 int size;
615 int amountCopied;
616 struct channel *ch;
617 unsigned long flags;
618 int remain;
619 struct board_chan __iomem *bc;
621 /* ----------------------------------------------------------------
622 pc_write is primarily called directly by the kernel routine
623 tty_write (Though it can also be called by put_char) found in
624 tty_io.c. pc_write is passed a line discipline buffer where
625 the data to be written out is stored. The line discipline
626 implementation itself is done at the kernel level and is not
627 brought into the driver.
628 ------------------------------------------------------------------- */
630 /* ---------------------------------------------------------
631 verifyChannel returns the channel from the tty struct
632 if it is valid. This serves as a sanity check.
633 ------------------------------------------------------------- */
635 if ((ch = verifyChannel(tty)) == NULL)
636 return 0;
638 /* Make a pointer to the channel data structure found on the board. */
640 bc = ch->brdchan;
641 size = ch->txbufsize;
642 amountCopied = 0;
644 spin_lock_irqsave(&epca_lock, flags);
645 globalwinon(ch);
647 head = readw(&bc->tin) & (size - 1);
648 tail = readw(&bc->tout);
650 if (tail != readw(&bc->tout))
651 tail = readw(&bc->tout);
652 tail &= (size - 1);
654 /* If head >= tail, head has not wrapped around. */
655 if (head >= tail) { /* Begin head has not wrapped */
656 /* ---------------------------------------------------------------
657 remain (much like dataLen above) represents the total amount of
658 space available on the card for data. Here dataLen represents
659 the space existing between the head pointer and the end of
660 buffer. This is important because a memcpy cannot be told to
661 automatically wrap around when it hits the buffer end.
662 ------------------------------------------------------------------ */
663 dataLen = size - head;
664 remain = size - (head - tail) - 1;
665 } else { /* Begin head has wrapped around */
667 remain = tail - head - 1;
668 dataLen = remain;
670 } /* End head has wrapped around */
671 /* -------------------------------------------------------------------
672 Check the space on the card. If we have more data than
673 space; reduce the amount of data to fit the space.
674 ---------------------------------------------------------------------- */
675 bytesAvailable = min(remain, bytesAvailable);
676 txwinon(ch);
677 while (bytesAvailable > 0)
678 { /* Begin while there is data to copy onto card */
680 /* -----------------------------------------------------------------
681 If head is not wrapped, the below will make sure the first
682 data copy fills to the end of card buffer.
683 ------------------------------------------------------------------- */
685 dataLen = min(bytesAvailable, dataLen);
686 memcpy_toio(ch->txptr + head, buf, dataLen);
687 buf += dataLen;
688 head += dataLen;
689 amountCopied += dataLen;
690 bytesAvailable -= dataLen;
692 if (head >= size) {
693 head = 0;
694 dataLen = tail;
696 } /* End while there is data to copy onto card */
697 ch->statusflags |= TXBUSY;
698 globalwinon(ch);
699 writew(head, &bc->tin);
701 if ((ch->statusflags & LOWWAIT) == 0) {
702 ch->statusflags |= LOWWAIT;
703 writeb(1, &bc->ilow);
705 memoff(ch);
706 spin_unlock_irqrestore(&epca_lock, flags);
707 return(amountCopied);
709 } /* End pc_write */
711 /* ------------------ Begin pc_put_char ------------------------- */
713 static void pc_put_char(struct tty_struct *tty, unsigned char c)
714 { /* Begin pc_put_char */
715 pc_write(tty, &c, 1);
716 } /* End pc_put_char */
718 /* ------------------ Begin pc_write_room ------------------------- */
720 static int pc_write_room(struct tty_struct *tty)
721 { /* Begin pc_write_room */
723 int remain;
724 struct channel *ch;
725 unsigned long flags;
726 unsigned int head, tail;
727 struct board_chan __iomem *bc;
729 remain = 0;
731 /* ---------------------------------------------------------
732 verifyChannel returns the channel from the tty struct
733 if it is valid. This serves as a sanity check.
734 ------------------------------------------------------------- */
736 if ((ch = verifyChannel(tty)) != NULL) {
737 spin_lock_irqsave(&epca_lock, flags);
738 globalwinon(ch);
740 bc = ch->brdchan;
741 head = readw(&bc->tin) & (ch->txbufsize - 1);
742 tail = readw(&bc->tout);
744 if (tail != readw(&bc->tout))
745 tail = readw(&bc->tout);
746 /* Wrap tail if necessary */
747 tail &= (ch->txbufsize - 1);
749 if ((remain = tail - head - 1) < 0 )
750 remain += ch->txbufsize;
752 if (remain && (ch->statusflags & LOWWAIT) == 0) {
753 ch->statusflags |= LOWWAIT;
754 writeb(1, &bc->ilow);
756 memoff(ch);
757 spin_unlock_irqrestore(&epca_lock, flags);
759 /* Return how much room is left on card */
760 return remain;
762 } /* End pc_write_room */
764 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
766 static int pc_chars_in_buffer(struct tty_struct *tty)
767 { /* Begin pc_chars_in_buffer */
769 int chars;
770 unsigned int ctail, head, tail;
771 int remain;
772 unsigned long flags;
773 struct channel *ch;
774 struct board_chan __iomem *bc;
776 /* ---------------------------------------------------------
777 verifyChannel returns the channel from the tty struct
778 if it is valid. This serves as a sanity check.
779 ------------------------------------------------------------- */
781 if ((ch = verifyChannel(tty)) == NULL)
782 return(0);
784 spin_lock_irqsave(&epca_lock, flags);
785 globalwinon(ch);
787 bc = ch->brdchan;
788 tail = readw(&bc->tout);
789 head = readw(&bc->tin);
790 ctail = readw(&ch->mailbox->cout);
792 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
793 chars = 0;
794 else { /* Begin if some space on the card has been used */
795 head = readw(&bc->tin) & (ch->txbufsize - 1);
796 tail &= (ch->txbufsize - 1);
797 /* --------------------------------------------------------------
798 The logic here is basically opposite of the above pc_write_room
799 here we are finding the amount of bytes in the buffer filled.
800 Not the amount of bytes empty.
801 ------------------------------------------------------------------- */
802 if ((remain = tail - head - 1) < 0 )
803 remain += ch->txbufsize;
804 chars = (int)(ch->txbufsize - remain);
805 /* -------------------------------------------------------------
806 Make it possible to wakeup anything waiting for output
807 in tty_ioctl.c, etc.
809 If not already set. Setup an event to indicate when the
810 transmit buffer empties
811 ----------------------------------------------------------------- */
812 if (!(ch->statusflags & EMPTYWAIT))
813 setup_empty_event(tty,ch);
815 } /* End if some space on the card has been used */
816 memoff(ch);
817 spin_unlock_irqrestore(&epca_lock, flags);
818 /* Return number of characters residing on card. */
819 return(chars);
821 } /* End pc_chars_in_buffer */
823 /* ------------------ Begin pc_flush_buffer ---------------------- */
825 static void pc_flush_buffer(struct tty_struct *tty)
826 { /* Begin pc_flush_buffer */
828 unsigned int tail;
829 unsigned long flags;
830 struct channel *ch;
831 struct board_chan __iomem *bc;
832 /* ---------------------------------------------------------
833 verifyChannel returns the channel from the tty struct
834 if it is valid. This serves as a sanity check.
835 ------------------------------------------------------------- */
836 if ((ch = verifyChannel(tty)) == NULL)
837 return;
839 spin_lock_irqsave(&epca_lock, flags);
840 globalwinon(ch);
841 bc = ch->brdchan;
842 tail = readw(&bc->tout);
843 /* Have FEP move tout pointer; effectively flushing transmit buffer */
844 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
845 memoff(ch);
846 spin_unlock_irqrestore(&epca_lock, flags);
847 wake_up_interruptible(&tty->write_wait);
848 tty_wakeup(tty);
849 } /* End pc_flush_buffer */
851 /* ------------------ Begin pc_flush_chars ---------------------- */
853 static void pc_flush_chars(struct tty_struct *tty)
854 { /* Begin pc_flush_chars */
855 struct channel * ch;
856 /* ---------------------------------------------------------
857 verifyChannel returns the channel from the tty struct
858 if it is valid. This serves as a sanity check.
859 ------------------------------------------------------------- */
860 if ((ch = verifyChannel(tty)) != NULL) {
861 unsigned long flags;
862 spin_lock_irqsave(&epca_lock, flags);
863 /* ----------------------------------------------------------------
864 If not already set and the transmitter is busy setup an event
865 to indicate when the transmit empties.
866 ------------------------------------------------------------------- */
867 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
868 setup_empty_event(tty,ch);
869 spin_unlock_irqrestore(&epca_lock, flags);
871 } /* End pc_flush_chars */
873 /* ------------------ Begin block_til_ready ---------------------- */
875 static int block_til_ready(struct tty_struct *tty,
876 struct file *filp, struct channel *ch)
877 { /* Begin block_til_ready */
878 DECLARE_WAITQUEUE(wait,current);
879 int retval, do_clocal = 0;
880 unsigned long flags;
882 if (tty_hung_up_p(filp)) {
883 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
884 retval = -EAGAIN;
885 else
886 retval = -ERESTARTSYS;
887 return(retval);
890 /* -----------------------------------------------------------------
891 If the device is in the middle of being closed, then block
892 until it's done, and then try again.
893 -------------------------------------------------------------------- */
894 if (ch->asyncflags & ASYNC_CLOSING) {
895 interruptible_sleep_on(&ch->close_wait);
897 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
898 return -EAGAIN;
899 else
900 return -ERESTARTSYS;
903 if (filp->f_flags & O_NONBLOCK) {
904 /* -----------------------------------------------------------------
905 If non-blocking mode is set, then make the check up front
906 and then exit.
