2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
34 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE 2
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
42 #define SCSI_MAX_SG_SEGMENTS 128
44 struct scsi_host_sg_pool
{
47 struct kmem_cache
*slab
;
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
67 static void scsi_run_queue(struct request_queue
*q
);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
81 static void scsi_unprep_request(struct request
*req
)
83 struct scsi_cmnd
*cmd
= req
->special
;
85 req
->cmd_flags
&= ~REQ_DONTPREP
;
88 scsi_put_command(cmd
);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
112 struct Scsi_Host
*host
= cmd
->device
->host
;
113 struct scsi_device
*device
= cmd
->device
;
114 struct request_queue
*q
= device
->request_queue
;
118 printk("Inserting command %p into mlqueue\n", cmd
));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason
== SCSI_MLQUEUE_HOST_BUSY
)
134 host
->host_blocked
= host
->max_host_blocked
;
135 else if (reason
== SCSI_MLQUEUE_DEVICE_BUSY
)
136 device
->device_blocked
= device
->max_device_blocked
;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device
);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q
->queue_lock
, flags
);
156 blk_requeue_request(q
, cmd
->request
);
157 spin_unlock_irqrestore(q
->queue_lock
, flags
);
165 * scsi_execute - insert request and wait for the result
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the scsi_cmnd result
179 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
180 int data_direction
, void *buffer
, unsigned bufflen
,
181 unsigned char *sense
, int timeout
, int retries
, int flags
)
184 int write
= (data_direction
== DMA_TO_DEVICE
);
185 int ret
= DRIVER_ERROR
<< 24;
187 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
189 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
190 buffer
, bufflen
, __GFP_WAIT
))
193 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
194 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
197 req
->retries
= retries
;
198 req
->timeout
= timeout
;
199 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
200 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req
->q
, NULL
, req
, 1);
209 blk_put_request(req
);
213 EXPORT_SYMBOL(scsi_execute
);
216 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
217 int data_direction
, void *buffer
, unsigned bufflen
,
218 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
)
224 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
226 return DRIVER_ERROR
<< 24;
228 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
229 sense
, timeout
, retries
, 0);
231 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
236 EXPORT_SYMBOL(scsi_execute_req
);
238 struct scsi_io_context
{
240 void (*done
)(void *data
, char *sense
, int result
, int resid
);
241 char sense
[SCSI_SENSE_BUFFERSIZE
];
244 static struct kmem_cache
*scsi_io_context_cache
;
246 static void scsi_end_async(struct request
*req
, int uptodate
)
248 struct scsi_io_context
*sioc
= req
->end_io_data
;
251 sioc
->done(sioc
->data
, sioc
->sense
, req
->errors
, req
->data_len
);
253 kmem_cache_free(scsi_io_context_cache
, sioc
);
254 __blk_put_request(req
->q
, req
);
257 static int scsi_merge_bio(struct request
*rq
, struct bio
*bio
)
259 struct request_queue
*q
= rq
->q
;
261 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
262 if (rq_data_dir(rq
) == WRITE
)
263 bio
->bi_rw
|= (1 << BIO_RW
);
264 blk_queue_bounce(q
, &bio
);
266 return blk_rq_append_bio(q
, rq
, bio
);
269 static void scsi_bi_endio(struct bio
*bio
, int error
)
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq: request to fill
278 * @nsegs: number of elements
279 * @bufflen: len of buffer
280 * @gfp: memory allocation flags
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
286 static int scsi_req_map_sg(struct request
*rq
, struct scatterlist
*sgl
,
287 int nsegs
, unsigned bufflen
, gfp_t gfp
)
289 struct request_queue
*q
= rq
->q
;
290 int nr_pages
= (bufflen
+ sgl
[0].offset
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
291 unsigned int data_len
= bufflen
, len
, bytes
, off
;
292 struct scatterlist
*sg
;
294 struct bio
*bio
= NULL
;
295 int i
, err
, nr_vecs
= 0;
297 for_each_sg(sgl
, sg
, nsegs
, i
) {
303 while (len
> 0 && data_len
> 0) {
305 * sg sends a scatterlist that is larger than
306 * the data_len it wants transferred for certain
309 bytes
= min_t(unsigned int, len
, PAGE_SIZE
- off
);
310 bytes
= min(bytes
, data_len
);
313 nr_vecs
= min_t(int, BIO_MAX_PAGES
, nr_pages
);
316 bio
= bio_alloc(gfp
, nr_vecs
);
321 bio
->bi_end_io
= scsi_bi_endio
;
324 if (bio_add_pc_page(q
, bio
, page
, bytes
, off
) !=
331 if (bio
->bi_vcnt
>= nr_vecs
) {
332 err
= scsi_merge_bio(rq
, bio
);
347 rq
->buffer
= rq
->data
= NULL
;
348 rq
->data_len
= bufflen
;
352 while ((bio
= rq
->bio
) != NULL
) {
353 rq
->bio
= bio
->bi_next
;
355 * call endio instead of bio_put incase it was bounced
364 * scsi_execute_async - insert request
367 * @cmd_len: length of scsi cdb
368 * @data_direction: data direction
369 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen: len of buffer
371 * @use_sg: if buffer is a scatterlist this is the number of elements
372 * @timeout: request timeout in seconds
373 * @retries: number of times to retry request
374 * @flags: or into request flags
376 int scsi_execute_async(struct scsi_device
*sdev
, const unsigned char *cmd
,
377 int cmd_len
, int data_direction
, void *buffer
, unsigned bufflen
,
378 int use_sg
, int timeout
, int retries
, void *privdata
,
379 void (*done
)(void *, char *, int, int), gfp_t gfp
)
382 struct scsi_io_context
*sioc
;
384 int write
= (data_direction
== DMA_TO_DEVICE
);
386 sioc
= kmem_cache_zalloc(scsi_io_context_cache
, gfp
);
388 return DRIVER_ERROR
<< 24;
390 req
= blk_get_request(sdev
->request_queue
, write
, gfp
);
393 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
394 req
->cmd_flags
|= REQ_QUIET
;
397 err
= scsi_req_map_sg(req
, buffer
, use_sg
, bufflen
, gfp
);
399 err
= blk_rq_map_kern(req
->q
, req
, buffer
, bufflen
, gfp
);
404 req
->cmd_len
= cmd_len
;
405 memset(req
->cmd
, 0, BLK_MAX_CDB
); /* ATAPI hates garbage after CDB */
406 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
407 req
->sense
= sioc
->sense
;
409 req
->timeout
= timeout
;
410 req
->retries
= retries
;
411 req
->end_io_data
= sioc
;
413 sioc
->data
= privdata
;
416 blk_execute_rq_nowait(req
->q
, NULL
, req
, 1, scsi_end_async
);
420 blk_put_request(req
);
422 kmem_cache_free(scsi_io_context_cache
, sioc
);
423 return DRIVER_ERROR
<< 24;
425 EXPORT_SYMBOL_GPL(scsi_execute_async
);
428 * Function: scsi_init_cmd_errh()
430 * Purpose: Initialize cmd fields related to error handling.
