4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
18 * See fs/dcookies.c for a description of the dentry/offset
23 #include <linux/workqueue.h>
24 #include <linux/notifier.h>
25 #include <linux/dcookies.h>
26 #include <linux/profile.h>
27 #include <linux/module.h>
30 #include "oprofile_stats.h"
31 #include "event_buffer.h"
32 #include "cpu_buffer.h"
33 #include "buffer_sync.h"
35 static LIST_HEAD(dying_tasks
);
36 static LIST_HEAD(dead_tasks
);
37 static cpumask_t marked_cpus
= CPU_MASK_NONE
;
38 static DEFINE_SPINLOCK(task_mortuary
);
39 static void process_task_mortuary(void);
42 /* Take ownership of the task struct and place it on the
43 * list for processing. Only after two full buffer syncs
44 * does the task eventually get freed, because by then
45 * we are sure we will not reference it again.
46 * Can be invoked from softirq via RCU callback due to
47 * call_rcu() of the task struct, hence the _irqsave.
49 static int task_free_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
52 struct task_struct
* task
= data
;
53 spin_lock_irqsave(&task_mortuary
, flags
);
54 list_add(&task
->tasks
, &dying_tasks
);
55 spin_unlock_irqrestore(&task_mortuary
, flags
);
60 /* The task is on its way out. A sync of the buffer means we can catch
61 * any remaining samples for this task.
63 static int task_exit_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
65 /* To avoid latency problems, we only process the current CPU,
66 * hoping that most samples for the task are on this CPU
68 sync_buffer(raw_smp_processor_id());
73 /* The task is about to try a do_munmap(). We peek at what it's going to
74 * do, and if it's an executable region, process the samples first, so
75 * we don't lose any. This does not have to be exact, it's a QoI issue
78 static int munmap_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
80 unsigned long addr
= (unsigned long)data
;
81 struct mm_struct
* mm
= current
->mm
;
82 struct vm_area_struct
* mpnt
;
84 down_read(&mm
->mmap_sem
);
86 mpnt
= find_vma(mm
, addr
);
87 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
88 up_read(&mm
->mmap_sem
);
89 /* To avoid latency problems, we only process the current CPU,
90 * hoping that most samples for the task are on this CPU
92 sync_buffer(raw_smp_processor_id());
96 up_read(&mm
->mmap_sem
);
101 /* We need to be told about new modules so we don't attribute to a previously
102 * loaded module, or drop the samples on the floor.
104 static int module_load_notify(struct notifier_block
* self
, unsigned long val
, void * data
)
106 #ifdef CONFIG_MODULES
107 if (val
!= MODULE_STATE_COMING
)
110 /* FIXME: should we process all CPU buffers ? */
111 mutex_lock(&buffer_mutex
);
112 add_event_entry(ESCAPE_CODE
);
113 add_event_entry(MODULE_LOADED_CODE
);
114 mutex_unlock(&buffer_mutex
);
120 static struct notifier_block task_free_nb
= {
121 .notifier_call
= task_free_notify
,
124 static struct notifier_block task_exit_nb
= {
125 .notifier_call
= task_exit_notify
,
128 static struct notifier_block munmap_nb
= {
129 .notifier_call
= munmap_notify
,
132 static struct notifier_block module_load_nb
= {
133 .notifier_call
= module_load_notify
,
137 static void end_sync(void)
140 /* make sure we don't leak task structs */
141 process_task_mortuary();
142 process_task_mortuary();
152 err
= task_handoff_register(&task_free_nb
);
155 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
158 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
161 err
= register_module_notifier(&module_load_nb
);
168 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
170 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
172 task_handoff_unregister(&task_free_nb
);
181 unregister_module_notifier(&module_load_nb
);
182 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
183 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
184 task_handoff_unregister(&task_free_nb
);
189 /* Optimisation. We can manage without taking the dcookie sem
190 * because we cannot reach this code without at least one
191 * dcookie user still being registered (namely, the reader
192 * of the event buffer). */
193 static inline unsigned long fast_get_dcookie(struct dentry
* dentry
,
194 struct vfsmount
* vfsmnt
)
196 unsigned long cookie
;
198 if (dentry
->d_cookie
)
199 return (unsigned long)dentry
;
200 get_dcookie(dentry
, vfsmnt
, &cookie
);
205 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
206 * which corresponds loosely to "application name". This is
207 * not strictly necessary but allows oprofile to associate
208 * shared-library samples with particular applications
210 static unsigned long get_exec_dcookie(struct mm_struct
* mm
)
212 unsigned long cookie
= NO_COOKIE
;
213 struct vm_area_struct
* vma
;
218 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
221 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
223 cookie
= fast_get_dcookie(vma
->vm_file
->f_dentry
,
224 vma
->vm_file
->f_vfsmnt
);
233 /* Convert the EIP value of a sample into a persistent dentry/offset
234 * pair that can then be added to the global event buffer. We make
235 * sure to do this lookup before a mm->mmap modification happens so
236 * we don't lose track.