907 -------------------------------------------------------------------- */
908 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
909 return 0;
911 if (tty->termios->c_cflag & CLOCAL)
912 do_clocal = 1;
913 /* Block waiting for the carrier detect and the line to become free */
915 retval = 0;
916 add_wait_queue(&ch->open_wait, &wait);
918 spin_lock_irqsave(&epca_lock, flags);
919 /* We dec count so that pc_close will know when to free things */
920 if (!tty_hung_up_p(filp))
921 ch->count--;
922 ch->blocked_open++;
923 while(1)
924 { /* Begin forever while */
925 set_current_state(TASK_INTERRUPTIBLE);
926 if (tty_hung_up_p(filp) ||
927 !(ch->asyncflags & ASYNC_INITIALIZED))
929 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
930 retval = -EAGAIN;
931 else
932 retval = -ERESTARTSYS;
933 break;
935 if (!(ch->asyncflags & ASYNC_CLOSING) &&
936 (do_clocal || (ch->imodem & ch->dcd)))
937 break;
938 if (signal_pending(current)) {
939 retval = -ERESTARTSYS;
940 break;
942 spin_unlock_irqrestore(&epca_lock, flags);
943 /* ---------------------------------------------------------------
944 Allow someone else to be scheduled. We will occasionally go
945 through this loop until one of the above conditions change.
946 The below schedule call will allow other processes to enter and
947 prevent this loop from hogging the cpu.
948 ------------------------------------------------------------------ */
949 schedule();
950 spin_lock_irqsave(&epca_lock, flags);
952 } /* End forever while */
954 current->state = TASK_RUNNING;
955 remove_wait_queue(&ch->open_wait, &wait);
956 if (!tty_hung_up_p(filp))
957 ch->count++;
958 ch->blocked_open--;
960 spin_unlock_irqrestore(&epca_lock, flags);
962 if (retval)
963 return retval;
965 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
966 return 0;
967 } /* End block_til_ready */
969 /* ------------------ Begin pc_open ---------------------- */
971 static int pc_open(struct tty_struct *tty, struct file * filp)
972 { /* Begin pc_open */
974 struct channel *ch;
975 unsigned long flags;
976 int line, retval, boardnum;
977 struct board_chan __iomem *bc;
978 unsigned int head;
980 line = tty->index;
981 if (line < 0 || line >= nbdevs)
982 return -ENODEV;
984 ch = &digi_channels[line];
985 boardnum = ch->boardnum;
987 /* Check status of board configured in system. */
989 /* -----------------------------------------------------------------
990 I check to see if the epca_setup routine detected an user error.
991 It might be better to put this in pc_init, but for the moment it
992 goes here.
993 ---------------------------------------------------------------------- */
995 if (invalid_lilo_config) {
996 if (setup_error_code & INVALID_BOARD_TYPE)
997 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
998 if (setup_error_code & INVALID_NUM_PORTS)
999 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1000 if (setup_error_code & INVALID_MEM_BASE)
1001 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1002 if (setup_error_code & INVALID_PORT_BASE)
1003 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1004 if (setup_error_code & INVALID_BOARD_STATUS)
1005 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1006 if (setup_error_code & INVALID_ALTPIN)
1007 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1008 tty->driver_data = NULL; /* Mark this device as 'down' */
1009 return -ENODEV;
1011 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1012 tty->driver_data = NULL; /* Mark this device as 'down' */
1013 return(-ENODEV);
1016 if ((bc = ch->brdchan) == 0) {
1017 tty->driver_data = NULL;
1018 return -ENODEV;
1021 spin_lock_irqsave(&epca_lock, flags);
1022 /* ------------------------------------------------------------------
1023 Every time a channel is opened, increment a counter. This is
1024 necessary because we do not wish to flush and shutdown the channel
1025 until the last app holding the channel open, closes it.
1026 --------------------------------------------------------------------- */
1027 ch->count++;
1028 /* ----------------------------------------------------------------
1029 Set a kernel structures pointer to our local channel
1030 structure. This way we can get to it when passed only
1031 a tty struct.
1032 ------------------------------------------------------------------ */
1033 tty->driver_data = ch;
1034 /* ----------------------------------------------------------------
1035 If this is the first time the channel has been opened, initialize
1036 the tty->termios struct otherwise let pc_close handle it.
1037 -------------------------------------------------------------------- */
1038 globalwinon(ch);
1039 ch->statusflags = 0;
1041 /* Save boards current modem status */
1042 ch->imodem = readb(&bc->mstat);
1044 /* ----------------------------------------------------------------
1045 Set receive head and tail ptrs to each other. This indicates
1046 no data available to read.
1047 ----------------------------------------------------------------- */
1048 head = readw(&bc->rin);
1049 writew(head, &bc->rout);
1051 /* Set the channels associated tty structure */
1052 ch->tty = tty;
1054 /* -----------------------------------------------------------------
1055 The below routine generally sets up parity, baud, flow control
1056 issues, etc.... It effect both control flags and input flags.
1057 -------------------------------------------------------------------- */
1058 epcaparam(tty,ch);
1059 ch->asyncflags |= ASYNC_INITIALIZED;
1060 memoff(ch);
1061 spin_unlock_irqrestore(&epca_lock, flags);
1063 retval = block_til_ready(tty, filp, ch);
1064 if (retval)
1065 return retval;
1066 /* -------------------------------------------------------------
1067 Set this again in case a hangup set it to zero while this
1068 open() was waiting for the line...
1069 --------------------------------------------------------------- */
1070 spin_lock_irqsave(&epca_lock, flags);
1071 ch->tty = tty;
1072 globalwinon(ch);
1073 /* Enable Digi Data events */
1074 writeb(1, &bc->idata);
1075 memoff(ch);
1076 spin_unlock_irqrestore(&epca_lock, flags);
1077 return 0;
1078 } /* End pc_open */
1080 static int __init epca_module_init(void)
1081 { /* Begin init_module */
1082 return pc_init();
1085 module_init(epca_module_init);
1087 static struct pci_driver epca_driver;
1089 static void __exit epca_module_exit(void)
1091 int count, crd;
1092 struct board_info *bd;
1093 struct channel *ch;
1095 del_timer_sync(&epca_timer);
1097 if ((tty_unregister_driver(pc_driver)) ||
1098 (tty_unregister_driver(pc_info)))
1100 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1101 return;
1103 put_tty_driver(pc_driver);
1104 put_tty_driver(pc_info);
1106 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1107 bd = &boards[crd];
1108 if (!bd)
1109 { /* Begin sanity check */
1110 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1111 return;
1112 } /* End sanity check */
1113 ch = card_ptr[crd];
1114 for (count = 0; count < bd->numports; count++, ch++)
1115 { /* Begin for each port */
1116 if (ch && ch->tty)
1117 tty_hangup(ch->tty);
1118 } /* End for each port */
1119 } /* End for each card */
1120 pci_unregister_driver (&epca_driver);
1123 module_exit(epca_module_exit);
1125 static const struct tty_operations pc_ops = {
1126 .open = pc_open,
1127 .close = pc_close,
1128 .write = pc_write,
1129 .write_room = pc_write_room,
1130 .flush_buffer = pc_flush_buffer,
1131 .chars_in_buffer = pc_chars_in_buffer,
1132 .flush_chars = pc_flush_chars,
1133 .put_char = pc_put_char,
1134 .ioctl = pc_ioctl,
1135 .set_termios = pc_set_termios,
1136 .stop = pc_stop,
1137 .start = pc_start,
1138 .throttle = pc_throttle,
1139 .unthrottle = pc_unthrottle,
1140 .hangup = pc_hangup,
1143 static int info_open(struct tty_struct *tty, struct file * filp)
1145 return 0;
1148 static struct tty_operations info_ops = {
1149 .open = info_open,
1150 .ioctl = info_ioctl,
1153 /* ------------------ Begin pc_init ---------------------- */
1155 static int __init pc_init(void)
1156 { /* Begin pc_init */
1157 int crd;
1158 struct board_info *bd;
1159 unsigned char board_id = 0;
1160 int err = -ENOMEM;
1162 int pci_boards_found, pci_count;
1164 pci_count = 0;
1166 pc_driver = alloc_tty_driver(MAX_ALLOC);
1167 if (!pc_driver)
1168 goto out1;
1170 pc_info = alloc_tty_driver(MAX_ALLOC);
1171 if (!pc_info)
1172 goto out2;
1174 /* -----------------------------------------------------------------------
1175 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1176 board structure defined by digiConfig into drivers board structure.
1177 Note : If LILO has ran epca_setup then epca_setup will handle defining
1178 num_cards as well as copying the data into the board structure.
1179 -------------------------------------------------------------------------- */
1180 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1182 nbdevs = NBDEVS;
1183 num_cards = NUMCARDS;
1184 memcpy((void *)&boards, (void *)&static_boards,
1185 (sizeof(struct board_info) * NUMCARDS));
1186 } /* End driver has been configured via. epcaconfig */
1188 /* -----------------------------------------------------------------
1189 Note : If lilo was used to configure the driver and the
1190 ignore epcaconfig option was choosen (digiepca=2) then
1191 nbdevs and num_cards will equal 0 at this point. This is
1192 okay; PCI cards will still be picked up if detected.
1193 --------------------------------------------------------------------- */
1195 /* -----------------------------------------------------------
1196 Set up interrupt, we will worry about memory allocation in
1197 post_fep_init.
1198 --------------------------------------------------------------- */
1201 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1203 /* ------------------------------------------------------------------
1204 NOTE : This code assumes that the number of ports found in
1205 the boards array is correct. This could be wrong if
1206 the card in question is PCI (And therefore has no ports
1207 entry in the boards structure.) The rest of the
1208 information will be valid for PCI because the beginning
1209 of pc_init scans for PCI and determines i/o and base
1210 memory addresses. I am not sure if it is possible to
1211 read the number of ports supported by the card prior to
1212 it being booted (Since that is the state it is in when
1213 pc_init is run). Because it is not possible to query the
1214 number of supported ports until after the card has booted;
1215 we are required to calculate the card_ptrs as the card is
1216 is initialized (Inside post_fep_init). The negative thing
1217 about this approach is that digiDload's call to GET_INFO
1218 will have a bad port value. (Since this is called prior
1219 to post_fep_init.)