432 * Arguments: cmd - command that is ready to be queued.
434 * Notes: This function has the job of initializing a number of
435 * fields related to error handling. Typically this will
436 * be called once for each command, as required.
438 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
440 cmd
->serial_number
= 0;
442 memset(cmd
->sense_buffer
, 0, sizeof cmd
->sense_buffer
);
443 if (cmd
->cmd_len
== 0)
444 cmd
->cmd_len
= COMMAND_SIZE(cmd
->cmnd
[0]);
447 void scsi_device_unbusy(struct scsi_device
*sdev
)
449 struct Scsi_Host
*shost
= sdev
->host
;
452 spin_lock_irqsave(shost
->host_lock
, flags
);
454 if (unlikely(scsi_host_in_recovery(shost
) &&
455 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
456 scsi_eh_wakeup(shost
);
457 spin_unlock(shost
->host_lock
);
458 spin_lock(sdev
->request_queue
->queue_lock
);
460 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
464 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465 * and call blk_run_queue for all the scsi_devices on the target -
466 * including current_sdev first.
468 * Called with *no* scsi locks held.
470 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
472 struct Scsi_Host
*shost
= current_sdev
->host
;
473 struct scsi_device
*sdev
, *tmp
;
474 struct scsi_target
*starget
= scsi_target(current_sdev
);
477 spin_lock_irqsave(shost
->host_lock
, flags
);
478 starget
->starget_sdev_user
= NULL
;
479 spin_unlock_irqrestore(shost
->host_lock
, flags
);
482 * Call blk_run_queue for all LUNs on the target, starting with
483 * current_sdev. We race with others (to set starget_sdev_user),
484 * but in most cases, we will be first. Ideally, each LU on the
485 * target would get some limited time or requests on the target.
487 blk_run_queue(current_sdev
->request_queue
);
489 spin_lock_irqsave(shost
->host_lock
, flags
);
490 if (starget
->starget_sdev_user
)
492 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
493 same_target_siblings
) {
494 if (sdev
== current_sdev
)
496 if (scsi_device_get(sdev
))
499 spin_unlock_irqrestore(shost
->host_lock
, flags
);
500 blk_run_queue(sdev
->request_queue
);
501 spin_lock_irqsave(shost
->host_lock
, flags
);
503 scsi_device_put(sdev
);
506 spin_unlock_irqrestore(shost
->host_lock
, flags
);
510 * Function: scsi_run_queue()
512 * Purpose: Select a proper request queue to serve next
514 * Arguments: q - last request's queue
518 * Notes: The previous command was completely finished, start
519 * a new one if possible.
521 static void scsi_run_queue(struct request_queue
*q
)
523 struct scsi_device
*sdev
= q
->queuedata
;
524 struct Scsi_Host
*shost
= sdev
->host
;
527 if (sdev
->single_lun
)
528 scsi_single_lun_run(sdev
);
530 spin_lock_irqsave(shost
->host_lock
, flags
);
531 while (!list_empty(&shost
->starved_list
) &&
532 !shost
->host_blocked
&& !shost
->host_self_blocked
&&
533 !((shost
->can_queue
> 0) &&
534 (shost
->host_busy
>= shost
->can_queue
))) {
536 * As long as shost is accepting commands and we have
537 * starved queues, call blk_run_queue. scsi_request_fn
538 * drops the queue_lock and can add us back to the
541 * host_lock protects the starved_list and starved_entry.
542 * scsi_request_fn must get the host_lock before checking
543 * or modifying starved_list or starved_entry.
545 sdev
= list_entry(shost
->starved_list
.next
,
546 struct scsi_device
, starved_entry
);
547 list_del_init(&sdev
->starved_entry
);
548 spin_unlock_irqrestore(shost
->host_lock
, flags
);
551 if (test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
) &&
552 !test_and_set_bit(QUEUE_FLAG_REENTER
,
553 &sdev
->request_queue
->queue_flags
)) {
554 blk_run_queue(sdev
->request_queue
);
555 clear_bit(QUEUE_FLAG_REENTER
,
556 &sdev
->request_queue
->queue_flags
);
558 blk_run_queue(sdev
->request_queue
);
560 spin_lock_irqsave(shost
->host_lock
, flags
);
561 if (unlikely(!list_empty(&sdev
->starved_entry
)))
563 * sdev lost a race, and was put back on the
564 * starved list. This is unlikely but without this
565 * in theory we could loop forever.
569 spin_unlock_irqrestore(shost
->host_lock
, flags
);
575 * Function: scsi_requeue_command()
577 * Purpose: Handle post-processing of completed commands.
579 * Arguments: q - queue to operate on
580 * cmd - command that may need to be requeued.
584 * Notes: After command completion, there may be blocks left
585 * over which weren't finished by the previous command
586 * this can be for a number of reasons - the main one is
587 * I/O errors in the middle of the request, in which case
588 * we need to request the blocks that come after the bad
590 * Notes: Upon return, cmd is a stale pointer.
592 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
594 struct request
*req
= cmd
->request
;
597 scsi_unprep_request(req
);
598 spin_lock_irqsave(q
->queue_lock
, flags
);
599 blk_requeue_request(q
, req
);
600 spin_unlock_irqrestore(q
->queue_lock
, flags
);
605 void scsi_next_command(struct scsi_cmnd
*cmd
)
607 struct scsi_device
*sdev
= cmd
->device
;
608 struct request_queue
*q
= sdev
->request_queue
;
610 /* need to hold a reference on the device before we let go of the cmd */
611 get_device(&sdev
->sdev_gendev
);
613 scsi_put_command(cmd
);
616 /* ok to remove device now */
617 put_device(&sdev
->sdev_gendev
);
620 void scsi_run_host_queues(struct Scsi_Host
*shost
)
622 struct scsi_device
*sdev
;
624 shost_for_each_device(sdev
, shost
)
625 scsi_run_queue(sdev
->request_queue
);
629 * Function: scsi_end_request()
631 * Purpose: Post-processing of completed commands (usually invoked at end
632 * of upper level post-processing and scsi_io_completion).
634 * Arguments: cmd - command that is complete.
635 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636 * bytes - number of bytes of completed I/O
637 * requeue - indicates whether we should requeue leftovers.
639 * Lock status: Assumed that lock is not held upon entry.
641 * Returns: cmd if requeue required, NULL otherwise.
643 * Notes: This is called for block device requests in order to
644 * mark some number of sectors as complete.