238 static unsigned long lookup_dcookie(struct mm_struct
* mm
, unsigned long addr
, off_t
* offset
)
240 unsigned long cookie
= NO_COOKIE
;
241 struct vm_area_struct
* vma
;
243 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
245 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
249 cookie
= fast_get_dcookie(vma
->vm_file
->f_dentry
,
250 vma
->vm_file
->f_vfsmnt
);
251 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
-
254 /* must be an anonymous map */
262 cookie
= INVALID_COOKIE
;
268 static unsigned long last_cookie
= INVALID_COOKIE
;
270 static void add_cpu_switch(int i
)
272 add_event_entry(ESCAPE_CODE
);
273 add_event_entry(CPU_SWITCH_CODE
);
275 last_cookie
= INVALID_COOKIE
;
278 static void add_kernel_ctx_switch(unsigned int in_kernel
)
280 add_event_entry(ESCAPE_CODE
);
282 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
284 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
288 add_user_ctx_switch(struct task_struct
const * task
, unsigned long cookie
)
290 add_event_entry(ESCAPE_CODE
);
291 add_event_entry(CTX_SWITCH_CODE
);
292 add_event_entry(task
->pid
);
293 add_event_entry(cookie
);
294 /* Another code for daemon back-compat */
295 add_event_entry(ESCAPE_CODE
);
296 add_event_entry(CTX_TGID_CODE
);
297 add_event_entry(task
->tgid
);
301 static void add_cookie_switch(unsigned long cookie
)
303 add_event_entry(ESCAPE_CODE
);
304 add_event_entry(COOKIE_SWITCH_CODE
);
305 add_event_entry(cookie
);
309 static void add_trace_begin(void)
311 add_event_entry(ESCAPE_CODE
);
312 add_event_entry(TRACE_BEGIN_CODE
);
316 static void add_sample_entry(unsigned long offset
, unsigned long event
)
318 add_event_entry(offset
);
319 add_event_entry(event
);
323 static int add_us_sample(struct mm_struct
* mm
, struct op_sample
* s
)
325 unsigned long cookie
;
328 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
330 if (cookie
== INVALID_COOKIE
) {
331 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
335 if (cookie
!= last_cookie
) {
336 add_cookie_switch(cookie
);
337 last_cookie
= cookie
;
340 add_sample_entry(offset
, s
->event
);
346 /* Add a sample to the global event buffer. If possible the
347 * sample is converted into a persistent dentry/offset pair
348 * for later lookup from userspace.
351 add_sample(struct mm_struct
* mm
, struct op_sample
* s
, int in_kernel
)
354 add_sample_entry(s
->eip
, s
->event
);
357 return add_us_sample(mm
, s
);
359 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
365 static void release_mm(struct mm_struct
* mm
)
369 up_read(&mm
->mmap_sem
);
374 static struct mm_struct
* take_tasks_mm(struct task_struct
* task
)
376 struct mm_struct
* mm
= get_task_mm(task
);
378 down_read(&mm
->mmap_sem
);
383 static inline int is_code(unsigned long val
)
385 return val
== ESCAPE_CODE
;
389 /* "acquire" as many cpu buffer slots as we can */
390 static unsigned long get_slots(struct oprofile_cpu_buffer
* b
)
392 unsigned long head
= b
->head_pos
;
393 unsigned long tail
= b
->tail_pos
;
396 * Subtle. This resets the persistent last_task
397 * and in_kernel values used for switching notes.