1221 --------------------------------------------------------------------- */
1223 pci_boards_found = 0;
1224 if(num_cards < MAXBOARDS)
1225 pci_boards_found += init_PCI();
1226 num_cards += pci_boards_found;
1228 pc_driver->owner = THIS_MODULE;
1229 pc_driver->name = "ttyD";
1230 pc_driver->major = DIGI_MAJOR;
1231 pc_driver->minor_start = 0;
1232 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1233 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1234 pc_driver->init_termios = tty_std_termios;
1235 pc_driver->init_termios.c_iflag = 0;
1236 pc_driver->init_termios.c_oflag = 0;
1237 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1238 pc_driver->init_termios.c_lflag = 0;
1239 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1240 tty_set_operations(pc_driver, &pc_ops);
1242 pc_info->owner = THIS_MODULE;
1243 pc_info->name = "digi_ctl";
1244 pc_info->major = DIGIINFOMAJOR;
1245 pc_info->minor_start = 0;
1246 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1247 pc_info->subtype = SERIAL_TYPE_INFO;
1248 pc_info->init_termios = tty_std_termios;
1249 pc_info->init_termios.c_iflag = 0;
1250 pc_info->init_termios.c_oflag = 0;
1251 pc_info->init_termios.c_lflag = 0;
1252 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1253 pc_info->flags = TTY_DRIVER_REAL_RAW;
1254 tty_set_operations(pc_info, &info_ops);
1257 for (crd = 0; crd < num_cards; crd++)
1258 { /* Begin for each card */
1260 /* ------------------------------------------------------------------
1261 This is where the appropriate memory handlers for the hardware is
1262 set. Everything at runtime blindly jumps through these vectors.
1263 ---------------------------------------------------------------------- */
1265 /* defined in epcaconfig.h */
1266 bd = &boards[crd];
1268 switch (bd->type)
1269 { /* Begin switch on bd->type {board type} */
1270 case PCXEM:
1271 case EISAXEM:
1272 bd->memwinon = pcxem_memwinon ;
1273 bd->memwinoff = pcxem_memwinoff ;
1274 bd->globalwinon = pcxem_globalwinon ;
1275 bd->txwinon = pcxem_txwinon ;
1276 bd->rxwinon = pcxem_rxwinon ;
1277 bd->memoff = pcxem_memoff ;
1278 bd->assertgwinon = dummy_assertgwinon;
1279 bd->assertmemoff = dummy_assertmemoff;
1280 break;
1282 case PCIXEM:
1283 case PCIXRJ:
1284 case PCIXR:
1285 bd->memwinon = dummy_memwinon;
1286 bd->memwinoff = dummy_memwinoff;
1287 bd->globalwinon = dummy_globalwinon;
1288 bd->txwinon = dummy_txwinon;
1289 bd->rxwinon = dummy_rxwinon;
1290 bd->memoff = dummy_memoff;
1291 bd->assertgwinon = dummy_assertgwinon;
1292 bd->assertmemoff = dummy_assertmemoff;
1293 break;
1295 case PCXE:
1296 case PCXEVE:
1298 bd->memwinon = pcxe_memwinon;
1299 bd->memwinoff = pcxe_memwinoff;
1300 bd->globalwinon = pcxe_globalwinon;
1301 bd->txwinon = pcxe_txwinon;
1302 bd->rxwinon = pcxe_rxwinon;
1303 bd->memoff = pcxe_memoff;
1304 bd->assertgwinon = dummy_assertgwinon;
1305 bd->assertmemoff = dummy_assertmemoff;
1306 break;
1308 case PCXI:
1309 case PC64XE:
1311 bd->memwinon = pcxi_memwinon;
1312 bd->memwinoff = pcxi_memwinoff;
1313 bd->globalwinon = pcxi_globalwinon;
1314 bd->txwinon = pcxi_txwinon;
1315 bd->rxwinon = pcxi_rxwinon;
1316 bd->memoff = pcxi_memoff;
1317 bd->assertgwinon = pcxi_assertgwinon;
1318 bd->assertmemoff = pcxi_assertmemoff;
1319 break;
1321 default:
1322 break;
1324 } /* End switch on bd->type */
1326 /* ---------------------------------------------------------------
1327 Some cards need a memory segment to be defined for use in
1328 transmit and receive windowing operations. These boards
1329 are listed in the below switch. In the case of the XI the
1330 amount of memory on the board is variable so the memory_seg
1331 is also variable. This code determines what they segment
1332 should be.
1333 ----------------------------------------------------------------- */
1335 switch (bd->type)
1336 { /* Begin switch on bd->type {board type} */
1338 case PCXE:
1339 case PCXEVE:
1340 case PC64XE:
1341 bd->memory_seg = 0xf000;
1342 break;
1344 case PCXI:
1345 board_id = inb((int)bd->port);
1346 if ((board_id & 0x1) == 0x1)
1347 { /* Begin it's an XI card */
1349 /* Is it a 64K board */
1350 if ((board_id & 0x30) == 0)
1351 bd->memory_seg = 0xf000;
1353 /* Is it a 128K board */
1354 if ((board_id & 0x30) == 0x10)
1355 bd->memory_seg = 0xe000;
1357 /* Is is a 256K board */
1358 if ((board_id & 0x30) == 0x20)
1359 bd->memory_seg = 0xc000;
1361 /* Is it a 512K board */
1362 if ((board_id & 0x30) == 0x30)
1363 bd->memory_seg = 0x8000;
1365 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1366 break;
1368 } /* End switch on bd->type */
1370 } /* End for each card */
1372 err = tty_register_driver(pc_driver);
1373 if (err) {
1374 printk(KERN_ERR "Couldn't register Digi PC/ driver");
1375 goto out3;
1378 err = tty_register_driver(pc_info);
1379 if (err) {
1380 printk(KERN_ERR "Couldn't register Digi PC/ info ");
1381 goto out4;
1384 /* -------------------------------------------------------------------
1385 Start up the poller to check for events on all enabled boards
1386 ---------------------------------------------------------------------- */
1388 init_timer(&epca_timer);
1389 epca_timer.function = epcapoll;
1390 mod_timer(&epca_timer, jiffies + HZ/25);
1391 return 0;
1393 out4:
1394 tty_unregister_driver(pc_driver);
1395 out3:
1396 put_tty_driver(pc_info);
1397 out2:
1398 put_tty_driver(pc_driver);
1399 out1:
1400 return err;
1402 } /* End pc_init */
1404 /* ------------------ Begin post_fep_init ---------------------- */
1406 static void post_fep_init(unsigned int crd)
1407 { /* Begin post_fep_init */
1409 int i;
1410 void __iomem *memaddr;
1411 struct global_data __iomem *gd;
1412 struct board_info *bd;
1413 struct board_chan __iomem *bc;
1414 struct channel *ch;
1415 int shrinkmem = 0, lowwater ;
1417 /* -------------------------------------------------------------
1418 This call is made by the user via. the ioctl call DIGI_INIT.
1419 It is responsible for setting up all the card specific stuff.
1420 ---------------------------------------------------------------- */
1421 bd = &boards[crd];
1423 /* -----------------------------------------------------------------
1424 If this is a PCI board, get the port info. Remember PCI cards
1425 do not have entries into the epcaconfig.h file, so we can't get
1426 the number of ports from it. Unfortunetly, this means that anyone
1427 doing a DIGI_GETINFO before the board has booted will get an invalid
1428 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1429 after DIGI_INIT has been called will return the proper values.
1430 ------------------------------------------------------------------- */
1432 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1433 /* --------------------------------------------------------------------
1434 Below we use XEMPORTS as a memory offset regardless of which PCI
1435 card it is. This is because all of the supported PCI cards have
1436 the same memory offset for the channel data. This will have to be
1437 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1438 states that the port offset is 0xC22 as opposed to 0xC02. This is
1439 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1440 On the PCI cards the number of ports is determined by reading a
1441 ID PROM located in the box attached to the card. The card can then
1442 determine the index the id to determine the number of ports available.
1443 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1444 if the box in question is a XEM or CX)).
1445 ------------------------------------------------------------------------ */
1446 /* PCI cards are already remapped at this point ISA are not */
1447 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1448 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1449 nbdevs += (bd->numports);
1450 } else {
1451 /* Fix up the mappings for ISA/EISA etc */
1452 /* FIXME: 64K - can we be smarter ? */
1453 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1456 if (crd != 0)
1457 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1458 else
1459 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1461 ch = card_ptr[crd];
1462 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1464 memaddr = bd->re_map_membase;
1466 /* -----------------------------------------------------------------
1467 The below assignment will set bc to point at the BEGINING of
1468 the cards channel structures. For 1 card there will be between
1469 8 and 64 of these structures.
1470 -------------------------------------------------------------------- */
1472 bc = memaddr + CHANSTRUCT;
1474 /* -------------------------------------------------------------------
1475 The below assignment will set gd to point at the BEGINING of
1476 global memory address 0xc00. The first data in that global
1477 memory actually starts at address 0xc1a. The command in
1478 pointer begins at 0xd10.
1479 ---------------------------------------------------------------------- */
1481 gd = memaddr + GLOBAL;
1483 /* --------------------------------------------------------------------
1484 XEPORTS (address 0xc22) points at the number of channels the
1485 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1486 ----------------------------------------------------------------------- */
1488 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1489 shrinkmem = 1;
1490 if (bd->type < PCIXEM)
1491 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1492 return;
1493 memwinon(bd, 0);
1495 /* --------------------------------------------------------------------
1496 Remember ch is the main drivers channels structure, while bc is
1497 the cards channel structure.
1498 ------------------------------------------------------------------------ */
1500 /* For every port on the card do ..... */
1502 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1503 unsigned long flags;
1504 u16 tseg, rseg;
1506 ch->brdchan = bc;
1507 ch->mailbox = gd;
1508 INIT_WORK(&ch->tqueue, do_softint, ch);
1509 ch->board = &boards[crd];
1511 spin_lock_irqsave(&epca_lock, flags);
1512 switch (bd->type) {
1513 /* ----------------------------------------------------------------
1514 Since some of the boards use different bitmaps for their
1515 control signals we cannot hard code these values and retain
1516 portability. We virtualize this data here.