646 * We are guaranteeing that the request queue will be goosed
647 * at some point during this call.
648 * Notes: If cmd was requeued, upon return it will be a stale pointer.
650 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int uptodate
,
651 int bytes
, int requeue
)
653 struct request_queue
*q
= cmd
->device
->request_queue
;
654 struct request
*req
= cmd
->request
;
658 * If there are blocks left over at the end, set up the command
659 * to queue the remainder of them.
661 if (end_that_request_chunk(req
, uptodate
, bytes
)) {
662 int leftover
= (req
->hard_nr_sectors
<< 9);
664 if (blk_pc_request(req
))
665 leftover
= req
->data_len
;
667 /* kill remainder if no retrys */
668 if (!uptodate
&& blk_noretry_request(req
))
669 end_that_request_chunk(req
, 0, leftover
);
673 * Bleah. Leftovers again. Stick the
674 * leftovers in the front of the
675 * queue, and goose the queue again.
677 scsi_requeue_command(q
, cmd
);
684 add_disk_randomness(req
->rq_disk
);
686 spin_lock_irqsave(q
->queue_lock
, flags
);
687 if (blk_rq_tagged(req
))
688 blk_queue_end_tag(q
, req
);
689 end_that_request_last(req
, uptodate
);
690 spin_unlock_irqrestore(q
->queue_lock
, flags
);
693 * This will goose the queue request function at the end, so we don't
694 * need to worry about launching another command.
696 scsi_next_command(cmd
);
701 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
704 #define SCSI_MAX_SG_CHAIN_SEGMENTS 2048
706 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
717 #if (SCSI_MAX_SG_SEGMENTS > 16)
721 #if (SCSI_MAX_SG_SEGMENTS > 32)
725 #if (SCSI_MAX_SG_SEGMENTS > 64)
733 printk(KERN_ERR
"scsi: bad segment count=%d\n", nents
);
740 struct scatterlist
*scsi_alloc_sgtable(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
742 struct scsi_host_sg_pool
*sgp
;
743 struct scatterlist
*sgl
, *prev
, *ret
;
747 BUG_ON(!cmd
->use_sg
);
753 if (this > SCSI_MAX_SG_SEGMENTS
) {
754 this = SCSI_MAX_SG_SEGMENTS
- 1;
755 index
= SG_MEMPOOL_NR
- 1;
757 index
= scsi_sgtable_index(this);
761 sgp
= scsi_sg_pools
+ index
;
763 sgl
= mempool_alloc(sgp
->pool
, gfp_mask
);
767 memset(sgl
, 0, sizeof(*sgl
) * sgp
->size
);
770 * first loop through, set initial index and return value
776 * chain previous sglist, if any. we know the previous
777 * sglist must be the biggest one, or we would not have
778 * ended up doing another loop.
781 sg_chain(prev
, SCSI_MAX_SG_SEGMENTS
, sgl
);
784 * don't allow subsequent mempool allocs to sleep, it would
785 * violate the mempool principle.
787 gfp_mask
&= ~__GFP_WAIT
;
788 gfp_mask
|= __GFP_HIGH
;
793 * ->use_sg may get modified after dma mapping has potentially
794 * shrunk the number of segments, so keep a copy of it for free.
796 cmd
->__use_sg
= cmd
->use_sg
;
801 * Free entries chained off ret. Since we were trying to
802 * allocate another sglist, we know that all entries are of
805 sgp
= scsi_sg_pools
+ SG_MEMPOOL_NR
- 1;
807 ret
= &ret
[SCSI_MAX_SG_SEGMENTS
- 1];
809 while ((sgl
= sg_chain_ptr(ret
)) != NULL
) {
810 ret
= &sgl
[SCSI_MAX_SG_SEGMENTS
- 1];
811 mempool_free(sgl
, sgp
->pool
);
814 mempool_free(prev
, sgp
->pool
);
819 EXPORT_SYMBOL(scsi_alloc_sgtable
);
821 void scsi_free_sgtable(struct scsi_cmnd
*cmd
)
823 struct scatterlist
*sgl
= cmd
->request_buffer
;
824 struct scsi_host_sg_pool
*sgp
;
827 * if this is the biggest size sglist, check if we have
828 * chained parts we need to free
830 if (cmd
->__use_sg
> SCSI_MAX_SG_SEGMENTS
) {
831 unsigned short this, left
;
832 struct scatterlist
*next
;
835 left
= cmd
->__use_sg
- (SCSI_MAX_SG_SEGMENTS
- 1);
836 next
= sg_chain_ptr(&sgl
[SCSI_MAX_SG_SEGMENTS
- 1]);
837 while (left
&& next
) {
840 if (this > SCSI_MAX_SG_SEGMENTS
) {
841 this = SCSI_MAX_SG_SEGMENTS
- 1;
842 index
= SG_MEMPOOL_NR
- 1;
844 index
= scsi_sgtable_index(this);
848 sgp
= scsi_sg_pools
+ index
;
851 next
= sg_chain_ptr(&sgl
[sgp
->size
- 1]);
853 mempool_free(sgl
, sgp
->pool
);
857 * Restore original, will be freed below
859 sgl
= cmd
->request_buffer
;
860 sgp
= scsi_sg_pools
+ SG_MEMPOOL_NR
- 1;
862 sgp
= scsi_sg_pools
+ scsi_sgtable_index(cmd
->__use_sg
);
864 mempool_free(sgl
, sgp
->pool
);
867 EXPORT_SYMBOL(scsi_free_sgtable
);
870 * Function: scsi_release_buffers()
872 * Purpose: Completion processing for block device I/O requests.
874 * Arguments: cmd - command that we are bailing.
876 * Lock status: Assumed that no lock is held upon entry.
880 * Notes: In the event that an upper level driver rejects a
881 * command, we must release resources allocated during
882 * the __init_io() function. Primarily this would involve
883 * the scatter-gather table, and potentially any bounce
886 static void scsi_release_buffers(struct scsi_cmnd
*cmd
)
889 scsi_free_sgtable(cmd
);
892 * Zero these out. They now point to freed memory, and it is
893 * dangerous to hang onto the pointers.
895 cmd
->request_buffer
= NULL
;
896 cmd
->request_bufflen
= 0;
900 * Function: scsi_io_completion()
902 * Purpose: Completion processing for block device I/O requests.
904 * Arguments: cmd - command that is finished.
906 * Lock status: Assumed that no lock is held upon entry.
910 * Notes: This function is matched in terms of capabilities to
911 * the function that created the scatter-gather list.
912 * In other words, if there are no bounce buffers
913 * (the normal case for most drivers), we don't need
914 * the logic to deal with cleaning up afterwards.