398 * BUT, there is a small window between reading
399 * head_pos, and this call, that means samples
400 * can appear at the new head position, but not
401 * be prefixed with the notes for switching
402 * kernel mode or a task switch. This small hole
403 * can lead to mis-attribution or samples where
404 * we don't know if it's in the kernel or not,
405 * at the start of an event buffer.
412 return head
+ (b
->buffer_size
- tail
);
416 static void increment_tail(struct oprofile_cpu_buffer
* b
)
418 unsigned long new_tail
= b
->tail_pos
+ 1;
422 if (new_tail
< b
->buffer_size
)
423 b
->tail_pos
= new_tail
;
429 /* Move tasks along towards death. Any tasks on dead_tasks
430 * will definitely have no remaining references in any
431 * CPU buffers at this point, because we use two lists,
432 * and to have reached the list, it must have gone through
433 * one full sync already.
435 static void process_task_mortuary(void)
438 LIST_HEAD(local_dead_tasks
);
439 struct task_struct
* task
;
440 struct task_struct
* ttask
;
442 spin_lock_irqsave(&task_mortuary
, flags
);
444 list_splice_init(&dead_tasks
, &local_dead_tasks
);
445 list_splice_init(&dying_tasks
, &dead_tasks
);
447 spin_unlock_irqrestore(&task_mortuary
, flags
);
449 list_for_each_entry_safe(task
, ttask
, &local_dead_tasks
, tasks
) {
450 list_del(&task
->tasks
);
456 static void mark_done(int cpu
)
460 cpu_set(cpu
, marked_cpus
);
462 for_each_online_cpu(i
) {
463 if (!cpu_isset(i
, marked_cpus
))
467 /* All CPUs have been processed at least once,
468 * we can process the mortuary once
470 process_task_mortuary();
472 cpus_clear(marked_cpus
);
476 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
477 * traversal, the code switch to sb_sample_start at first kernel enter/exit
478 * switch so we need a fifth state and some special handling in sync_buffer()
487 /* Sync one of the CPU's buffers into the global event buffer.
488 * Here we need to go through each batch of samples punctuated
489 * by context switch notes, taking the task's mmap_sem and doing
490 * lookup in task->mm->mmap to convert EIP into dcookie/offset
493 void sync_buffer(int cpu
)
495 struct oprofile_cpu_buffer
* cpu_buf
= &cpu_buffer
[cpu
];
496 struct mm_struct
*mm
= NULL
;
497 struct task_struct
* new;
498 unsigned long cookie
= 0;
501 sync_buffer_state state
= sb_buffer_start
;
502 unsigned long available
;
504 mutex_lock(&buffer_mutex
);
508 /* Remember, only we can modify tail_pos */
510 available
= get_slots(cpu_buf
);
512 for (i
= 0; i
< available
; ++i
) {
513 struct op_sample
* s
= &cpu_buf
->buffer
[cpu_buf
->tail_pos
];
515 if (is_code(s
->eip
)) {
516 if (s
->event
<= CPU_IS_KERNEL
) {
517 /* kernel/userspace switch */
518 in_kernel
= s
->event
;
519 if (state
== sb_buffer_start
)
520 state
= sb_sample_start
;
521 add_kernel_ctx_switch(s
->event
);
522 } else if (s
->event
== CPU_TRACE_BEGIN
) {
526 struct mm_struct
* oldmm
= mm
;
528 /* userspace context switch */
529 new = (struct task_struct
*)s
->event
;
532 mm
= take_tasks_mm(new);
534 cookie
= get_exec_dcookie(mm
);
535 add_user_ctx_switch(new, cookie
);
538 if (state
>= sb_bt_start
&&
539 !add_sample(mm
, s
, in_kernel
)) {
540 if (state
== sb_bt_start
) {
541 state
= sb_bt_ignore
;
542 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
547 increment_tail(cpu_buf
);
553 mutex_unlock(&buffer_mutex
);