1517 ------------------------------------------------------------------- */
1518 case EISAXEM:
1519 case PCXEM:
1520 case PCIXEM:
1521 case PCIXRJ:
1522 case PCIXR:
1523 ch->m_rts = 0x02 ;
1524 ch->m_dcd = 0x80 ;
1525 ch->m_dsr = 0x20 ;
1526 ch->m_cts = 0x10 ;
1527 ch->m_ri = 0x40 ;
1528 ch->m_dtr = 0x01 ;
1529 break;
1531 case PCXE:
1532 case PCXEVE:
1533 case PCXI:
1534 case PC64XE:
1535 ch->m_rts = 0x02 ;
1536 ch->m_dcd = 0x08 ;
1537 ch->m_dsr = 0x10 ;
1538 ch->m_cts = 0x20 ;
1539 ch->m_ri = 0x40 ;
1540 ch->m_dtr = 0x80 ;
1541 break;
1543 } /* End switch bd->type */
1545 if (boards[crd].altpin) {
1546 ch->dsr = ch->m_dcd;
1547 ch->dcd = ch->m_dsr;
1548 ch->digiext.digi_flags |= DIGI_ALTPIN;
1550 else {
1551 ch->dcd = ch->m_dcd;
1552 ch->dsr = ch->m_dsr;
1555 ch->boardnum = crd;
1556 ch->channelnum = i;
1557 ch->magic = EPCA_MAGIC;
1558 ch->tty = NULL;
1560 if (shrinkmem) {
1561 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1562 shrinkmem = 0;
1565 tseg = readw(&bc->tseg);
1566 rseg = readw(&bc->rseg);
1568 switch (bd->type) {
1570 case PCIXEM:
1571 case PCIXRJ:
1572 case PCIXR:
1573 /* Cover all the 2MEG cards */
1574 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1575 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1576 ch->txwin = FEPWIN | (tseg >> 11);
1577 ch->rxwin = FEPWIN | (rseg >> 11);
1578 break;
1580 case PCXEM:
1581 case EISAXEM:
1582 /* Cover all the 32K windowed cards */
1583 /* Mask equal to window size - 1 */
1584 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1585 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1586 ch->txwin = FEPWIN | (tseg >> 11);
1587 ch->rxwin = FEPWIN | (rseg >> 11);
1588 break;
1590 case PCXEVE:
1591 case PCXE:
1592 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1593 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1594 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1595 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1596 break;
1598 case PCXI:
1599 case PC64XE:
1600 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1601 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1602 ch->txwin = ch->rxwin = 0;
1603 break;
1605 } /* End switch bd->type */
1607 ch->txbufhead = 0;
1608 ch->txbufsize = readw(&bc->tmax) + 1;
1610 ch->rxbufhead = 0;
1611 ch->rxbufsize = readw(&bc->rmax) + 1;
1613 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1615 /* Set transmitter low water mark */
1616 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1618 /* Set receiver low water mark */
1620 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1622 /* Set receiver high water mark */
1624 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1626 writew(100, &bc->edelay);
1627 writeb(1, &bc->idata);
1629 ch->startc = readb(&bc->startc);
1630 ch->stopc = readb(&bc->stopc);
1631 ch->startca = readb(&bc->startca);
1632 ch->stopca = readb(&bc->stopca);
1634 ch->fepcflag = 0;
1635 ch->fepiflag = 0;
1636 ch->fepoflag = 0;
1637 ch->fepstartc = 0;
1638 ch->fepstopc = 0;
1639 ch->fepstartca = 0;
1640 ch->fepstopca = 0;
1642 ch->close_delay = 50;
1643 ch->count = 0;
1644 ch->blocked_open = 0;
1645 init_waitqueue_head(&ch->open_wait);
1646 init_waitqueue_head(&ch->close_wait);
1648 spin_unlock_irqrestore(&epca_lock, flags);
1649 } /* End for each port */
1651 printk(KERN_INFO
1652 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1653 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1654 memwinoff(bd, 0);
1656 } /* End post_fep_init */
1658 /* --------------------- Begin epcapoll ------------------------ */
1660 static void epcapoll(unsigned long ignored)
1661 { /* Begin epcapoll */
1663 unsigned long flags;
1664 int crd;
1665 volatile unsigned int head, tail;
1666 struct channel *ch;
1667 struct board_info *bd;
1669 /* -------------------------------------------------------------------
1670 This routine is called upon every timer interrupt. Even though
1671 the Digi series cards are capable of generating interrupts this
1672 method of non-looping polling is more efficient. This routine
1673 checks for card generated events (Such as receive data, are transmit
1674 buffer empty) and acts on those events.
1675 ----------------------------------------------------------------------- */
1677 for (crd = 0; crd < num_cards; crd++)
1678 { /* Begin for each card */
1680 bd = &boards[crd];
1681 ch = card_ptr[crd];
1683 if ((bd->status == DISABLED) || digi_poller_inhibited)
1684 continue; /* Begin loop next interation */
1686 /* -----------------------------------------------------------
1687 assertmemoff is not needed here; indeed it is an empty subroutine.
1688 It is being kept because future boards may need this as well as
1689 some legacy boards.
1690 ---------------------------------------------------------------- */
1692 spin_lock_irqsave(&epca_lock, flags);
1694 assertmemoff(ch);
1696 globalwinon(ch);
1698 /* ---------------------------------------------------------------
1699 In this case head and tail actually refer to the event queue not
1700 the transmit or receive queue.
1701 ------------------------------------------------------------------- */
1703 head = readw(&ch->mailbox->ein);
1704 tail = readw(&ch->mailbox->eout);
1706 /* If head isn't equal to tail we have an event */
1708 if (head != tail)
1709 doevent(crd);
1710 memoff(ch);
1712 spin_unlock_irqrestore(&epca_lock, flags);
1714 } /* End for each card */
1715 mod_timer(&epca_timer, jiffies + (HZ / 25));
1716 } /* End epcapoll */
1718 /* --------------------- Begin doevent ------------------------ */
1720 static void doevent(int crd)
1721 { /* Begin doevent */
1723 void __iomem *eventbuf;
1724 struct channel *ch, *chan0;
1725 static struct tty_struct *tty;
1726 struct board_info *bd;
1727 struct board_chan __iomem *bc;
1728 unsigned int tail, head;
1729 int event, channel;
1730 int mstat, lstat;
1732 /* -------------------------------------------------------------------
1733 This subroutine is called by epcapoll when an event is detected
1734 in the event queue. This routine responds to those events.
1735 --------------------------------------------------------------------- */
1736 bd = &boards[crd];
1738 chan0 = card_ptr[crd];
1739 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1740 assertgwinon(chan0);
1741 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1742 { /* Begin while something in event queue */
1743 assertgwinon(chan0);
1744 eventbuf = bd->re_map_membase + tail + ISTART;
1745 /* Get the channel the event occurred on */
1746 channel = readb(eventbuf);
1747 /* Get the actual event code that occurred */
1748 event = readb(eventbuf + 1);
1749 /* ----------------------------------------------------------------
1750 The two assignments below get the current modem status (mstat)
1751 and the previous modem status (lstat). These are useful becuase
1752 an event could signal a change in modem signals itself.
1753 ------------------------------------------------------------------- */
1754 mstat = readb(eventbuf + 2);
1755 lstat = readb(eventbuf + 3);
1757 ch = chan0 + channel;
1758 if ((unsigned)channel >= bd->numports || !ch) {
1759 if (channel >= bd->numports)
1760 ch = chan0;
1761 bc = ch->brdchan;
1762 goto next;
1765 if ((bc = ch->brdchan) == NULL)
1766 goto next;
1768 if (event & DATA_IND) { /* Begin DATA_IND */
1769 receive_data(ch);
1770 assertgwinon(ch);
1771 } /* End DATA_IND */
1772 /* else *//* Fix for DCD transition missed bug */
1773 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1774 /* A modem signal change has been indicated */
1775 ch->imodem = mstat;
1776 if (ch->asyncflags & ASYNC_CHECK_CD) {
1777 if (mstat & ch->dcd) /* We are now receiving dcd */
1778 wake_up_interruptible(&ch->open_wait);
1779 else
1780 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1782 } /* End MODEMCHG_IND */
1783 tty = ch->tty;
1784 if (tty) { /* Begin if valid tty */
1785 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1786 /* A break has been indicated */
1787 tty_insert_flip_char(tty, 0, TTY_BREAK);
1788 tty_schedule_flip(tty);
1789 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1790 if (ch->statusflags & LOWWAIT)
1791 { /* Begin if LOWWAIT */
1792 ch->statusflags &= ~LOWWAIT;
1793 tty_wakeup(tty);
1794 wake_up_interruptible(&tty->write_wait);
1795 } /* End if LOWWAIT */
1796 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1797 /* This event is generated by setup_empty_event */
1798 ch->statusflags &= ~TXBUSY;
1799 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1800 ch->statusflags &= ~EMPTYWAIT;
1801 tty_wakeup(tty);
1802 wake_up_interruptible(&tty->write_wait);
1803 } /* End if EMPTYWAIT */
1804 } /* End EMPTYTX_IND */
1805 } /* End if valid tty */
1806 next:
1807 globalwinon(ch);
1808 BUG_ON(!bc);
1809 writew(1, &bc->idata);
1810 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1811 globalwinon(chan0);
1812 } /* End while something in event queue */
1813 } /* End doevent */
1815 /* --------------------- Begin fepcmd ------------------------ */
1817 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1818 int byte2, int ncmds, int bytecmd)
1819 { /* Begin fepcmd */
1820 unchar __iomem *memaddr;
1821 unsigned int head, cmdTail, cmdStart, cmdMax;
1822 long count;
1823 int n;
1825 /* This is the routine in which commands may be passed to the card. */
1827 if (ch->board->status == DISABLED)
1828 return;
1829 assertgwinon(ch);
1830 /* Remember head (As well as max) is just an offset not a base addr */
1831 head = readw(&ch->mailbox->cin);
1832 /* cmdStart is a base address */
1833 cmdStart = readw(&ch->mailbox->cstart);
1834 /* ------------------------------------------------------------------
1835 We do the addition below because we do not want a max pointer
1836 relative to cmdStart. We want a max pointer that points at the
1837 physical end of the command queue.