916 * We must do one of several things here:
918 * a) Call scsi_end_request. This will finish off the
919 * specified number of sectors. If we are done, the
920 * command block will be released, and the queue
921 * function will be goosed. If we are not done, then
922 * scsi_end_request will directly goose the queue.
924 * b) We can just use scsi_requeue_command() here. This would
925 * be used if we just wanted to retry, for example.
927 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
929 int result
= cmd
->result
;
930 int this_count
= cmd
->request_bufflen
;
931 struct request_queue
*q
= cmd
->device
->request_queue
;
932 struct request
*req
= cmd
->request
;
933 int clear_errors
= 1;
934 struct scsi_sense_hdr sshdr
;
936 int sense_deferred
= 0;
938 scsi_release_buffers(cmd
);
941 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
943 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
946 if (blk_pc_request(req
)) { /* SG_IO ioctl from block level */
947 req
->errors
= result
;
950 if (sense_valid
&& req
->sense
) {
952 * SG_IO wants current and deferred errors
954 int len
= 8 + cmd
->sense_buffer
[7];
956 if (len
> SCSI_SENSE_BUFFERSIZE
)
957 len
= SCSI_SENSE_BUFFERSIZE
;
958 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
959 req
->sense_len
= len
;
962 req
->data_len
= cmd
->resid
;
966 * Next deal with any sectors which we were able to correctly
969 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
971 req
->nr_sectors
, good_bytes
));
972 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd
->use_sg
));
977 /* A number of bytes were successfully read. If there
978 * are leftovers and there is some kind of error
979 * (result != 0), retry the rest.
981 if (scsi_end_request(cmd
, 1, good_bytes
, result
== 0) == NULL
)
984 /* good_bytes = 0, or (inclusive) there were leftovers and
985 * result = 0, so scsi_end_request couldn't retry.
987 if (sense_valid
&& !sense_deferred
) {
988 switch (sshdr
.sense_key
) {
990 if (cmd
->device
->removable
) {
991 /* Detected disc change. Set a bit
992 * and quietly refuse further access.
994 cmd
->device
->changed
= 1;
995 scsi_end_request(cmd
, 0, this_count
, 1);
998 /* Must have been a power glitch, or a
999 * bus reset. Could not have been a
1000 * media change, so we just retry the
1001 * request and see what happens.
1003 scsi_requeue_command(q
, cmd
);
1007 case ILLEGAL_REQUEST
:
1008 /* If we had an ILLEGAL REQUEST returned, then
1009 * we may have performed an unsupported
1010 * command. The only thing this should be
1011 * would be a ten byte read where only a six
1012 * byte read was supported. Also, on a system
1013 * where READ CAPACITY failed, we may have
1014 * read past the end of the disk.
1016 if ((cmd
->device
->use_10_for_rw
&&
1017 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
1018 (cmd
->cmnd
[0] == READ_10
||
1019 cmd
->cmnd
[0] == WRITE_10
)) {
1020 cmd
->device
->use_10_for_rw
= 0;
1021 /* This will cause a retry with a
1024 scsi_requeue_command(q
, cmd
);
1027 scsi_end_request(cmd
, 0, this_count
, 1);
1032 /* If the device is in the process of becoming
1033 * ready, or has a temporary blockage, retry.
1035 if (sshdr
.asc
== 0x04) {
1036 switch (sshdr
.ascq
) {
1037 case 0x01: /* becoming ready */
1038 case 0x04: /* format in progress */
1039 case 0x05: /* rebuild in progress */
1040 case 0x06: /* recalculation in progress */
1041 case 0x07: /* operation in progress */
1042 case 0x08: /* Long write in progress */
1043 case 0x09: /* self test in progress */
1044 scsi_requeue_command(q
, cmd
);
1050 if (!(req
->cmd_flags
& REQ_QUIET
))
1051 scsi_cmd_print_sense_hdr(cmd
,
1055 scsi_end_request(cmd
, 0, this_count
, 1);
1057 case VOLUME_OVERFLOW
:
1058 if (!(req
->cmd_flags
& REQ_QUIET
)) {
1059 scmd_printk(KERN_INFO
, cmd
,
1060 "Volume overflow, CDB: ");
1061 __scsi_print_command(cmd
->cmnd
);
1062 scsi_print_sense("", cmd
);
1064 /* See SSC3rXX or current. */
1065 scsi_end_request(cmd
, 0, this_count
, 1);
1071 if (host_byte(result
) == DID_RESET
) {
1072 /* Third party bus reset or reset for error recovery
1073 * reasons. Just retry the request and see what
1076 scsi_requeue_command(q
, cmd
);
1080 if (!(req
->cmd_flags
& REQ_QUIET
)) {
1081 scsi_print_result(cmd
);
1082 if (driver_byte(result
) & DRIVER_SENSE
)
1083 scsi_print_sense("", cmd
);
1086 scsi_end_request(cmd
, 0, this_count
, !result
);
1090 * Function: scsi_init_io()
1092 * Purpose: SCSI I/O initialize function.
1094 * Arguments: cmd - Command descriptor we wish to initialize
1096 * Returns: 0 on success
1097 * BLKPREP_DEFER if the failure is retryable
1098 * BLKPREP_KILL if the failure is fatal
1100 static int scsi_init_io(struct scsi_cmnd
*cmd
)
1102 struct request
*req
= cmd
->request
;
1106 * We used to not use scatter-gather for single segment request,
1107 * but now we do (it makes highmem I/O easier to support without
1110 cmd
->use_sg
= req
->nr_phys_segments
;
1113 * If sg table allocation fails, requeue request later.
1115 cmd
->request_buffer
= scsi_alloc_sgtable(cmd
, GFP_ATOMIC
);
1116 if (unlikely(!cmd
->request_buffer
)) {
1117 scsi_unprep_request(req
);
1118 return BLKPREP_DEFER
;
1122 if (blk_pc_request(req
))
1123 cmd
->request_bufflen
= req
->data_len
;
1125 cmd
->request_bufflen
= req
->nr_sectors
<< 9;
1128 * Next, walk the list, and fill in the addresses and sizes of
1131 count
= blk_rq_map_sg(req
->q
, req
, cmd
->request_buffer
);
1132 if (likely(count
<= cmd
->use_sg
)) {
1133 cmd
->use_sg
= count
;
1137 printk(KERN_ERR
"Incorrect number of segments after building list\n");
1138 printk(KERN_ERR
"counted %d, received %d\n", count
, cmd
->use_sg
);
1139 printk(KERN_ERR
"req nr_sec %lu, cur_nr_sec %u\n", req
->nr_sectors
,
1140 req
->current_nr_sectors
);
1142 return BLKPREP_KILL
;
1145 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1146 struct request
*req
)
1148 struct scsi_cmnd
*cmd
;
1150 if (!req
->special
) {
1151 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1159 /* pull a tag out of the request if we have one */
1160 cmd
->tag
= req
->tag
;
1166 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1168 struct scsi_cmnd
*cmd
;
1169 int ret
= scsi_prep_state_check(sdev
, req
);
1171 if (ret
!= BLKPREP_OK
)
1174 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1176 return BLKPREP_DEFER
;
1179 * BLOCK_PC requests may transfer data, in which case they must
1180 * a bio attached to them. Or they might contain a SCSI command
1181 * that does not transfer data, in which case they may optionally
1182 * submit a request without an attached bio.
1187 BUG_ON(!req
->nr_phys_segments
);
1189 ret
= scsi_init_io(cmd
);
1193 BUG_ON(req
->data_len
);
1196 cmd
->request_bufflen
= 0;
1197 cmd
->request_buffer
= NULL
;
1202 BUILD_BUG_ON(sizeof(req
->cmd
) > sizeof(cmd
->cmnd
));
1203 memcpy(cmd
->cmnd
, req
->cmd
, sizeof(cmd
->cmnd
));
1204 cmd
->cmd_len
= req
->cmd_len
;
1206 cmd
->sc_data_direction
= DMA_NONE
;
1207 else if (rq_data_dir(req
) == WRITE
)
1208 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1210 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1212 cmd
->transfersize
= req
->data_len
;
1213 cmd
->allowed
= req
->retries
;
1214 cmd
->timeout_per_command
= req
->timeout
;
1217 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1220 * Setup a REQ_TYPE_FS command. These are simple read/write request
1221 * from filesystems that still need to be translated to SCSI CDBs from
1224 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1226 struct scsi_cmnd
*cmd
;
1227 int ret
= scsi_prep_state_check(sdev
, req
);
1229 if (ret
!= BLKPREP_OK
)
1232 * Filesystem requests must transfer data.
1234 BUG_ON(!req
->nr_phys_segments
);
1236 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1238 return BLKPREP_DEFER
;
1240 return scsi_init_io(cmd
);
1242 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1244 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1246 int ret
= BLKPREP_OK
;
1249 * If the device is not in running state we will reject some
1252 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1253 switch (sdev
->sdev_state
) {
1256 * If the device is offline we refuse to process any
1257 * commands. The device must be brought online
1258 * before trying any recovery commands.
1260 sdev_printk(KERN_ERR
, sdev
,
1261 "rejecting I/O to offline device\n");
1266 * If the device is fully deleted, we refuse to
1267 * process any commands as well.
1269 sdev_printk(KERN_ERR
, sdev
,
1270 "rejecting I/O to dead device\n");
1276 * If the devices is blocked we defer normal commands.
1278 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1279 ret
= BLKPREP_DEFER
;
1283 * For any other not fully online state we only allow
1284 * special commands. In particular any user initiated
1285 * command is not allowed.
1287 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1294 EXPORT_SYMBOL(scsi_prep_state_check
);
1296 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1298 struct scsi_device
*sdev
= q
->queuedata
;
1302 req
->errors
= DID_NO_CONNECT
<< 16;
1303 /* release the command and kill it */
1305 struct scsi_cmnd
*cmd
= req
->special
;
1306 scsi_release_buffers(cmd
);
1307 scsi_put_command(cmd
);
1308 req
->special
= NULL
;
1313 * If we defer, the elv_next_request() returns NULL, but the
1314 * queue must be restarted, so we plug here if no returning
1315 * command will automatically do that.
1317 if (sdev
->device_busy
== 0)
1321 req
->cmd_flags
|= REQ_DONTPREP
;
1326 EXPORT_SYMBOL(scsi_prep_return
);
1328 static int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1330 struct scsi_device
*sdev
= q
->queuedata
;
1331 int ret
= BLKPREP_KILL
;
1333 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1334 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1335 return scsi_prep_return(q
, req
, ret
);
1339 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1342 * Called with the queue_lock held.
1344 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1345 struct scsi_device
*sdev
)
1347 if (sdev
->device_busy
>= sdev
->queue_depth
)
1349 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1351 * unblock after device_blocked iterates to zero
1353 if (--sdev
->device_blocked
== 0) {
1355 sdev_printk(KERN_INFO
, sdev
,
1356 "unblocking device at zero depth\n"));
1362 if (sdev
->device_blocked
)
1369 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1370 * return 0. We must end up running the queue again whenever 0 is
1371 * returned, else IO can hang.
1373 * Called with host_lock held.
1375 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1376 struct Scsi_Host
*shost
,
1377 struct scsi_device
*sdev
)
1379 if (scsi_host_in_recovery(shost
))
1381 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1383 * unblock after host_blocked iterates to zero
1385 if (--shost
->host_blocked
== 0) {
1387 printk("scsi%d unblocking host at zero depth\n",
1394 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
1395 shost
->host_blocked
|| shost
->host_self_blocked
) {
1396 if (list_empty(&sdev
->starved_entry
))
1397 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1401 /* We're OK to process the command, so we can't be starved */
1402 if (!list_empty(&sdev
->starved_entry
))
1403 list_del_init(&sdev
->starved_entry
);
1409 * Kill a request for a dead device
1411 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1413 struct scsi_cmnd
*cmd
= req
->special
;
1414 struct scsi_device
*sdev
= cmd
->device
;
1415 struct Scsi_Host
*shost
= sdev
->host
;
1417 blkdev_dequeue_request(req
);
1419 if (unlikely(cmd
== NULL
)) {
1420 printk(KERN_CRIT
"impossible request in %s.\n",
1425 scsi_init_cmd_errh(cmd
);
1426 cmd
->result
= DID_NO_CONNECT
<< 16;
1427 atomic_inc(&cmd
->device
->iorequest_cnt
);
1430 * SCSI request completion path will do scsi_device_unbusy(),
1431 * bump busy counts. To bump the counters, we need to dance
1432 * with the locks as normal issue path does.
1434 sdev
->device_busy
++;
1435 spin_unlock(sdev
->request_queue
->queue_lock
);
1436 spin_lock(shost
->host_lock
);
1438 spin_unlock(shost
->host_lock
);
1439 spin_lock(sdev
->request_queue
->queue_lock
);
1444 static void scsi_softirq_done(struct request
*rq
)
1446 struct scsi_cmnd
*cmd
= rq
->completion_data
;
1447 unsigned long wait_for
= (cmd
->allowed
+ 1) * cmd
->timeout_per_command
;
1450 INIT_LIST_HEAD(&cmd
->eh_entry
);
1452 disposition
= scsi_decide_disposition(cmd
);
1453 if (disposition
!= SUCCESS
&&
1454 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1455 sdev_printk(KERN_ERR
, cmd
->device
,
1456 "timing out command, waited %lus\n",
1458 disposition
= SUCCESS
;
1461 scsi_log_completion(cmd
, disposition
);
1463 switch (disposition
) {
1465 scsi_finish_command(cmd
);
1468 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1470 case ADD_TO_MLQUEUE
:
1471 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1474 if (!scsi_eh_scmd_add(cmd
, 0))
1475 scsi_finish_command(cmd
);
1480 * Function: scsi_request_fn()
1482 * Purpose: Main strategy routine for SCSI.