1838 -------------------------------------------------------------------- */
1839 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1840 memaddr = ch->board->re_map_membase;
1842 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1843 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1844 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1845 return;
1847 if (bytecmd) {
1848 writeb(cmd, memaddr + head + cmdStart + 0);
1849 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1850 /* Below word_or_byte is bits to set */
1851 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1852 /* Below byte2 is bits to reset */
1853 writeb(byte2, memaddr + head + cmdStart + 3);
1854 } else {
1855 writeb(cmd, memaddr + head + cmdStart + 0);
1856 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1857 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1859 head = (head + 4) & (cmdMax - cmdStart - 4);
1860 writew(head, &ch->mailbox->cin);
1861 count = FEPTIMEOUT;
1863 for (;;) { /* Begin forever loop */
1864 count--;
1865 if (count == 0) {
1866 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1867 return;
1869 head = readw(&ch->mailbox->cin);
1870 cmdTail = readw(&ch->mailbox->cout);
1871 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1872 /* ----------------------------------------------------------
1873 Basically this will break when the FEP acknowledges the
1874 command by incrementing cmdTail (Making it equal to head).
1875 ------------------------------------------------------------- */
1876 if (n <= ncmds * (sizeof(short) * 4))
1877 break; /* Well nearly forever :-) */
1878 } /* End forever loop */
1879 } /* End fepcmd */
1881 /* ---------------------------------------------------------------------
1882 Digi products use fields in their channels structures that are very
1883 similar to the c_cflag and c_iflag fields typically found in UNIX
1884 termios structures. The below three routines allow mappings
1885 between these hardware "flags" and their respective Linux flags.
1886 ------------------------------------------------------------------------- */
1888 /* --------------------- Begin termios2digi_h -------------------- */
1890 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1891 { /* Begin termios2digi_h */
1892 unsigned res = 0;
1894 if (cflag & CRTSCTS) {
1895 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1896 res |= ((ch->m_cts) | (ch->m_rts));
1899 if (ch->digiext.digi_flags & RTSPACE)
1900 res |= ch->m_rts;
1902 if (ch->digiext.digi_flags & DTRPACE)
1903 res |= ch->m_dtr;
1905 if (ch->digiext.digi_flags & CTSPACE)
1906 res |= ch->m_cts;
1908 if (ch->digiext.digi_flags & DSRPACE)
1909 res |= ch->dsr;
1911 if (ch->digiext.digi_flags & DCDPACE)
1912 res |= ch->dcd;
1914 if (res & (ch->m_rts))
1915 ch->digiext.digi_flags |= RTSPACE;
1917 if (res & (ch->m_cts))
1918 ch->digiext.digi_flags |= CTSPACE;
1920 return res;
1922 } /* End termios2digi_h */
1924 /* --------------------- Begin termios2digi_i -------------------- */
1925 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1926 { /* Begin termios2digi_i */
1928 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1929 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1930 if (ch->digiext.digi_flags & DIGI_AIXON)
1931 res |= IAIXON;
1932 return res;
1934 } /* End termios2digi_i */
1936 /* --------------------- Begin termios2digi_c -------------------- */
1938 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1939 { /* Begin termios2digi_c */
1941 unsigned res = 0;
1942 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1943 ch->digiext.digi_flags |= DIGI_FAST;
1944 /* -------------------------------------------------------------
1945 HUPCL bit is used by FEP to indicate fast baud
1946 table is to be used.
1947 ----------------------------------------------------------------- */
1948 res |= FEP_HUPCL;
1949 } /* End detected CBAUDEX */
1950 else ch->digiext.digi_flags &= ~DIGI_FAST;
1951 /* -------------------------------------------------------------------
1952 CBAUD has bit position 0x1000 set these days to indicate Linux
1953 baud rate remap. Digi hardware can't handle the bit assignment.
1954 (We use a different bit assignment for high speed.). Clear this
1955 bit out.
1956 ---------------------------------------------------------------------- */
1957 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1958 /* -------------------------------------------------------------
1959 This gets a little confusing. The Digi cards have their own
1960 representation of c_cflags controling baud rate. For the most
1961 part this is identical to the Linux implementation. However;
1962 Digi supports one rate (76800) that Linux doesn't. This means
1963 that the c_cflag entry that would normally mean 76800 for Digi
1964 actually means 115200 under Linux. Without the below mapping,
1965 a stty 115200 would only drive the board at 76800. Since
1966 the rate 230400 is also found after 76800, the same problem afflicts
1967 us when we choose a rate of 230400. Without the below modificiation
1968 stty 230400 would actually give us 115200.
1970 There are two additional differences. The Linux value for CLOCAL
1971 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1972 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1973 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1974 should be checked for a screened out prior to termios2digi_c
1975 returning. Since CLOCAL isn't used by the board this can be
1976 ignored as long as the returned value is used only by Digi hardware.
1977 ----------------------------------------------------------------- */
1978 if (cflag & CBAUDEX) {
1979 /* -------------------------------------------------------------
1980 The below code is trying to guarantee that only baud rates
1981 115200 and 230400 are remapped. We use exclusive or because
1982 the various baud rates share common bit positions and therefore
1983 can't be tested for easily.
1984 ----------------------------------------------------------------- */
1987 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1988 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1989 res += 1;
1991 return res;
1993 } /* End termios2digi_c */
1995 /* --------------------- Begin epcaparam ----------------------- */
1997 /* Caller must hold the locks */
1998 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1999 { /* Begin epcaparam */
2001 unsigned int cmdHead;
2002 struct termios *ts;
2003 struct board_chan __iomem *bc;
2004 unsigned mval, hflow, cflag, iflag;
2006 bc = ch->brdchan;
2007 epcaassert(bc !=0, "bc out of range");
2009 assertgwinon(ch);
2010 ts = tty->termios;
2011 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2012 cmdHead = readw(&bc->rin);
2013 writew(cmdHead, &bc->rout);
2014 cmdHead = readw(&bc->tin);
2015 /* Changing baud in mid-stream transmission can be wonderful */
2016 /* ---------------------------------------------------------------
2017 Flush current transmit buffer by setting cmdTail pointer (tout)
2018 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2019 ----------------------------------------------------------------- */
2020 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2021 mval = 0;
2022 } else { /* Begin CBAUD not detected */
2023 /* -------------------------------------------------------------------
2024 c_cflags have changed but that change had nothing to do with BAUD.
2025 Propagate the change to the card.
2026 ---------------------------------------------------------------------- */
2027 cflag = termios2digi_c(ch, ts->c_cflag);
2028 if (cflag != ch->fepcflag) {
2029 ch->fepcflag = cflag;
2030 /* Set baud rate, char size, stop bits, parity */
2031 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2033 /* ----------------------------------------------------------------
2034 If the user has not forced CLOCAL and if the device is not a
2035 CALLOUT device (Which is always CLOCAL) we set flags such that
2036 the driver will wait on carrier detect.
2037 ------------------------------------------------------------------- */
2038 if (ts->c_cflag & CLOCAL)
2039 ch->asyncflags &= ~ASYNC_CHECK_CD;
2040 else
2041 ch->asyncflags |= ASYNC_CHECK_CD;
2042 mval = ch->m_dtr | ch->m_rts;
2043 } /* End CBAUD not detected */
2044 iflag = termios2digi_i(ch, ts->c_iflag);
2045 /* Check input mode flags */
2046 if (iflag != ch->fepiflag) {
2047 ch->fepiflag = iflag;
2048 /* ---------------------------------------------------------------
2049 Command sets channels iflag structure on the board. Such things
2050 as input soft flow control, handling of parity errors, and
2051 break handling are all set here.
2052 ------------------------------------------------------------------- */
2053 /* break handling, parity handling, input stripping, flow control chars */
2054 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2056 /* ---------------------------------------------------------------
2057 Set the board mint value for this channel. This will cause hardware
2058 events to be generated each time the DCD signal (Described in mint)
2059 changes.
2060 ------------------------------------------------------------------- */
2061 writeb(ch->dcd, &bc->mint);
2062 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2063 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2064 writeb(0, &bc->mint);
2065 ch->imodem = readb(&bc->mstat);
2066 hflow = termios2digi_h(ch, ts->c_cflag);
2067 if (hflow != ch->hflow) {
2068 ch->hflow = hflow;
2069 /* --------------------------------------------------------------
2070 Hard flow control has been selected but the board is not
2071 using it. Activate hard flow control now.
2072 ----------------------------------------------------------------- */
2073 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2075 mval ^= ch->modemfake & (mval ^ ch->modem);
2077 if (ch->omodem ^ mval) {
2078 ch->omodem = mval;
2079 /* --------------------------------------------------------------
2080 The below command sets the DTR and RTS mstat structure. If
2081 hard flow control is NOT active these changes will drive the
2082 output of the actual DTR and RTS lines. If hard flow control
2083 is active, the changes will be saved in the mstat structure and
2084 only asserted when hard flow control is turned off.
2085 ----------------------------------------------------------------- */
2087 /* First reset DTR & RTS; then set them */
2088 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2089 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2091 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2092 ch->fepstartc = ch->startc;
2093 ch->fepstopc = ch->stopc;
2094 /* ------------------------------------------------------------
2095 The XON / XOFF characters have changed; propagate these
2096 changes to the card.
2097 --------------------------------------------------------------- */
2098 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2100 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2101 ch->fepstartca = ch->startca;
2102 ch->fepstopca = ch->stopca;
2103 /* ---------------------------------------------------------------
2104 Similar to the above, this time the auxilarly XON / XOFF
2105 characters have changed; propagate these changes to the card.
2106 ------------------------------------------------------------------ */
2107 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2109 } /* End epcaparam */
2111 /* --------------------- Begin receive_data ----------------------- */
2112 /* Caller holds lock */
2113 static void receive_data(struct channel *ch)
2114 { /* Begin receive_data */
2116 unchar *rptr;
2117 struct termios *ts = NULL;
2118 struct tty_struct *tty;
2119 struct board_chan __iomem *bc;
2120 int dataToRead, wrapgap, bytesAvailable;
2121 unsigned int tail, head;
2122 unsigned int wrapmask;
2124 /* ---------------------------------------------------------------
2125 This routine is called by doint when a receive data event
2126 has taken place.
2127 ------------------------------------------------------------------- */
2129 globalwinon(ch);
2130 if (ch->statusflags & RXSTOPPED)
2131 return;
2132 tty = ch->tty;
2133 if (tty)
2134 ts = tty->termios;
2135 bc = ch->brdchan;
2136 BUG_ON(!bc);
2137 wrapmask = ch->rxbufsize - 1;
2139 /* ---------------------------------------------------------------------
2140 Get the head and tail pointers to the receiver queue. Wrap the
2141 head pointer if it has reached the end of the buffer.