1484 * Arguments: q - Pointer to actual queue.
1488 * Lock status: IO request lock assumed to be held when called.
1490 static void scsi_request_fn(struct request_queue
*q
)
1492 struct scsi_device
*sdev
= q
->queuedata
;
1493 struct Scsi_Host
*shost
;
1494 struct scsi_cmnd
*cmd
;
1495 struct request
*req
;
1498 printk("scsi: killing requests for dead queue\n");
1499 while ((req
= elv_next_request(q
)) != NULL
)
1500 scsi_kill_request(req
, q
);
1504 if(!get_device(&sdev
->sdev_gendev
))
1505 /* We must be tearing the block queue down already */
1509 * To start with, we keep looping until the queue is empty, or until
1510 * the host is no longer able to accept any more requests.
1513 while (!blk_queue_plugged(q
)) {
1516 * get next queueable request. We do this early to make sure
1517 * that the request is fully prepared even if we cannot
1520 req
= elv_next_request(q
);
1521 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1524 if (unlikely(!scsi_device_online(sdev
))) {
1525 sdev_printk(KERN_ERR
, sdev
,
1526 "rejecting I/O to offline device\n");
1527 scsi_kill_request(req
, q
);
1533 * Remove the request from the request list.
1535 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1536 blkdev_dequeue_request(req
);
1537 sdev
->device_busy
++;
1539 spin_unlock(q
->queue_lock
);
1541 if (unlikely(cmd
== NULL
)) {
1542 printk(KERN_CRIT
"impossible request in %s.\n"
1543 "please mail a stack trace to "
1544 "linux-scsi@vger.kernel.org\n",
1546 blk_dump_rq_flags(req
, "foo");
1549 spin_lock(shost
->host_lock
);
1551 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1553 if (sdev
->single_lun
) {
1554 if (scsi_target(sdev
)->starget_sdev_user
&&
1555 scsi_target(sdev
)->starget_sdev_user
!= sdev
)
1557 scsi_target(sdev
)->starget_sdev_user
= sdev
;
1562 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1563 * take the lock again.
1565 spin_unlock_irq(shost
->host_lock
);
1568 * Finally, initialize any error handling parameters, and set up
1569 * the timers for timeouts.
1571 scsi_init_cmd_errh(cmd
);
1574 * Dispatch the command to the low-level driver.
1576 rtn
= scsi_dispatch_cmd(cmd
);
1577 spin_lock_irq(q
->queue_lock
);
1579 /* we're refusing the command; because of
1580 * the way locks get dropped, we need to
1581 * check here if plugging is required */
1582 if(sdev
->device_busy
== 0)
1592 spin_unlock_irq(shost
->host_lock
);
1595 * lock q, handle tag, requeue req, and decrement device_busy. We
1596 * must return with queue_lock held.
1598 * Decrementing device_busy without checking it is OK, as all such
1599 * cases (host limits or settings) should run the queue at some
1602 spin_lock_irq(q
->queue_lock
);
1603 blk_requeue_request(q
, req
);
1604 sdev
->device_busy
--;
1605 if(sdev
->device_busy
== 0)
1608 /* must be careful here...if we trigger the ->remove() function
1609 * we cannot be holding the q lock */
1610 spin_unlock_irq(q
->queue_lock
);
1611 put_device(&sdev
->sdev_gendev
);
1612 spin_lock_irq(q
->queue_lock
);
1615 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1617 struct device
*host_dev
;
1618 u64 bounce_limit
= 0xffffffff;
1620 if (shost
->unchecked_isa_dma
)
1621 return BLK_BOUNCE_ISA
;
1623 * Platforms with virtual-DMA translation
1624 * hardware have no practical limit.
1626 if (!PCI_DMA_BUS_IS_PHYS
)
1627 return BLK_BOUNCE_ANY
;
1629 host_dev
= scsi_get_device(shost
);
1630 if (host_dev
&& host_dev
->dma_mask
)
1631 bounce_limit
= *host_dev
->dma_mask
;
1633 return bounce_limit
;
1635 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1637 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1638 request_fn_proc
*request_fn
)
1640 struct request_queue
*q
;
1642 q
= blk_init_queue(request_fn
, NULL
);
1647 * this limit is imposed by hardware restrictions
1649 blk_queue_max_hw_segments(q
, shost
->sg_tablesize
);
1652 * In the future, sg chaining support will be mandatory and this
1653 * ifdef can then go away. Right now we don't have all archs
1654 * converted, so better keep it safe.
1656 #ifdef ARCH_HAS_SG_CHAIN
1657 if (shost
->use_sg_chaining
)
1658 blk_queue_max_phys_segments(q
, SCSI_MAX_SG_CHAIN_SEGMENTS
);
1660 blk_queue_max_phys_segments(q
, SCSI_MAX_SG_SEGMENTS
);
1662 blk_queue_max_phys_segments(q
, SCSI_MAX_SG_SEGMENTS
);
1665 blk_queue_max_sectors(q
, shost
->max_sectors
);
1666 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1667 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1669 if (!shost
->use_clustering
)
1670 clear_bit(QUEUE_FLAG_CLUSTER
, &q
->queue_flags
);
1673 EXPORT_SYMBOL(__scsi_alloc_queue
);
1675 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1677 struct request_queue
*q
;
1679 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1683 blk_queue_prep_rq(q
, scsi_prep_fn
);
1684 blk_queue_softirq_done(q
, scsi_softirq_done
);
1688 void scsi_free_queue(struct request_queue
*q
)
1690 blk_cleanup_queue(q
);
1694 * Function: scsi_block_requests()
1696 * Purpose: Utility function used by low-level drivers to prevent further
1697 * commands from being queued to the device.
1699 * Arguments: shost - Host in question
1703 * Lock status: No locks are assumed held.
1705 * Notes: There is no timer nor any other means by which the requests
1706 * get unblocked other than the low-level driver calling
1707 * scsi_unblock_requests().
1709 void scsi_block_requests(struct Scsi_Host
*shost
)
1711 shost
->host_self_blocked
= 1;
1713 EXPORT_SYMBOL(scsi_block_requests
);
1716 * Function: scsi_unblock_requests()
1718 * Purpose: Utility function used by low-level drivers to allow further
1719 * commands from being queued to the device.
1721 * Arguments: shost - Host in question
1725 * Lock status: No locks are assumed held.