2142 ------------------------------------------------------------------------ */
2143 head = readw(&bc->rin);
2144 head &= wrapmask;
2145 tail = readw(&bc->rout) & wrapmask;
2147 bytesAvailable = (head - tail) & wrapmask;
2148 if (bytesAvailable == 0)
2149 return;
2151 /* ------------------------------------------------------------------
2152 If CREAD bit is off or device not open, set TX tail to head
2153 --------------------------------------------------------------------- */
2155 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2156 writew(head, &bc->rout);
2157 return;
2160 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
2161 return;
2163 if (readb(&bc->orun)) {
2164 writeb(0, &bc->orun);
2165 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2166 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2168 rxwinon(ch);
2169 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2170 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2171 /* ---------------------------------------------------------------
2172 Even if head has wrapped around only report the amount of
2173 data to be equal to the size - tail. Remember memcpy can't
2174 automaticly wrap around the receive buffer.
2175 ----------------------------------------------------------------- */
2176 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2177 /* --------------------------------------------------------------
2178 Make sure we don't overflow the buffer
2179 ----------------------------------------------------------------- */
2180 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2181 if (dataToRead == 0)
2182 break;
2183 /* ---------------------------------------------------------------
2184 Move data read from our card into the line disciplines buffer
2185 for translation if necessary.
2186 ------------------------------------------------------------------ */
2187 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2188 tail = (tail + dataToRead) & wrapmask;
2189 bytesAvailable -= dataToRead;
2190 } /* End while there is data on the card */
2191 globalwinon(ch);
2192 writew(tail, &bc->rout);
2193 /* Must be called with global data */
2194 tty_schedule_flip(ch->tty);
2195 return;
2196 } /* End receive_data */
2198 static int info_ioctl(struct tty_struct *tty, struct file * file,
2199 unsigned int cmd, unsigned long arg)
2201 switch (cmd)
2202 { /* Begin switch cmd */
2203 case DIGI_GETINFO:
2204 { /* Begin case DIGI_GETINFO */
2205 struct digi_info di ;
2206 int brd;
2208 if(get_user(brd, (unsigned int __user *)arg))
2209 return -EFAULT;
2210 if (brd < 0 || brd >= num_cards || num_cards == 0)
2211 return -ENODEV;
2213 memset(&di, 0, sizeof(di));
2215 di.board = brd ;
2216 di.status = boards[brd].status;
2217 di.type = boards[brd].type ;
2218 di.numports = boards[brd].numports ;
2219 /* Legacy fixups - just move along nothing to see */
2220 di.port = (unsigned char *)boards[brd].port ;
2221 di.membase = (unsigned char *)boards[brd].membase ;
2223 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2224 return -EFAULT;
2225 break;
2227 } /* End case DIGI_GETINFO */
2229 case DIGI_POLLER:
2230 { /* Begin case DIGI_POLLER */
2232 int brd = arg & 0xff000000 >> 16 ;
2233 unsigned char state = arg & 0xff ;
2235 if (brd < 0 || brd >= num_cards) {
2236 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2237 return (-ENODEV);
2239 digi_poller_inhibited = state ;
2240 break ;
2241 } /* End case DIGI_POLLER */
2243 case DIGI_INIT:
2244 { /* Begin case DIGI_INIT */
2245 /* ------------------------------------------------------------
2246 This call is made by the apps to complete the initilization
2247 of the board(s). This routine is responsible for setting
2248 the card to its initial state and setting the drivers control
2249 fields to the sutianle settings for the card in question.
2250 ---------------------------------------------------------------- */
2251 int crd ;
2252 for (crd = 0; crd < num_cards; crd++)
2253 post_fep_init (crd);
2254 break ;
2255 } /* End case DIGI_INIT */
2256 default:
2257 return -ENOTTY;
2258 } /* End switch cmd */
2259 return (0) ;
2261 /* --------------------- Begin pc_ioctl ----------------------- */
2263 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2265 struct channel *ch = (struct channel *) tty->driver_data;
2266 struct board_chan __iomem *bc;
2267 unsigned int mstat, mflag = 0;
2268 unsigned long flags;
2270 if (ch)
2271 bc = ch->brdchan;
2272 else
2273 return -EINVAL;
2275 spin_lock_irqsave(&epca_lock, flags);
2276 globalwinon(ch);
2277 mstat = readb(&bc->mstat);
2278 memoff(ch);
2279 spin_unlock_irqrestore(&epca_lock, flags);
2281 if (mstat & ch->m_dtr)
2282 mflag |= TIOCM_DTR;
2283 if (mstat & ch->m_rts)
2284 mflag |= TIOCM_RTS;
2285 if (mstat & ch->m_cts)
2286 mflag |= TIOCM_CTS;
2287 if (mstat & ch->dsr)
2288 mflag |= TIOCM_DSR;
2289 if (mstat & ch->m_ri)
2290 mflag |= TIOCM_RI;
2291 if (mstat & ch->dcd)
2292 mflag |= TIOCM_CD;
2293 return mflag;
2296 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2297 unsigned int set, unsigned int clear)
2299 struct channel *ch = (struct channel *) tty->driver_data;
2300 unsigned long flags;
2302 if (!ch)
2303 return -EINVAL;
2305 spin_lock_irqsave(&epca_lock, flags);
2307 * I think this modemfake stuff is broken. It doesn't
2308 * correctly reflect the behaviour desired by the TIOCM*
2309 * ioctls. Therefore this is probably broken.
2311 if (set & TIOCM_RTS) {
2312 ch->modemfake |= ch->m_rts;
2313 ch->modem |= ch->m_rts;
2315 if (set & TIOCM_DTR) {
2316 ch->modemfake |= ch->m_dtr;
2317 ch->modem |= ch->m_dtr;
2319 if (clear & TIOCM_RTS) {
2320 ch->modemfake |= ch->m_rts;
2321 ch->modem &= ~ch->m_rts;
2323 if (clear & TIOCM_DTR) {
2324 ch->modemfake |= ch->m_dtr;
2325 ch->modem &= ~ch->m_dtr;
2327 globalwinon(ch);
2328 /* --------------------------------------------------------------
2329 The below routine generally sets up parity, baud, flow control
2330 issues, etc.... It effect both control flags and input flags.
2331 ------------------------------------------------------------------ */
2332 epcaparam(tty,ch);
2333 memoff(ch);
2334 spin_unlock_irqrestore(&epca_lock, flags);
2335 return 0;
2338 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2339 unsigned int cmd, unsigned long arg)
2340 { /* Begin pc_ioctl */
2342 digiflow_t dflow;
2343 int retval;
2344 unsigned long flags;
2345 unsigned int mflag, mstat;
2346 unsigned char startc, stopc;
2347 struct board_chan __iomem *bc;
2348 struct channel *ch = (struct channel *) tty->driver_data;
2349 void __user *argp = (void __user *)arg;
2351 if (ch)
2352 bc = ch->brdchan;
2353 else
2354 return -EINVAL;
2356 /* -------------------------------------------------------------------
2357 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2358 in /usr/src/linux/drivers/char for a good example. In particular
2359 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2360 ---------------------------------------------------------------------- */
2362 switch (cmd)
2363 { /* Begin switch cmd */
2365 case TCGETS:
2366 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2367 return -EFAULT;
2368 return 0;
2369 case TCGETA:
2370 return get_termio(tty, argp);
2371 case TCSBRK: /* SVID version: non-zero arg --> no break */
2372 retval = tty_check_change(tty);
2373 if (retval)
2374 return retval;
2375 /* Setup an event to indicate when the transmit buffer empties */
2376 spin_lock_irqsave(&epca_lock, flags);
2377 setup_empty_event(tty,ch);
2378 spin_unlock_irqrestore(&epca_lock, flags);
2379 tty_wait_until_sent(tty, 0);
2380 if (!arg)
2381 digi_send_break(ch, HZ/4); /* 1/4 second */
2382 return 0;
2383 case TCSBRKP: /* support for POSIX tcsendbreak() */
2384 retval = tty_check_change(tty);
2385 if (retval)
2386 return retval;
2388 /* Setup an event to indicate when the transmit buffer empties */
2389 spin_lock_irqsave(&epca_lock, flags);
2390 setup_empty_event(tty,ch);
2391 spin_unlock_irqrestore(&epca_lock, flags);
2392 tty_wait_until_sent(tty, 0);
2393 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2394 return 0;
2395 case TIOCGSOFTCAR:
2396 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2397 return -EFAULT;
2398 return 0;
2399 case TIOCSSOFTCAR:
2401 unsigned int value;
2403 if (get_user(value, (unsigned __user *)argp))
2404 return -EFAULT;
2405 tty->termios->c_cflag =
2406 ((tty->termios->c_cflag & ~CLOCAL) |
2407 (value ? CLOCAL : 0));
2408 return 0;
2410 case TIOCMODG:
2411 mflag = pc_tiocmget(tty, file);
2412 if (put_user(mflag, (unsigned long __user *)argp))
2413 return -EFAULT;
2414 break;
2415 case TIOCMODS:
2416 if (get_user(mstat, (unsigned __user *)argp))
2417 return -EFAULT;
2418 return pc_tiocmset(tty, file, mstat, ~mstat);
2419 case TIOCSDTR:
2420 spin_lock_irqsave(&epca_lock, flags);
2421 ch->omodem |= ch->m_dtr;
2422 globalwinon(ch);
2423 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2424 memoff(ch);
2425 spin_unlock_irqrestore(&epca_lock, flags);
2426 break;
2428 case TIOCCDTR:
2429 spin_lock_irqsave(&epca_lock, flags);
2430 ch->omodem &= ~ch->m_dtr;
2431 globalwinon(ch);
2432 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2433 memoff(ch);
2434 spin_unlock_irqrestore(&epca_lock, flags);
2435 break;
2436 case DIGI_GETA:
2437 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2438 return -EFAULT;
2439 break;
2440 case DIGI_SETAW:
2441 case DIGI_SETAF:
2442 if (cmd == DIGI_SETAW) {
2443 /* Setup an event to indicate when the transmit buffer empties */
2444 spin_lock_irqsave(&epca_lock, flags);
2445 setup_empty_event(tty,ch);
2446 spin_unlock_irqrestore(&epca_lock, flags);
2447 tty_wait_until_sent(tty, 0);
2448 } else {
2449 /* ldisc lock already held in ioctl */
2450 if (tty->ldisc.flush_buffer)
2451 tty->ldisc.flush_buffer(tty);
2453 /* Fall Thru */
2454 case DIGI_SETA:
2455 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2456 return -EFAULT;
2458 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2459 ch->dcd = ch->m_dsr;
2460 ch->dsr = ch->m_dcd;
2461 } else {
2462 ch->dcd = ch->m_dcd;
2463 ch->dsr = ch->m_dsr;
2466 spin_lock_irqsave(&epca_lock, flags);
2467 globalwinon(ch);
2469 /* -----------------------------------------------------------------
2470 The below routine generally sets up parity, baud, flow control
2471 issues, etc.... It effect both control flags and input flags.