1727 * Notes: There is no timer nor any other means by which the requests
1728 * get unblocked other than the low-level driver calling
1729 * scsi_unblock_requests().
1731 * This is done as an API function so that changes to the
1732 * internals of the scsi mid-layer won't require wholesale
1733 * changes to drivers that use this feature.
1735 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1737 shost
->host_self_blocked
= 0;
1738 scsi_run_host_queues(shost
);
1740 EXPORT_SYMBOL(scsi_unblock_requests
);
1742 int __init
scsi_init_queue(void)
1746 scsi_io_context_cache
= kmem_cache_create("scsi_io_context",
1747 sizeof(struct scsi_io_context
),
1749 if (!scsi_io_context_cache
) {
1750 printk(KERN_ERR
"SCSI: can't init scsi io context cache\n");
1754 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1755 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1756 int size
= sgp
->size
* sizeof(struct scatterlist
);
1758 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1759 SLAB_HWCACHE_ALIGN
, NULL
);
1761 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1765 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1768 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1776 void scsi_exit_queue(void)
1780 kmem_cache_destroy(scsi_io_context_cache
);
1782 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1783 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1784 mempool_destroy(sgp
->pool
);
1785 kmem_cache_destroy(sgp
->slab
);
1790 * scsi_mode_select - issue a mode select
1791 * @sdev: SCSI device to be queried
1792 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1793 * @sp: Save page bit (0 == don't save, 1 == save)
1794 * @modepage: mode page being requested
1795 * @buffer: request buffer (may not be smaller than eight bytes)
1796 * @len: length of request buffer.
1797 * @timeout: command timeout
1798 * @retries: number of retries before failing
1799 * @data: returns a structure abstracting the mode header data
1800 * @sense: place to put sense data (or NULL if no sense to be collected).
1801 * must be SCSI_SENSE_BUFFERSIZE big.
1803 * Returns zero if successful; negative error number or scsi
1808 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1809 unsigned char *buffer
, int len
, int timeout
, int retries
,
1810 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1812 unsigned char cmd
[10];
1813 unsigned char *real_buffer
;
1816 memset(cmd
, 0, sizeof(cmd
));
1817 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1819 if (sdev
->use_10_for_ms
) {
1822 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1825 memcpy(real_buffer
+ 8, buffer
, len
);
1829 real_buffer
[2] = data
->medium_type
;
1830 real_buffer
[3] = data
->device_specific
;
1831 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1833 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1834 real_buffer
[7] = data
->block_descriptor_length
;
1836 cmd
[0] = MODE_SELECT_10
;
1840 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1844 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1847 memcpy(real_buffer
+ 4, buffer
, len
);
1850 real_buffer
[1] = data
->medium_type
;
1851 real_buffer
[2] = data
->device_specific
;
1852 real_buffer
[3] = data
->block_descriptor_length
;
1855 cmd
[0] = MODE_SELECT
;
1859 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1860 sshdr
, timeout
, retries
);
1864 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1867 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1868 * six bytes if necessary.
1869 * @sdev: SCSI device to be queried
1870 * @dbd: set if mode sense will allow block descriptors to be returned
1871 * @modepage: mode page being requested
1872 * @buffer: request buffer (may not be smaller than eight bytes)
1873 * @len: length of request buffer.
1874 * @timeout: command timeout
1875 * @retries: number of retries before failing
1876 * @data: returns a structure abstracting the mode header data
1877 * @sense: place to put sense data (or NULL if no sense to be collected).
1878 * must be SCSI_SENSE_BUFFERSIZE big.
1880 * Returns zero if unsuccessful, or the header offset (either 4
1881 * or 8 depending on whether a six or ten byte command was
1882 * issued) if successful.
1885 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1886 unsigned char *buffer
, int len
, int timeout
, int retries
,
1887 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1889 unsigned char cmd
[12];
1893 struct scsi_sense_hdr my_sshdr
;
1895 memset(data
, 0, sizeof(*data
));
1896 memset(&cmd
[0], 0, 12);
1897 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1900 /* caller might not be interested in sense, but we need it */
1905 use_10_for_ms
= sdev
->use_10_for_ms
;
1907 if (use_10_for_ms
) {
1911 cmd
[0] = MODE_SENSE_10
;
1918 cmd
[0] = MODE_SENSE
;
1923 memset(buffer
, 0, len
);
1925 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1926 sshdr
, timeout
, retries
);
1928 /* This code looks awful: what it's doing is making sure an
1929 * ILLEGAL REQUEST sense return identifies the actual command
1930 * byte as the problem. MODE_SENSE commands can return
1931 * ILLEGAL REQUEST if the code page isn't supported */
1933 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1934 (driver_byte(result
) & DRIVER_SENSE
)) {
1935 if (scsi_sense_valid(sshdr
)) {
1936 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1937 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1939 * Invalid command operation code
1941 sdev
->use_10_for_ms
= 0;
1947 if(scsi_status_is_good(result
)) {
1948 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1949 (modepage
== 6 || modepage
== 8))) {
1950 /* Initio breakage? */
1953 data
->medium_type
= 0;
1954 data
->device_specific
= 0;
1956 data
->block_descriptor_length
= 0;
1957 } else if(use_10_for_ms
) {
1958 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1959 data
->medium_type
= buffer
[2];
1960 data
->device_specific
= buffer
[3];
1961 data
->longlba
= buffer
[4] & 0x01;
1962 data
->block_descriptor_length
= buffer
[6]*256
1965 data
->length
= buffer
[0] + 1;
1966 data
->medium_type
= buffer
[1];
1967 data
->device_specific
= buffer
[2];
1968 data
->block_descriptor_length
= buffer
[3];
1970 data
->header_length
= header_length
;
1975 EXPORT_SYMBOL(scsi_mode_sense
);
1978 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
)
1981 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
1983 struct scsi_sense_hdr sshdr
;
1986 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, &sshdr
,
1989 if ((driver_byte(result
) & DRIVER_SENSE
) && sdev
->removable
) {
1991 if ((scsi_sense_valid(&sshdr
)) &&
1992 ((sshdr
.sense_key
== UNIT_ATTENTION
) ||
1993 (sshdr
.sense_key
== NOT_READY
))) {
2000 EXPORT_SYMBOL(scsi_test_unit_ready
);
2003 * scsi_device_set_state - Take the given device through the device
2005 * @sdev: scsi device to change the state of.
2006 * @state: state to change to.
2008 * Returns zero if unsuccessful or an error if the requested
2009 * transition is illegal.