2472 ------------------------------------------------------------------- */
2474 epcaparam(tty,ch);
2475 memoff(ch);
2476 spin_unlock_irqrestore(&epca_lock, flags);
2477 break;
2479 case DIGI_GETFLOW:
2480 case DIGI_GETAFLOW:
2481 spin_lock_irqsave(&epca_lock, flags);
2482 globalwinon(ch);
2483 if (cmd == DIGI_GETFLOW) {
2484 dflow.startc = readb(&bc->startc);
2485 dflow.stopc = readb(&bc->stopc);
2486 } else {
2487 dflow.startc = readb(&bc->startca);
2488 dflow.stopc = readb(&bc->stopca);
2490 memoff(ch);
2491 spin_unlock_irqrestore(&epca_lock, flags);
2493 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2494 return -EFAULT;
2495 break;
2497 case DIGI_SETAFLOW:
2498 case DIGI_SETFLOW:
2499 if (cmd == DIGI_SETFLOW) {
2500 startc = ch->startc;
2501 stopc = ch->stopc;
2502 } else {
2503 startc = ch->startca;
2504 stopc = ch->stopca;
2507 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2508 return -EFAULT;
2510 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2511 spin_lock_irqsave(&epca_lock, flags);
2512 globalwinon(ch);
2514 if (cmd == DIGI_SETFLOW) {
2515 ch->fepstartc = ch->startc = dflow.startc;
2516 ch->fepstopc = ch->stopc = dflow.stopc;
2517 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2518 } else {
2519 ch->fepstartca = ch->startca = dflow.startc;
2520 ch->fepstopca = ch->stopca = dflow.stopc;
2521 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2524 if (ch->statusflags & TXSTOPPED)
2525 pc_start(tty);
2527 memoff(ch);
2528 spin_unlock_irqrestore(&epca_lock, flags);
2529 } /* End if setflow toggled */
2530 break;
2531 default:
2532 return -ENOIOCTLCMD;
2533 } /* End switch cmd */
2534 return 0;
2535 } /* End pc_ioctl */
2537 /* --------------------- Begin pc_set_termios ----------------------- */
2539 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2540 { /* Begin pc_set_termios */
2542 struct channel *ch;
2543 unsigned long flags;
2544 /* ---------------------------------------------------------
2545 verifyChannel returns the channel from the tty struct
2546 if it is valid. This serves as a sanity check.
2547 ------------------------------------------------------------- */
2548 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2549 spin_lock_irqsave(&epca_lock, flags);
2550 globalwinon(ch);
2551 epcaparam(tty, ch);
2552 memoff(ch);
2553 spin_unlock_irqrestore(&epca_lock, flags);
2555 if ((old_termios->c_cflag & CRTSCTS) &&
2556 ((tty->termios->c_cflag & CRTSCTS) == 0))
2557 tty->hw_stopped = 0;
2559 if (!(old_termios->c_cflag & CLOCAL) &&
2560 (tty->termios->c_cflag & CLOCAL))
2561 wake_up_interruptible(&ch->open_wait);
2563 } /* End if channel valid */
2565 } /* End pc_set_termios */
2567 /* --------------------- Begin do_softint ----------------------- */
2569 static void do_softint(void *private_)
2570 { /* Begin do_softint */
2571 struct channel *ch = (struct channel *) private_;
2572 /* Called in response to a modem change event */
2573 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2574 struct tty_struct *tty = ch->tty;
2576 if (tty && tty->driver_data) {
2577 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2578 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2579 wake_up_interruptible(&ch->open_wait);
2580 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2581 } /* End if clear_bit */
2583 } /* End EPCA_MAGIC */
2584 } /* End do_softint */
2586 /* ------------------------------------------------------------
2587 pc_stop and pc_start provide software flow control to the
2588 routine and the pc_ioctl routine.
2589 ---------------------------------------------------------------- */
2591 /* --------------------- Begin pc_stop ----------------------- */
2593 static void pc_stop(struct tty_struct *tty)
2594 { /* Begin pc_stop */
2596 struct channel *ch;
2597 unsigned long flags;
2598 /* ---------------------------------------------------------
2599 verifyChannel returns the channel from the tty struct
2600 if it is valid. This serves as a sanity check.
2601 ------------------------------------------------------------- */
2602 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2603 spin_lock_irqsave(&epca_lock, flags);
2604 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2605 globalwinon(ch);
2606 /* STOP transmitting now !! */
2607 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2608 ch->statusflags |= TXSTOPPED;
2609 memoff(ch);
2610 } /* End if transmit stop requested */
2611 spin_unlock_irqrestore(&epca_lock, flags);
2612 } /* End if valid channel */
2613 } /* End pc_stop */
2615 /* --------------------- Begin pc_start ----------------------- */
2617 static void pc_start(struct tty_struct *tty)
2618 { /* Begin pc_start */
2619 struct channel *ch;
2620 /* ---------------------------------------------------------
2621 verifyChannel returns the channel from the tty struct
2622 if it is valid. This serves as a sanity check.
2623 ------------------------------------------------------------- */
2624 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2625 unsigned long flags;
2626 spin_lock_irqsave(&epca_lock, flags);
2627 /* Just in case output was resumed because of a change in Digi-flow */
2628 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2629 struct board_chan __iomem *bc;
2630 globalwinon(ch);
2631 bc = ch->brdchan;
2632 if (ch->statusflags & LOWWAIT)
2633 writeb(1, &bc->ilow);
2634 /* Okay, you can start transmitting again... */
2635 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2636 ch->statusflags &= ~TXSTOPPED;
2637 memoff(ch);
2638 } /* End transmit resume requested */
2639 spin_unlock_irqrestore(&epca_lock, flags);
2640 } /* End if channel valid */
2641 } /* End pc_start */
2643 /* ------------------------------------------------------------------
2644 The below routines pc_throttle and pc_unthrottle are used
2645 to slow (And resume) the receipt of data into the kernels
2646 receive buffers. The exact occurrence of this depends on the
2647 size of the kernels receive buffer and what the 'watermarks'
2648 are set to for that buffer. See the n_ttys.c file for more
2649 details.
2650 ______________________________________________________________________ */
2651 /* --------------------- Begin throttle ----------------------- */
2653 static void pc_throttle(struct tty_struct * tty)
2654 { /* Begin pc_throttle */
2655 struct channel *ch;
2656 unsigned long flags;
2657 /* ---------------------------------------------------------
2658 verifyChannel returns the channel from the tty struct
2659 if it is valid. This serves as a sanity check.
2660 ------------------------------------------------------------- */
2661 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2662 spin_lock_irqsave(&epca_lock, flags);
2663 if ((ch->statusflags & RXSTOPPED) == 0) {
2664 globalwinon(ch);
2665 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2666 ch->statusflags |= RXSTOPPED;
2667 memoff(ch);
2669 spin_unlock_irqrestore(&epca_lock, flags);
2670 } /* End if channel valid */
2671 } /* End pc_throttle */
2673 /* --------------------- Begin unthrottle ----------------------- */
2675 static void pc_unthrottle(struct tty_struct *tty)
2676 { /* Begin pc_unthrottle */
2677 struct channel *ch;
2678 unsigned long flags;
2679 /* ---------------------------------------------------------
2680 verifyChannel returns the channel from the tty struct
2681 if it is valid. This serves as a sanity check.
2682 ------------------------------------------------------------- */
2683 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2684 /* Just in case output was resumed because of a change in Digi-flow */
2685 spin_lock_irqsave(&epca_lock, flags);
2686 if (ch->statusflags & RXSTOPPED) {
2687 globalwinon(ch);
2688 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2689 ch->statusflags &= ~RXSTOPPED;
2690 memoff(ch);
2692 spin_unlock_irqrestore(&epca_lock, flags);
2693 } /* End if channel valid */
2694 } /* End pc_unthrottle */
2696 /* --------------------- Begin digi_send_break ----------------------- */
2698 void digi_send_break(struct channel *ch, int msec)
2699 { /* Begin digi_send_break */
2700 unsigned long flags;
2702 spin_lock_irqsave(&epca_lock, flags);
2703 globalwinon(ch);
2704 /* --------------------------------------------------------------------
2705 Maybe I should send an infinite break here, schedule() for
2706 msec amount of time, and then stop the break. This way,
2707 the user can't screw up the FEP by causing digi_send_break()
2708 to be called (i.e. via an ioctl()) more than once in msec amount
2709 of time. Try this for now...
2710 ------------------------------------------------------------------------ */
2711 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2712 memoff(ch);
2713 spin_unlock_irqrestore(&epca_lock, flags);
2714 } /* End digi_send_break */
2716 /* --------------------- Begin setup_empty_event ----------------------- */
2718 /* Caller MUST hold the lock */
2720 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2721 { /* Begin setup_empty_event */
2723 struct board_chan __iomem *bc = ch->brdchan;
2725 globalwinon(ch);
2726 ch->statusflags |= EMPTYWAIT;
2727 /* ------------------------------------------------------------------
2728 When set the iempty flag request a event to be generated when the
2729 transmit buffer is empty (If there is no BREAK in progress).
2730 --------------------------------------------------------------------- */
2731 writeb(1, &bc->iempty);
2732 memoff(ch);
2733 } /* End setup_empty_event */
2735 /* --------------------- Begin get_termio ----------------------- */
2737 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2738 { /* Begin get_termio */
2739 return kernel_termios_to_user_termio(termio, tty->termios);
2740 } /* End get_termio */
2742 /* ---------------------- Begin epca_setup -------------------------- */
2743 void epca_setup(char *str, int *ints)
2744 { /* Begin epca_setup */
2745 struct board_info board;
2746 int index, loop, last;
2747 char *temp, *t2;
2748 unsigned len;
2750 /* ----------------------------------------------------------------------
2751 If this routine looks a little strange it is because it is only called
2752 if a LILO append command is given to boot the kernel with parameters.