2012 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2014 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2016 if (state
== oldstate
)
2021 /* There are no legal states that come back to
2022 * created. This is the manually initialised start
2096 sdev
->sdev_state
= state
;
2100 SCSI_LOG_ERROR_RECOVERY(1,
2101 sdev_printk(KERN_ERR
, sdev
,
2102 "Illegal state transition %s->%s\n",
2103 scsi_device_state_name(oldstate
),
2104 scsi_device_state_name(state
))
2108 EXPORT_SYMBOL(scsi_device_set_state
);
2111 * scsi_device_quiesce - Block user issued commands.
2112 * @sdev: scsi device to quiesce.
2114 * This works by trying to transition to the SDEV_QUIESCE state
2115 * (which must be a legal transition). When the device is in this
2116 * state, only special requests will be accepted, all others will
2117 * be deferred. Since special requests may also be requeued requests,
2118 * a successful return doesn't guarantee the device will be
2119 * totally quiescent.
2121 * Must be called with user context, may sleep.
2123 * Returns zero if unsuccessful or an error if not.
2126 scsi_device_quiesce(struct scsi_device
*sdev
)
2128 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2132 scsi_run_queue(sdev
->request_queue
);
2133 while (sdev
->device_busy
) {
2134 msleep_interruptible(200);
2135 scsi_run_queue(sdev
->request_queue
);
2139 EXPORT_SYMBOL(scsi_device_quiesce
);
2142 * scsi_device_resume - Restart user issued commands to a quiesced device.
2143 * @sdev: scsi device to resume.
2145 * Moves the device from quiesced back to running and restarts the
2148 * Must be called with user context, may sleep.
2151 scsi_device_resume(struct scsi_device
*sdev
)
2153 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2155 scsi_run_queue(sdev
->request_queue
);
2157 EXPORT_SYMBOL(scsi_device_resume
);
2160 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2162 scsi_device_quiesce(sdev
);
2166 scsi_target_quiesce(struct scsi_target
*starget
)
2168 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2170 EXPORT_SYMBOL(scsi_target_quiesce
);
2173 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2175 scsi_device_resume(sdev
);
2179 scsi_target_resume(struct scsi_target
*starget
)
2181 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2183 EXPORT_SYMBOL(scsi_target_resume
);
2186 * scsi_internal_device_block - internal function to put a device
2187 * temporarily into the SDEV_BLOCK state
2188 * @sdev: device to block
2190 * Block request made by scsi lld's to temporarily stop all
2191 * scsi commands on the specified device. Called from interrupt
2192 * or normal process context.
2194 * Returns zero if successful or error if not
2197 * This routine transitions the device to the SDEV_BLOCK state
2198 * (which must be a legal transition). When the device is in this
2199 * state, all commands are deferred until the scsi lld reenables
2200 * the device with scsi_device_unblock or device_block_tmo fires.
2201 * This routine assumes the host_lock is held on entry.
2204 scsi_internal_device_block(struct scsi_device
*sdev
)
2206 struct request_queue
*q
= sdev
->request_queue
;
2207 unsigned long flags
;
2210 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2215 * The device has transitioned to SDEV_BLOCK. Stop the
2216 * block layer from calling the midlayer with this device's
2219 spin_lock_irqsave(q
->queue_lock
, flags
);
2221 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2225 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2228 * scsi_internal_device_unblock - resume a device after a block request
2229 * @sdev: device to resume
2231 * Called by scsi lld's or the midlayer to restart the device queue
2232 * for the previously suspended scsi device. Called from interrupt or
2233 * normal process context.
2235 * Returns zero if successful or error if not.
2238 * This routine transitions the device to the SDEV_RUNNING state
2239 * (which must be a legal transition) allowing the midlayer to
2240 * goose the queue for this device. This routine assumes the
2241 * host_lock is held upon entry.
2244 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2246 struct request_queue
*q
= sdev
->request_queue
;
2248 unsigned long flags
;
2251 * Try to transition the scsi device to SDEV_RUNNING
2252 * and goose the device queue if successful.
2254 err
= scsi_device_set_state(sdev
, SDEV_RUNNING
);
2258 spin_lock_irqsave(q
->queue_lock
, flags
);
2260 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2264 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2267 device_block(struct scsi_device
*sdev
, void *data
)
2269 scsi_internal_device_block(sdev
);
2273 target_block(struct device
*dev
, void *data
)
2275 if (scsi_is_target_device(dev
))
2276 starget_for_each_device(to_scsi_target(dev
), NULL
,
2282 scsi_target_block(struct device
*dev
)
2284 if (scsi_is_target_device(dev
))
2285 starget_for_each_device(to_scsi_target(dev
), NULL
,
2288 device_for_each_child(dev
, NULL
, target_block
);
2290 EXPORT_SYMBOL_GPL(scsi_target_block
);
2293 device_unblock(struct scsi_device
*sdev
, void *data
)
2295 scsi_internal_device_unblock(sdev
);
2299 target_unblock(struct device
*dev
, void *data
)
2301 if (scsi_is_target_device(dev
))
2302 starget_for_each_device(to_scsi_target(dev
), NULL
,
2308 scsi_target_unblock(struct device
*dev
)
2310 if (scsi_is_target_device(dev
))
2311 starget_for_each_device(to_scsi_target(dev
), NULL
,
2314 device_for_each_child(dev
, NULL
, target_unblock
);
2316 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2319 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2320 * @sg: scatter-gather list
2321 * @sg_count: number of segments in sg
2322 * @offset: offset in bytes into sg, on return offset into the mapped area
2323 * @len: bytes to map, on return number of bytes mapped
2325 * Returns virtual address of the start of the mapped page
2327 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2328 size_t *offset
, size_t *len
)
2331 size_t sg_len
= 0, len_complete
= 0;
2332 struct scatterlist
*sg
;
2335 WARN_ON(!irqs_disabled());
2337 for_each_sg(sgl
, sg
, sg_count
, i
) {
2338 len_complete
= sg_len
; /* Complete sg-entries */
2339 sg_len
+= sg
->length
;
2340 if (sg_len
> *offset
)
2344 if (unlikely(i
== sg_count
)) {
2345 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2347 __FUNCTION__
, sg_len
, *offset
, sg_count
);
2352 /* Offset starting from the beginning of first page in this sg-entry */
2353 *offset
= *offset
- len_complete
+ sg
->offset
;
2355 /* Assumption: contiguous pages can be accessed as "page + i" */
2356 page
= nth_page(sg
->page
, (*offset
>> PAGE_SHIFT
));
2357 *offset
&= ~PAGE_MASK
;
2359 /* Bytes in this sg-entry from *offset to the end of the page */
2360 sg_len
= PAGE_SIZE
- *offset
;
2364 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2366 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2369 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2370 * mapped with scsi_kmap_atomic_sg
2371 * @virt: virtual address to be unmapped
2373 void scsi_kunmap_atomic_sg(void *virt
)
2375 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2377 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);