2753 In this way, we can provide the user a method of changing his board
2754 configuration without rebuilding the kernel.
2755 ----------------------------------------------------------------------- */
2756 if (!liloconfig)
2757 liloconfig = 1;
2759 memset(&board, 0, sizeof(board));
2761 /* Assume the data is int first, later we can change it */
2762 /* I think that array position 0 of ints holds the number of args */
2763 for (last = 0, index = 1; index <= ints[0]; index++)
2764 switch(index)
2765 { /* Begin parse switch */
2766 case 1:
2767 board.status = ints[index];
2768 /* ---------------------------------------------------------
2769 We check for 2 (As opposed to 1; because 2 is a flag
2770 instructing the driver to ignore epcaconfig.) For this
2771 reason we check for 2.
2772 ------------------------------------------------------------ */
2773 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2774 nbdevs = 0;
2775 num_cards = 0;
2776 return;
2777 } /* End ignore epcaconfig as well as lilo cmd line */
2779 if (board.status > 2) {
2780 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2781 invalid_lilo_config = 1;
2782 setup_error_code |= INVALID_BOARD_STATUS;
2783 return;
2785 last = index;
2786 break;
2787 case 2:
2788 board.type = ints[index];
2789 if (board.type >= PCIXEM) {
2790 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2791 invalid_lilo_config = 1;
2792 setup_error_code |= INVALID_BOARD_TYPE;
2793 return;
2795 last = index;
2796 break;
2797 case 3:
2798 board.altpin = ints[index];
2799 if (board.altpin > 1) {
2800 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2801 invalid_lilo_config = 1;
2802 setup_error_code |= INVALID_ALTPIN;
2803 return;
2805 last = index;
2806 break;
2808 case 4:
2809 board.numports = ints[index];
2810 if (board.numports < 2 || board.numports > 256) {
2811 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2812 invalid_lilo_config = 1;
2813 setup_error_code |= INVALID_NUM_PORTS;
2814 return;
2816 nbdevs += board.numports;
2817 last = index;
2818 break;
2820 case 5:
2821 board.port = ints[index];
2822 if (ints[index] <= 0) {
2823 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2824 invalid_lilo_config = 1;
2825 setup_error_code |= INVALID_PORT_BASE;
2826 return;
2828 last = index;
2829 break;
2831 case 6:
2832 board.membase = ints[index];
2833 if (ints[index] <= 0) {
2834 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2835 invalid_lilo_config = 1;
2836 setup_error_code |= INVALID_MEM_BASE;
2837 return;
2839 last = index;
2840 break;
2842 default:
2843 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2844 return;
2846 } /* End parse switch */
2848 while (str && *str) { /* Begin while there is a string arg */
2849 /* find the next comma or terminator */
2850 temp = str;
2851 /* While string is not null, and a comma hasn't been found */
2852 while (*temp && (*temp != ','))
2853 temp++;
2854 if (!*temp)
2855 temp = NULL;
2856 else
2857 *temp++ = 0;
2858 /* Set index to the number of args + 1 */
2859 index = last + 1;
2861 switch(index)
2863 case 1:
2864 len = strlen(str);
2865 if (strncmp("Disable", str, len) == 0)
2866 board.status = 0;
2867 else if (strncmp("Enable", str, len) == 0)
2868 board.status = 1;
2869 else {
2870 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2871 invalid_lilo_config = 1;
2872 setup_error_code |= INVALID_BOARD_STATUS;
2873 return;
2875 last = index;
2876 break;
2878 case 2:
2879 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2880 if (strcmp(board_desc[loop], str) == 0)
2881 break;
2882 /* ---------------------------------------------------------------
2883 If the index incremented above refers to a legitamate board
2884 type set it here.
2885 ------------------------------------------------------------------*/
2886 if (index < EPCA_NUM_TYPES)
2887 board.type = loop;
2888 else {
2889 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2890 invalid_lilo_config = 1;
2891 setup_error_code |= INVALID_BOARD_TYPE;
2892 return;
2894 last = index;
2895 break;
2897 case 3:
2898 len = strlen(str);
2899 if (strncmp("Disable", str, len) == 0)
2900 board.altpin = 0;
2901 else if (strncmp("Enable", str, len) == 0)
2902 board.altpin = 1;
2903 else {
2904 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2905 invalid_lilo_config = 1;
2906 setup_error_code |= INVALID_ALTPIN;
2907 return;
2909 last = index;
2910 break;
2912 case 4:
2913 t2 = str;
2914 while (isdigit(*t2))
2915 t2++;
2917 if (*t2) {
2918 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2919 invalid_lilo_config = 1;
2920 setup_error_code |= INVALID_NUM_PORTS;
2921 return;
2924 /* ------------------------------------------------------------
2925 There is not a man page for simple_strtoul but the code can be
2926 found in vsprintf.c. The first argument is the string to
2927 translate (To an unsigned long obviously), the second argument
2928 can be the address of any character variable or a NULL. If a
2929 variable is given, the end pointer of the string will be stored
2930 in that variable; if a NULL is given the end pointer will
2931 not be returned. The last argument is the base to use. If
2932 a 0 is indicated, the routine will attempt to determine the
2933 proper base by looking at the values prefix (A '0' for octal,
2934 a 'x' for hex, etc ... If a value is given it will use that
2935 value as the base.
2936 ---------------------------------------------------------------- */
2937 board.numports = simple_strtoul(str, NULL, 0);
2938 nbdevs += board.numports;
2939 last = index;
2940 break;
2942 case 5:
2943 t2 = str;
2944 while (isxdigit(*t2))
2945 t2++;
2947 if (*t2) {
2948 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2949 invalid_lilo_config = 1;
2950 setup_error_code |= INVALID_PORT_BASE;
2951 return;
2954 board.port = simple_strtoul(str, NULL, 16);
2955 last = index;
2956 break;
2958 case 6:
2959 t2 = str;
2960 while (isxdigit(*t2))
2961 t2++;
2963 if (*t2) {
2964 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2965 invalid_lilo_config = 1;
2966 setup_error_code |= INVALID_MEM_BASE;
2967 return;
2969 board.membase = simple_strtoul(str, NULL, 16);
2970 last = index;
2971 break;
2972 default:
2973 printk(KERN_ERR "epca: Too many string parms\n");
2974 return;
2976 str = temp;
2977 } /* End while there is a string arg */
2979 if (last < 6) {
2980 printk(KERN_ERR "epca: Insufficient parms specified\n");
2981 return;
2984 /* I should REALLY validate the stuff here */
2985 /* Copies our local copy of board into boards */
2986 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2987 /* Does this get called once per lilo arg are what ? */
2988 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2989 num_cards, board_desc[board.type],
2990 board.numports, (int)board.port, (unsigned int) board.membase);
2991 num_cards++;
2992 } /* End epca_setup */
2995 /* ------------------------ Begin init_PCI --------------------------- */
2997 enum epic_board_types {
2998 brd_xr = 0,
2999 brd_xem,
3000 brd_cx,
3001 brd_xrj,
3005 /* indexed directly by epic_board_types enum */
3006 static struct {
3007 unsigned char board_type;
3008 unsigned bar_idx; /* PCI base address region */
3009 } epca_info_tbl[] = {
3010 { PCIXR, 0, },
3011 { PCIXEM, 0, },
3012 { PCICX, 0, },
3013 { PCIXRJ, 2, },
3016 static int __devinit epca_init_one (struct pci_dev *pdev,
3017 const struct pci_device_id *ent)
3019 static int board_num = -1;
3020 int board_idx, info_idx = ent->driver_data;
3021 unsigned long addr;
3023 if (pci_enable_device(pdev))
3024 return -EIO;
3026 board_num++;
3027 board_idx = board_num + num_cards;
3028 if (board_idx >= MAXBOARDS)
3029 goto err_out;
3031 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3032 if (!addr) {
3033 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3034 epca_info_tbl[info_idx].bar_idx);
3035 goto err_out;
3038 boards[board_idx].status = ENABLED;
3039 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3040 boards[board_idx].numports = 0x0;
3041 boards[board_idx].port = addr + PCI_IO_OFFSET;
3042 boards[board_idx].membase = addr;
3044 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3045 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3046 0x200000, addr + PCI_IO_OFFSET);
3047 goto err_out;
3050 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3051 if (!boards[board_idx].re_map_port) {
3052 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3053 0x200000, addr + PCI_IO_OFFSET);
3054 goto err_out_free_pciio;
3057 if (!request_mem_region (addr, 0x200000, "epca")) {
3058 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3059 0x200000, addr);
3060 goto err_out_free_iounmap;
3063 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3064 if (!boards[board_idx].re_map_membase) {
3065 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3066 0x200000, addr + PCI_IO_OFFSET);
3067 goto err_out_free_memregion;
3070 /* --------------------------------------------------------------
3071 I don't know what the below does, but the hardware guys say
3072 its required on everything except PLX (In this case XRJ).
3073 ---------------------------------------------------------------- */
3074 if (info_idx != brd_xrj) {
3075 pci_write_config_byte(pdev, 0x40, 0);
3076 pci_write_config_byte(pdev, 0x46, 0);
3079 return 0;
3081 err_out_free_memregion:
3082 release_mem_region (addr, 0x200000);
3083 err_out_free_iounmap:
3084 iounmap (boards[board_idx].re_map_port);
3085 err_out_free_pciio:
3086 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3087 err_out:
3088 return -ENODEV;
3092 static struct pci_device_id epca_pci_tbl[] = {
3093 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3094 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3095 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3096 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3097 { 0, }
3100 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3102 int __init init_PCI (void)
3103 { /* Begin init_PCI */
3104 memset (&epca_driver, 0, sizeof (epca_driver));
3105 epca_driver.name = "epca";
3106 epca_driver.id_table = epca_pci_tbl;
3107 epca_driver.probe = epca_init_one;
3109 return pci_register_driver(&epca_driver);
3112 MODULE_LICENSE("GPL");